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ABSTRACT 

Analyzing student coding data can help researchers understand how novice programmers learn and inform 

practitioners on how to best teach them. This work explores how using static analysis tools in programming 

assignments can provide insight into student behavior and performance. The use of three static analysis tools in 

the assignments of an introductory programming course has been analyzed. Our findings confirm previous work 

regarding that formatting and documentation issues are the most common issues found in student code, that this 

is constant regardless of major and performance in the course and that there are certain error types which are 

more correlated with performance. We also found that total error frequency in the course correlates with final 

course grade and that the presence of any kind of error in final submissions correlates with low performance on 

exams. Furthermore, we found females to produce less documentation and style errors than males and students 

who partner to produce less errors in general than students working alone. Our results also raise concerns on 

the use of certain metrics for assessing the difficulty of fixing errors by students. 
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1. INTRODUCTION 

Students generate a great amount of data as they learn how to program. This data is a precious mine 

for understanding how they learn, what challenges they face and how they interact with tools. This 

work complements ongoing efforts to analyze student coding behavior by tackling a type of data that 

has received limited attention so far. Considerable work has been done on analyzing submission and 

compilation behavior, compile time errors and other issues related to the correctness of student code 

[1]. This work analyzes issues that do not necessarily affect correctness and that can be detected using 

static analysis; i.e., without having to execute the code, like documentation, testing and style issues. 

The importance of this work derives directly from the importance of analyzing student coding 

behavior in general. The better we understand the types of issues students face, how they address them 

and how they interact with the tools that report them, the better we are able to improve these tools, 

adapt teaching to directly address the challenges they face and intervene early to help struggling 

students. More particularly, studying static analysis errors provides the following two advantages: 

 It is another source of information beside information available from compiling and executing 

the code. Having an extra source of information is especially important when data is scarce. 

 It provides another dimension for looking at novice programmers. Most issues detected by 

static analysis tools do not prevent the code from running correctly. Such issues are 

orthogonal to issues that are detected by the compiler or that cause programs to crash or 

produce incorrect results. 

In this work, we analyze a large dataset of student submissions to programming assignments in an 

introductory programming course. The main goal is to answer questions about static analysis errors 

along the following two dimensions: 

The errors:  

1. Which static analysis errors are most frequent in students’ code? 

2. Which errors appear most in initial submissions? Which errors persist in final submissions? 
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3. Which errors take longer to fix, and which errors take more submissions to fix? 

4. Is there any relationship between the number of errors in student code on assignments and their 

performance on exams? 

The students:  

1. Are there any differences in the number and type of errors between students based on their 

major, prior-programming experience, gender or performance in the class? 

2. Are there any differences in the number and type of errors between students who partnered on 

their assignments and students who worked alone? 

By answering such questions, this work implicitly attempts to answer also broader questions on the 

suitability of using static analysis to understand the behavior of students in introductory programming 

courses and to predict their performance. 

Note that we refer to issues flagged by the static analysis tools as “errors”, although these issues do not 

necessarily represent “errors” in the code. They represent violations to rules that are checked by the 

tools and that span a wide range of issues related to formatting, documentation, testing, style and 

possible programming bugs. 

This article is organized as follows. Section 2 discusses previous work related to this study and 

Section 3 describes the data, context and methodology of the conducted analysis. Section 4 reports 

results at the aggregate level and Section 5 reports results specific to the different student subgroups 

analyzed in the study. A discussion of the main results and their implications is provided in Section 6 

and the limitations of the study are discussed in Section 7. Future work horizons are finally indicated 

in Section 8. 

2. PREVIOUS WORK 

2.1 Learning Analytics in Introductory CS Courses 

Interest in analyzing student data in introductory programming courses is part of a more general trend 

of interest in learning analytics. This trend gained momentum with the increased availability of 

resources for storing and processing data. Generally speaking, learning analytics research aims at:  

(1) identifying student behavioral patterns and (2) deriving interventions that improve learning [2]. 

Hui and Farvolden [3] proposed a framework for how and when learning analytics can be used in the 

classroom and demonstrated the utility of this framework with a case study in a CS1 course. 

Hundhausen et al. [2] also proposed a process model for improving CS courses using tools integrated 

in the IDE that collect and analyze data and apply interventions. Ihantola et al. [1] performed an 

extensive review on learning analytics in programming courses and provided a thorough discussion of 

issues and challenges facing the field. One of these issues is that data is mostly private, limited in size 

and unique to a particular institution, which makes research reproduction and replication difficult. The 

problem is also amplified with the bias many researchers in the CS education community have against 

replicating, reproducing and repeating previously published studies, as reported by Ahadi et al. [4]. 

2.2 Analysis of Coding Behavior 

There is a wide range of student activity data that could be analyzed. The most relevant data to this 

work is coding behavior data. The most known tool for automatically recording such data is BlackBox 

[5], which records program line-edits in the BlueJ IDE. Other examples of tools include online coding 

environments like PCRS [6] and CloudCoder [7] and IDE plugins like TestMyCode [8]. 

Several works have analyzed the process through which students work on their assignments. For 

example, Piech et al. [9] tracked the evolution of student code over compilation events and developed 

a model for predicting struggling students. Karavirta et al. [10] classified students into categories 

based on their pattern of resubmission to an automatic grader. They found that some students used the 

ability to resubmit in an inefficient way and that limiting the number of submissions for such students 

at the beginning of the course could improve their performance later on. Blikstein [11] found that 

novice students tended to copy and adapt large batches of sample code, whereas experienced students 

tended to code more incrementally. Blikstein et al. [12] also found that changes in code update 

strategies over the semester were correlated with performance on exams. On the other hand, Allevato 
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and Edwards [13] found that students who had more increasing changes in code between submissions 

to an automatic grader generally performed better in the course. 

Several works have also analyzed errors that novice programmers make. For example, Altadmri and 

Brown [14] studied 37 million compilation events to analyze the frequencies of different errors and the 

time taken to fix them. Brown and Altadmri [15] also found that instructor beliefs about error 

frequencies do not agree with the data. Tabanao et al. [16] used compile-time errors and Jadud’s Error 

Quotient [17] to detect at-risk students and predict midterm exam scores, which is an algorithm that 

has been shown to find correlation between errors and student performance. It is difficult though to tell 

whether or not it can be used as a reliable predictor [18]-[19]. 

2.3 Static Analysis Tools 

Static analysis tools are useful for detecting code that does not follow programming standards and 

pointing out potential bugs, performance issues and flaws in logic. The tools used in this study are 

Checkstyle1, PMD2 and FindBugs [20], which are among the most commonly used open source static 

analysis tools. Checkstyle has a focus on Java style. PMD focuses more on programming flaws and 

unreadable or non-simplified code than on style. Common PMD checks include finding unused 

variables, non-simplified expressions and empty statements. FindBugs is run on byte code rather than 

on source code. Its purpose is to find byte patterns that are often bugs, like assignments to variables 

that are never used and values that will always be null. Together, Checkstyle, PMD and FindBugs 

search for a wide range of flaws in programs, both cosmetic and non-cosmetic. 

Although these tools can be used for educational purposes, they were originally designed for software 

professionals. Therefore, much of the research on these tools targets the non-educational community 

(e.g. [21]-[24]). In an early study, Mengel and Yerramilli [25] argued for the value of using static 

analysis tools intended for professionals in grading student programs. Nutbrown and Higgins [26] 

warned against applying direct mark deductions based on errors reported by these tools. They found 

this to produce results that are very different from how instructors evaluate student code. Truong et al. 

[27] developed a static analysis framework specifically for checking the quality of student programs 

and their structural similarity to model solutions. Their goal was to provide better-than-standard 

feedback to students and tips for improvement. Other similar tools were also described in the 

literature, like PyTA [28], Gauntlet [29] and Expresso [30]. For reviews on how static analysis tools 

can be used for educational purposes, see Striewe and Goedicke [31] and Rahman and Nordin [32]. 

2.4 Static Analysis of Student Code 

Edwards et al. [33] conducted a thorough qualitative study of issues reported by CheckStyle and PMD 

for around half a million student Java submissions. They found that documentation and formatting 

issues were the most commonly reported issues by the tools and that issues that are potentially coding 

flaws were most indicative of performance even when students fixed these issues. They also found that 

the most common issues were consistently the same among majors, non-majors and students at 

different experience levels. In our work, we conduct the analysis along the same lines in Edwards et 

al. [33]. Our results confirm the above-mentioned results, with a few differences as will be discussed 

in Section 6. Our work also expands the analysis, reports new results and provides further insights. 

Keuning et al. [34] conducted an analysis of errors reported by PMD on student code. However, their 

analysis was restricted to issues related to code quality, like modularization, decomposition and the 

use of idioms, which is a subset of what static analysis tools report. Their analysis included issue 

frequencies and time needed to fix them. Their work also compared students who used static analysis 

tools to students who did not and concluded that quality issues in student code are rarely fixed and that 

students typically ignore issues reported by the tools. These results seem to be course-specific, as they 

are not consistent with what has been observed in this work as will be discussed in Section 6. Liu and 

Peterson [28] also reported positive results when using PyTA in an introductory course, where they 

observed (compared to a previous year) a significant reduction in the number of repeated errors per 

submission, submissions to pass a programming exercise and submissions required to solve the most 

                                                 
1 https://checkstyle.sourceforge.io/ 

2 https://pmd.github.io/ 

https://checkstyle.sourceforge.io/
https://pmd.github.io/
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common errors. Other studies confirming the utility of using static analysis tools in introductory 

programming classes include Delev and Gjorgjevikj [35] (in C) and Schorsch [36] (in Pascal). 

3. METHODOLOGY 

3.1 Context 

COS 126 is the introductory programming course at Princeton University. The course is required for 

CS majors and engineers and open for non-majors. The course has 9 Java programming assignments 

(46% of the course grade) and a machine code assignment (4% of the course grade). Students are 

allowed to work with a partner on the last 4 of the Java assignments.  

On assignments where partnering is allowed, students are required to follow the pair programming 

protocol [37]. The collaboration policy on the course website provides the details of this protocol and 

instructors emphasize verbally in their sections that students who partner must follow it. Students who 

partner must also state in a readme file submitted with each assignment that they have followed the 

pair programming protocol. However, there is no way to tell whether or not students actually followed 

the pair programming protocol beyond taking their word for it. 

Students submit their work to an online system that runs automated tests for checking correctness, 

performance and API adherence. The system also runs CheckStyle, PMD and FindBugs and includes 

issues reported by these tools in the automated feedback. Students are allowed to receive feedback 

from the system as many times as they wish before marking their submission as ready for grading. 

Human graders then use a rubric to grade the final submissions and provide personalized feedback on 

correctness, performance and style. The feedback in the first assignment includes a warning for 

students who do not address all the issues flagged by the tools and indicates that a deduction will be 

applied in later assignments. These deductions are minor (typically ≤ 3 points out of 20) and depend 

on how many issues flagged by the static analysis tools are left unaddressed. The rubrics are not 

provided to the students beforehand, so it is not directly clear to them what the deductions are before 

their work is graded. Note that students are not directly “taught” how to format or comment their code 

in the classroom but are provided with a link to a page that lists the style guidelines for the course. 

The IDE used in the course was Dr. Java, which does not automatically format the code, but provides 

a menu option for achieving that. While the course did not require using Dr. Java, it did not provide 

support for other IDEs and used a custom version of the IDE pre-packaged with the libraries required 

in the course. This made almost all students use it instead of other IDEs. Anecdotally, the number of 

students who used IDEs other than Dr. Java was very small and insignificant. 

The course has two programming exams (7.5% each) and two written exams (17.5% each). 

Programming exams are conducted on-campus under exam conditions, where students are expected to 

complete within 80 minutes a few programming exercises that are much smaller in size than the 

programming assignments. Grading is done based on code correctness only, without any consideration 

to style, commenting or testing issues. Written exams are also timed (80 minutes each) and conducted 

on-campus under exam conditions. However, they test programming knowledge as well as other 

computer science concepts, like algorithm analysis, digital logic and theory of computation (state 

machines, computability and intractability). Programming knowledge in these written exams is tested 

with questions that do not involve code writing (e.g. multiple-choice, true/false, …etc.) 

The course has an average score of 87.2% and a standard deviation of 7.2%, where around 0.6% 

receive an F grade at the end of the semester and around 5.3% drop out after the first written exam. 

Students who drop out in the first few weeks of the semester (before the first exam) are typically 

students who “shop” for courses rather than students who struggle with the material. Moreover, not all 

students who drop out after the first exam are struggling students, as it is not uncommon for some 

students to drop the course if they feel that they won’t achieve a grade of an A or an A-.  

3.2 Dataset 

Data has been collected in COS 126 in three semesters; Fall 2016, Spring 2017 and Fall 2017. The 

data includes every Java file in every submission for every student who attended the final exam of the 

course in these three semesters. This includes intermediate submissions that were not considered for 
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grading. The data also includes the text of every piece of feedback students received from the 

automated feedback system, as well as timestamps for when the files were submitted. Overall, the 

dataset has a total of 1,051,105 occurrences of 304 distinct issues flagged by the static analysis tools 

covering a total of 968 students who completed the course. This is around 87.8% of the students who 

were enrolled in the course on the first day of classes in each of the three semesters. Around 13.2% of 

the students dropped out at different points in the semester and were excluded from the analysis, as it 

is impossible to tell for each of them until which point in the semester they were taking the course 

seriously. As discussed before, a large proportion of these students did not sign up for the course with 

the intention of completing it. 

3.3 Metrics 

The analysis in this work broadly follows the analysis performed by Edwards et al. [33]. The first two 

of the metrics used in the analysis are commonly used in error analysis studies and were implemented 

in the same way as reported by Edwards et al. [33]. The third metric was not used by Edwards et al. 

 Error Frequency. Error counts for each source file were normalized by the number of lines of 

code and considered as occurrences per thousand lines of code (KLOC). 

 Time-to-Fix. This is an estimate for how long an error stays unfixed in the student’s code after 

it has been reported by the tool. An increase in the frequency count of an error from a 

submission to another is considered as an introduction of new errors, whereas a decrease in the 

count is considered as a resolution of errors. The time-to-fix is the difference between 

timestamps of introduction and resolution events for a certain error. 

 Submissions-to-Fix. This is an estimate for the number of submissions taken by the 

student to fix the error. The same protocol used for computing the time-to-fix is used, but 

the submission number is recorded instead of the timestamp. 

Note that the time-to-fix is not necessarily the same as the actual time-on-task by the student trying 

to fix the error. The student might take breaks between submissions or put off fixing the error if 

they feel that it is not important to fix the error immediately. 

3.4 Error Categories 

Static analysis tools report many errors on different types of issues. Edwards et al. [33] grouped these 

errors into categories that we adopt in this work: 

 Coding Flaws: “Constructs that are almost certainly bugs (such as checking for null after a 

pointer is used ...)”. 

 Excessive Coding: “Size issues, such as methods, classes or parameter lists that exceed the 

expected limits and may indicate readability problems”. 

 Formatting: “Incorrect indentation or missing whitespace”. 

 Naming: “Names that violate capitalization conventions, are too short or are not meaningful”. 

 Readability: “Issues other than formatting that reduce the readability of the code”. 

 Style: “Code that can be simplified or that does not follow common idioms”. 

The following categories were adopted with modification: 

 Documentation: Unlike [33], Checkstyle Javadoc comment checkers are ignored, since 

Javadoc comments are not taught in the course. The issues considered instead are: not 

preceding a field or a method by a comment, leaving an empty method body without a 

comment, not adding a header comment for a file and not formatting a header comment 

according to the course guidelines. 

 Testing: Formal unit testing was not required in the course. Therefore, this category includes 

only one custom CheckStyle error that checks whether or not the student calls all public 

methods in the main method. Understandably, this is a naive check. A student might call a 

public method in main, but not genuinely test it (by printing out the result, for example). The 

check does not catch such instances, but submissions flagged by the check certainly lack 

sufficient testing. 
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Table 1.  Examples for each of the 10 most frequently occurring errors. 

Error Category Example 

WhitespaceAround Formatting x=4 instead of x = 4. 

Comment Documentation A method is not preceded by a comment. 

RegexpSingleline Documentation 
The student name or ID is missing from the 

header comment. 

IllegalTokenText Formatting 

/*comment*/ instead of  

/* comment */ or //comment 

instead of // comment 

MainCallsAllPublicMethods Testing A public method is not called in main 

WhitespaceAfter Formatting (int)x instead of (int) x. 

RegexpMultiline Style 
Not starting every line in a multiline 

comment block with an asterisk. 

LineLength Formatting A line has more than 85 characters. 

NumericLiteral Style 
Using a numeric literal instead of defining 

and using a constant. 

RegexpHeader Documentation Header comment is missing from a file. 

Edwards et al. [33] also include a Braces category for errors related to missing optional braces. This 

category was omitted, because such errors were not encountered in our analysis. It must also be noted 

that Edwards et al.’s analysis includes 112 distinct errors across Checkstyle and PMD, whereas ours 

included 304 distinct errors across Checkstyle, PMD and FindBugs. Errors that were not seen by 

Edwards et al. were categorized into the above groupings3. 

4. RESULTS: AGGREGATE STUDENT ANALYSIS 

We first performed an analysis on average error statistics across all students to describe the behavior 

of a typical student in the course. 

4.1 Error Category Frequency 

After grouping errors into the categories described in Section 3.4, the resulting frequencies are 

displayed in Figure 1. The figure shows the average error frequency across all submissions compared 

to error frequencies in the initial and final submissions. To put the frequency rates per KLOC into 

perspective, student assignments in this study contained an average of 194 lines of code, which means 

that an average submission has around 6 errors in the Formatting category, 3.7 in the Documentation 

category and 2.4 in the Style category. 

Considering the average error frequencies, Formatting errors are most prevalent, with an average of 

31.24 per KLOC, followed by Documentation errors at 19.16 per KLOC. Together, Formatting and 

Documentation errors account for 60% of the total errors in the student code. Note that Formatting and 

Documentation errors encompass only 19 of the 304 unique error types used in the analysis. So, 60% 

of the error count is covered by just 6.25% of the error types seen. Appending Style to this count adds 

121 unique error types and 15% to the total error count. The top three error categories, then, account 

for 75% occurrences of all errors. The vast majority of errors being made are thus limited to a small 

number of different error types. 

Looking at final submissions, it is clear that most of the errors get fixed, with Documentation errors 

getting fixed at a very high rate. Overall, only 2.3% of the total errors occurred on final submissions. 

Formatting errors remain by far the most common, which could be the result of formatting error 

messages being less clear to novices compared to error message on missing comments. It could also be 

that students are less receptive to changing their style in formatting the code. The small discrepancy 

between Testing errors on initial versus average submissions suggests that students might be adding 

tests only in their final submissions to silence the error, as opposed to writing tests to actually test their 

code. More on this issue will be discussed in Section 6. 

                                                 
3 A full listing of the errors along with their groupings and occurrence per KLOC can be found at: https://figshare.com/s/cbe48ead7dcc7b15a5bf 

https://figshare.com/s/cbe48ead7dcc7b15a5bf
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Figure 1. Error rates (in KLOC) on initial, average and then final submissions. 

 

Figure 2. Average rate per KLOC for the 10 most frequently occurring errors. 

 

Figure 3. Percentage of students who make errors from each category. 

 

Figure 4. Average number of hours taken to fix errors from each category. 
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Figure 5. Average number of submissions taken to fix errors from each category. 

4.2 Error Frequency and Popularity 

Considering the errors individually, Figure 2 shows the 10 most frequently occurring errors, where 

Formatting and Documentation errors account for seven of the top 10. Table 1 shows examples for 

each of these errors to explain what they mean. Figure 3 shows the percentage of students who make 

errors from each category at some point during the semester. Almost all students make Formatting, 

Style, Documentation and Coding Flaw errors, while slightly less make Testing and Naming errors. 

Readability and Excessive Coding errors are much less common. This order closely resembles the 

order of frequency presented in Figure 1. We will describe later in more detail which types of students 

produce more errors from each category. 

 

Figure 6. Error rates per KLOC over time for assignments 1 to 9. 

Table 2. Average exam scores for students who leave at least one error in a final submission for any 

assignment versus those who fix all errors. 

 Written Exam Programming Exam 

 Errors No Errors Errors No Errors 

CodingFlaws 69.4% 76.8% 79.3% 87.4% 

Testing 67.0% 75.8% 78.0% 86.0% 

Style 72.2% 77.0% 83.0% 86.7% 

Documentation 68.8% 76.3% 79.5% 86.5% 

Formatting 72.4% 76.7% 83.1% 86.5% 
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4.3 Error Progression over Time 

Figure 6 displays the average rates of the error categories that show an interesting trend line. Error 

categories not shown have arbitrarily fluctuating trend lines or error rates that are too small for the 

trend line to be meaningful. The clear decline in Formatting errors suggests that students eventually 

gain a grasp on what their code should look like. This is interesting, as the only instruction students 

receive in the course on formatting is through the error messages produced by the static analysis tools. 

Another possible explanation for this decrease in Formatting errors is that more students into the 

semester might start using the code formatting option in Dr. Java, which is hidden in one of the menus. 

However, this is difficult to tell from the data. 

On the other hand, Figure 6 shows an increase in Documentation and Coding Flaw errors over the 

semester. The increase in Documentation errors could be explained by lack of care; over time, students 

may grow tired of Documentation errors and choose to ignore fixing them until the final submissions. 

The increase in both the Documentation and Coding Flaw errors could also be related to the growing 

complexity of assignments over the semester. 

4.4 Correlation with Exam Performance 

We examined the total error counts, as well as the error counts from each error category, versus grades 

in programming exams and written exams. No apparent correlation was revealed in any case. 

However, we found a correlation between the presence of error categories in final assignment 

submissions on both written and programming exam performance. Table 2 displays average written 

exam scores for students who left at least one error from the given category in a final submission for 

any assignment versus those who did not. Only error categories with statistically significant 

differences are shown (T-test p-val. < 0.0001). For reference, the average score on written exams was 

74.2% with a standard deviation of 12.8% and on programming exams was 84.7% with a standard 

deviation of 12.9%. 

5. RESULTS: STUDENT SUBGROUP ANALYSIS 

5.1 Low-Performing versus High-Performing Students  

We have already examined the relationship between error frequencies and exam performance. We 

provide here a more detailed analysis to compare low- and high-performing students in the course in 

general. To perform this analysis, we break students into groups. We approached this in the following 

three different ways: 

1. Break students into three evenly sized tertiles based on their final course average. 

2. Create a C+ and-below subgroup, a B-range subgroup and an A-range subgroup based on final 

course average, using the standard cutoff points (80% for B; 90% for A). 

3. Group students by taking course averages of at least 1 standard deviation below the mean, 

within one standard deviation of the mean and at least one standard deviation above the mean. 

It turned out that the three options listed above produced very similar results in terms of significant 

differences in error behavior between subgroups. Consequently, we choose to present Option 1 and we 

define the three subgroups as low-performers, medium-performers and high-performers. For reference, 

the mean course grade was 87.2% with a standard deviation of 7.2%. 

Table 3 shows statistics for each subgroup individually compared to all the students together. The 

“Avg. Duration" column is the average duration between initial and final submissions. Note that the 

“Avg. Duration" does not necessarily reflect the actual number of hours that a student spent working 

on the assignment. It describes the duration between the first and last files submitted. 

As seen in the table, low-performers produce more errors in overall than the average student, while 

high-performers produce significantly less. A one-way ANOVA shows that the error rates for each 

performance group are statistically significant (F = 42.8, p < 0.0001) and Tukey’s HSD test4 shows 

that the average error rates for low-, medium- and high-performers are statistically different. 

                                                 
4 Tukey’s HSD is a statistical tool often used as a post hoc test with ANOVA. ANOVA provides a significance test; Tukey’s HSD compares 
all pairs of means and determines which pairs are statistically different. 
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Table 3. Student performance groups. 

*: Significant differences between all groups. 

**: Significant differences between high- and low-performers and between high- and medium-performers. 

Calculated by ANOVA and Tukey’s HSD. 

The table also shows that low-performers, interestingly, take less time, but more submissions, to fix  

errors compared to high-performers and these differences are significant (time-to-fix: F = 36.7, p < 

0.0001; submissions-to-fix: F = 118.1, p < 0.0001) and different from each other, as suggested by 

Tukey’s HSD. This may suggest that low-performers submit their code more blindly than high- 

performers and cram their work into shorter periods of time, which requires them to submit more and 

at a faster rate. On the other hand, high-performers seem to rely less on the automatic grader, spending 

more time in overall on assignments while using less submissions. 

Figure 7 displays the difference in average rate per assignment across error categories for each 

performance group, omitting the statistically insignificant categories (Naming, Readability and 

Excessive Coding). It is evident that high-performers produce less errors in all categories than 

medium- and low-performers and medium-performers produce less errors than low-performers in all 

categories but Documentation and Testing. An ANOVA suggests that the most significant differences 

among the three are in Formatting and Coding Flaws and the least significant differences are in 

Documentation and Testing. The disparity in Coding Flaws suggests a higher level of 

misunderstanding amongst low performers. Interestingly, all three performance groups seem to be 

testing their code relatively equally. 

Further analysis reveals that differences in error counts on initial submissions are statistically 

insignificant for all categories except for Coding Flaws. Low-performers produce 11.5 of these types 

of errors per KLOC in initial submissions, compared to 8.92 from medium-performers and just 5.79 

for high-performers (F = 23.5, p < 0.0001). The course average is 8.75. This suggests that low- 

performers are producing more buggy code on their initial submissions. 

 

 

Figure 7. Error category rate per KLOC for 

different performance groups. 

Table 4. Student major groups. 

Major Group 
Number of 

Students 

*Avg. 

Course 

Grade 

**Avg. 

Duration 

***Avg. # 

of 

Submissions 

CS 97 89.7% 55.4 hrs. 14.8 

Engineering 230 86.6% 46.3 hrs. 15.9 

Other 

Science/Math 
40 87.8% 54.5 hrs. 13.9 

Social Science 46 84.2% 47.9 hrs. 15.0 

Humanities 555 87.4 % 56.0 hrs. 16.8 

* Significant differences between CS and all other majors 

except Science/Math. 

** Significant differences between Engineering and 

Humanities. 

*** Significant differences between (CS and Humanities) 

and (Humanities and Other Sciences).  

Calculated by ANOVA and Tukey’s HSD. 

Performance 

Level 
Grade Range 

Number of 

Students 

Errors/ 

KLOC * 

Average 

Duration * 

Average # of 

Submissions ** 

Hours to 

Fix ** 

Submissions 

to Fix ** 

Low 47% - 85.9% 329 88.2 41.2 hrs. 16.7 12.6 5.14 

Medium 85.9% - 91.1% 318 75.2 54.0 hrs. 17.4 15.6 5.05 

High 91.1% - 99.2% 321 66.6 63.5 hrs. 14.4 15.25 4.3 

All Students 47% - 99.2% 968 74.3 52.8 hrs. 16.17 14.5 4.85 
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5.2 Majors versus Non-Majors 

Students were grouped into five major groups, as shown in Table 4. Analyzing error counts per KLOC and 

the number of submissions taken to fix errors (not shown in the table), we found no significant differences 

between the major groups. However, we found CS students to take significantly longer to fix errors than 

each of the other groups (17.6 hours per error). Non-CS Engineering students take just 12.7 hours, which is 

significantly shorter than humanities and social science students (14.8 hours). This difference in the time-

to-fix, but not in the submissions-to-fix, suggests that CS majors might be working longer before 

submitting or taking longer breaks between submissions. Engineers on the contrary seem to be cramming 

their work into a shorter amount of time. This contrast between CS majors and engineers seems difficult to 

explain only using the data. 

We also performed three binary comparisons: first grouping CS and engineering students together and 

comparing them to their counterpart and second comparing students in STEM fields versus those not 

in STEM fields. These yielded no significant results. However, comparing CS majors and non-CS 

majors reaffirmed our earlier statement that CS majors take more time to fix errors (F = 30.2, p < 

0.0001). It also showed that CS majors produce less Coding Flaw errors on initial submissions, 

averaging 5.9 occurrences per KLOC versus 9.1 from non-majors (F = 5.8, p = 0.003). 

5.3 Students with Different Prior Programming Experience 

Students in the course entry survey indicated their level of programming experience by choosing 

between “None”, “Some”, “Plenty” and “I’ve worked on some sizable projects”. Omitting the latter 

two categories due to their small size, Table 5 contains the description of the former two. 

Table 5. Comparison between student groups. 

 # of 

Students 

Avg. 

Grade* 

Avg. 

Duration* 

Avg. # of 

Submissions 

No Prior 

Experience 433 85.1% 49.6 hrs. 16.5 

Some Prior 

Experience 
458 88.7% 56.6 hrs. 16.0 

Male 545 87.8% 53.1 hrs. 16.1 

Female 390 86.7% 53.2 hrs. 16.2 

* Significant differences between students with some 

and with no prior programming experience (ANOVA). 

Table 6. Male vs. female characterization. 

 Male Female 

% Majoring in CS 11.7% 7.95% 

% Majoring in 

Engineering 

24.8% 19.7% 

% Majoring in 

Humanities 

54.1% 64.6% 

Avg. Prior Experience 0.69 0.56 

Table 7. Differences in male vs. female error frequencies on initial, average and final submissions. 

Gender 
Testing  Style  Documentation 

Initial Average Final Initial Average Final Initial Average Final 

Female  6.46 Insignificant  Insignificant 17.5 10.7 1.76 24.0 15.9 0.91 

Male 7.73 Insignificant Insignificant 21.6 13.6 2.77 32.5 21.3 2.09 

 

Table 8. Average partner statistics. 

 
Course 

Grade 
Duration* 

Number of 

Submissions* 

Pair 87.2% 54.4 hrs. 17.7 

Solo 87.9% 97.4 hrs. 24.9 

* Significantly different (ANOVA). 

Table 9. Significant differences in error rates on 

initial submission. 

 Coding 

Flaws 
Testing Style Doc Formatting Naming 

Pair 8.45 9.2 17.3 32.1 22.3 1.3 

Solo 12.0 12.5 25.6 43.2 32.6 2.2 

Students with no prior programming experience and those with some show no statistically significant 

differences in their error rate or time-to-fix. An ANOVA on average number of submissions-to-fix 
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does yield significant results (F = 12.12, p < 0.0001), but the submission numbers are very close 

together to have any meaning. Breaking down the errors into categories, we again find one significant 

result regarding Coding Flaw errors on initial submissions. While the average student produces 8.75 of 

this error per KLOC in their initial submissions, students with no experience generate an average of 

10.6 and students with some experience generate 7.61 (F = 12.7, p < 0.0001). This shows a repeated 

trend with Coding Flaw errors on initial submissions. Aside from this finding, though, prior 

programming experience does not seem to be clearly related to the static analysis error behavior. 

5.4 Gender Differences 

The gender breakdown of the students is displayed in Table 5 and Table 6 attempts to characterize the 

typical male versus the typical female in our course. There are more females in the humanities than 

males and more males in CS and Engineering than females. Male students also typically enter the 

course with more prior programming experience than female students. The averages in Table 6 (0.69 

and 0.56) were computed by considering “no prior experience” a 0 and “some prior experience” a 1. 

An analysis of the aggregate error counts showed that female students produce an average of 67.8 

static analysis errors per KLOC on assignments, while males produce 78.3 (F = 13.0, p < 0.0001). 

Females also take slightly less time to fix errors – 13.5 hours versus 15.2 for males – and also slightly 

less submissions – 4.7 versus 5 (time-to-fix: F = 21.8, p < 0.0001; submissions-to-fix: F = 27.5, p < 

0.0001). The differences in these figures are not enough to justify a deep analysis. 

Breaking down error frequencies based on error categories, Table 7 displays the significant differences 

found in initial, average and final submissions between male and female students. As the table shows, 

female students produce less Style and Documentation issues on all submissions. Female students also 

test their code more on initial submissions, but the differences eventually even out in later 

submissions. These differences were not seen when comparing students by major or by prior 

experience, which suggests that they are gender related. 

5.5 Pair versus Solo Programmers 

To test whether students who work with a partner produce less errors than students who work 

individually, we limited our analysis to only assignments where students were given the option to 

partner (the final four assignments in the course). This ensures that, when comparing partnering versus 

non-partnering students, all students in the analysis were working on assignments of equal difficulty. 

Note that on average, around 43% of the students worked individually in the assignments we analyzed. 

Table 8 shows statistics on partnering versus non-partnering students in assignments where partnering 

was allowed. Immediately clear is the significantly fewer hours and submissions spent on assignments 

by students who partner. On an aggregate level, students who partner produce 61.4 errors per KLOC 

per assignment on average, compared to 77.3 for those working alone (F = 19.2, p < 0.0001). 

Partnering students also take 15.9 hours to fix errors on average compared to 19.3 for non-partnering 

students (F = 29.6, p < 0.0001). In terms of the number of submissions taken to fix errors, partnering 

students take slightly more than non-partnering students, but the difference is too small to report. 

Partnering students also make fewer errors across all categories. Table 9 displays the differences for 

error categories that yielded significant results. The table shows that partners make significantly less 

errors on initial submissions for both non-cosmetic and cosmetic issues. The fact that partnering 

students produce less Coding Flaw and Testing issues on initial submissions suggests that students 

working in pairs are able to notice potential bugs more efficiently and are keener on testing their code 

early on than students working alone. The variance in the remaining error categories suggests that 

partnering students help each other conform to style standards. It is also interesting to note that 

differences in error rates eventually even out in final submissions. This suggests that students working 

individually are solving their errors by the end of the submission process. But, because they spend 

more time and more submissions on assignments, they are working harder to do so.  

6. DISCUSSION 

The previous sections report many positive and negative results that vary in their significance. In this 

section, we summarize and discuss some of the main findings. 
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Effectiveness of Feedback from Static Analysis Tools. It is clear from Figure 1 that students fix most 

of the issues reported by the static analysis tools, where the number of errors drops drastically from 

initial to final submissions. There is also evidence that students might be learning from some of these 

error messages, as the number of formatting errors drops as students progress in the semester (see 

Section 4.3). This is consistent with what is reported by Edwards et al. [33], but not with what is 

reported by Keuning et al. [34]. Since there were rubric deductions in this study and in Edwards et 

al.’s study for not addressing issues raised by the static analysis tools (but not in Keuning et al. [34]), 

students might be fixing errors reported by the tools, because they want to avoid deductions. However, 

if these tools were not present, it is not clear whether or not deductions alone would have been enough 

for students to fix the issues! 

Gender Differences. Results in Section 5.4 show that female students make a statistically significant 

lower number of errors compared to male students in the Documentation and Style categories in 

initial, intermediate and final submissions. Such differences were not spotted with other student 

groups. For example, high-performing students, students with more programming experience and 

students who partner make fewer errors in all categories. Moreover, low-performing students and 

students who do not partner produce more errors in initial submissions in the Coding Flaws category. 

This strengthens the hypothesis that female students in the course are more careful with writing 

comments and code that follows recommended style. 

Up to our knowledge, this result is new. Previous work pointed out gender differences in learning 

programming [38]-[39], debugging [40], interacting with software [41]-[42], performance in CS 

degrees [43], self-efficacy in programming [44] and programming contests [45]. However, we are not 

aware of studies showing the presence or absence of gender differences in coding style. 

While the result fits a stereotypical view of females being more concerned about aesthetics than males, 

we should be careful when interpreting the results. For example, the results do not imply that there is a 

certain programming style distinct to females, nor do they necessarily imply that style is a good 

predictor of gender. In a study by Carter and Jenkins [46], instructors were asked to identify the 

gender of students by examining pieces of code randomly selected from student solutions to 

assignments. Results revealed that the aforementioned stereotype was clearly present in how the 

instructors attempted to identify the gender of the students. However, empirical results supporting this 

stereotype (beyond the results reported here) are still absent. 

Effect of Partnering. Our results show that students who partnered produced fewer static analysis 

errors, completed their assignments faster and submitted less to the automatic grader. This result is 

consistent with the literature on pair programming in introductory programming courses (e.g. [47] and 

[48]). However, the results reported here are different, since they relate to code quality issues that do 

not affect correctness, while most previous work measured code quality by the number of passed test 

cases or exam and assignment grades [49]-[50]. As mentioned in Section 3.1, it is important to note 

that the pair programming protocol was required for students who worked in pairs, but there was no 

way to enforce it, as students worked outside the classroom environment. 

Commenting Behavior. Results showed that Documentation errors are the second most common error 

type. They stay un-fixed longer than any other type and students receive more of them as the semester 

proceeds. This is equally the same regardless of the student major, performance in the course or prior 

programming experience. The only difference was with female students who produced a statistically 

significant lower number of Documentation errors than males. This pattern of ignoring Documentation 

errors is also consistent with the results reported by Edwards et al. [33]. What is interesting is that 

Javadoc checks were ignored in this study, while they were the main measure for Documentation in 

the study of Edwards et al. and yet the results were the same. This suggests that these results relate to 

writing comments in general. 

What is interesting about this result is not that the number of Documentation errors is high, as this 

could be explained by the fact that a distinct error is generated for every missing comment for a field 

or a method, which means that a student who chooses to comment his/her code at the end would 

receive many Documentation errors for every submission he/she makes except for the last one. What is 

interesting about the results is that students delay writing comments until the end. It is difficult to tell 

whether or not this behavior is because students add comments only to avoid mark deductions or 
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because they believe that it is unimportant to write comments while coding. Hence, an implication of 

these results is that instruction should directly emphasize the importance of commenting in general 

and that instructors who wish their students to develop the habit of commenting while coding should 

explicitly teach them to do so. 

Testing Behavior. Although the assignment instructions required a very simplistic form of testing, the 

data shows that students seemed to avoid writing such tests until the very end (Section 4.1), most 

probably to avoid losing the testing points. The results also show that both low- and high-performing 

students produced a similar amount of testing errors, even though high-performing students produced 

fewer errors in overall (Section 5.1). 

This behavior is likely the result of allowing students to receive feedback from the automatic grader 

without limits, which made it easier for students to use the automated tests than write tests on their 

own. Moreover, the course did not teach testing and did not teach or require test-driven development, 

which could explain why although the same unlimited submission policy is used in [33], their results 

on testing do not agree with ours. In fact, Edwards argued for teaching Test-Driven Development early 

in the curriculum to move students away from trial-and-error programming [51]. Another way around 

this behavior, suggested by Karavirta et al. [10], that does not involve formally requiring unit testing or 

teaching it, is to limit the number of allowed submissions to the automatic grader in the first few 

assignments, so that students could develop better testing habits at the beginning of the semester. 

Association between Performance and Static Analysis Errors. Results showed an association 

between static analysis errors and performance in two ways: 

1. The mere presence of errors in final submissions was found to be associated with lower 

performance on exams (see Section 4.4). This is interesting, because these errors are not 

directly related to the material students are tested on during exams. One possible explanation 

for this result is that students who are content with leaving issues in their final assignment 

submissions (despite seeing the automated feedback) are lazier students in overall, whose 

laziness shows also as weaker performance on exams compared to students who make sure to 

address all the automated feedback they receive. Another plausible explanation is that students 

who are unable to address all the issues by their final submission are students struggling with 

programming in overall. 

2. Lower-performing students, non-majors and students with less prior programming experience 

were found all to have more errors in their initial submissions from the Coding Flaws category. 

This suggests that these two indicators are good candidates for further investigation on their ability to 

predict at-risk students and the possibility of their use as features in machine learning models (see 

Hellas et al. [52] for a review on predicting academic performance in computing education). 

7. LIMITATIONS 

One of the goals for using the time-to-fix and submissions-to-fix measures was to investigate which 

errors students struggle with most. These measures have also been used by other researchers for the 

same purpose (e.g. [53] and [14]). However, inferring meaning from results using these measures 

proved to be tricky. Taking longer time or more submissions to fix an error can plausibly be attributed 

to the student ignoring the error instead of not being able to fix it. The data can also be distorted by 

students work habits. For example, students who start early or take breaks while working on the 

assignment will show longer time-to-fix values than students who complete their work in one sitting. 

Also, students who tend to rely more on the automatic grader will show higher submissions-to-fix 

values regardless of whether these submissions were actually attempts to fix the errors. 

Results reported by Edwards et al. [33] for error categories that take longer to fix were actually almost 

the reverse of ours. This shows that these measures could be highly sensitive to course-specific 

factors, like how assignments are graded, what instructions are given to students and what material is 

emphasized more. These shortcomings of the measure should be kept in mind by researchers using it. 

For more discussion of time metrics used in the analysis of student programming behavior, see 

Leinonen et al. [54].  
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The variance in student working habits and submission strategies affects also how error rates per 

KLOC should be interpreted. As shown in Section 4.1, the vast majority of errors belong to the 

Formatting, Documentation and Style categories, which students might be ignoring until their last 

submission, thus compounding the total number of errors. Therefore, more emphasis should be placed 

on Coding Flaw errors, as they could reflect bugs and misunderstandings that need direct attention. As 

Edwards et al. [33] note, these errors are often masked by the abundance of cosmetic errors which 

students place less emphasis on. It might be useful to think about how stronger emphasis could be 

placed on Coding Flaw errors in automated feedback systems to make students keener on fixing them. 

Another limitation of this work stems to emanate from how errors were grouped into categories. It is 

reasonable to expect the results to be dependent on which error groups were used in the study and 

which errors were assigned to each category. Also, the fact that students received feedback from the 

static analysis tools only through the submission system, rather than by directly running the tools or 

having them embedded in the IDE, might have affected when and how the students fixed the errors. 

Finally, this study was conducted at a highly selective school (acceptance rate < 7%), which means 

that the average student in this study might be academically stronger and more motivated than the 

average student at other schools. This is clear from the low failure and drop-out rates described in 

Section 3.1 when compared to the failure rates reported at other institutions [55]. The analysis also 

excluded students who dropped out from the course (see Section 3.1 and Section 3.2), which must 

have left some of the lower-performing students unconsidered. 

8. FUTURE WORK 

While performing the analysis on error categories has provided many insights, future work could 

benefit from studying individual errors instead of broad categories. Looking at individual errors can 

provide more fine-grained information on the types of difficulties and misconceptions novices face. 

This is especially true for errors in the Coding Flaws and Style categories. Errors associated with 

performance in the course and errors that appear most commonly in student code should be addressed 

explicitly by instructors in their teaching. 

More work can also be done to investigate the effect of different programming languages on the errors 

students make and their ability to resolve them. Another interesting direction of research is to study 

how errors reported by the tools can be accounted for in rubrics used by automatic graders and how 

these tools can report issues in a way that emphasizes potentially serious issues more than other less 

important issues. This could affect how student respond to the error messages they see. 

Finally, more work needs to be done on how students perceive commenting and to better understand 

the relationship between gender, pair programming and coding style. 
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 ملخص البحث:

الطّلبننننن ُالبننننن م ييُ ننننن ُ  ننننن ُُالبي نننننن تُالم بللننننن ُلننننن لباا  ُال ننننن ُيك ب ننننن تحليننننن ُيمكنننننيُساُي  ننننن   ُ

ُكينننننمُيل  ننننن اُل بلننننني ُللمبلمنننننيييبنننننييُساُالكيفيننننن ُال ننننن ُيننننن بل ُل ننننن ُالمبا  ننننن اُالمب ننننن   ا ُ 

ُ حليننننننن الكيفيننننننن ُاأننننننن   ا ُس  اتُُالبحننننننن ُهننننننن اُ لننننننن ُالضحننننننن ُا   ننننننن  ُي  ك نننننننمُالمب ننننننن  يي

ُلل لننننننن  ُ لننننننن ُأنننننننل  ُالطلبننننننن الإأننننننن  تيكي ُللبننننننناا  ُال ننننننن ُيك ب ننننننن ُالطلبننننننن ُ ُ ننننننن ُ ح  لننننننن ل

ُ   ُ   ل تُالبا   ُ س ا   ُالبا   

ُُالإأننننن  تيك  حليننننن ُللاأننننن   ا ُدننننن  ُس  اتُتحليننننن ُ ننننن ُهننننن اُالبحننننن ُتننننن ُ  ننننن ُ امبننننن تُ لنننننا  ل

ُالم ننننن ك ت صنننننلهُدليننننناُ  اأننننن تُأننننن لل ُ نننننيُساُُّالض ننننن   ُ ننننن ُ سكننننن تتم يننننن اُ ننننن ُالبا  ننننن  ُ

لُ نننننيُلنننننييُتلننننن ُال ننننن ُ مننننن تُ ننننن ُُالم ننننن ك  ال  ديننننن ُهننننن ُُل ل ض ننننني الماتبطننننن ُ الأك ننننناًُننننني   

 ُ ساُّهننننن اُالأ ننننناُد لنننننهُل نننننا ُالض ننننناُ نننننيُلبننننن ُس  اتُال حليننننن ُالإأننننن  تيك ُالطلبننننن ُلننننناا  

لُ بيضننننن ُ نننننيُ لُُ الم ننننن ك نننننيُال   نننننيُ الأ اُّ ننننن ُالملننننناّ  ُ ساُّهضننننن  ُسن ا ننننن  سك ننننناُا تب  ننننن 

ُ  يُغياه ُل لأ اّ

 ننننن ُ امبننننن تُالط لننننن ُُللم ننننن ك ُال ننننن ُتك  نننننف  ُس  اتُال حليننننن كننننن ل ُتبنننننييُّساُال كننننناا ُالكلننننن ُ

ُم ننننن ك الض   يننننن ُ ننننن ُالملننننناّ  ُ ساُّ مننننن  ُساُنننننن  ُ نننننيُالُب  ننننن ُالط لننننن يننننناتب ُلالبا  يننننن ُ

لغيننننناُاُيننننناتب ُل نننننبمُالأ اُّ ننننن ُا خ بننننن  اتُ ننننن ُكننننن ُ امننننن ُلا  ننننن آخننننناُ ح  لننننن ُ ننننن ُ

سلنننن ُ ننننيُسخطنننن ُّلا  ينننن ُ نننن ُالملننننا   ُ ننننيُم نننن ُسخننننا  ُاتّ ننننرُساُّالط لبنننن تُينننناتكبيُ نننن  الُ

لننننننالاان يُّ ننننننيُالنننننن ك   ُ ساُّالطلبنننننن ُالنننننن ييُيبملنننننن اُُالبا  نننننن ُال  دينننننن ُ الأأننننننل    ل  ننننننن لُ
ُسلنننننن ُ ل  ننننننن لُ لّ ل  ًنننننن اا ُ ننننننلُغينننننناه ُ ننننننيُالطلبنننننن ُياتكبنننننن اُ لنننننن ُ منننننناُالبمنننننن  ُسخطنننننن 

مننننن   ُُتطنننننالُسأننننن ل ُمننننن  إاُن ننننن   ُهننننن اُالبحننننن ُكننننن ل ُ نننننُ يي ل لطلبننننن ُالننننن ييُيبملننننن اُ ضفنننننا

ل لنننننن ياُصننننننب ل ُُالم نننننن     ُ نننننن  لُ ننننننلُس  اتُال حلينننننن ُالبا  نننننن ملنننننن يي ُالُاأنننننن   ا ُلبنننننن 

 ُت حيرُالأخط ُّ يُم ن ُالطلب  
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