
130

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 03, December 2018.

B. Abed-alguni and M. Barhoush are both with the Computer Sciences Department, Yarmouk University, Irbid, Jordan.

Email:Bilal.h@yu.edu.jo

DISTRIBUTED GREY WOLF OPTIMIZER FOR

NUMERICAL OPTIMIZATION PROBLEMS

Bilal H. Abed-alguni and Malek Barhoush

(Received: 29-Jul.-2018, Revised: 10-Sep.-2018, Accepted: 13-Sep.-2018)

ABSTRACT

The Grey Wolf Optimizer (GWO) algorithm is an interesting swarm-based optimization algorithm for global

optimization. It was inspired by the hunting strategy and leadership hierarchy of grey wolves. The GWO algorithm

has been successfully tailored to solve various continuous and discrete optimization problems. However, the main

drawback of GWO is that it may converge to sub-optimal solutions in early stages of its simulation process due to

the loss of diversity in its population. This paper introduces a distributed variation of GWO(DGWO) that attempts

to enhance the diversity of GWO by organizing its population into small independent groups (islands) based on a

well-known distributed model called the island model. DGWO applies the original GWO to each island and then

allows selected solutions to be exchanged among the islands based on the random ring topology and the best-

worst migration policy. The island model in DGWO provides a better environment for unfit candidate solutions in

each island to evolve into better solutions, which increases the likelihood of finding global optimal solutions.

Another interesting feature about DGWO is that it can run in parallel devices, which means that its computational

complexity can be reduced compared to the computational complexity of existing variations of GWO. DGWO was

evaluated and compared to well-known swarm-based optimization algorithms using 30 CEC 2014 functions. In

addition, the sensitivity of DGWO to its parameters was evaluated using 15 standard test functions. The

comparative study and the sensitivity analysis for DGWO indicate that it provides competitive performance

compared to the other tested algorithms. The source code of DGWO is available at:
https://www.dropbox.com/s/2d16t46598u03y0/DistributedGreyWolfOptimizer.zip?dl=0.

KEYWORDS

Grey wolf optimizer, Island-based model, Distributed optimization algorithm, Optimization, Swarm-based

optimization.

1. INTRODUCTION

Swarm-based optimization algorithms, such as the Bat algorithm [1]-[2], Cuckoo search [3]-[6], Whale

optimization [7]-[9], Butterfly optimization [10]-[14], Grasshopper optimization [15], flower pollination

[16] and Particle swarm optimization [1], [17], have been successfully used to solve difficult

optimization problems in various fields (e.g., image processing [18]-[19], fuzzy logic [20]-[21], control

engineering [22]-[25], scheduling problems [26]-[27]). The Grey Wolf Optimizer (GWO) is an

interesting swarm-based optimization algorithm that was recently proposed to solve difficult

optimization problems based on the hunting strategy and leadership hierarchy of grey wolves [28].

The GWO simulates the leadership hierarchy of grey wolves based on four hierarchical leaderships:

alpha wolf, beta wolf, delta wolf and omega wolf. In addition, GWO simulates the hunting strategy of

grey wolves based on three sequential steps: searching for prey, encircling prey and attacking prey.

GWO has lately attracted much attention from the optimization community due to its attractive

advantages. First, GWO is an efficient optimization algorithm that has a simple structure (Figure 1).

Second, the simulation process of GWO is controlled by one key parameter (Section 2.1). Finally, GWO

has been successfully tailored to solve various continuous optimization problems as well as discrete

optimization problems (Section 2.3).

Like most of the swarm-based optimization algorithms, GWO may converge faster than expected to

sub-optimal solutions [29]-[30]. This is because the evolutionary operators of GWO may not adequately

preserve the diversity of the population over the course of the simulation process of GWO. Swarm-

based optimization algorithms can be in general parallelized to run in different machines.

https://www.dropbox.com/s/2d16t46598u03y0/DistributedGreyWolfOptimizer.zip?dl=0

131
"Distributed Grey Wolf Optimizer for Numerical Optimization Problems", Bilal H. Abed-alguni and Malek Barhoush.

Interestingly, the parallel swarm-based approach offers a possible solution to the problem of premature

convergence of most of the swarm-based optimization algorithms [31]-[32]. This might be because the

parallel approach allows the population of candidate solutions of a given optimization problem to be

divided into several groups, which provides a better environment for unfit candidate solutions to evolve

in each group.

The island model, which is a structured population model, can be integrated with the framework of a

swarm-based optimization algorithm to facilitate its parallelization [21], [33]. Using the island model,

the population of a parallel swarm-based optimization algorithm can be divided into n groups (islands),

where a swarm-based optimization algorithm is applied independently to the population of each island.

These islands periodically exchange selected candidate solutions among each other (i.e., migration

process) in an attempt to maintain the diversity of population on each island.

The current paper introduces a Distributed Grey Wolf Optimizer (DGWO) that attempts to enhance the

diversity of GWO by organizing its population into small islands based on the island model. DGWO

applies the original GWO to the population of each island and then allows selected solutions to be

exchanged among the islands based on the random ring topology and the best-worst migration policy.

The rest of the paper is organized as follows: Section 2 provides background information about the Grey

Wolf Optimizer algorithm, the distributed island model and related work to the Grey Wolf Optimizer.

Section 3 presents and discusses the Distributed Grey Wolf Optimizer algorithm. Section 4 presents the

simulation results of the proposed algorithm and finally Section 5 presents the conclusions and future

work.

2. PRELIMINARIES

This section briefly summarizes some of the underlying concepts of the grey wolf optimizer (Section

2.1) algorithm and the island model (Section 2.2). This section also provides an overview of recently

proposed variations of grey wolf optimizer (Section 2.3).

2.1 Grey Wolf Optimizer

The Grey Wolf Optimizer (GWO) algorithm, which was developed by Mirjalili et al. [28], is an

interesting nature-inspired optimization algorithm. GWO uses a simulation model based on the

hierarchical leadership and hunting strategy of grey wolves. In the wild, grey wolves are top predators,

which means that they are at the top of their food chain, with no natural predators. A pack of wolves is

normally composed of 6 to 7 wolves, but it might have up to 15 wolves. In a wolf pack, normally an

alpha (α) male and an alpha female wolves control the pack. The direct followers to the wolves are the

beta (β) and delta (δ) wolves. The β and δ wolves help the α wolves to control and dominate the other

wolves in the pack (omega (ω) wolves). The hunting strategy of grey wolves is a three-stage cooperative

strategy (tracking and chasing prey, pursuing and encircling prey and attacking prey) [34].

Figure 1 shows the flow of the GWO algorithm. The first step of GWO is to generate a population of

wolves (candidate solutions) �⃗�𝑖(𝑖 = 1,2, … , 𝑁) for a given optimization problem. Each candidate

solution is composed of M decision variables �⃗�𝑖 = {𝑥1, 𝑥2, … , 𝑥𝑀}. The fitness value of each candidate

solution is calculated using the fitness function of the optimization problem to determine the hierarchical

structure of the population. The solution with the best calculated fitness value is called the α solution

(�⃗�𝛼), while the solutions with the second and third best fitness values are respectively called the β

solution (�⃗�𝛽) and δ solution (�⃗�𝛿). The rest of the solutions in the population are called the ω solutions

(�⃗�𝜔) [20].

The improvement loop of GWO is composed of three stages: tracking and chasing prey, pursuing and

encircling prey and attacking prey. Encircling prey is mathematically modelled in GWO as follows:

�⃗⃗⃗� = |𝐶. �⃗�𝑝 (𝑡) − �⃗� (𝑡)| (1)

�⃗�(𝑡 + 1) = �⃗�𝑝 (𝑡) − 𝐴. �⃗⃗⃗� (2)

where t is the current iteration number, 𝐴 and 𝐶 are two coefficient vectors, �⃗�𝑝 is the candidate solution

132

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 03, December 2018.

that represents the prey and �⃗� (𝑡) is the candidate solution that represents the grey wolf.

The two coefficient vectors 𝐴 and 𝐶 can be updated as follows:

𝐴 = 2�⃗�. 𝑟1⃗⃗⃗ ⃗ − �⃗� (3)

𝐶 = 2. 𝑟2⃗⃗⃗⃗ (4)

where �⃗� is a vector with values that linearly decrease from 2 to 0 over the course of the simulation of

GWO and 𝑟1⃗⃗⃗ ⃗ and 𝑟2⃗⃗⃗⃗ are two random vectors between 0 to 1.

In GWO, the ω solutions are updated based on the α, Β and δ solutions. Equations 5 to 11 represent the

update process of the solutions:

𝐷𝛼
⃗⃗⃗⃗⃗⃗ = |𝐶1. �⃗�𝛼 − �⃗�| (5)

𝐷𝛽
⃗⃗⃗⃗⃗⃗ = |𝐶2. �⃗�𝛽 − �⃗�| (6)

𝐷𝛿
⃗⃗⃗⃗⃗⃗ = |𝐶3. �⃗�𝛿 − �⃗�| (7)

𝑋1
⃗⃗⃗⃗⃗ = �⃗�𝛼 − 𝐴1

⃗⃗ ⃗⃗⃗. (𝐷𝛼
⃗⃗⃗⃗⃗⃗) (8)

𝑋2
⃗⃗⃗⃗⃗ = �⃗�𝛽 − 𝐴2

⃗⃗ ⃗⃗ ⃗. (𝐷𝛽
⃗⃗⃗⃗⃗⃗) (9)

𝑋3
⃗⃗⃗⃗⃗ = �⃗�𝛿 − 𝐴3

⃗⃗ ⃗⃗ ⃗. (𝐷𝛿
⃗⃗ ⃗⃗ ⃗⃗) (10)

�⃗�(𝑡 + 1) =
𝑋1⃗⃗⃗⃗⃗⃗ +𝑋2⃗⃗⃗⃗⃗⃗ +𝑋3⃗⃗⃗⃗⃗⃗

3
 (11)

Approaching and attacking prey (exploitation stage) is simulated in GWO by decreasing the components

of �⃗� from 2 to 0 over the course of simulation of GWO. According to Equation 3, the vector �⃗� controls

the range of values of 𝐴 which are in the range [−2�⃗�, 2�⃗�]. It is worth noting that a candidate solution

is updated in the direction of the best solutions (α, Β and δ solutions) when |𝐴 < 1|. The exploration of

the search space is triggered in GWO using two settings. First, the candidate solutions diverge from the

best solutions when |𝐴 > 1|. Second, the components of 𝐶, which are in the range [0, 2], provide

weights for the best solutions in order to increase the influence of the best solutions |𝐶 > 1| or decrease

their influence |𝐶 < 1| in Equation 1.

Initialize the population of n candidate solutions �⃗�𝑖(𝑖 = 1,2, … , 𝑛)

Initialize 𝐴, �⃗� and 𝐶

Calculate the fitness value of each candidate solution

�⃗�𝛼= the best candidate solution

�⃗�𝛽= the second best candidate solution

�⃗�𝛿= = the third best candidate solution

While (t < Max number of iterations)

for each candidate solution

 Update the values of the current candidate solution using Equation 11

end for

Update 𝐴, �⃗� and 𝐶

Calculate the fitness value of each candidate solution

Update �⃗�𝛼 , �⃗�𝛽 and �⃗�𝛿

t=t+1

end while

return �⃗�𝛼

Figure 1. The Grey Wolf Optimizer (GWO) Algorithm.

It is important to note that GWO in its current form can be only applied directly to continuous

optimization problems. GWO has been tailored for many real-world discrete optimization problems,

such as feature selection [35], economic load dispatch problems [36]-[37] and scheduling problems [38]

133
"Distributed Grey Wolf Optimizer for Numerical Optimization Problems", Bilal H. Abed-alguni and Malek Barhoush.

-[39].

The computational complexity of GWO (Figure 1) can be calculated as follows:

1. Initializing the population of n candidate solutions requires n operations.

2. Initializing the parameters of GWO (𝐴, �⃗� and 𝐶) requires 3 operations.

3. Calculating the first three best solutions (�⃗�𝛼, �⃗�𝛽 , and 𝑋⃗⃗⃗⃗ 𝛿) requires n operations.

4. The following operations are conducted inside the while loop:

a. The for loop that is used to update the population requires n operations.

b. Calculating the fitness of each candidate solution in an island requires n operations.

c. Updating �⃗�𝛼 , �⃗�𝛽 and �⃗�𝛿 requires n operations.

d. Updating the parameters of GWO (𝐴, �⃗� and 𝐶) requires 3 operations.

Overall, the while loop requires m.(n + n+ 3 +1) operations, where m is the maximum number

of iterations. The number of operations can be further simplified to m.n

5. All the operations of the algorithm can be calculated as n + 3+ n + m.n, which can be simplified

to m.n, because 2n is greater than 3 and m.n is greater than 2n.

In summary, the computational complexity of GWO is O(m.n). Note that any basic vector operation has

been assumed to cost O(1) in the above analysis.

2.2 Island Model

The island model, which is a distributed population model, can be integrated with the framework of a

swarm-based optimization algorithm to facilitate its parallelization [33]. Using the island model, the

population of a swarm-based optimization algorithm can be divided into n groups (islands). Each island

is assigned to a computation device, where a swarm-based optimization algorithm is applied to its

population. An interaction process, called migration, is periodically triggered among the islands in the

island model. In the migration process, selected candidate solutions are exchanged among islands in an

attempt to maintain and amend the diversity of population on each island. The best-worst and random-

random policies are the most used migration policies in the literature [31]-[33]. In the best-worst policy,

the most fitted solutions in one island (say m solutions) are exchanged with the m worst fitted solutions

in a neighbouring island. In the random- random policy, m random solutions in one island are swapped

with m random solutions in a neighbouring island.

The islands in the island model are normally organized and arranged based on a given migration

topology [40]. Star, random-star, mesh, random-mesh, ring and random-ring topologies are some

popular migration topologies used with swarm-based algorithms [41]. The prefix "random" in the name

of the migration topology, which indicates that the order of the islands in the topology changes each

time the migration process is triggered.

Two parameters control the migration process among islands in the island model [42]. First, the

migration frequency (Mf), which determines the number of iterations between two consecutive migration

waves. Second, the migration rate (Mr), which is a parameter that determines the percentage of solutions

to be exchanged between an island and a neighbouring island.

2.3 Variations of Grey Wolf Optimizer

Several hybrid GWO algorithms have been recently proposed in an attempt to control and amend

premature convergence of GWO. Jayabarathi et al. [36] proposed a hybrid GWO algorithm that

integrates the genetic operators (crossover and mutation) of the genetic algorithm (GA) into GWO to

improve its exploration ability. The experimental results in [36] suggested that the hybrid GWO and GA

algorithm provides good performance in solving several instances of the economic dispatch problem.

However, the proposed hybrid algorithm requires heavy computations compared to the basic GWO.

This is expected, because applying the genetic operators at each iteration of GWO for each candidate

solution is a time-consuming process. Another disadvantage of the hybrid GWO algorithm is that it has

a complex structure compared to the GWO algorithm. Tawhid and Ali [29] integrated the whole GA

algorithm into GWO to solve the minimization problem of the energy function of the molecule.

Although the hybrid GA and GWO algorithm performs much better than the basic GWO, it requires

more computational time than GWO. Jitkongchuen [43] proposed a hybrid swarm-based algorithm,

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Duangjai%20Jitkongchuen.QT.&newsearch=true

134

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 03, December 2018.

between the differential evolution (DE) algorithm and GWO, for solving numerical optimization

functions. The simulation results in [43] suggested that the hybrid GWO is more reliable and more

accurate in solving difficult numerical optimization problems than DE, self-adaptive DE and particle

swarm optimization (PSO). Unfortunately, the hybrid GWO and DE algorithm is complex and requires

heavy computations compared to GWO. Zawbaa et al. [44] combined Antlion optimization (ALO) and

GWO in one algorithm (ALO-GWO). ALO-GWO was particularly designed to solve the feature

selection problem in large datasets. The simulation results in [44] indicated that ALO-GWO provides

good performance in solving feature extraction problems in large datasets compared to PSO and GA.

However, ALO-GWO may require a long processing time as most of the hybrid optimization algorithms.

Various intelligent techniques have been successfully used with GWO to enhance its convergence

behaviour. Saremi et al. [45] suggested the EPD-GWO algorithm that uses the evolutionary population

dynamics (EPD) technique to improve the diversity of population in GWO. In other words, EPD is used

in EPD-GWO to improve the exploration of candidate solutions. EDP repositions the worst candidate

solutions in the population into the neighbourhoods of the alpha, beta, delta and omega wolves. The

simulation results in [45] indicated that EPD-GWO provides better results than GWO. However, the

computational complexity of EPD-GWO is higher than the computational complexity of GWO because

EPD has to be repeated at each iteration of EPD-GWO. Rodríguez et al. [46] proposed a dynamic

variation of GWO that dynamically tunes the parameters of GWO during the simulation process of

GWO in order to obtain the best possible performance out of GWO. However, manipulating the

parameters of GWO as in [46] does not provide significant enhancement in the performance than the

original GWO algorithm. The enhanced GWO (EGWO) algorithm, that was proposed by Joshi and

Arora [47], is an another adaptive variation of GWO. EGWO dynamically changes the values of the key

parameter of GWO (�⃗�) over the course of its simulation. Moreover, EGWO enhances the exploitation

mechanism of GWO by making the best use of the best solution (alpha solution). The experimental

results of EGWO compared to standard optimization algorithms (PSO, Firefly Algorithm (FA) and

Flower Pollination Algorithm (FPA)) proves that EGWO is a competitive algorithm for solving

constrained optimization problems. Malik et al. [48] introduced the wdGWO algorithm which combines

the weighted distance (wd) technique with GWO. In wdGWO, the update strategy of the candidate

solutions in GWO is modified and the average function of best solutions is replaced with the weighted

sum of best solutions. According to the experimental results in [48], the wdGWO showed superior

performance compared to basic optimization algorithms (FA, Artificial bee colony, Cuckoo search and

PSO).

Moreover, Emary et al. [49] introduced the experienced Grey Wolf Optimizer (EGWO) algorithm that

incorporates reinforcement learning (RL) and artificial neural networks (ANNs) into GWO to improve

its performance. EGWO uses RL to update the parameters of each candidate solution in the population

of GWO. EGWO uses ANNs to estimate the expertness of each candidate solution. The expertness

estimation of a solution is used to control its exploration rate. EGWO was evaluated and compared to

three optimization algorithms (GWO, PSO, GA). Joshi and Arora [50] proposed an enhanced GWO

(E-GWO) algorithm that uses an improved hunting mechanism to balance between the exploration and

exploitation of candidate solutions in GWO. Kohli and Arora [51] proposed the chaotic GWO (CGWO)

algorithm that incorporates the chaos theory into GWO in an attempt to improve the convergence

behaviour of GWO for constrained optimization problems. In CGWO, several types of chaotic maps are

employed to adjust the main parameter of GWO (�⃗�). The simulation results of CGWO compared to

well-known algorithms (PSO, Firefly Algorithm (FA) and Flower Pollination Algorithm (FPA)) suggest

that CGWO provides good results compared to the other algorithms. Heidari and Pahlavani [52]

introduced a modified GWO that uses the greedy selection method and the Lévy flight operator with

GWO in an attempt to improve the exploration mechanism of GWO. The simulation results in [52]

indicated that the improved GWO is more reliable and more effective in solving both discrete and

continuous optimization problems than popular state-of-the-art swarm-based optimization algorithms.

However, the greedy selection method is not the best selection mechanism according to Abed-alguni

and Alkhateeb [4]. Moreover, using the greedy selection method in an optimization algorithm may cause

premature convergence [4], [53]. Gupta and Deep [54]-[55] presented an improved GWO algorithm

called RW-GWO that uses random walk to enhance the search ability of grey wolves. According to the

simulation results in [54]-[55], RW-GWO shows high efficiency in solving both continuous and discrete

optimization algorithms.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mahmad%20Raphiyoddin%20S.%20Malik.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mahmad%20Raphiyoddin%20S.%20Malik.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mahmad%20Raphiyoddin%20S.%20Malik.QT.&newsearch=true

135
"Distributed Grey Wolf Optimizer for Numerical Optimization Problems", Bilal H. Abed-alguni and Malek Barhoush.

In summary, the computational complexity of most of the hybrid GWO algorithms (e.g. hybrid GA and

GWO [29], [36], DE-GWO [43], EGWO [49], ALO-GWO [44]) is much higher than the computational

complexity of the original GWO. This is because the integrated search method in GWO is normally

repeated at each iteration of GWO. Moreover, hybrid GWO algorithms have complex structures

compared to the basic GWO algorithm. Other enhanced versions of the GWO algorithm (e.g. EPD-

GWO [45], GWO and Lévy flight operator [52], Dynamic GWO [46], wdGWO [48], EGWO [47])

provide insignificant enhancement in the performance compared to GWO or can be applied only to

specific applications. In the next Section, a distributed variation of GWO (DGWO) is introduced in an

attempt to enhance the diversity of GWO by organizing its population into small islands based on the

island model. An interesting feature about DGWO is that it can run in parallel devices, which means

that its computational complexity can be reduced compared to the computational complexity of hybrid

GWO algorithms. However, DGWO can be directly applied to continuous optimization problems.

DGWO should be tailored to be applicable to real-world discrete optimization problems.

3. DISTRIBUTED GREY WOLF OPTIMIZER

The Grey Wolf Optimizer (GWO) is a nature-inspired optimization algorithm that mimics the hunting

strategy and leadership hierarchy of grey wolves [28]. GWO has been applied successfully to various

continuous optimization problems [45], [48], [52] and discrete optimization problems [29], [36], [48],

[52]. A problem with GWO is that its improvement loop may not maintain the diversity of its population

due the imperfection of its evolutionary operators. Such a problem is a common problem with all

optimization algorithms.

The island model enhances the performance and run-time of optimization algorithms. It also provides

better chances for unfit solutions in each island to evolve and improve. The distributed genetic algorithm

[56], distributed differential evolution [57]-[58], distributed particle swarm optimization [59] and

distributed ant colony [60] algorithms are but few examples of successful island-based optimization

algorithms.

The current section introduces a Distributed Grey Wolf Optimizer (DGWO) algorithm in an attempt to

improve the diversity of GWO by organizing its population into small islands based on the island model.

DGWO applies the original GWO to the population of each island and then allows selected solutions to

be exchanged among the islands based on the random-ring topology and the best-worst migration policy.

Figure 2 shows the pseudo code of the DGWO algorithm. The first step of DGWO is to determine the

total number of candidate solutions (n) for a given number of islands (s) and the maximum number of

iterations (MaxItr) of DGWO. The second step is to initialize the parameters of the island model. The

next step is to generate k candidate solutions for each island and then to calculate the number of

migration waves (Mw) and number of migrant solutions (nr).

DGWO generates k candidate solutions for each island before the beginning of the evolution process of

DGWO. In DGWO, the evolution process of the basic GWO algorithm is synchronously applied to each

individual island. After each Mf iterations (migration frequency), a number of candidate solutions are

swapped between each two neighbouring islands based on the random-ring topology and the best-worst

migration policy. In the random-ring topology, the neighbouring relationships are unidirectional

relationships (Figure 3). However, the neighbouring relationships in the random-ring topology change

after each migration wave among the islands. The number of candidate solutions to be exchanged among

the islands is specified by the migration rate (Mr).

The migration process among islands takes place each time the maximum number of iterations that is

specified by Mf is reached. Before the beginning of the migration process, the islands in DGWO are

organized to form a unidirectional ring based on the principles of the random ring topology. The most

fitted solutions in one island (say m solutions) are exchanged with the m worst fitted solutions in a

neighbouring island based on the best-worst migration policy. Let 𝑝𝑝𝑜𝑖 = {𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑠
𝑖} and 𝑝𝑝𝑜𝑗 =

{𝑥1
𝑗
, 𝑥2

𝑗
, … , 𝑥𝑠

𝑗
} be the neighboring islands Ii and Ij, respectively. If we assume that Rm = 20%, n=150

and s= 5, the number of migrant solutions is Rm × (n/s) = 20%×(150/5) = 6. Let 𝑝𝑝𝑜𝑖 and 𝑝𝑝𝑜𝑗 be two

lists ordered in ascending order based on their objective values, where 𝑓(𝑥1
𝑖) ≤ 𝑓(𝑥2

𝑖) ≤ ⋯ ≤ 𝑓(𝑥𝑠
𝑖)

and 𝑓(𝑥1
𝑗

) ≤ 𝑓(𝑥2
𝑗

) ≤ ⋯ ≤ 𝑓(𝑥𝑠
𝑗

). If we assume that there is a unidirectional edge from Ii to Ij, the first

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mahmad%20Raphiyoddin%20S.%20Malik.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mahmad%20Raphiyoddin%20S.%20Malik.QT.&newsearch=true

136

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 03, December 2018.

six candidate solutions in Ii (𝑥1
𝑖 , 𝑥2

𝑖 , 𝑥3
𝑖 , 𝑥4

𝑖 , 𝑥5
𝑖 , 𝑥6

𝑖) will be exchanged with the last six solutions in Ij

{𝑥𝑠−5
𝑗

, 𝑥𝑠−4
𝑗

, 𝑥𝑠−3
𝑗

, 𝑥𝑠−2
𝑗

, 𝑥𝑠−1
𝑗

, 𝑥𝑠
𝑗
}.

Determine the total number of candidate solutions of all islands (n) and the

maximum number of iterations (MaxItr).

Initialize the parameters of the island model (number of islands (s), migration

frequency (Mf), migration rate (Mr))

Calculate the population size for each island (k=n/s)

Calculate the number of migration waves (Mw= MaxItr/ Mf)

Calculate the number of migrant solutions (nr=𝑛/𝑠 × 𝑀𝑟)

Initialize the population of k candidate solutions for each island �⃗�𝑖
𝑗(𝑖 =

1,2, … , 𝑘) 𝑎𝑛𝑑 (𝑗 = 1,2, … , 𝑠)

for𝑖 = 1 𝑡𝑜 𝑀𝑤(1)

for𝑗 = 1 𝑡𝑜 𝑠...(2)

 Initialize 𝐴⃗⃗⃗⃗ 𝑗, �⃗�𝑗and 𝐶𝑗

 t=0

Calculate the fitness value of each candidate solution

�⃗�𝛼
𝑗
= the best candidate solution in island j

�⃗�𝛽
𝑗
= the second best candidate solution in island j

�⃗�𝛿
𝑗
 = the third best candidate solution in island j

While (t< Mf)..(3)

 for each candidate solution in island j(4)

 Update the values of the current candidate solution using Equation 11

end for

Update 𝐴𝑗, �⃗�𝑗and 𝐶𝑗

Calculate the fitness value of each candidate solution in island j

Update�⃗�𝛼
𝑗
 ,�⃗�𝛽

𝑗
 and �⃗�𝛿

𝑗

Replace the nr best candidate solutions in island j with the nr worst candidate

solutions in island ((j+1) mod s)

t=t+1

end while

end for

end for

Calculate �⃗�𝛼(�⃗�𝛼
𝑗
 with the best fitness)

return the �⃗�𝛼

Figure 2. The Distributed Grey Wolf Optimizer (DGWO) Algorithm.

Figure 3. Random-ring Migration Topology.

137
"Distributed Grey Wolf Optimizer for Numerical Optimization Problems", Bilal H. Abed-alguni and Malek Barhoush.

The computational complexity of DGWO (Figure 2) can be calculated based on its main steps as follows:

1. The first five steps require 5 operations.

2. Initializing the population of n candidate solutions for all islands requires n operations.

3. Calculating the fitness of all candidate solutions requires n operations.

4. Calculating the first three best solutions in an island requires k operations.

5. The most inner for loop (number 4) that is used to update the population of an island requires k

operations.

6. Calculating the fitness of each candidate solution in an island requires k operations.

7. Updating the first three best solutions in an island requires k operations.

8. Replacing the nr best candidate solutions in an island with the nr worst candidate solutions in

another island requires k+ k+ nr operations, which can be simplified to k because k >nr.

9. Overall, the while loop (number 3) requires Mf.(k + k + k +nr) operations. This step can be

simplified to Mf. k, because k>nr.

10. For loop number 2 requires s.(k +k+Mf. k) operations, which can be simplified to s.Mf.k, because

s.Mf.k is larger than s.k.

11. For loop number 1 requires Mw. s. Mf. k operations.

12. The last step that calculates the best candidate solution in all islands requires s operations.

13. All the operations of the algorithm can be calculated as 5+2n+k+Mw.s.Mf.k+s, which can be

simplified to Mw.s.Mf.k operations.

In summary, the computational complexity of DGWO is O(Mw.s.Mf.k). On the other hand, the

computational complexity of the basic GWO is O(m.n), where m is the maximum number of iterations

and n is the number of candidate solutions. Thus, it is better to run DGWO in parallel devices which

will reduce the computational complexity of DGWO to O((Mw.s.Mf.k)/s), where s is the number of

parallel devices (number of islands). In this case, the complexity of DGWO can be simplified to O(Mw

.Mf .k). Note that any basic vector operation has been assumed to cost O(1) in the above analysis.

4. EXPERIMENTS

In this section, the DGWO is benchmarked on 15 test functions (Table 1 and Table 2). These functions

are standardtest functions used widely by the researchers to evaluate and compare the performance of

swarm-bsed evolutionary algorithms [3]-[4], [28], [43], [48], [61]. Section 4.1 shows the experimental

setup. Section 4.2 provides an analysis of the performance of DGWO based on different experimental

Table 1. Test functions.

Abbreviation Function name Range D 𝒇(�⃗⃗⃗�∗)

f1 Generalized Schwefel's Problem 2.26 [-500,500] 30 −418.983 × D

f2 Griewank's Function [-10,10] 30 0

f3 Whitley's Function [-10,10] 30 0

f4 Ackley's Function 2.9 [32.768, 32.768] 30 0

f5 Alpine's Function [-10,10] 30 0

f6 Schaffer's Function [-100,100] 2 0

f7 Rastrigin's Function 2.5 [-5.12, 5.12] 30 0

f8 Inverted Cosine Wave Function [-5, 5] 30 -D+1

f9 Levy Function [-10, 10] 30 0

f10 Schwefel's 2.22 Function [-100,100] 30 0

f11 Rotated Hyper-ellipsoid Function [-65.536, 65.536] 30 0

f12 Shifted Sphere Function [-100,100] 30 0

f13 Shifted Schwefel Function [-100,100] 30 0

f14 Shifted Rastrigin’s Function [-5, 5] 30 -330

f15 Shifted Expanded Griewank’s Plus [-5, 5] 30 -130

scenarios. Section 4.3 provides analysis about the performance of DGWO compared to recently

proposed optimization algorithms (Grey Wolf Optimizer (GWO) [28], Cuckoo search (CS) [3], adaptive

differential evolution with linear population size reduction evolution (L-SHADE) [62], memory-based

hybrid Dragonfly (MHDA) [63] and Fireworks algorithm with differential mutation (FWA-DM) [64].

138

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 03, December 2018.

Table 2. Mathematical formulae of test functions.

Formula

𝑓1(𝑋) = − ∑[𝑥𝑖sin (√|𝑥𝑖|)]

𝑛

𝑖=1

𝑓2(𝑋) =
1

4000
∑.

𝑛

𝑖=1

𝑥𝑖
2 − ∏.

𝑛

𝑖=1

cos (
𝑥𝑖

√𝑖
) + 1

𝑓3(𝑥1 ⋯ 𝑥𝑛) = ∑

𝑛

𝑖=1

∑

𝑛

𝑗=1

(
(100(𝑥𝑖

2 − 𝑥𝑗)2 + (1 − 𝑥𝑗)2)2

4000
− 𝑐𝑜𝑠(100(𝑥𝑖

2 − 𝑥𝑗)2 + (1 − 𝑥𝑗)2) + 1)

𝑓4(𝑋) = −20 𝑒
(−0.2×√1

𝑛
∑ .𝑛

𝑖=1 𝑥𝑖
2)

− 𝑒[
1
𝑛

∑ .𝑛
𝑖=1 cos (2𝜋𝑥𝑖)] + 20 + 𝑒(1)

𝑓5(𝑋) = ∑ |𝑥𝑖sin (𝑥𝑖) + 0.1𝑥𝑖|

𝑛

𝑖=1

𝑓6(𝑥, 𝑦) = 0.5 +
𝑠𝑖𝑛2(𝑥2 + 𝑦2)2 − 0.5

(1 + 0.001(𝑥2 + 𝑦2))2

𝑓7(𝑋) = ∑[𝑥𝑖
2 − 10cos (2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

𝑓8(𝑋) = − ∑{

𝑛−1

𝑖=1

𝑒
[
−(𝑥𝑖

2+𝑥𝑖+1
2 +0.5𝑥𝑖𝑥𝑖+1)

8
]
cos (4 × √𝑥𝑖

2 + 𝑥𝑖+1
2 + 0.5𝑥𝑖𝑥𝑖+1)}

𝑓9(𝑥) = 𝑠𝑖𝑛2(𝜋𝑤1) + ∑(𝑤𝑖 − 1)2[1 + 10𝑠𝑖𝑛2(𝜋𝑤𝑖 + 1)] + (𝑤𝑑 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑤𝑑)]

𝑑−1

𝑖=1

,

where 𝑤𝑖 = 1 +
𝑥𝑖−1

4
, for all i = 1, 2, ..., d

𝑓10(𝑋) = ∑ |𝑥𝑖|

𝑛

𝑖=1

+ ∏ |𝑥𝑖|

𝑛

𝑖=1

𝑓11(𝑋) = ∑

𝑛

𝑖=1

(∑

𝑖

𝑗=1

𝑥𝑗)2

𝑓12
(𝑋) == ∑ 𝑧𝑖

2

𝐷

𝑖=1

+ 𝑓𝑏𝑖𝑎𝑠 = 𝜋,

where z=X-o and fbias=-450

𝑓13(𝑥) = ∑

𝐷

𝑖=1

(∑ 𝑧𝑗

𝑖

𝑗=1

)2 + 𝑓_𝑏𝑖𝑎𝑠,

where z=X-o and fbias=-450

𝑓14(𝑥) = ∑(𝑧𝑖
2 − 10cos (2𝜋𝑧𝑖) + 10)

𝐷

𝑖=1

+ 𝑓_𝑏𝑖𝑎𝑠,

where z=X-o and fbias=-330

The definition of 𝑓15 is given in [66],

where z=X-o fbias=-130

4.1 Experimental Setup

In each algorithm, the maximum number of iterations was 10,000 and the size of population was 30. For

the GWO and DGWO algorithms, the values of vector �⃗� were linearly decreased form 2 to 0 over the

course of their simulation process. The parameters of the island model in DGWO were tested for

different values as shown in Table 3. The parameters of each test function are shown in Tables 1 and 2.

The percentage of abandonment in CSwas 25% as suggested in [4], [66]. The parameters of L-SHADE

(external archive size, historical memory size, control parameter) were dynamically tuned as in [62].

The parameter setting of MHDA was taken from refernce [63]. The parameters of FWA-DM were set

as follows: Ainit (initial amplitude)= 0.2, Afinal (final amplitude)= 0.001, F (scaling factor)= 0.5 and CR

(Crossover Operator)= 0.9 as in [64].

139
"Distributed Grey Wolf Optimizer for Numerical Optimization Problems", Bilal H. Abed-alguni and Malek Barhoush.

4.2 Analysis of the Parameters of DGWO

Table 3 shows nine experimental scenarios used to investigate the relationships between the

performance of DGWO and the parameters of the island model (s, Mf, Mr). The purpose of the first three

scenarios is to investigate the relationship between the island number s and the performance of DGWO.

Scenarios 3-6 aim to investigate the influence of the migration frequency Mf on the performance of

DGWO. The purpose of the last three scenarios is to study the influence of the migration rate Mr on the

performance of DGWO.

Table 3. Scenarios for analyzing the parameters of DGWO.

Scenario s Mf Mr%

Scenario 1 2 100 20
Scenario 2 5 100 20
Scenario 3 10 100 20
Scenario 4 10 50 20
Scenario 5 10 100 20
Scenario 6 10 500 20
Scenario 7 10 50 10

Scenario 8 10 50 20

Scenario 9 10 50 30

Tables 4-6 show the simulation results of the nine experimental scenarios ilustrated in Table 3. The best

results in the tables (lowest objective values) are highlighted with bold. The results were averged over

50 independent runs.

Table 4. Simulation results of the algorithms for 15 test functions, D=30, runs=50, iterations=10,000

(Scenario 1, Scenario 2, Scenario 3).

Function Scenario 1

s = 2

Scenario 2

s = 5

Scenario 3

s = 10

f1 -1.56E+06 -2.08E+06 -2.10E+06

f2 0.00E+00 0.00E+00 0.00E+00

f3 4.57E+01 4.52E+01 4.49E+01

f4 1.98E+01 4.44E-16 4.44E-16

f5 6.44E-220 1.97E-222 1.64E-210

f6 5.00E-01 5.00E-01 5.00E-01

f7 0.00E+00 0.00E+00 0.00E+00

f8 -9.00E+00 -9.00E+00 -9.00E+00

f9 1.32E+00 1.32E+00 8.52E-01

f10 7.27E+03 1.15E+04 4.21E+03

f11 8.17E+07 5.27E+07 1.36E+07

f12 1.00E+08 1.00E+08 1.00E+08

f13 1.00E+08 1.00E+08 1.00E+08

f14 -2.33E+02 -2.38E+02 -2.40E+02

f15 2.49E+04 3.52E+03 3.15E+03

Table 4 shows the simulation results of DGWO under different island sizes (s= 2, s=5, s=10). The results

in the table show that DGWO in scenario 3 (s=10) performed better than in scenario 1 (s=2) and scenario

2 (s=5). The results clearly indicate that the performance of DGWO improves with an increase in the

number of islands. This is expected, because the existence of many islands (large value of s) allows

different search regions to be explored simultaneously, while the existence of few islands (low value of

s) means that few number of search regions can be explored simultaneously [31]-[32]. In addition, the

population in a small island would most likely converge to suboptimal solutions earlier than expected

[42]. It is worth pointing out that choosing a large value of s increases the computational complexity of

DGWO. For example, if the number of islands is 10, then GWO will be repeated 10 times at each

iteration of DGWO. Thus, it is better to run DGWO in parallel devices to reduce its computational

complexity. Based on the results in Table 4, s=10 was used in Tables 5 and 6.

140

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 03, December 2018.

The convergence curves of the first three scenarios of DGWO for three functions (f1, f11, f15) are shown

in Figure 4. It is obvious that convergence increases with the increase in iterations for all functions.

Figure 4(a), Figure 4(b) and Figure 4(c) show that DGWO in scenario 3 is the fastest converging

algorithm.

(a) f1

(b) f11

(c) f15

Figure 4. Convergence Plots of DGWO for Scenarios 1-3.

Table 5 shows the simulation results of DGWO under different migration frequencies (Mf = 50, Mf = 100,

Mf = 500). It is obvious that DGWO in scenario 4 (Mf = 50) performed the best followed by DGWO in

scenario 2 (Mf = 100) and then DGWO in scenario 3 (Mf = 500). These results suggest that low migration

frequencies improve the performance of DGWO compared to high migration frequencies. Basically,

low migration frequencies provide more chances for a reasonable number of candidate solutions from

the source island to move to the destination island with limited effect on the candidate solutions in the

destination island. Consequently, the likelihood that convergence will take longer time to occur

increases [31]-[32]. Based on the illustrated results in Table 5, Mf = 50 was used in Table 6.

-2500000

-2000000

-1500000

-1000000

-500000

0

0 200 400 600 800 1000 1200

O
b

je
ct

iv
e

fu
ct

io
n

 v
al

u
e

Iterations

Scenario1
Scenario2
Scenario3

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

0 2000 4000 6000 8000 10000O
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
al

u
e

Iterations

Scenario1
Scenario2
Scenario3

0

500000

1000000

1500000

2000000

2500000

0 200 400 600 800 1000O
b

je
ct

iv
e

fu
n

ct
io

n

va
lu

e

Iterations

Scenario1
Scenario2
Scenario3

141
"Distributed Grey Wolf Optimizer for Numerical Optimization Problems", Bilal H. Abed-alguni and Malek Barhoush.

Table 5. Simulation results of the algorithms for 15 test functions, D=30, runs=50, iterations=10,000

(Scenario 4, Scenario 5, Scenario 6).

Function Scenario 4 (Mf = 50) Scenario 5 (Mf = 100) Scenario 6 (Mf = 50)

f1 -2.27E+06 -2.10E+06 -2.13E+06

f2 0.00E+00 0.00E+00 0.00E+00

f3 4.49E+01 4.49E+01 4.47E+01

f4 4.44E-16 4.44E-16 4.44E-16

f5 2.38E-224 1.64E-221 2.74E-218

f6 5.00E-01 5.00E-01 5.00E-01

f7 0.00E+00 0.00E+00 0.00E+00

f8 -9.00E+00 -9.00E+00 -9.00E+00

f9 7.26E-01 8.52E-01 1.57E+03

f10 4.90E+03 4.21E+03 9.74E+03

f11 1.40E+07 1.36E+07 7.76E+07

f12 9.49E+06 1.00E+08 1.00E+08

f13 1.00E+08 1.00E+08 1.00E+08

f14 -2.60E+02 -2.40E+02 -2.44E+02

f15 1.10E+03 3.15E+03 9.01E+03

Figure 5 shows the convergence curves of the second three scenarios of DGWO for three functions

(Figure 5(a) (f1,) Figure 5(b) (f11), Figure 5(c) (f15)). Figure 5(a) and Figure 5(c) show that DGWO in

scenario 4 converges faster than the other algorithms, while Figure 5(b) shows that DGWO in scenario

5 converges faster to a solution compared to the other algorithms.

(a) f1

(b) f11

-3000000

-2500000

-2000000

-1500000

-1000000

-500000

0

500 600 700 800 900 1000

O
b

je
ct

iv
e

fu
ct

io
n

 v
al

u
e

Iterations

Scenario4

Scenario5

Scenario6

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

0 2000 4000 6000 8000 10000

O
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
al

u
e

Iterations

Scenario4

Scenario5

Scenario6

142

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 03, December 2018.

(c) f15

Figure 5. Convergence Plots of DGWO for Scenarios 4-6.

Table 6 shows the simulation results of DGWO under different migration rates (Mr = 10%, Mr = 20%,

Mr= 30%). It can be clearly observed that DGWO in scenario 8 (Mr = 20%) performed better than DGWO

in scenario 7 (Mr = 10%) and DGWO in scenario 9 (Mr = 30%). These results suggest that there is no

clear indication whether high values or low values of Mr improve the performance of DGWO. A

possible explanation for the results is that replacing a large number of candidate solutions in an island

has an unclear effect on the diversity of its population, while replacing few candidate solutions in an

island can act as a seed to enhance its diversity but with a limited effect [31]-[32].

Table 6. Simulation results of the algorithms for 15 test functions, D=30, runs=50, iterations=10,000

(Scenario 7, Scenario 8, Scenario 9).

Function Scenario 7

Mr = 10%

Scenario 8

Mr = 20%

Scenario 9

Mr = 30%

f1 -2.75E+06 -2.27E+06 -2.19E+06

f2 0.00E+00 0.00E+00 0.00E+00

f3 4.26E+01 4.49E+01 4.12E+01

f4 4.44E-16 4.44E-16 4.44E-16

f5 2.24E-219 2.38E-224 1.83E-223

f6 5.00E-01 5.00E-01 5.00E-01

f7 0.00E+0 0.00E+0 0.00E+0

f8 -9.0E+00 -9.0E+00 -9.0E+0

f9 8.52E-01 7.26E-01 1.32E+0

f10 1.72E+04 4.90E+03 1.65E+04

f11 2.91E+07 1.40E+07 3.15E+06

f12 1.00E+08 9.49E+06 4.52E+07

f13 1.00E+08 1.00E+08 1.00E+08

f14 -2.54E+02 -2.6E+02 -2.46E+02

f15 1.00E+03 1.10E+03 1.14E+03

Figure 6 shows the convergence curves of the last three scenarios of DGWO for three functions (Figure

6(a) (f1,) Figure 6(b) (f11), Figure 6(c) (f15)). Figure 6(a) and Figure 6(c) show that DGWO in scenario 7

converges faster than the other algorithms, while Figure 6(b) shows that DGWO in scenario 9 converges

faster to a solution compared to the other algorithms. Note that DGWO in Scenario 8 achieved the

second best convergence speed for the three functions.

In conclusion, the overall experimental results in this section indicate that high values of s and low

values of Mf improve the performance of DGWO. However, there is no clear indication whether high

values or low values of Mr improve the performance of DGWO.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

500 600 700 800 900 1000

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

Iterations

Scenario4

Scenario5

Scenario6

143
"Distributed Grey Wolf Optimizer for Numerical Optimization Problems", Bilal H. Abed-alguni and Malek Barhoush.

(a) f1

(b) f11

(c) f15

Figure 6. Convergence Plots of DGWO for Scenarios 7-9.

4.3 Comparison among DGWO and Other Algorithms

The single-objective real-parameter optimization-benchmark suit of CEC2014 is composed of 30

functions (Table 7). This suit represents an approximation of real-world optimization problems. The

search range of each function in the suit is [-100.100]D. More details about these functions are available

in [67].

Using the single-objective real-parameter optimization-benchmark suit of CEC2014 with 30 dimensions

(30 decision variables) [67], the performance of DGWO (Scenario 8) was compared with the

performance of GWO and recently proposed optimization algorithms: Cuckoo search (CS), adaptive

differential evolution with linear population size reduction evolution (L-SHADE), memory-based

hybrid Dragonfly algorithm (MHDA) and Fireworks algorithm with differential mutation (FWA-DM).

-3000000

-2500000

-2000000

-1500000

-1000000

-500000

0

500 600 700 800 900 1000 1100
O

b
je

ct
iv

e
fu

ct
io

n
 v

al
u

e

Iterations

Scenario7
Scenario8
Scenario9

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

0 2000 4000 6000 8000 10000O
b

je
ct

iv
e

 f
u

n
ct

io
n

 v
al

u
e

Iterations

Scenario7
Scenario8
Scenario9

0

20000

40000

60000

80000

100000

120000

500 600 700 800 900 1000

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

Iterations

Scenario7
Scenario8
Scenario9

144

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 03, December 2018.

Table 7. Single-objective real-parameter optimization-benchmark suit of CEC2014.

Function Function Type

f1- f3 Unimodal functions

f4- f16 Multimodal functions

f17- f22 Hybrid functions

f23- f30 Composite functions

Table 8 shows the function error value (FEV) for the 30CEC2014 functions. The FEVis the distance

between theaverage of best objective values found in all runs and the true optimal value. Note that the

lowest FEV for each function (best result) is marked with Bold. The simulation results in Table 8show

that L-SHADE ouperforms the other optimization algorithms by providing the lowest FEV for 11

functions of the 30 functions. This is expected, because L-SHADE is a dynamic differential evolution

algorithm thatdynamically adjustsitsinternal parameters and population size over the course of its

iterations. Interestingly, DGWO is the second best performing optimization algorithm by producing the

lowest FEV for 10 functions of the 30 test functions. This is because DGWO synchronously applies

GWO to multiple islands, which accelerates its convergence to a good solution.

Table 8. Simulation results of DGWO compared to five optimization algorithms. D= 30, runs=50,

number of iterations is 10,000.

Function GWO

DGWO

(Scenario 8) CS L-SHADE MHDA FWA-DM

f1 2.00E+03 4.36E+00 3.47E + 07 9.00E-15 3.59E+03 4.91E+05

f2 2.12E+03 2.36E+00 2.50E + 07 8.50E-11 3.82E+03 2.50E-16

f3 2.89E-01 2.54E-04 4.10E + 04 5.83E-10 5.80E-07 1.88E-16

f4 8.75E-03 1.63E-09 4.22E+02 2.58E-09 1.42E-08 2.23E+01

f5 3.96E+02 2.00E+02 5.00E+01 2.00E+01 2.36E+00 2.11E+01

f6 5.19E+01 1.21E+00 3.63E+01 1.25E-06 8.52E-14 1.82E+01

f7 2.89E-03 8.53E-10 1.86E+00 7.25E-09 2.25E-11 2.53E-03

f8 1.33E+00 1.51E-19 3.89E+02 1.25E-09 2.20E-19 9.53E-15

f9 1.82E+01 1.03E+00 3.00E+03 8.96E+00 5.30E+00 6.54E+01

f10 9.79E+00 3.20E-03 4.37E+03 2.36E-02 1.22E+03 1.13E+01

f11 1.99E+04 2.95E+03 4.00E+03 2.30E+03 1.52E+02 2.19E+03

f12 8.50E+00 6.30E-02 4.78E-01 9.00E-01 1.42E-01 3.25E-01

f13 2.19E+00 4.59E-01 4.81E-01 6.50E-01 4.78E-01 3.11E-01

f14 2.35E-01 1.99E-01 4.28E-01 8.60E-01 5.43E-01 2.99E-01

f15 1.01E+02 7.23E+01 9.94E+01 1.60E+00 3.25E+00 8.36E+00

f16 1.90E+01 9.53E+00 1.53E+01 1.02E+01 1.06E+01 1.10E+01

f17 1.66E+02 4.55E+03 3.47E+06 2.20E+00 4.53E+02 6.59E+03

f18 8.77E+00 3.94E+01 3.90E+03 1.90E+00 3.69E+00 7.24E+01

f19 4.96E+01 1.22E+02 6.14E+01 5.30E+00 3.78E+02 1.04E+01

f20 6.20E+01 4.73E+02 3.97E+04 4.30E+00 7.09E+02 4.37E+01

f21 1.04E+03 7.09E+02 3.57E+05 3.69E+02 2.57E+02 8.75E+02

f22 2.42E+02 2.73E+02 9.47E+02 1.32E+02 2.73E+02 1.62E+02

f23 3.65E+02 3.69E+01 3.78E+02 3.26E+02 3.10E+03 3.16E+02

f24 2.24E+02 2.25E+02 2.89E+02 1.93E+02 2.26E+02 2.96E+02

f25 2.45E+02 2.11E+02 3.26E+02 2.00E+02 2.11E+02 2.09E+02

f26 3.29E+02 2.10E+02 2.22E+02 2.69E+02 1.00E+02 9.93E+01

f27 2.95E+02 4.09E+02 5.22E+02 1.26E+02 4.05E+02 4.10E+02

f28 5.36E+02 1.65E+03 3.86E+03 3.62E+02 1.54E+03 4.22E+02

f29 2.39E+02 2.29E+02 2.59E+05 7.33E+02 7.86E+02 2.78E+02

f30 3.32E+02 2.83E+00 2.39E+04 6.99E+02 2.63E+03 4.69E+02

145
"Distributed Grey Wolf Optimizer for Numerical Optimization Problems", Bilal H. Abed-alguni and Malek Barhoush.

This indicates that DGWO performs well compared to powerful optimization algorithms. Note that

GWO and CS have the worst performance compared to the other algorithms. A possible explanation is

that CS and GWO do not employ any special convergence-enhancement technique compared to the

other tested algorithms.

5. CONCLUSIONS

The current paper presented the Distributed Grey Wolf Optimizer (DGWO) algorithm that is based on

a distribution model called the island model. The population in DGWO is divided into small populations

in an attempt to enhance the diversity of the population and the run-time of the algorithm. DGWO

applies the original GWO to the population of each island and then allows selected solutions to be

exchanged among the islands based on the random ring topology and the best-worst migration policy.

Different experimental cases were designed and used to study the sensitivity of the performance of

DGWO to the parameters of the island model (number of islands s, migration frequency Mf and

migration rate Mr). The overall experimental results suggest that high values of s and low values of Mf

significantly improve the performance of DGWO. However, there is no clear indication whether high

values or low values of Mr improve the performance of DGWO.

In addition, 30 functions of CEC2014 (real-parameter single-objective optimization-benchmark suit)

have been used to compare the performance of DGWO to the performance of well-known optimization

algorithms (CS, L-SHADE, MHDA, FWA-DM). The results indicate that DGWO produces competitive

results compared to those produced by the other compared algorithms. Interestingly, DGWO produced

the lowest FEV for 10 functions of the 30 test functions of CEC2014. This is expected, because DGWO

synchronously applies GWO to several islands, which accelerates its convergence to good solutions.

Moreover, DGWO provides better chances for unfit candidate solutions in each island to evolve to better

candidate solutions.

There are four interesting directions for future work. First, it would be interesting to incorporate the

island model to multi-objective discrete GWO [38] to explore its efficiency in solving the scheduling

problem in welding production. This scheduling problem is one of the most time-consuming processes

in modern industry. Second, a binary version of DGWO will be developed and used to solve the problem

of feature selection [35], [68]. Feature selection is normally considered as a complex time-consuming

problem when it is used with large datasets. Third, hierarchical Q-learning [69]-[70] and cooperative

Q-learning [71]-[72] require heavy and complex computations to efficiently solve learning problems

with large state space or action space. Based on the fact that the population of Q-values (i.e., values of

state-action pairs in Q-learning) in Q-learning can be represented as an optimization problem [1], [17],

[66] and [71], the DGWO algorithm will be applied to hierarchical Q-learning [69]-[70] and cooperative

Q-learning [71]-[72] as discussed in [17], [66]. Finally, the experimental results in Section 4.3

demonstrated that L-SHADE [62] performs better than many powerful optimization algorithms.

Therefore, the incorporation of the island model into the L-SHADE algorithm will be addressed in a

future study in an attempt to elevate the performance of L-SHADE.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Oguz Emrah Turgut for the source code of GWO that he made

publically, [Online], available at:

https://www.researchgate.net/publication/281939423_Grey_Wolf_Optimizer_java_code.

REFERENCES

[1] B. H. Abed-alguni, D. J. Paul, S. K. Chalup and F. A. Henskens, "A Comparison Study of Cooperative

Q-learning Algorithms for Independent Learners," Int. J. Artif. Intell., vol. 14, no. 1, pp. 71-93, 2016.

[2] X.-S. Yang, "A New Metaheuristic Bat-inspired Algorithm," Nature Inspired Cooperative Strategies for

Optimization (NICSO 2010), Springer, pp. 65-74, 2010.

[3] X.-S. Yang and S. Deb, "Cuckoo Search via Lévy Flights," IEEE World Congress on Nature &

Biologically Inspired Computing (NaBIC 2009), pp. 210-214, 2009.

[4] B. H. Abed-alguni and F. Alkhateeb, "Novel Selection Schemes for Cuckoo Search," Arabian Journal for

Science and Engineering, vol. 42, no. 8, pp. 3635-3654, 2017.

https://www.sciencedirect.com/science/article/pii/S0965997816301260
https://www.sciencedirect.com/science/article/pii/S0965997816301260
https://www.sciencedirect.com/science/article/pii/S0965997816301260

146

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 03, December 2018.

[5] F. Alkhateeb and B. H. Abed-alguni, "A Hybrid Cuckoo Search and Simulated Annealing Algorithm,"

Journal of Intelligent Systems, 2017, [Online], Available: https://doi.org/10.1515/jisys-2017-0268.

[6] B. H. Abed-alguni and F. Alkhateeb, "Intelligent Hybrid Cuckoo Search and β-hill Climbing Algorithm,"

Journal of King Saud University - Computer and Information Sciences, pp. 1-44, 2018, [Online],

Available: https://doi.org/10.1016/j.jksuci.2018.05.003.

[7] B. H. Abed-alguni and A. F. Klaib, "Hybrid Whale Optimization and β-hill Climbing Algorithm,"

International Journal of Computing Science and Mathematics, pp. 1-13, 2018.

[8] S. Mirjalili and A. Lewis, "The Whale Optimization Algorithm," Advances in Engineering Software, vol.

95, pp. 51-67, 2016.

[9] G. Kaur and S. Arora, "Chaotic Whale Optimization Algorithm," Journal of Computational Design and

Engineering, vol. 5, no. 3, pp. 275-284 , July 2018.

[10] S. Arora and P. Anand, "Learning Automata Based Butterfly Optimization Algorithm for Engineering

Design Problems," International Journal of Computational Materials Science and Engineering, July 2018.

[11] S. Arora and S. Singh, "Butterfly Optimization Algorithm: A Novel Approach for Global Optimization,"

Soft Computing, pp. 1-20, 2018.

[12] S. Arora and S. Singh, "A Hybrid Optimization Algorithm Based on Butterfly Optimization Algorithm

and Differential Evolution," International Journal of Swarm Intelligence, vol. 3, no. 2-3, pp. 152-169,

2017.

[13] S. Arora and S. Singh, "An Improved Butterfly Optimization Algorithm for Global Optimization,"

Advanced Science, Engineering and Medicine, vol. 8, no. 9, pp. 711-717, 2016.

[14] S. Arora, S. Singh and K. Yetilmezsoy, "A Modified Butterfly Optimization Algorithm for Mechanical

Design Optimization Problems," Journal of the Brazilian Society of Mechanical Sciences and

Engineering, vol. 40, no. 1, p. 21, 2018.

[15] S. Arora and P. Anand, "Chaotic Grasshopper Optimization Algorithm for Global Optimization," Neural

Computing and Applications, pp. 1-21, 2018.

[16] S. Arora and P. Anand, "Chaos-enhanced Flower Pollination Algorithms for Global Optimization,"

Journal of Intelligent & Fuzzy Systems, vol. 33, no. 6, pp. 3853-3869, 2017.

[17] B. H. Abed-alguni, "Bat Q-learning Algorithm," Jordanian Journal of Computers and Information

Technology (JJCIT), vol. 3, no. 1, pp. 56-77, 2017.

[18] S. J. Mousavirad and H. Ebrahimpour-Komleh, "Multilevel Image Thresholding Using Entropy of

Histogram and Recently Developed Population-based Metaheuristic Algorithms," Evolutionary

Intelligence, vol. 10, no. 1-2, pp. 45-75, 2017.

[19] S. Pare, A. Bhandari, A. Kumar and G. Singh, "Rényi’s Entropy and Bat Algorithm Based Color Image

Multilevel Thresholding," Machine Intelligence and Signal Analysis: Springer, pp. 71-84, 2019.

[20] R.-E. Precup, R.-C. David, A.-I. Szedlak-Stinean, E. M. Petriu and F. Dragan, "An Easily Understandable

Grey Wolf Optimizer and Its Application to Fuzzy Controller Tuning," Algorithms, vol. 10, no. 2, p. 68,

2017.

[21] J. Vaščák, "Adaptation of Fuzzy Cognitive Maps by Migration Algorithms," Kybernetes, vol. 41, no. 3/4,

pp. 429-443, 2012.

[22] T. Jayabarathi, T. Raghunathan and A. Gandomi, "The Bat Algorithm, Variants and Some Practical

Engineering Applications: A Review," Nature-Inspired Algorithms and Applied Optimization: Springer,

pp. 313-330, 2018.

[23] S. K. Sarangi, R. Panda, P. K. Das and A. Abraham, "Design of Optimal High Pass and Band Stop FIR

Filters Using Adaptive Cuckoo Search Algorithm," Engineering Applications of Artificial Intelligence,

vol. 70, pp. 67-80, 2018.

[24] R.-E. Precup, R.-C. David and E. M. Petriu, "Grey Wolf Optimizer Algorithm-based Tuning of Fuzzy

Control Systems with Reduced Parametric Sensitivity," IEEE Transactions on Industrial Electronics, vol.

64, no. 1, pp. 527-534, 2017.

[25] N. Jayakumar, S. Subramanian, S. Ganesan and E. Elanchezhian, "Grey Wolf Optimization for Combined

Heat and Power Dispatch with Cogeneration Systems," International Journal of Electrical Power &

Energy Systems, vol. 74, pp. 252-264, 2016.

https://doi.org/10.1515/jisys-2017-0268
https://doi.org/10.1016/j.jksuci.2018.05.003

147
"Distributed Grey Wolf Optimizer for Numerical Optimization Problems", Bilal H. Abed-alguni and Malek Barhoush.

[26] M. Nouiri, A. Bekrar, A. Jemai, S. Niar and A. C. Ammari, "An Effective and Distributed Particle Swarm

Optimization Algorithm for Flexible Job-Shop Scheduling Problem," Journal of Intelligent

Manufacturing, vol. 29, no. 3, pp. 603-615, 2018.

[27] M. K. Marichelvam and M. Geetha, "Cuckoo Search Algorithm for Solving Real Industrial Multi-

Objective Scheduling Problems," Encyclopedia of Information Science and Technology, 4th Edition: IGI

Global, pp. 4369-4381, 2018.

[28] S. Mirjalili, S. M. Mirjalili and A. Lewis, "Grey Wolf Optimizer," Advances in Engineering Software,

vol. 69, pp. 46-61, 2014.

[29] M. A. Tawhid and A. F. Ali, "A Hybrid Grey Wolf Optimizer and Genetic Algorithm for Minimizing

Potential Energy Function," Memetic Computing, vol. 9, no. 4, pp. 347-359, 2017.

[30] W. Gai, C. Qu, J. Liu and J. Zhang, "An Improved Grey Wolf Algorithm for Global Optimization,"

2018Chinese Control and Decision Conference (CCDC), pp. 2494-2498, 2018.

[31] M. A. Al-Betar and M. A. Awadallah, "Island Bat Algorithm for Optimization," Expert Systems with

Applications, vol. 107, pp. 126-145, 2018.

[32] M. A. Al-Betar, M. A. Awadallah, A. T. Khader and Z. A. Abdalkareem, "Island-based Harmony Search

for Optimization Problems," Expert Systems with Applications, vol. 42, no. 4, pp. 2026-2035, 2015.

[33] A. L. Corcoran and R. L. Wainwright, "A Parallel Island Model Genetic Algorithm for the Multiprocessor

Scheduling Problem," Proceedings of the 1994 ACM Symposium on Applied Computing, pp. 483-487,

1994.

[34] E. Emary and H. M. Zawbaa, "Impact of Chaos Functions on Modern Swarm Optimizers," PLOS One,

vol. 11, no. 7, p. e0158738, 2016.

[35] E. Emary, H. M. Zawbaa and A. E. Hassanien, "Binary Grey Wolf Optimization Approaches for Feature

Selection," Neurocomputing, vol. 172, pp. 371-381, 2016.

[36] T. Jayabarathi, T. Raghunathan, B. R. Adarsh and P. N. Suganthan, "Economic Dispatch Using Hybrid

Grey Wolf Optimizer," Energy, vol. 111, pp. 630-641, 2016.

[37] M. Pradhan, P. K. Roy and T. Pal, "Grey Wolf Optimization Applied to Economic Load Dispatch

Problems," International Journal of Electrical Power & Energy Systems, vol. 83, pp. 325-334, 2016.

[38] C. Lu, S. Xiao, X. Li and L. Gao, "An Effective Multi-objective Discrete Grey Wolf Optimizer for a

Real-world Scheduling Problem in Welding Production," Advances in Engineering Software, vol. 99, pp.

161-176, 2016.

[39] G. Komaki and V. Kayvanfar, "Grey Wolf Optimizer Algorithm for the Two-stage Assembly Flow Shop

Scheduling Problem with Release Time," Journal of Computational Science, vol. 8, pp. 109-120, 2015.

[40] M. Ruciński, D. Izzo and F. Biscani, "On the Impact of the Migration Topology on the Island Model,"

Parallel Computing, vol. 36, no. 10, pp. 555-571, 2010.

[41] M. Tomassini, Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time,

Springer, 2006.

[42] M. Tomassini, "Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time

(Natural Computing Series), Secaucus," Ed: NJ, USA: Springer-Verlag New York, Inc, 2005.

[43] D. Jitkongchuen, "A Hybrid Differential Evolution with Grey Wolf Optimizer for Continuous Global

Optimization," IEEE 7th International Conference on Information Technology and Electrical Engineering

(ICITEE), pp. 51-54, 2015.

[44] H. M. Zawbaa, E. Emary, C. Grosan and V. Snasel, "Large-dimensionality Small-instance Set Feature

Selection: A Hybrid Bio-inspired Heuristic Approach," Swarm and Evolutionary Computation, vol. 42,

pp. 29-42, 2018.

[45] S. Saremi, S. Z. Mirjalili and S. M. Mirjalili, "Evolutionary Population Dynamics and Grey Wolf

Optimizer," Neural Computing and Applications, vol. 26, no. 5, pp. 1257-1263, 2015.

[46] L. Rodríguez, O. Castillo and J. Soria, "A Study of Parameters of the Grey Wolf Optimizer Algorithm

for Dynamic Adaptation with Fuzzy Logic," Nature-Inspired Design of Hybrid Intelligent Systems:

Springer, pp. 371-390, 2017.

[47] H. Joshi and S. Arora, "Enhanced Grey Wolf Optimization Algorithm for Constrained Optimization

Problems," International Journal of Swarm Intelligence, vol. 3, no. 2-3, pp. 126-151, 2017.

148

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 03, December 2018.

[48] M. R. S. Malik, E. R. Mohideen and L. Ali, "Weighted Distance Grey Wolf Optimizer for Global

Optimization Problems," IEEE International Conference on Computational Intelligence and Computing

Research (ICCIC), pp. 1-6, 2015.

[49] E. A. Emary, H. M. A. Zawbaa and C. A. Grosan, "Experienced Grey Wolf Optimizer through

Reinforcement Learning and Neural Networks," vol. 29, no. 3, pp. 681-694, 2018.

[50] H. Joshi and S. Arora, "Enhanced Grey Wolf Optimization Algorithm for Global Optimization,"

Fundamenta Informaticae, vol. 153, no. 3, pp. 235-264, 2017.

[51] M. Kohli and S. Arora, "Chaotic Grey Wolf Optimization Algorithm for Constrained Optimization

Problems," Journal of Computational Design and Engineering, vol. 5, no. 4, pp. 458-472,2017.

[52] A. A. Heidari and P. Pahlavani, "An Efficient Modified Grey Wolf Optimizer with Lévy Flight for

Optimization Tasks," Applied Soft Computing, vol. 60, pp. 115-134, 2017.

[53] M. A. Al-Betar, I. A. Doush, A. T. Khader and M. A. Awadallah, "Novel Selection Schemes for Harmony

Search," Applied Mathematics and Computation, vol. 218, no. 10, pp. 6095-6117, 2012.

[54] S. Gupta and K. Deep, "A Novel Random Walk Grey Wolf Optimizer," Swarm and Evolutionary

Computation, 2018.

[55] S. Gupta and K. Deep, "Random Walk Grey Wolf Optimizer for Constrained Engineering Optimization

Problems," Computational Intelligence, 2018.

 [56] Fr et al., "A Dynamic Island-based Genetic AlgorithmsFramework," Proceedings of the 8th International

Conference on Simulated Evolution and Learning, Kanpur, India, 2010.

[57] H. T. T. Thein, "Island Model Based Differential Evolution Algorithm for Neural Network Training,"

Advances in Computer Science: An International Journal (ACSIJ), vol. 3, no. 1, pp. 67-73, 2014.

[58] Z. A. Mostafa, N. H. Awad and R. M. Duwairi, "Multi-objective Differential Evolution Algorithm with

A New Improved Mutation Strategy," International Journal of Artificial IntelligenceTM, vol. 14, no. 2, pp.

23-41, 2016.

[59] J. F. Romero and C. Cotta, "Optimization by Island-structured Decentralized Particle Swarms,"

Computational Intelligence, Theory and Applications: Springer, pp. 25-33, 2005.

[60] M. Randall and A. Lewis, "A Parallel Implementation of Ant Colony Optimization," Journal of Parallel

and Distributed Computing, vol. 62, no. 9, pp. 1421-1432, 2002.

[61] S. Gupta and K. Deep, "Performance of Grey Wolf Optimizer on Large Scale Problems," AIP Conference

Proceedings, vol. 1802, no. 1, p. 020005, 2017, AIP Publishing.

[62] R. Tanabe and A. S. Fukunaga, "Improving the Search Performance of SHADE Using Linear Population

Size Reduction," IEEE Congress on Evolutionary Computation (CEC), pp. 1658-1665, 2014.

[63] K. S.SreeRanjini and S. Murugan, "Memory-based Hybrid Dragonfly Algorithm for Numerical

Optimization Problems," Expert Systems with Applications, vol. 83, pp. 63-78, 2017.

[64] C. Yu, L. Kelley, S. Zheng and Y. Tan, "Fireworks Algorithm with Differential Mutation for Solving the

CEC 2014 Competition Problems," IEEE Congress on Evolutionary Computation (CEC), pp. 3238-3245,

2014.

[65] P. N. Suganthan et al., "Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session

on Real-parameter Optimization," KanGAL Report, vol. 2005005, p. 2005, 2005.

[66] B. H. Abed-alguni, "Action-Selection Method for Reinforcement Learning Based on Cuckoo Search

Algorithm," Arabian Journal for Science and Engineering, pp. 1-15, 2017.

[67] J. Liang, B. Qu and P. Suganthan, "Problem Definitions and Evaluation Criteria for the CEC 2014 Special

Session and Competition on Single Objective Real-parameter Numerical Optimization," Computational

Intelligence Laboratory, Zhengzhou University, Zhengzhou, China; and Technical Report, Nanyang

Technological University, Singapore, 2013.

[68] E. Emary, H. M. Zawbaa, C. Grosan and A. E. Hassenian, "Feature Subset Selection Approach by Gray-

wolf Optimization," Afro-European Conference for Industrial Advancement, pp. 1-13, Springer, 2015.

[69] B. H. Abed-alguni, S. K. Chalup, F. A. Henskens and D. J. Paul, "A Multi-agent Cooperative

Reinforcement Learning Model Using a Hierarchy of Consultants, Tutors and Workers," Vietnam Journal

of Computer Science, vol. 2, no. 4, pp. 213-226, 2015.

149
"Distributed Grey Wolf Optimizer for Numerical Optimization Problems", Bilal H. Abed-alguni and Malek Barhoush.

[70] B. H. Abed-alguni, S. K. Chalup, F. A. Henskens and D. J. Paul, "Erratum to: A Multi-agent Cooperative

Reinforcement Learning Model Using a Hierarchy of Consultants, Tutors and Workers," Vietnam Journal

of Computer Science, vol. 2, no. 4, pp. 227-227, 2015.

[71] B. H. K. Abed-alguni, "Cooperative Reinforcement Learning for Independent Learners," 2014.

[72] B. H. Abed-alguni and M. A. Ottom, "Double Delayed Q-learning," International Journal of Artificial

Intelligence, vol. 16, no. 2, pp. 41-59, 2018.

 :ϩϳϡЮϜ ЉϷЯв

تعددددددز ية "الذددددددر " يددددددالخو يملخت ددددددر" لدددددد ياة "الذددددددخ ي ددددددر ي دددددد ازلر دددددد ل ددددددر

ددددددموج و ددددددز ودددددد ةقذا لدددددد ودددددد م تذ ذر ي ددددددخ"ت و ملذددددددر ي.ذددددددخت و ي بنذددددددر ن ددددددِّ ت.نذددددددر ي من

ل عدددددددزت لددددددد ي ددددددد ت بع دددددددخ يدددددددالخو يملخت دددددددرج و دددددددز وددددددد ازلا ن دددددددخ ي ددددددد ل ددددددد

ت يع ذددددددر ل ة ددددددرج ولدددددد يدددددد دددددد ي دددددد بذر يملذ ددددددذر ي ددددددخ ي دددددد ي دددددد م و ي ددددددمم

ت ددددد ددددد جم دددددخ دددددز ت ددددد ددددد بددددد ق دددددة بدددددب ل خيذدددددر ددددد لم قددددد لب دددددم لددددد ن ذدددددر

 ي خكخ بب .ز ي نةع ل ياة "الذرج

ل ياة "الذدددددر يدددددالخو يملخت دددددر ددددد ل خويدددددر ي دددددذ ي ندددددةع دددددار ية" دددددر ت.دددددزً تخذذدددددم ل لةاندددددخ

 دددددد ياة "الذددددددر و يدددددد نبددددددم تنهددددددذو ل دددددد ياة "الذددددددر دددددد ذ ددددددر ل ةنددددددخ ل دددددد . ر

"ج ياة "الذددددددر ي . مقددددددر ددددددلب "ا نددددددخعل ن ددددددِّ ين ددددددة ا ي عددددددموة ن ددددددة ا ي ب ددددددلب صددددددخذم (ب

" ل ددددددخ دددددد بددددددخت ي ددددددة ددددددلب ت بددددددا ياة "الذددددددر صدددددد ذر ن ددددددِّ كدددددد ل ددددددم لدددددد ي ب

دددددل" ي ا دددددخ ندددددخعل ن دددددِّ ت.نذدددددر ي .دددددخ يع دددددة لذر ووذخودددددر ي دددددم دددددذ ددددد " دددددذ ي ب

و ودددددةجج وتدددددة م ياة "الذدددددر ي عزميدددددر ذ دددددر ج ددددد ي دددددة ي مبددددد ر ذدددددم ي ذددددد ددددد كددددد

 ل دددددم كددددد ت دددددة" يدددددِّ ق دددددة ج ددددد لدددددم يدددددا ل دددددز لددددد ق خيذدددددر دددددخت ي دددددة

 ي خيذرج

ددددددد خ ي دددددددر يدددددددمر ي اة "الذدددددددر ي عزميدددددددر ي . مقدددددددر جم دددددددخ ددددددد ج تع ددددددد ولددددددد ي من

 خوددددد از ً ج دددددل ل ة ا دددددر لدددددم يدددددا عنددددد ل خمذدددددر ي . ذددددد لددددد تع.ذدددددز ي دددددخ خ ل.خ"مدددددر

 خيصدددددددذم ي.خل دددددددر لددددددد ية "الذدددددددر يدددددددالخو يملخت دددددددرج ولددددددد مخقذدددددددر جيدددددددمر تدددددددوم ت.ذدددددددذو

 ددددددد مة ع جيدددددددمر لدددددددد ياة "الذدددددددر ي . مقدددددددر ددددددد دددددددار ية" دددددددر لدددددددد يددددددد ل.خ"م دددددددخ

دددددددموج كددددددداي دددددددمر ت.ذدددددددذو ق خودددددددذر ياة الذدددددددر ياة "الذدددددددخ ي بنذدددددددر ن دددددددِّ ت.نذدددددددر ي من

 ي . مقددددددر ي خذم ت ددددددخ خودددددد از ً ي ددددددر ن ددددددم ت يمددددددر ي بددددددخ" لعذخ" ددددددرج وجبددددددخ" ي .خ"مددددددر

ل و ي بدددددددخ" ي خوددددددددذر ي ددددددددخ" يذ دددددددخ يددددددددِّ ج ياة "الذددددددددر ي . مقدددددددر تدددددددد ت جت عل لنخ ددددددددخ

 "الذخ يمرج خي .خ"مر ل ياة

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

