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ABSTRACT 

An asymptotically optimal path-planning guarantees an optimal solution if given sufficient running time. This 

research proposes a novel, fast, asymptotically optimal path-planning algorithm. The method uses five smart 

sampling strategies to improve the probabilistic road map (PRM). First, it generates samples using an informed 

search procedure. Second, it employs incremental search techniques on increasingly dense samples. Third, 

samples are generated around the best solution. Fourth, generated around obstacles. Fifth, it repairs the found 

route. This algorithm is called the Smart PRM (Smart-PRM). The Smart-PRM was compared to PRM, informed 

PRM and informed rapidly-exploring random tree*-connect. Smart-PRM can generate the optimal path for any 

test case. The shortest distance between the start and goal nodes is the optimal path criterion. Smart-PRM finds 

the best path faster than competing algorithms. As a result, the Smart-PRM has the potential to be used in a wide 

variety of applications requiring the best path-planning algorithm. 
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1. INTRODUCTION 

An algorithm for path planning is considered asymptotically optimal if it ensures that it will produce an 

optimal solution given a sufficient number of iterations or time [1]-[2]. The criteria for best solutions 

may be based on one or more conditions, such as the lowest fuel usage, lowest risk, comfort or shortest 

distance [3]. The shortest distance between the initial and goal nodes is used as the criterion for an 

optimal path in this study. Path-planning algorithms that provide optimal solutions are critical in a wide 

range of robotic applications [4], including automation processes in industries [5], robot navigation [6], 

driverless autonomous vehicles [7] and robotic surgery procedures [8]. These examples highlight the 

significance of optimal path-planning algorithms in addressing diverse robotic applications. 

Several researchers have proposed asymptotically optimal path-planning algorithms; however, each 

algorithm exhibits distinct performance characteristics. One common parameter used to evaluate the 

performance of path-planning algorithms is the computational time required to generate an optimal path 

[9]-[11]. Karaman and Frazzoli introduced the Rapidly-exploring Random Tree (RRT*) algorithm, 

providing an asymptotically optimal solution [12]. Nonetheless, Qureshi et al. [13], J. Nasir et al. [14] 

and I. B. Jeong et al. [15] reported that the computational speed of RRT* in reaching optimal values still 

needs improvement. A factor contributing to the computational load of the RRT* algorithm is its 

necessity to sample throughout the entire search space. 

To enhance the performance of the RRT* algorithm, Gammel et al. [16] proposed the Informed RRT* 

algorithm, which constrains the sampling area based on information from the currently known (yet non-

optimal) paths. Wang et al. [17] modified the sampling method to enhance the search speed for an initial 

solution using a bio-inspired algorithm and an RRT algorithm. Mashayekhi et al. [18] combined the 

RRT-Connect and informed RRT* algorithms to develop a hybrid RRT approach. It is feasible to obtain 

the initial solution as rapidly as possible by combining the advantages of the two techniques. Informed 

RRT* has been coupled with the Dynamic Window Approach (DWA) by Dai et al. [19], while Ryu and 

Park [20] proposed using a grid-map structure in Informed RRT*. Meanwhile, Wu et al. [21] proposed 

that raising the APF-IRRT* algorithm's computational speed can assist in identifying the optimal 

solution faster than other algorithms. Aria [22] proposed updating the technique to become informed 

RRT*-Connect with local search to increase the informed RRT*'s convergence speed. Path-planning 

research based on informed sampling is still being developed. 
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Another asymptotically optimal path-planning algorithm is the Informed Probabilistic Road Map (PRM) 

algorithm proposed by the author in [23]. Aria reported that by combining informed searching with the 

PRM algorithm, the performance of the proposed algorithm can be enhanced by up to 25%. Ongoing 

research continues to improve the performance of the PRM algorithm. Chen et al. [24] proposed a new 

PRM sampling strategy to generate more suitable configurations for practical applications. Ravankar et 

al. [25] suggested the use of a Layered Hybrid PRM with an Artificial Potential Field (APF), while Liu 

et al. [26] proposed combining the PRM and D* algorithm.  

This research proposes a new fast, asymptotically optimal path-planning algorithm called the Smart 

PRM (Smart-PRM) algorithm. The approach enhances the PRM algorithm through five smart sampling 

strategies. Test results demonstrate the Smart-PRM algorithm's ability to construct optimal paths across 

all scenarios. The computational time required for Smart-PRM to generate optimal paths surpasses that 

of PRM, informed RRT*-Connect and informed PRM algorithms. The Smart-PRM algorithm exhibits 

efficient convergence due to the incorporation of five smart sampling strategies. These include 

generating samples using an informed search procedure, employing incremental search techniques on 

increasingly dense samples, samples generated around the best solution, samples generated around 

obstacles and the algorithm repairing the found route using a wrapping procedure. The efficacy of each 

strategy is confirmed through testing, showcasing the Smart-PRM algorithm's potential for 

implementation in diverse robotic systems and autonomous vehicles. 

While it is acknowledged that individual components of our proposed Smart-PRM algorithm draw upon 

existing techniques in motion planning, we contend that the integration and synergy of these strategies 

represent a novel and significant advancement in the field. Our approach synthesizes five distinct 

sampling strategies; namely an informed search procedure, incremental search techniques on 

increasingly dense samples, sample generation around the best solution, sample generation around 

obstacles and a route repair mechanism using the wrapping procedure. This amalgamation of strategies 

not only distinguishes our work, but also facilitates enhanced efficiency and performance compared to 

existing methods. Furthermore, our experimental results demonstrate a notable improvement in 

computational time and the ability to construct optimal paths across various scenarios when compared 

against traditional PRM, informed RRT*-Connect and informed PRM algorithms. The efficiency gains 

achieved by our Smart-PRM algorithm are particularly noteworthy, surpassing existing methods in 

terms of convergence speed and solution optimality. 

This paper is organized as follows: Section 2 describes the design of the suggested Smart-PRM 

algorithm. This section describes the strategies used to improve PRM's performance. Section 3 contains 

the findings and discussion. Initially, the effects of each recommended technique on improving PRM 

performance are investigated. After that, the suggested Smart-PRM algorithm is compared to PRM, 

informed RRT*-Connect and informed PRM. Finally, Section 4 includes closing remarks. 

2. PROPOSED ALGORITHM: SMART-PRM 

The proposed algorithm enhances the PRM algorithm through five strategies. First, it generates samples 

using an informed search procedure. Second, it employs incremental search techniques on increasingly 

dense samples. Third, samples are generated around the best solution. Fourth, samples are generated 

around obstacles. Fifth, it repairs the found route using the wrapping procedure. Thus, the PRM 

algorithm will be repeated for several iterations. In iterations, before a path solution is found, the second 

and fourth strategies will be employed. However, after finding a path solution, the fifth, first, third and 

fourth strategies will be used. Sub-section from 2.1 to 2.5 will discuss each of those strategies. Sub-

section 2.6 will discuss the complete algorithm of the proposed Smart-PRM. 

2.1 First Strategy: Informed Search Procedure for Sample Generation 

This informed search procedure for sample generation emulates the informed search procedure in the 

informed RRT* algorithm proposed by Gammel et al. [16]. If a path solution connecting the start and 

goal nodes is successfully found during an iteration, an area is formed to restrict sample generation. This 

area takes the shape of an ellipsoid and its eccentricity depends on the length of the shortest-path solution 

found in that iteration. With the presence of this ellipsoidal area, the sample-generation process in the 

next iteration will only be carried out within this area. This area enhances the search concentration on 
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regions with the potential to improve the quality of the path solution. Gammel et al. have demonstrated 

that once this ellipsoidal area is established, generating samples outside this area does not improve the 

quality of the path solution. 

If a shorter-path solution is found in the next iteration, the size of this ellipsoidal area will decrease and 

the concentration of the path search will become more focused. Gammel et al. [27] claimed that using 

this method, the informed RRT* algorithm may obtain an optimal solution approximately 3.4 times 

faster than the RRT* algorithm. 

An illustration of the informed search procedure for sample generation in the PRM algorithm is shown 

in Figure 1. In the first iteration, sample generation is randomly conducted throughout the area (Figure 

1a). Then, using the created-sample nodes, Dijkstra's method [28] is used to find a path connecting the 

start and finish nodes. An example path successfully created by Dijkstra's algorithm is indicated by the 

red line in Figure 1a. 

Once a path solution is found, an area is established to constrain the sample-generation area, represented 

by the grey ellipsoid in Figure 1b. Subsequently, the sample generation procedure is applied only within 

this ellipsoidal area in the next iterations, as shown in Figure 1c. Suppose that a shorter-path solution is 

found in the following iteration. In that case, the size of this ellipsoidal area will decrease further and 

the path search will be more concentrated, as depicted in Figure 1d. In the illustration of Figure 1, it can 

be observed that the optimal solution must pass through a narrow path. Using this first strategy, a 

solution approaching this optimal path can be achieved by the 10th iteration, as seen in Figure 1d. 

Therefore, a second strategy for enhancing the PRM algorithm is required to improve the convergence 

speed, where the search area begins with a small-sized ellipsoidal sub-set. 

 
Iteration: 1 

Cost: 182.7 

 
Iteration: 1 

Cost: 182.7 

 
Iteration: 3 

Cost: 173.34 

 
Iteration: 10 

Cost: 147.9 

(a) (b) (c) (d) 

Figure 1. Illustration of the information-based sample generation process in the Smart-PRM algorithm: 

(a) Initial random sample generation, (b) Establishment of constraint area based on initial path 

solution, (c) Subsequent sample generation within the constrained area and (d) Decrease in constraint-

area size with successive iterations, leading to a concentrated path search. 

2.2 Second Strategy: Incremental Search Techniques on Increasingly Dense Samples 

These incremental search techniques on increasingly dense samples emulate the strategies employed in 

initiating the incremental search techniques on increasingly dense samples within the Batch Informed 

Tree Star (BIT*) algorithm proposed by Gammell et al. in [27]. This second strategy is distinct from the 

standard informed RRT* algorithm. During the first iteration of the basic informed RRT* algorithm, no 

ellipsoidal area constrains the sample-generation area (as illustrated in Figure 1a). However, for the 

incremental search techniques on increasingly dense samples, initially, sample generation is randomly 

conducted throughout the entire area. Then, during the first iteration, a small-sized ellipsoidal area is 

created to restrict only the samples within that ellipsoidal area, which the Dijkstra algorithm will use to 

find a path connecting the start node with the goal node. If a path solution cannot be obtained by 

connecting the samples within that small ellipsoidal area, then the ellipsoidal area will be iteratively 

increased. With the ellipsoidal area growing larger, more dense samples will be within the ellipsoidal 

area and the Dijkstra algorithm will use more samples to find a path connecting the start node with the 

goal node. 

Once a path solution is found, a new ellipsoidal area, the eccentricity of which depends on the length of 

that path solution, will be formed. The samples outside this new ellipsoidal area will be removed and 
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transferred into this new ellipsoidal area, making the number of samples within the new ellipsoidal area 

denser. This ellipsoidal area will be reduced if a shorter-path solution is obtained and the samples outside 

the ellipsoidal area will be condensed into the new ellipsoidal area when a shorter-path solution is 

obtained. Gammell et al. reported that by employing these incremental search techniques on increasingly 

dense samples, the BIT* algorithm could achieve an optimal solution approximately 6.8 times faster 

than the RRT* algorithm. 

An illustration of this second strategy is depicted in Figure 2. In the first iteration, sample generation is 

randomly conducted throughout the area. Following that, a small ellipsoidal area is created, as depicted 

in Figure 2a. The eccentricity of the ellipsoidal area constraining the sample-generation area is 

determined by a line connecting the start and goal nodes. Since the length of the path connecting the 

start and goal nodes is unknown in the first iteration, the line determining the eccentricity of the ellipsoid 

is based on an assumption. An assumption of a straight line connecting the start and goal nodes is used 

and then, a certain length tolerance is added to that line. This ellipsoidal area will restrict only the 

samples within it, which the Dijkstra algorithm will use to find a path connecting the start node with the 

goal node. If a path solution cannot be obtained by connecting the samples within this small ellipsoidal 

area, then the ellipsoidal area will be iteratively increased, as demonstrated in Figure 2b. With the 

growing ellipsoidal area, denser samples will be within the ellipsoidal area and the Dijkstra algorithm 

will utilize more samples to find a path connecting the start node with the goal node. 

The procedure of gradually increasing the eccentricity of this ellipsoidal area is repeated until a path 

connecting the start and target nodes is obtained, as shown in Figure 2c. Once this path solution is 

discovered, the ellipsoidal area will not be extended in subsequent iterations. Instead, it will be lowered 

if a shorter-path solution is obtained, as shown in Figure 2d. 

 
Iteration: 1 

Cost: - 

 
Iteration: 2 

Cost: - 

 
Iteration: 3 

Cost: 154.8 

 
Iteration: 5 

Cost: 143.57 

(a) (b) (c) (d) 

Figure 2.  Illustration of incremental search techniques on increasingly dense samples in Smart-PRM 

algorithm: (a) Initial sample generation with a small ellipsoidal area, (b) Iterative expansion of the 

ellipsoidal area to include denser samples, (c) Finalization of the ellipsoidal area with a path solution 

and (d) Adjustment of the ellipsoidal area based on path optimization. 

2.3 Third Strategy: Sample Generation around the Best Solution 

The Smart-PRM algorithm's third strategy focuses on strategically generating samples around the 

identified best solution during algorithm iterations. This approach aims to refine the obtained path 

further and leverage the knowledge gained from the informed search. 

The Smart-PRM algorithm commences the third strategy once a path solution connecting the start and 

goal nodes is successfully found. In this strategy, the algorithm utilizes 50% of the sampling points for 

exploiting the area around this best solution, while the remaining 50% of the sampling points explore 

the area based on the informed search procedure described in the first strategy. 

By concentrating sampling efforts around the best solution, the Smart-PRM algorithm aims to identify 

alternative paths or variations that may contribute to a more optimal solution. This exploration has the 

potential to uncover paths that were initially not considered. The approach for exploiting the area around 

the optimum solution highlights the exploitation process in the RRT-ACS algorithm presented by Pohan 

et al. in [29]-[30]. 

An illustration of this third strategy can be seen in Figure 3. Initially, sample generation is conducted 
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randomly throughout the area. Then, as shown in Figure 3a, Dijkstra's algorithm is used to find a path 

connecting the start and end nodes using the generated sample nodes. After the path is obtained, some 

sampling nodes are relocated around the best path. As shown in Figure 3b, there are more sampling 

nodes around the obtained best path compared to Figure 3a. Therefore, using sampling nodes around the 

best path has the potential to obtain a more optimal route, as demonstrated in Figure 3c. 

   
(a) (b) (c) 

Figure 3.  Illustration of sample generation around the best solution in Smart-PRM: (a) Pathfinding 

using Dijkstra's algorithm and initial sample generation, (b) Relocation of sampling nodes around the 

best path and (c) Potential optimization of route with sampling nodes around the best path. 

2.4 Fourth Strategy: Sample Generation around Obstacles 

The fourth strategy in the Smart-PRM algorithm focuses on strategically generating samples around 

obstacles encountered in the environment. After encountering newly identified obstacles during 

iterations, the Smart-PRM algorithm initiates the fourth strategy to systematically use several sampling 

points to explore and understand the areas around these obstacles. This strategy contributes to creating 

an optimal path, as optimal paths are often found around obstacles [31]. 

Strategic sampling around obstacles enhances the algorithm's flexibility and robustness, especially in 

scenarios where conventional approaches may face difficulties, such as in environments with narrow 

passages. An illustration of this fourth strategy can be seen in Figure 4. When the algorithm detects 

samples near an obstacle (purple points in the white gap in Figure 4a), the sides of the obstacle will be 

explored by more samples (as indicated by three purple points in the white gap in Figure 4b). When a 

sufficient number of areas on the sides of obstacles are explored by sample points (Figure 4c), there is 

the potential to discover a better path, as depicted in Figure 4d. 

    
(a) (b) (c) (d) 

Figure 4. Illustration of sample generation around the obstacles in Smart-PRM: (a) Detection of 

samples near obstacles and initial exploration, (b) Increased exploration of obstacle sides by additional 

samples, (c) Sufficient exploration of areas around obstacles by sample points and (d) Potential 

discovery of better paths around obstacles. 

2.5 Fifth Strategy: Route Repair Using the Wrapping Procedure 

The path-correction strategy using the wrapping process emulates the wrapping-based Informed RRT* 

algorithm discussed in [32]. This wrapping process aims to find a shorter path by creating new nodes 

close to obstacles. An illustration of this fifth strategy is shown in Figure 5. 

In the example case depicted in Figure 5, there is an initial red path consisting of four nodes. The 

wrapping process begins by creating a temporary node (Xtemp) at node Xi+1 or node X2. Node Xtemp is 

connected to node X1 with a blue line, as shown in Figure 5a. Then, the position of node Xtemp is 
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advanced along the path connecting node Xi+1 to node Xi+2, as in Figure 5b. The light blue area indicates 

the path covered by the blue line connecting X1 to Xtemp. The position of node Xtemp continues to advance 

until an obstacle obstructs the blue line connecting X1 to Xtemp, as shown in Figure 5c. The position 

where the blue line meets the obstacle is marked as a new node for X2 (denoted as X2’). In the next 

iteration, the position of Xtemp is advanced again, but because a new node X2’ has been found, the blue 

line now connects Xtemp to X2’, as depicted in Figure 5d. The position of Xtemp continues to advance until 

it reaches node Xi+2 or node X3. Once node X3 is reached, the position of Xtemp is further advanced along 

the path connecting node Xi+2 to Xi+3 (or node X3 to X4). This process is shown in Figure 5e. If the blue 

line connecting node X2’ to Xtemp encounters an obstacle, the position where the blue line meets the 

obstacle is marked as a new node for X3 (denoted as X3’). This iteration continues until node Xtemp 

reaches the destination node Xgoal, as shown in Figure 5f. Figure 5g depicts a comparison of the initial 

path and the path produced by the wrapping operation. The red line is the original path and the blue line 

is the corrected/improved path as a result of the wrapping process. Green nodes represent new nodes 

created during the wrapping process. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
(e) 

 

 
(f) 

 

 
(g) 

 

    Figure 5.  Illustration of the wrapping process to optimize the generated path. The red line represents 

the initial path, while the blue line represents the repairing/improved path: (a) Creation of temporary 

node (Xtemp) and connection to X1, (b) Advancement of Xtemp along the path between nodes 𝑋i+1 and 

𝑋i+2, (c) Identification of obstacle obstruction and creation of new node 𝑋2’, (d) Continued 

advancement of Xtemp towards node 𝑋i+2 or 𝑋3, with connection to 𝑋2’, (e) Further advancement of 

Xtemp along the path towards node 𝑋i+2 or 𝑋3, with potential creation of new node 𝑋3’, (f) Completion 

of wrapping process when Xtemp reaches destination node 𝑋goal and (g) Comparison of initial and 

improved paths resulting from the wrapping operation. 

2.6 Comprehensive Overview of the Smart-PRM Algorithm 

The complete algorithm proposed is illustrated in Figures 6 and 7. The PRM algorithm consists of 

sample generation (lines 1-26 in Algorithm 1), roadmap construction (lines 30-37 in Algorithm 1) and 

path planning (the proposed algorithm uses Dijkstra's algorithm) connecting the start node to the goal 

node through the generated sample nodes (lines 38-39 in Algorithm 1). 

The second strategy of the Smart-PRM algorithm is implemented in lines 3-16 of Algorithm 1. Setting 

the value of 𝑐𝑚𝑎𝑥 to the minimum will create a small-sized ellipsoid subset area. If a path solution in this 

small area cannot be found, the ellipsoid area will be iteratively enlarged until a path solution connecting 

the start node to the goal node is found. The expansion process of the ellipsoid area during the path not 

being found is shown in line 44 of Algorithm 1. 
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The first strategy of the Smart-PRM algorithm is implemented in lines 17-25 of Algorithm 1 and 

Algorithm 2. In Algorithm 2, the generation of samples 𝑥𝑟𝑎𝑛𝑑 will only be done in the ellipsoid area 

surrounding 𝑥𝑠𝑡𝑎𝑟𝑡 and 𝑥𝑔𝑜𝑎𝑙 with eccentricity depending on the length of 𝑐𝑚𝑎𝑥. Each time the algorithm 

finds a shorter path, the value of 𝑐𝑚𝑎𝑥 will be updated (line 42 of Algorithm 1), therefore, the 

concentration of path search will increase. 

Line 11 of Algorithm 2 implements the Smart-PRM algorithm's third strategy. Lines 27-29 of Algorithm 

1 execute the Smart-PRM algorithm's fourth strategy. The fifth strategy of the Smart-PRM algorithm is 

implemented in Algorithm 1 (line 41). 

Algorithm 1. 𝑋𝑠𝑜𝑙 =  (𝑚𝑎𝑝, 𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑔𝑜𝑎𝑙) 

1. 𝑐𝑚𝑎𝑥 ← ‖𝑥𝑔𝑜𝑎𝑙 − 𝑥𝑠𝑡𝑎𝑟𝑡‖
2
 

2. 𝑋𝑠𝑜𝑙 ← ∅ 

3. while |𝑉𝑖𝑛𝑖𝑡| < 𝑛 do 

4.         repeat 

5.                 𝑥𝑟𝑎𝑛𝑑 ← RandomSampling(𝑚𝑎𝑝) 

6.                 𝑞 ←  𝑥𝑟𝑎𝑛𝑑  

7.         until 𝑞 is collision-free 

8.         𝑉𝑖𝑛𝑖𝑡 ← 𝑉𝑖𝑛𝑖𝑡 ∪ {𝑞} 

9. end 

10. while 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛_𝑛𝑜𝑡_𝑚𝑒𝑒𝑡 do 

11.         if 𝑋𝑠𝑜𝑙 =  ∅ then 

12.                 while 𝑞 ∈  𝑉𝑖𝑛𝑖𝑡  do 

13.                         if 𝑞 𝑖𝑛𝑠𝑖𝑑𝑒_𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑_𝑎𝑟𝑒𝑎 (𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑔𝑜𝑎𝑙 , 𝑐𝑚𝑎𝑥) 

14.                                 𝑉 ← 𝑉 ∪ {𝑞}  

15.                  end 

16.         else 

17.                 𝑉 ← ∅ 

18.                 𝐸 ← ∅ 

19.                 while |𝑉| < 𝑛 do 

20.                         repeat 

21.                                 𝑥𝑟𝑎𝑛𝑑 ← Sample (𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑔𝑜𝑎𝑙 , 𝑐𝑚𝑎𝑥) 

22.                                 𝑞 ←  𝑥𝑟𝑎𝑛𝑑   

23.                         until 𝑞 is free of collisions 

24.                         𝑉 ← 𝑉 ∪ {𝑞} 

25.                  end  

26.         end  

27.         if 𝑛𝑒𝑤_𝑜𝑏𝑠𝑡𝑐𝑎𝑙𝑒_𝑓𝑜𝑢𝑛𝑑 

28.                  𝑉 ← 𝑉 ∪ {𝑞𝑎𝑟𝑜𝑢𝑛𝑑_𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒} 

29.         end         for all 𝑞 ∈  𝑉 do 

30.                 𝑁𝑞 ← the neighbors of 𝑞 chosen from 𝑉 based on 𝑑𝑖𝑠𝑡 

31.                 for all 𝑞′ ∈  𝑁𝑞 do 

32.                         if (𝑞, 𝑞′) is free of collisions then 

33.                                  𝐸 ← 𝐸 ∪  {(𝑞, 𝑞′)} 

34.                         end 

35.                 end  

36.         end  

37.         𝑇 =  (𝑉, 𝐸) 

38.         𝑋𝑠𝑜𝑙  ← 𝐷𝑗𝑖𝑘𝑠𝑡𝑟𝑎(𝑞𝑖𝑛𝑖𝑡 , 𝑞𝑔𝑜𝑎𝑙 , 𝑇)  

39.         if 𝑋𝑠𝑜𝑙  ≠  ∅ then 

40.                 𝑋𝑠𝑜𝑙  ← 𝑊𝑟𝑎𝑝𝑝𝑖𝑛𝑔(𝑋𝑠𝑜𝑙) 

41.                 𝑐𝑚𝑎𝑥 ← 𝑚𝑖𝑛(𝑥𝑠𝑜𝑙 ∈ 𝑋𝑠𝑜𝑙){𝐶𝑜𝑠𝑡(𝑥𝑠𝑜𝑙)} 

42.         else 

43.                𝑐𝑚𝑎𝑥 ← 𝑐𝑚𝑎𝑥 × 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

44.         end  

45. end  
 

Figure 6. Smart-PRM algorithm. 
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Algorithm 2. Sample (𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑔𝑜𝑎𝑙 , 𝑐𝑚𝑎𝑥) 

1. if |𝑉| < 𝑛/2 then 

2.         𝑐𝑚𝑖𝑛 ← ‖𝑥𝑔𝑜𝑎𝑙 − 𝑥𝑠𝑡𝑎𝑟𝑡‖
2
 

3.         𝑥𝑐𝑒𝑛𝑡𝑟𝑒 ← (𝑥𝑔𝑜𝑎𝑙 + 𝑥𝑠𝑡𝑎𝑟𝑡)/2 

4.         𝐶 ←RotationToWorldFrame(𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑔𝑜𝑎𝑙) 

5.         𝑟1 ← 𝑐𝑚𝑎𝑥/2 

6.         {𝑟𝑖}𝑖=2,…,𝑛 ← (√𝑐𝑚𝑎𝑥
2 − 𝑐𝑚𝑖𝑛

2 ) /2 

7.         𝐿 ←diag{𝑟1, 𝑟2, … , 𝑟𝑛} 

8.         𝑥𝑏𝑎𝑙𝑙 ←SampleUnitBall 

9.         𝑥𝑟𝑎𝑛𝑑 ← (𝐶𝐿𝑥𝑏𝑎𝑙𝑙 + 𝑥𝑐𝑒𝑛𝑡𝑟𝑒) ∩ 𝑋 

10. else 

11.         𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑁𝑒𝑎𝑟_𝐵𝑒𝑠𝑡_𝑃𝑎𝑡ℎ(𝑋𝑠𝑜𝑙 , 𝑑) 

12. return 𝑥𝑟𝑎𝑛𝑑 
 

Figure 7. Sample-generation strategy in the smart-PRM algorithm. 

3. RESULTS AND DISCUSSION 

Several tests were performed to validate the performance of the suggested path-planning algorithm. The 

first test aimed to verify the effectiveness of the first strategy of Smart-PRM, which generates samples 

using an informed search procedure. The second test was conducted to confirm the effectiveness of the 

second strategy of Smart-PRM, which employs incremental search techniques on increasingly dense 

samples. The third test aimed to verify the effectiveness of the third strategy of Smart-PRM, where 

samples are generated around the best solution. The fourth test was carried out to confirm the 

effectiveness of the fourth strategy of Smart-PRM, which generates samples around obstacles. The fifth 

test was conducted to verify the effectiveness of the fifth strategy of Smart-PRM, which repairs the 

found route using the wrapping procedure. 

Meanwhile, the sixth test was developed to compare the Smart-PRM algorithm to the PRM algorithm 

[33], informed RRT*-Connect [18] and informed PRM [23]. The computational time for each approach 

to attain the optimal result was measured as a performance metric. All tests were done 40 times 

independently with the identical settings. The comparison was based on each algorithm's average 

performance across the 40 tests. All tests were carried out on a PC with a Core i5 3.20 GHz CPU and 4 

GB RAM running Windows 10 64-bit. The Smart-PRM algorithm and the comparative algorithms were 

built in LabVIEW 7.1 using the Robotic Path-planning LabVIEW Libraries [34]. 

3.1 Experimental Scenarios 

The proposed Smart-PRM method is compared to existing algorithms to validate its convergence speed 

and optimality performance. The performance of path-planning algorithms is evaluated using four 

common scenario cases. There are four scenarios: one with a single obstacle, one with narrow passages, 

one with a T-shaped obstacle and one with many randomly-scattered obstacles. 

The testing scenario with a single obstacle is illustrated in Figure 8a. This scenario assesses whether an 

algorithm can produce an optimally convergent path. Mashayekhi et al. [18] utilized a testing scenario 

like this to evaluate their proposed path-planning algorithm. The testing scenario in an environment with 

narrow passages is depicted in Figure 8b. This scenario is employed to evaluate the effectiveness of 

path-planning algorithms when the goal node is hidden behind narrow passages. Gammel et al. [16] and 

Mashayekhi et al. [18] used testing scenarios like this. 

The testing scenario in an environment with a T-shaped obstacle is shown in Figure 8c. This scenario 

assesses the algorithm's effectiveness in handling environments where the generated path needs to 

navigate turns. Islam et al. [35] used testing scenarios like this. The testing scenario in an environment 

with multiple randomly-scattered obstacles is illustrated in Figure 8d. This scenario is employed to 

evaluate the convergence speed of the path-planning algorithm. Gammel et al. [16] used testing 

scenarios like this. 
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(a) (b) (c) (d) 

Figure 8. Testing scenarios: (a) environment with a single obstacle, (b) environment with narrow 

passages, (c) environment with T-shaped obstacle, (d) environment with multiple randomly-scattered 

obstacles. 

3.2 Verification of the First-strategy Effectiveness: Informed Search Procedure for 

Sample Generation 

The first test aims to verify the effectiveness of the first strategy; namely, sample generation based on 

information. The test compares the basic PRM algorithm with the improved PRM algorithm using the 

first Smart-PRM strategy, which involves generating samples based on information. Testing is 

performed on the four scenarios mentioned in sub-section 3.1. The measured performance is the 

computation time of each algorithm to achieve the optimal path. The test results can be seen in Table 1. 

Furthermore, an analysis of the average-percentage comparison of convergence time to reach the optimal 

path for both algorithms can be found in Table 2. 

Based on the data in Table 2, it can be observed that the average time of the improved PRM algorithm 

using the first Smart-PRM strategy is 5.49 times faster than the basic PRM algorithm. This result is 

consistent with the performance measurements of the informed RRT* algorithm (which employs the 

same algorithm-enhancement strategy) reported by Gammel et al. in [16]. Gammel et al. said that by 

limiting the sample-acquisition area to the subset ellipsoid area with eccentricity matching the length of 

the path solution in that iteration, the informed RRT* algorithm becomes 3.4 times faster than the RRT* 

algorithm in achieving the optimal path. This result verifies the effectiveness of the first strategy, which 

involves generating samples based on information, in improving the performance of the PRM algorithm. 

Table 1.  Comparison of improved PRM algorithm using the first strategy against the basic PRM 

algorithm (in seconds). 

Scenario 
Convergence time to achieve 

the optimal path 

Improved PRM algorithm using 

the first strategy 
Basic PRM 

Scenario I: Single 

Obstacle 

Best 0.13 12.90 
Average 2.20 13.10 

Worst 4.92 13.56 

Scenario II: Narrow 

Passages 

Best 0.42 2.79 

Average 1.60 8.61 
Worst 3.71 13.42 

Scenario III: T-

shaped Obstacle 

Best 0.76 10.47 

Average 2.10 14.01 
Worst 6.07 30.97 

Scenario IV: Multiple 

Obstacles 

Best 0.49 4.61 
Average 1.55 6.14 

Worst 3.95 13.51 

Table 2.  Comparison of average convergence time of the improved PRM algorithm using the first 

strategy against the basic PRM algorithm. 

Scenario Comparison of convergence time (how many times faster) 

Scenario I: Single Obstacle 5.95 

Scenario II: Narrow Passages 5.38 

Scenario III: T-shaped Obstacle 6.67 

Scenario IV: Multiple Obstacles 3.96 

Average 5.49 
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3.3 Verification of the Second-strategy Effectiveness: Incremental Search Techniques on 

Increasingly Dense Samples 

The second test aims to verify the effectiveness of the second strategy. In this second test, the first 

strategy is not included; so, the enhancement of the PRM algorithm in this test is solely derived from 

the second strategy. The test compares the basic PRM algorithm with the improved PRM algorithm 

using the second S-PRM strategy. Testing is performed on the four scenarios mentioned in sub-section 

3.1. The measured performance is the computation time of each algorithm to achieve the optimal path. 

The test results can be seen in Table 3. Furthermore, an analysis of the average-percentage comparison 

of convergence time to reach the optimal path for both algorithms can be found in Table 4. 

Based on the data in Table 4, it can be observed that the average time of the improved PRM algorithm 

using the second Smart-PRM strategy is 7.48 times faster than the basic PRM algorithm. This result is 

consistent with what was reported by Gammel et al. [27] regarding the performance measurements of 

the BIT* algorithm (which employs a similar strategy to enhance the RRT* algorithm). Gammel et al. 

reported that by sampling in a small-sized sub-set ellipsoid area first, the BIT* algorithm can achieve 

an optimal solution 6.8 times faster than the RRT* algorithm. This result verifies the effectiveness of 

the second strategy; namely, using incremental search techniques on increasingly dense samples. 

Table 3.  Comparison of improved PRM algorithm using the second strategy against the basic PRM 

algorithm (in seconds). 

Scenario 
Convergence time to 

achieve the optimal path 

Improved PRM algorithm 

using the second strategy 
Basic PRM 

Scenario I: Single 

Obstacle 

Best 0.08 12.90 

Average 1.36 13.10 

Worst 3.05 13.56 

Scenario II: Narrow 

Passages 

Best 0.27 2.79 

Average 1.05 8.61 

Worst 2.41 13.42 

Scenario III: T-

shape Obstacle 

Best 0.89 10.47 

Average 2.45 14.01 

Worst 7.12 30.97 

Scenario IV: 

Multiple Obstacles 

Best 0.31 4.61 

Average 0.97 6.14 

Worst 2.45 13.51 

Table 4.  Comparison of average convergence time of the improved PRM algorithm using the second 

strategy against the basic PRM algorithm. 

Scenario Comparison of convergence time (how many times faster) 

Scenario I: Single Obstacle 9.66 

Scenario II: Narrow Passages 8.20 

Scenario III: T-shaped Obstacle 5.73 

Scenario IV: Multiple Obstacles 6.33 

Average 7.48 

3.4 Verification of the Third-strategy Effectiveness: Sample Generation around the Best 

Solution 

The third test aims to verify the effectiveness of the third strategy. In this third test, neither the first nor 

the second strategy is included; so, the enhancement of the PRM algorithm in this test is solely derived 

from the third strategy. The test compares the basic PRM algorithm with the improved PRM algorithm, 

which is enhanced only by adding the third Smart-PRM strategy. Testing is performed on the four 

scenarios mentioned in sub-section 3.1. The measured performance is the computation time of each 

algorithm to achieve the optimal path. The test results can be seen in Table 5. Furthermore, an analysis 

of the average-percentage comparison of convergence time to reach the optimal path for both algorithms 

can be found in Table 6. 

Based on the data in Table 6, it can be observed that the average time of the PRM algorithm, when 
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adding the third strategy, is 8.94 times faster than the basic PRM algorithm. This result verifies the 

effectiveness of the third strategy, which generates a sample around the best solution for improving the 

performance of the PRM algorithm. 

Table 5.  Comparison of improved PRM algorithm using the third strategy against the basic PRM 

algorithm (in seconds). 

Scenario 
Convergence time to 

achieve the optimal path 

Improved PRM algorithm 

using the third strategy 
Basic PRM 

Scenario I: Single 

Obstacle 

Best 0.05 12.90 

Average 1.20 13.10 
Worst 3.51 13.56 

Scenario II: Narrow 

Passages 

Best 0.18 2.79 
Average 0.91 8.61 

Worst 2.71 13.42 

Scenario III: T-

shaped Obstacle 

Best 0.52 10.47 
Average 1.72 14.01 

Worst 6.02 30.97 

Scenario IV: 

Multiple Obstacles 

Best 0.20 4.61 

Average 0.86 6.14 
Worst 2.82 13.51 

Table 6.  Comparison of average convergence time of the improved PRM algorithm using the third 

strategy against the basic PRM algorithm. 

Scenario Comparison of convergence time (how many times faster) 

Scenario I: Single Obstacle 10.96 

Scenario II: Narrow Passages 9.48 

Scenario III: T-shaped Obstacle 8.15 

Scenario IV: Multiple Obstacles 7.18 

Average 8.94 

3.5 Verification of the Fourth-strategy Effectiveness: Sample Generation around 

Obstacles 

The fourth test aims to verify the effectiveness of the fourth Smart-PRM strategy. The first, second and 

third strategies are not included in this fourth test. Therefore, this test's enhancement of the PRM 

algorithm is solely derived from the fourth strategy. The test compares the basic PRM algorithm with 

the improved PRM algorithm using the fourth Smart-PRM strategy. Testing is performed on the four 

scenarios mentioned in sub-section 3.1. The measured performance is the computation time of each 

algorithm to achieve the optimal path. The test results can be seen in Table 7. Furthermore, an analysis 

of the average percentage comparison of convergence time to reach the optimal path for both algorithms 

can be found in Table 8. 

Based on the data in Table 8, it can be observed that the average time of the improved PRM algorithm, 

when using the fourth strategy, is 6.22 times faster than the basic PRM algorithm. This result verifies 

the effectiveness of the fourth strategy, which involves generating samples around obstacles, in 

improving the performance of the PRM algorithm. 

3.6 Verification of the Fifth-strategy Effectiveness: Route Repair Using the Wrapping 

Procedure 

The fifth test is aimed at verifying the effectiveness of the fifth Smart-PRM strategy. The first, second, 

third and fourth strategies are not included in this fifth test. Therefore, this test's enhancement of the 

PRM algorithm is solely derived from the fifth Smart-PRM strategy. The test compares the basic PRM 

algorithm with the improved PRM algorithm using the fifth strategy. Testing is performed on the four 

scenarios mentioned in sub-section 3.1. The measured performance is the computation time of each 

algorithm to achieve the optimal path. The test results can be seen in Table 9. Furthermore, an analysis 

of the average-percentage comparison of convergence time to reach the optimal path for both algorithms 

can be found in Table 10. 
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Table 7.  Comparison of improved PRM algorithm using the fourth strategy against the basic PRM 

algorithm (in seconds). 

Scenario 
Convergence time to 

achieve the optimal path 

Improved PRM algorithm 

using the fourth strategy 
Basic PRM 

Scenario I: Single 

Obstacle 

Best 0.21 25.79 
Average 3.56 26.19 

Worst 7.96 27.12 

Scenario II: Narrow 

Passages 

Best 0.69 5.58 

Average 2.65 17.21 

Worst 6.12 26.84 

Scenario III: T-

shape Obstacle 

Best 1.65 20.93 

Average 4.55 28.01 
Worst 13.19 61.93 

Scenario IV: 

Multiple Obstacles 

Best 0.79 9.22 
Average 2.52 12.28 

Worst 6.39 27.02 

Table 8.  Comparison of average convergence time of the improved PRM algorithm using the fourth 

strategy against the basic PRM algorithm. 

Scenario Comparison of convergence time (how many times faster) 

Scenario I: Single Obstacle 7.37 

Scenario II: Narrow Passages 6.49 

Scenario III: T-shape Obstacle 6.16 

Scenario IV: Multiple Obstacles 4.87 

Average 6.22 

Table 9.  Comparison of improved PRM algorithm using the fifth strategy against the basic PRM 

algorithm (in seconds). 

Scenario 
Convergence time to 

achieve the optimal path 

Improved PRM algorithm 

using the fifth strategy 
Basic PRM 

Scenario I: Single 

Obstacle 

Best 0.03 12.90 

Average 1.01 13.10 
Worst 3.98 13.56 

Scenario II: Narrow 

Passages 

Best 0.09 2.79 

Average 0.79 8.61 
Worst 3.01 13.42 

Scenario III: T-

shaped Obstacle 

Best 0.15 10.47 
Average 0.90 14.01 

Worst 4.92 30.97 

Scenario IV: 

Multiple Obstacles 

Best 0.10 4.61 
Average 0.78 6.14 

Worst 3.20 13.51 

Table 10.  Comparison of average convergence time of the improved PRM algorithm using the fifth 

strategy against the basic PRM algorithm. 

Scenario Comparison of convergence time (how many times faster) 

Scenario I: Single Obstacle 12.97 

Scenario II: Narrow Passages 10.89 

Scenario III: T-shaped Obstacle 15.56 

Scenario IV: Multiple Obstacles 7.87 

Average 11.82 

Based on the data in Table 10, it can be observed that the average time of the improved PRM algorithm, 

when using the fifth strategy, is 11.82 times faster than the basic PRM algorithm. This result verifies the 

effectiveness of the fifth strategy, which involves path refinement using the wrapping process, in 

improving the performance of the PRM algorithm. 
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3.7 Analyzing the Contribution of Each Sampling Strategy 

Based on Tables 2, 4, 6, 8 and 10, a table illustrating the contribution of each sampling strategy, as 

demonstrated in Table 11, can be constructed. Table 11 presents a comparison of convergence time 

using each strategy against the basic PRM algorithm across various scenarios. 

Table 11. Comparison of convergence time using each strategy against the basic PRM algorithm 

across various scenarios. 

Scenario 

Comparison of convergence time (how many times faster) using each strategy against 

basic PRM 

1st Strategy 2nd Strategy 3rd Strategy 4th Strategy 5th Strategy 

Scenario I 5.95 9.66 10.96 7.37 12.97 

Scenario II 5.38 8.20 9.48 6.49 10.89 

Scenario III 6.67 5.73 8.15 6.16 15.56 

Scenario IV 3.96 6.33 7.18 4.87 7.87 

Average 5.49 7.48 8.94 6.22 11.82 

As depicted in Table 11, which compares the convergence time using each sampling strategy with the 

basic PRM algorithm across various scenarios, we can evaluate the relative contributions of each 

strategy to the overall algorithm performance. Upon examining the data, it is evident that based on the 

test results, the fifth strategy, Route Repair Using the Wrapping Procedure, demonstrates the most 

significant contribution to achieving superior performance across different scenarios. 

3.8 Performance Comparison between the Smart-PRM Algorithm and Other Algorithms 

The sixth test compares the Smart-PRM algorithm (which implements all five proposed techniques) to 

the informed RRT*-Connect and informed PRM algorithms. The test is run on the four scenarios 

described in sub-section 3.1. The calculation time of each algorithm to find the best path is assessed as 

performance. Table 12 displays the test results. Table 13 also contains a study of the average-percentage 

comparison of convergence time to reach the optimal path for both techniques. 

Table 12.  Comparison of the Smart-PRM algorithm against the informed RRT*-Connect and 

informed PRM algorithms (in seconds). 

Scenario 
Convergence time to 

achieve the optimal path 
Smart-PRM 

Informed RRT*-

connect 

Informed 

PRM 

Scenario I: 

Single Obstacle 

Best 0.02 0.56 0.13 

Average 0.60 3.24 2.19 
Worst 1.35 7.16 4.92 

Scenario II: 

Narrow Passages 

Best 0.06 1.87 0.42 

Average 0.47 11.63 1.62 
Worst 1.07 31.63 3.71 

Scenario III: T-

shaped Obstacle 

Best 0.10 3.90 0.76 
Average 0.66 6.73 2.09 

Worst 2.70 19.35 6.07 
Scenario IV: 

Multiple 

Obstacles 

Best 0.06 3.52 0.49 

Average 0.43 13.67 1.57 

Worst 1.09 28.79 3.95 

Table 13.  Comparison of average convergence time of the Smart-PRM algorithm against the informed 

RRT*-Connect and informed PRM algorithms. 

Scenario 
Comparison of convergence time (how many times faster) 

Informed RRT*-Connect Informed PRM 

Scenario I: Single Obstacle 5.36 3.62 

Scenario II: Narrow Passages 24.92 3.46 

Scenario III: T-shaped Obstacle 10.20 3.16 

Scenario IV: Multiple Obstacles 31.78 3.64 

Average 18.06 3.47 
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According to the statistics in Table 13, the Smart-PRM algorithm has an average time that is 18.06 times 

faster than the informed RRT* algorithm and 3.47 times faster than the informed PRM algorithm. 

Therefore, the Smart-PRM algorithm requires less computational time to design an optimal path than 

the informed RRT* and informed PRM algorithms. The results of the tests show that the Smart-PRM 

algorithm can create an optimal path in all test scenarios. 

3.9 Evaluating the Stability of the Smart-PRM Algorithm 

According to Xue [36], a path-planning algorithm is considered stable if it consistently produces the 

same path when planning the same task. Therefore, we will evaluate the stability of the Smart-PRM 

algorithm using the data provided in Table 14. Table 14 summarizes the statistical results of performance 

measurements obtained by Smart-PRM and other algorithms in various benchmark scenarios. 

Performance measurements include the best-path length, worst-path length, average-path length and 

standard deviation. A decrease in standard deviation indicates that the cost values of paths generated in 

each iteration are more consistent. As shown in Table 14, the standard deviation of the Smart-PRM 

algorithm is the smallest or relatively small compared to the standard deviation of other algorithms in 

each benchmark scenario. This smaller standard deviation suggests that the Smart-PRM algorithm tends 

to be more stable compared to other available algorithms 

Table 14.  Comparison of algorithm stability across various benchmark scenarios. Best results are 

highlighted for each section. 

Scenario Algorithm Best Worst Mean Std 

Scenario I: 

Single 

Obstacle 

Smart-PRM 285.73 285.73 285.73 0 

Informed RRT*-Connect 285.73 286.00 285.73 0 

Informed PRM 285.73 286.00 285.73 0 

Scenario II: 

Narrow 

Passages 

Smart-PRM 258.84 259.26 258.84 0.001 

Informed RRT*-Connect 258.84 262.40 259.89 0.004 

Informed PRM 258.84 259.89 259.47 0.001 

Scenario III: 

T-shaped 

Obstacle 

Smart-PRM 275.54 275.54 275.54 0 

Informed RRT*-Connect 277.42 280.70 279.06 0.004 

Informed PRM 275.54 278.35 276.24 0.003 

Scenario IV: 

Multiple 

Obstacles 

Smart-PRM 307.35 307.79 307.57 0.007 

Informed RRT*-Connect 307.27 314.86 309.41 0.08 

Informed PRM 308.56 311.39 309.78 0.023 

3.10 Example Application 

As an example of an application requiring fast asymptotically optimal path planning, we find that our 

algorithm, with its fast convergence, would be highly beneficial in the implementation of autonomous 

vehicles. The need for algorithms with fast convergence is paramount in traffic-safety contexts, where 

optimal path planning and rapid response to unforeseen situations are crucial. For instance, in Figure 9, 

we illustrate a scenario where an autonomous vehicle encounters a curve on the road while pedestrians 

are crossing unexpectedly. In such situation, autonomous vehicles must be able to respond quickly to 

plan alternative safe routes and avoid potential accidents. This study can be used as a reference for the 

current issues in vehicle automation, as discussed in previous studies [37]-[40]. 

 

Figure 9. An illustration where autonomous vehicles (green car) must be able to quickly plan 

alternative routes when sudden changes in environmental conditions are encountered, such as sudden 

pedestrian crossings (illustrated by the red circle). 
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4. CONCLUSIONS 

This research proposes a new fast, asymptotically optimal path-planning algorithm called the Smart-

PRM algorithm. The method is improving the PRM algorithm. The results of the tests reveal that the 

Smart-PRM algorithm can provide optimal pathways in all test circumstances. The Smart-PRM 

algorithm takes less processing time to construct an optimal path than the PRM, informed PRM and 

informed RRT*-connect algorithms. The Smart-PRM algorithm can have good convergence speed, 

because it uses five smart sampling strategies. First, it generates samples using an informed search 

procedure. Second, it employs incremental search techniques on increasingly dense samples. Third, 

samples are generated around the best solution. Fourth, samples are generated around obstacles. Fifth, 

it repairs the found route using the wrapping procedure. The effectiveness of each strategy has been 

verified through test results. Thus, the smart-PRM algorithm has the potential to be implemented in 

various applications that need an optimal path-planning algorithm. 
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خص البحث:مل  

خ خطيطتلإيؤؤؤؤؤلمخاي ؤؤؤؤؤ لخطيضمؤؤؤؤؤ صخط علؤؤؤؤؤلخ يؤؤؤؤؤ خ ؤؤؤؤؤض  خطي  ؤؤؤؤؤ  خ  ؤؤؤؤؤ خطي ؤؤؤؤؤلت ط علؤؤؤؤؤلخ  طخعؤؤؤؤؤ خيؤؤؤؤؤالتّ

خأ ييخطينتظ مخطي قتخطيك فيخي عضل.

خي طتلإيؤؤؤؤؤؤلمخي ضمؤؤؤؤؤؤ صخط علؤؤؤؤؤؤل.خ خ. يؤؤؤؤؤؤ  ثخ  ؤؤؤؤؤؤليعمث يهؤؤؤؤؤؤ اخبؤؤؤؤؤؤ طخطيا ؤؤؤؤؤؤمخ يؤؤؤؤؤؤ خطقطؤؤؤؤؤؤلطّخط طصلعلؤؤؤؤؤؤمث

 تمؤؤؤؤؤؤؤطلإ مخبؤؤؤؤؤؤؤ اخطييليجؤؤؤؤؤؤؤمخطضؤؤؤؤؤؤؤاخط ؤؤؤؤؤؤؤطلطتل ل  خ  لؤؤؤؤؤؤؤمخ طؤؤؤؤؤؤؤ خطيعلنؤؤؤؤؤؤؤ  خعؤؤؤؤؤؤؤ خأ.ؤؤؤؤؤؤؤلخت مؤؤؤؤؤؤؤل خ

خطيعلنؤؤؤؤؤؤ  خ ب  ؤؤؤؤؤؤطلإ طمخ .ؤؤؤؤؤؤلط ط خطلييؤؤؤؤؤؤمخطييتليؤؤؤؤؤؤاخاي ؤؤؤؤؤؤ لخطيضمؤؤؤؤؤؤ صخط علؤؤؤؤؤؤل.خفؤؤؤؤؤؤ     خيؤؤؤؤؤؤط تخ  طؤؤؤؤؤؤ   

خعط طيؤؤؤؤؤ  خ  ؤؤؤؤؤ خطيعلنؤؤؤؤؤ  خ خق لضؤؤؤؤؤمخ  ؤؤؤؤؤ خطيضع  عؤؤؤؤؤ  .خ    لؤؤؤؤؤ   خيؤؤؤؤؤط تخط ؤؤؤؤؤطلإ طمختجنلؤؤؤؤؤ  خب ؤؤؤؤؤمث ب ؤؤؤؤؤمث

ؤؤؤؤؤؤ خط  ؤؤؤؤؤؤطلطتل لمخ خط علؤؤؤؤؤؤل.خأعت عط طيؤؤؤؤؤؤ  خطيكل فؤؤؤؤؤؤم.خ   يلؤؤؤؤؤؤ   خي ؤؤؤؤؤؤلّخ  طؤؤؤؤؤؤ  خطيعلنؤؤؤؤؤؤ  خ ؤؤؤؤؤؤ   خطي ؤؤؤؤؤؤلت

 ؤؤؤؤؤ خطيلطبعؤؤؤؤؤمخفططضلؤؤؤؤؤلخفؤؤؤؤؤيخأطؤؤؤؤؤ خطيعلنؤؤؤؤؤ  خ ؤؤؤؤؤ   خطيع طلؤؤؤؤؤا خبلنضؤؤؤؤؤ ختجؤؤؤؤؤ مخط  ؤؤؤؤؤطلطتل لمخطيلإ عمؤؤؤؤؤمخ 

لاّخطيضم صِخطي ّخت تخ ي  لا خ. ص 

(خطي ت لؤؤؤؤؤؤم خ قؤؤؤؤؤؤ خ.ؤؤؤؤؤؤل خPRM)خط طصلعلؤؤؤؤؤؤمختمؤؤؤؤؤؤضت خطيلإ طصلعلؤؤؤؤؤؤمخطيضجطل ؤؤؤؤؤؤمخفؤؤؤؤؤؤيخبؤؤؤؤؤؤ طخطيا ؤؤؤؤؤؤم

خب عكؤؤؤؤؤؤؤ  خطي  طصلعلؤؤؤؤؤؤؤمخطيضجطل ؤؤؤؤؤؤؤمخ خعؤؤؤؤؤؤؤ خطيلإ طصلعلؤؤؤؤؤؤؤ  خط طؤؤؤؤؤؤؤلت خ تاؤؤؤؤؤؤؤل خأ ت عج ص طهؤؤؤؤؤؤؤ خبعؤؤؤؤؤؤؤ لث

خعؤؤؤؤؤؤ خ ؤؤؤؤؤؤ   خط ططاؤؤؤؤؤؤ ص.خ  ؤؤؤؤؤؤ  خععلؤؤؤؤؤؤ صخط لط خبؤؤؤؤؤؤ خأق ؤؤؤؤؤؤلخ خ  يؤؤؤؤؤؤمث تّ  ي ؤؤؤؤؤؤ لخطيضمؤؤؤؤؤؤ صخط علؤؤؤؤؤؤلخ 

خبؤؤؤؤؤل خ جؤؤؤؤؤ  خطيا طيؤؤؤؤؤمخ  جؤؤؤؤؤ  خطيهؤؤؤؤؤ ا.خ ب  ؤؤؤؤؤطي  مخ مخ ي ؤؤؤؤؤ لخطيضمؤؤؤؤؤ صخطيلإ طصلعلؤؤؤؤؤمخطيضجطل ؤؤؤؤؤعمؤؤؤؤؤ فمث

ؤؤؤؤؤ م خيلا ؤؤؤؤؤطلإ طمخخط علؤؤؤؤؤل خأ ؤؤؤؤؤلتخعؤؤؤؤؤ خطيلإ طصلعلؤؤؤؤؤ  خط طؤؤؤؤؤلت خ  يؤؤؤؤؤ خي ع هؤؤؤؤؤ خعل ت   ؤؤؤؤؤ خ  ؤؤؤؤؤ ث

فؤؤؤؤيخعؤؤؤؤ تخ ط ؤؤؤؤيثخعؤؤؤؤ خطيطتيالجؤؤؤؤ  خطيطؤؤؤؤيخت طؤؤؤؤ  خطيؤؤؤؤ خط طصلعلؤؤؤؤمخاي ؤؤؤؤ لخطيضمؤؤؤؤ صخط علؤؤؤؤل خ عنهؤؤؤؤ خ

خطيضل ا  خ طتلمخطيجل ل خ   خ اللخطيضل  .
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