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ABSTRACT 

Deep Learning (DL) techniques were successfully applied to solve challenging problems in the field of Natural 

Language Processing (NLP). Since source code and natural text share several similarities, it was possible to 

adopt text classification techniques, such as word embedding, to propose DL-based Automatic Vulnerabilities 

Prediction (AVP) approaches. Although the obtained results were interesting, they were not good enough 

compared to those obtained in NLP. In this paper, we propose an improved DL-based AVP approach based on 

the technique of character n-gram embedding. We evaluate the proposed approach for 4 types of vulnerabilities 

using a large c/c++ open-source codebase. The results show that our approach can yield a very excellent 

performance which outperforms the performances obtained by previous approaches. 
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1. INTRODUCTION 

Disastrous consequences related to exploiting software vulnerabilities can be avoided if these 

vulnerabilities are early detected and fixed before software deliverance. Many solutions to automatic 

vulnerabilities prediction (AVP) have been proposed. Manual vulnerable code detection is very hard 

and very costly, especially when dealing with software with a large codebase. These solutions aim to 

assist developers and minimize costs related to detection and fixing of vulnerabilities by letting them 

focus their effort and time on the components (files, classes or functions) that are most probable to be 

vulnerable. Researchers have proposed several approaches to develop vulnerability prediction models 

(VPMs) that are cable of discriminating vulnerable components from clean components. The most 

important works were to propose data-driven approaches based on using software attributes, such as 

software metrics with machine learning (ML) techniques to build VPMs. The major limitation of these 

approaches lies in the fact that important semantic and syntactic characteristics of the code that may 

give insight about vulnerabilities cannot be captured by using only static code attributes.  

Motivated by the success of using deep learning (DL) techniques in other fields, such as natural 

language processing (NLP) and image processing, researchers in recent research works (see related 

work section) in the field of AVP begin to apply DL techniques to predict and locate vulnerabilities. 

Since source code shares several characteristics of the natural text and the same thing is valid for 

programming language and natural language (both have: vocabulary, syntactic and semantic 

characteristics, …etc), researchers have proposed to deal with source code written in a programming 

language like dealing with the natural text of a natural language. Therefore, techniques used in some 

applications of NLP, such as text classification, are adopted in the field of AVP to predict and locate 

vulnerabilities: classifying source code entities (file, function or slices) as vulnerable or clean (Figure 

1). More specifically, the techniques, such as word embedding and bag-of-word used in NLP to 

automatically extract features from the natural text, are applied to automatically extract features from 

the source code. The automatically-extracted features are then used as input for a classifier based on 

machine learning (ML), which classifies source code as vulnerable or clean (Figure 1: solid lines). In 

DL-based approaches, the output of the first step of feature extraction (the input vectors) is passed to a 

deep neural network (DNN) to learn more hidden features (deep features). Since the important hidden 



26 

"Efficient Deep Features Learning for Vulnerability Detection Using Character N-Gram Embedding", M. Alenezi, M. Zagane and Y. Javed. 

 
features which become the actual classifier inputs are learned via the DNN, the first step of feature 

extraction (word embedding, bag-of-word, …etc) is considered in the DL-based approach as input 

vectorization.  

Two main DL-based approaches are proposed (Figure 1: dashed lines). In the first approach, a DNN is 

used to deeply learn hidden features from the vectorized inputs and predict vulnerabilities (i.e., as a 

classifier), while in the second approach, a DNN is only used to learn hidden features which are then 

used as inputs (features) for an ML-based classifier that predicts vulnerabilities.  

 

Figure 1. Vulnerabilities prediction approaches inspired by NLP techniques (dashed lines: DL-based 

approach, solid lines: ML-based approach ) (1: learning deep hidden features, 2: classification ). 

Source code and natural text have main similarities that make it possible to adopt techniques used in 

NLP also in AVP. The most important adopted technique is the word embedding technique. The word 

or token embedding allows representing the words of a text in the form of vectors suitable to be 

processed by DNNs. The efficiency of this method compared to other methods, such as Bag-of-Word, 

is that it allows preserving semantic and syntactic information of words. On the other hand, there are 

characteristics which are specific to source code, making obtaining good performance very 

challenging. The most important characteristic is the large vocabulary and the rare words that can have 

source code. To address this problem, researchers proposed to apply vocabulary reduction methods. 

These methods allowed them to initiate using word embedding on the code, but at the expense of 

reduced performance. This represents a limitation, because these methods can cause a significant loss 

of valuable information related to vulnerabilities.  

This research aims to address this limitation by proposing a code embedding solution that can be 

applied without reducing vocabulary, thus improving the vulnerability detection performance. The 

proposed approach lies in using N-gram-based embeddings at the character level. Compared with 

previous methods, the proposed embedding method can be applied without reducing vocabulary and 

enables the semantics of sub-tokens to be learned, which can avoid out-of-vocabulary tokens, thus 

reducing the possibility of information loss. Besides, we embed code at the slice granularity level, 

which allows the vulnerable code to be precisely identified. 

The contribution of this work is two-fold: 

 Proposing and evaluating an efficient and effective input vectorization approach based on the 

character n-gram embedding technique proposed by the Facebook research team [1]. The 

proposed approach allowed us to improve the performance of vulnerability detection.  
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 Proposing and making publically available a dataset generated following the proposed 

approach. This dataset can be used by other researchers in other research works or to train 

concrete vulnerability detection systems. 

The remainder of this paper is organized as follows: in Section 2, we present the most relevant related 

works, while in Section 3, we describe the proposed approach and in Section 4, we present the 

experimental evaluation. In Section 5, we discuss the obtained results, while in Section 6, we highlight 

the limitations of the study and in Section 7, we summarize the work done in this study and indicate 

some perspectives for future works. 

2. RELATED WORK 

In this section, we present the most related works in the field of vulnerability prediction. To show the 

difference and the contribution of the recent DL-based approach, we begin by briefly presenting the 

previous ML/static-code-attributes-based approaches in the first sub-section, then in the second sub-

section, we present DL/automatically-learned-features approaches. For the sake of brevity, we will 

focus only on the works that used the technique of word embedding to represent source code. 

2.1 Traditional ML-based Approaches 

Applying traditional ML techniques to predict software vulnerabilities has attracted the attention of 

several researchers. Indeed, considerable research works have been done to propose automatic 

vulnerability prediction (AVP) approaches based on machine learning (ML) and manually-defined 

static code features, such as software metrics ([2]–[9]) and text-based features [7], [10]. These works 

were motivated by the success of similar works [11]–[15] that have been done to predict software 

defects and by the fact that several code attributes, such as complexity, size and coupling (which can 

be quantified by corresponding software metrics), are proven in practice to be correlated to 

vulnerabilities. As reported in [16], the task of defining features is tedious, subjective and sometimes 

error-prone because of the complexity of the problem. This means that the quality of the resulting 

features and therefore the effectiveness of the resulting detection system varies with the individuals 

who define them. Another major drawback of these approaches lies in the fact that important semantic 

and syntactic characteristic of the code, which may give insight about vulnerabilities, cannot be 

captured by using only static code attributes. Another limitation of these approaches inherited by the 

coarse granularity level (file, class and method), in which software metrics are calculated, is that 

vulnerabilities cannot be located in much fine granularity. Recent works have tried to improve these 

approaches. Researchers in [9] have tried to combat the limitation of coarse granularity by proposing 

to calculate metrics at the slice granularity which allowed to improve the performance of the proposed 

VPMs (Precision: 95.1%, Recall: 95.0% FN Rate: 4.91%) and to locate with much precision the 

vulnerable lines. Other studies, such as [17]-[18], investigated using the automatically-learned features 

to build prediction models. However, the ML-based approaches still suffer from the missing semantic 

and syntactic features of the code and cannot learn deeply hidden features of the code which may 

exhibit a better way of characteristics of vulnerabilities. This is why in recent studies, researchers 

begin to use DL in AVP to benefit from the power of DL in learning hidden features. The most 

important of these studies are presented in the next sub-section. 

2.2 DL-Based Approaches 

DL techniques have been successfully applied to solve challenging problems in fields, such as NLP 

and image processing. Motivated by this success, researchers of the field of AVP in recent years begin 

investigating the application of DL techniques to predict and locate vulnerabilities in source code. The 

researchers’ aim was essentially to benefit from the power of DNNs to learn deep hidden features that 

can perfectly characterize the vulnerable code, which was impossible using classic ML techniques, as 

well as to use them as a classifier (Figure 2).  

Unlike the ML-based approach where several works have been carried out, few researchers have 

addressed AVP using DL techniques. The first use of DL in AVP was done by Catal et al. in [19]-[20]. 

In the first study, they conducted a literature review to investigate DL algorithms that can be applied in 

AVP. They concluded that, depending on the availability of the data, different kinds of DL algorithms 

can be applied in AVP: supervised learning models, unsupervised deep learning models or semi-
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supervised learning. In the second study, they proposed a web service-based VPM to predict 

vulnerable files of web applications. They used a dataset [21] proposed by [7] to train several machine 

learning techniques that exist in the Azure Machine Learning Studio environment and a Multi-Layer 

Perceptron (MLP). They reported that the best performance (AUC: 76,5%) is achieved by the MLP. 

The type of VPMs’ inputs was a set of code metrics. Researchers in [22] also used software metrics 

with DL to predict vulnerabilities. The authors investigated the usefulness of using software metrics as 

input for DNNs to locate vulnerabilities. Researchers reported that they used a large dataset [23] 

suitable for DL. The code metrics used as inputs for the DNNs (MLP and LSTM) were calculated at 

the slice ([24]–[26]) granularity level which allows them to locate the vulnerable lines of code. Based 

on comparing the obtained results (Recall: 73.9%, Precision: 74.4% and FN Rate: 26.14%) with the 

results reported by similar works that adopted techniques used in the field of NLP, the authors 

concluded that software metrics represent good -but not the best- data to use with DL-based 

approaches in AVP and that software metrics are more suitable for ML-based approaches which gave 

them very good results (Recall: 93.7%, Precision: 93.2% and FN Rate: 6.25%).  

 

Figure 2. Using DNNs to predict vulnerabilities. 

As we said before, the similarities between source code and the natural text have motivated 

researchers in the field of AVP to adopt techniques used in NLP to predict vulnerabilities. Essentially, 

techniques, such as word or token embedding used in NLP to “vectorize” inputs (representing text as 

vectors suitable to be used as inputs for DNNs), were adopted by recent works [16], [18], [27]–[30] to 

represent source code as vectors. The DNNs are used to learn from the vectorized inputs deep hidden 

features of the code that are related to vulnerabilities (Figure 1). Z. Li et al. in their works [16], [28]-

[29] used the word2vec tool [31]-[32] which is based on using NNs to learn a vector representation of 

the word that preserves its semantic meaning based on its context, starting from the idea that words 

with similar meanings will tend to appear in contexts with similar words.  Researchers in [18], [27] 

used custom embedding techniques inspired by previous works done on sentence classification, such 

as [33].  

In all of these studies, token embedding was at the token level. This means that a distinct vector is 

assigned to each token in the training set. For an embedding model to be efficient and effective, it 

must provide representation for all or at least most of the words that compose the vocabularies. In 

AVP, this represents a challenging problem to solve, because source code may have very large 

vocabularies and many rare words induced by the fact that ways of writing code, especially the task of 

naming variables and functions, vary from developer to developer. To combat this problem, 

researchers used techniques to reduce vocabulary size by mapping user-defined variables and 

functions and all literal values (number and string) to special tokens. For example, in [18], all integers, 

real numbers, exponential notation and hexadecimal numbers are replaced with a generic <num> token 

and constant strings are replaced with a generic <str> token. Also, all rare tokens (e.g. occurring only 



29 

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 01, March 2021. 

 
once in the corpus) and tokens which exist in test sets but do not exist in the training set are replaced 

with a special token <unk>. In [16], [28]-[29], all user-defined variables and functions were mapped to 

representations, such as VAR1, VAR2, FUN1, FUN2, …etc. 

Using these techniques, researchers were able to reduce the vocabularies size and partially benefit 

from the power of token embedding. However, these techniques of reducing vocabularies may lead to 

a very important loss of information by abstracting away certain syntactic and semantic characteristics 

of the code that are useful for vulnerability detection, which represents a limitation. To the best of our 

knowledge, no recent work has addressed this limitation. Instead, in recent works, researchers tried to 

address other aspects of DL-based AVP. In [30], researchers studied the cross-domain AVP. They 

proposed and evaluated a method to learn cross-domain representations in a range of cross-domain 

settings, including cross-project, cross-vulnerability and prediction of recent software vulnerabilities.  

Researchers in [34] addressed the problem of class imbalance between vulnerable code and non-

vulnerable code. A new fuzzy oversampling method is proposed to rebalance the training data. In [35], 

both cross-project and class imbalance problems were studied.  

To fill the research gap highlighted in the previous paragraph, we propose in this study an improved 

DL-based approach to detect vulnerabilities. Instead of reducing vocabularies and using token-level 

embedding, we propose an approach based on the works [1], [36] done by Facebook AI Research. The 

proposed approach is presented in detail in the next section. 

3. PROPOSED APPROACH 

The proposed approach is adopted from the communally used approach described in Figure1 (dashed 

lines) which was inspired by the previous works in the field of NLP. In our approach, DNNs are used 

to learn deep hidden features and as a classifier Figure 2 (approach 1). The different aspects of the 

proposed approaches: granularity level and input vectorization, are described in the following sub-

sections. 

 3.1 Granularity Level 

In previous studies of AVP, whether ML-based or DL-based, researchers investigated vulnerabilities 

prediction at different levels of granularity: file [7]-[8], [18], function/method [27], [37] and slice [9], 

[16], [22], [28]-[29]. Prediction at a coarse level (file and function) does not locate the vulnerable lines 

of code; instead, it can identify the components (files or functions) that require more focus from 

developers, which is less useful especially when the components are very large. Because the objective 

of the AVP is to assist developers and minimize the costs of vulnerabilities detection by minimizing 

the human intervention as much as possible, these coarse granularity levels are to be avoided. 

A slice is a reduced version (few lines of code) of a source component automatically-extracted from 

the original component by analyzing its data flow and control flow in respecting a slicing criterion 

[25]. Slicing is useful in several software engineering applications, such as debugging, program  

 

Figure 3. The adopted granularity level. 
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comprehension and change impact prediction because it can give insight into multiple behavioral 

aspects of the source entity, such as all lines that change the value of a variable or that participate in 

computing the return value of a function [38]. In AVP, this can be useful, for example, to get all 

statements that are related to critical function calls (memory management, string manipulation, …etc.). 

This way, only lines of code that are related to vulnerabilities can be extracted and analysed, which 

leads to indicate the exact location of vulnerabilities [22]. 

Currently, the slice level is the finest level of granularity to locate vulnerabilities. Predicting the status 

of a slice (clean or vulnerable) is just like locating the vulnerable lines (that the vulnerable slices 

contain) (Figure 3). Therefore, the slice level of granularity is adopted in this study. 

3.2 Input Vectorization 

As shown in Figure 3, a detection system built based on our proposed approach will take as input the 

source code of a software component (s) (file(s) or function(s)) and give in the output the vulnerable 

lines (those lines that compose the slices predicted as vulnerable). Since the prediction (deep features 

learning + classification) is made via DNNs, the source code of each extracted slice must be converted 

into vectors suitable to be used as input for DNNs (Figure 4, solid lines).  

 

Figure 4. The proposed input vectorization approach (VTi means the vector representation of the ith 

token). 

We aim to benefit from the power of embedding techniques to vectorize source code without losing 

useful semantic and syntactic information related to vulnerabilities induced by reducing vocabularies 

techniques. To achieve this aim, instead of reducing the vocabularies and applying token-level 

embedding as it was done in previous works (see related works section), we adopted solution  [1], [36]  

proposed by the NLP community to deal with the embedding task in languages with large vocabularies 

that contain many rare words which is the case with source code. The strength of the solution 

proposed by [1] lies in using character n-gram-based embedding, which means that every token is 

embedded using all its character n-gram (sub-tokens). This has two advantages:  

 Avoiding vocabulary reduction, because it is possible to embed almost any token using 

vectors of its sub-tokens. 

 Enriching semantic information of tokens by the information of their sub-tokens. 

In our approach, a very light pre-processing (removing comments and lowercasing the code) is made 
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on the source code before transforming it into a set of tokens. Then, all the tokens are embedded using 

a pre-trained embedding model which gives a set of vectors.  Because on one hand, the DNNs take as 

input vectors with fixed size and on the other hand slices may contain a variable number of tokens, we 

relied on the principle of sentence embedding to get a fixed-length that represents the slice (which is 

considered as a sentence). This can be done using a very simple approach, such as summing or 

averaging all token vectors of the sentence [39] or with sophisticated approaches, such as the approach 

proposed in [40]. We applied the simple approach by averaging all the token vectors of a slice to get 

its vector representation. 

4. EXPERIMENTAL EVALUATION 

In this section, we present the experiments conducted to evaluate our proposed approach. We begin by 

presenting the data preparation in 4.1 and then in 4.2, we present the implementation and architecture 

of the DNNs and finish by presenting the performance evaluation. 

4.1 Data Preparation 

To carry out the experiments, we prepared a dataset generated following the steps of the proposed 

input vectorization approach (Figure 4). The prepared dataset is then used to train and validate the 

DNNs to detect vulnerabilities. Before presenting our dataset, we begin by briefly describing the 

original dataset from which we retained the labeled source codes used to generate our dataset. 

4.1.1 Slices Dataset 

The labeled source codes from which we generated the dataset are retained from a dataset proposed by 

[28] which is publically available in [41]. The original dataset contains 420627 labeled slices, 

including 56395 vulnerable slices and 364232 clean slices.  The slices were generated based on 1591 

open-source C/C++ programs from the National Vulnerability Database (NVD) and 14,000 programs 

from the Software Assurance Reference Dataset (SARD). For the sake of brevity, the process of 

extracting and labeling the slices will not be described here. For more information about that process, 

see the slices dataset in [28]. We have chosen this dataset because it meets our needs: 

 The source codes are organized inside the dataset in the form of labeled slices. 

 Several types of vulnerabilities are considered (Library/API function call, array usage, pointer 

usage and arithmetic expression-related vulnerabilities). 

 The dataset is very large, which makes it very suitable for DL techniques. 

 On the contrary to other proposed datasets, the labeling process is based on real vulnerability 

reports mined from famous vulnerability databases, such as NVD, which is more efficient than 

using static analyzer tools to label source codes which can lead to mislabeling the source 

entities, because these tools can make high false-positive/negative reports. 

4.1.2 Embedding Model Preparation  

The proposed dataset contains two parts. The first part (vector dataset), which is used to train and 

validate the proposed DL-based VPMs, contains the vector representations and the class labels 

(Vulnerable/Clean) of each slice from the slices that exist in the original dataset. As shown in Figure 

4, the vector representations are calculated based on the pre-trained embedding model. This model is 

prepared and trained using the second part of the dataset.  

The data used to train the embedding model contains the tokenized slices (the tokens) without class 

labels. To prepare this data, we developed a C++ parser to parse the original dataset and do the 

following steps :  

1. Extracting the slice. 

2. Applying a minimalist pre-processing (removing comments if any). 

3. Tokenizing the slice. 

4. Composing a dataset line by gathering the tokens (separated by spaces) and adding it to the 

dataset. 

5. Repeating the above steps for all the slices of the original dataset. 
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Using this data and the fastText tool [1], [36], we built the embedding model. The most important 

parameters of the model are its dimension (dim) and the range of size for the subwords (the minimum 

character n-grams size (minn) and the maximal character n-grams size (maxn)). The dimension 

controls the size of the vectors, where the larger they are, the more information they can capture, but 

the model requires more data to be learned. The range of size for the subwords controls the character 

n-grams that can be extracted from the tokens [42]. Building the embedding model with the defaults 

recommends that the values of these two parameters (dim:100, minn:3 and maxn:6) were very 

sufficient (see results section). However, since the size of the vectors also controls the architecture of 

DNNs (the number of neurons in the input layer = the size of the vectors), we built two other models 

with the size of the vectors of 50 and 200. The other parameters related to training the models were 

also set to their default recommended values: 5 for the number of epochs and 0.05 for the learning 

rate. 

4.1.3 Vectors Dataset (The Proposed Dataset)  

To predict the status (vulnerable or clean) of a slice, its vector representation is extracted and passed to 

the trained DNN which learns more deep hidden features from the input vector and classifies them 

(Figure 4). To train the DNN, we prepared a labeled dataset that contains all the vector representations 

of the slices which exist in the original dataset with their class label (vulnerable or clean). As we 

mentioned before, the vectors are calculated based on the built embedding model. We developed a 

Java application to generate the dataset. The application is based on the Java implementation of the 

fastText API provided by the famous deep learning library Deeplearning4J [43]. The dataset contains 

a total number of 420627 instances, including 56395 instances with the ‘vulnerable’ class label and 

364232 instances with the ‘clean’ class label. Detailed descriptive statistics by each type of 

vulnerabilities can be observed in Table 1. 

Table 1.  Descriptive statistics about the proposed dataset. 

Type of vulnerabilities Number of instances 

with class label 

(vulnerable) 

Number of instances 

with class label (clean) 

Total 

Part1: Function Call (FC) 13603   50800   64403 

Part2: Array Usage (AU) 10926 31303 42229 

Part3: Pointer Usage (PU) 28391 263450 291841 

Part4: Arithmetic Expression 

(AE) 

3475 18679 22154 

Total 56395  364232 420627 

The embedding models and all the tools developed and used to generate them are made publically 

available in the public Github repository [44] for researchers who may want to replicate the study or to 

use it in other works. 

4.2 DL-based VPM Construction and Evaluation 

4.2.1 DL-based VPM Construction 

We used the implementation of the Multi-Layer Perceptron (MLP) provided by the Java API of the 

WekaDeeplearning4J package [45] to construct our DL-based VPMs. This package provides a rich 

API inherited from the Weka API [46] and the Deeplearning4J library that facilitate not only the 

construction and the validation of a prediction model, but also the deployment of the built models in a 

concrete Java application to be used in production.  

The effectiveness of the deep hidden features learning and consequently the overall prediction 

performance of the DL-based VPMs can be affected by several parameters related to the used DNN 

architecture: number of hidden layers, number of neurons in each layer, …etc. and the parameters 

related to the training process: learning rate, number of epochs, …etc. We considered all these 

parameters when conducting experiments. Some of these parameters, such as the learning rate, were 

set to their recommended values based on previous similar studies and what experts in the field of DL 

recommend. Other parameters, such as those related to the DNN architecture, were tuned 
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experimentally. For example, when tuning the number and the size (in terms of the number of 

neurons) of the hidden layers, we started with simple architecture and each time we increased the 

complexity of the architecture, we observed the obtained results until we got the best performance. 

4.2.2 VPM Evaluation 

To accurately evaluate our DL-based VPMs and avoid the possibility of obtaining biased results, we 

used the technique of K-fold cross-validation to train and validate them. Using this technique, the 

dataset is randomly divided into K folds of equal sizes. K-1 folds are retained and used as the training 

set and the remaining fold is used as the testing set. This process is repeated such that all folds are 

used as the testing set and also as part of the training set. The final performance results are then 

calculated by averaging the results of all the iterations. Because our dataset is large enough, we set the 

value of K to 3. This allowed us to get very good results and reduce computation time. 

A perfect VPM must have the following features:  

 The VPM must predict as vulnerable only the actually vulnerable source entities. If this 

feature is not sufficiently achieved (i.e., the model leverages high false-positive predictions), 

the costs of vulnerability detection will not be minimized, since developers will still waste 

time and effort in looking for vulnerabilities in non-vulnerable source entities. This 

characteristic can be measured by the metric of the False Positives Rate (FPR). 

 The VPM must not miss any vulnerability. This characteristic is very important, because if it 

is altered, vulnerabilities will be delivered with the software and can be exploited, which can 

lead to disastrous security issues. This characteristic can be measured by the metric of the 

False Negatives Rate (FNR). 

 The VPM must make a precise and effective prediction. This characteristic can be measured 

by metrics, such as Precision or Recall. 

Since obtaining a perfect VPM (FPR=0%, FNR=0% and Precision=100%) is impossible in practice, 

the objective is to minimize as much as possible the FPR and the FNR and to maximize as much as 

possible Precision. These metrics can be calculated from the outputs of the VPM: True Positive (TP), 

True Negative (TN), False Positive (FP) and False Negative (FN). The descriptions and the formulae 

of these metrics are shown in Table 2. For the sake of completeness, we also considered reporting in 

the results section, the obtained performance in terms of additional performance metrics that are 

communally reported in related works. 

Table 2. The performance metrics. 

Metric Formula Description 

Precision TP
*100

TP+FP  

The percentage of instances classified as positives and are actually 

positives. 

FP Rate FP
*100

FP+TN  

The percentage of positives that are falsely classified as real 

negatives. 

FN Rate FN
*100

FN+TP  

The percentage of negatives that are falsely classified as real 

positives. 

5. RESULTS AND DISCUSSION 

In Table 3, we report the obtained results in terms of the main performance metrics which we based 

our work on, in order to draw the conclusions: Precision (the higher the better), FPR and FNR (the 

lower the better). For the sake of completeness and for comparing the obtained results with the 

reported results in similar works,  we report in Table 4 the obtained results in terms of additional 

performance metrics: Recall and F1 (the higher the better).  

These results were obtained using a Multi-Layer Perceptron with the following architecture: 1 input 

layer with 100 neurons, 3 hidden layers with 128, 64 and 32 neurons and an output layer with 2 

neurons. The MLP was trained and validated using the proposed dataset and 3-fold cross-validation. 

The parameters related to the training algorithm were set as follows (learning rate: 0,01, batch 
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size:128) and the other parameters were set to their default recommended values (more information 

about these defaults recommended values can be found in the documentation of the Java API of 

Wekadeeplearning4j [47]). When carrying out the experiments, we begin by using the first part of the 

dataset which is related to the FC vulnerabilities to tune experimentally the DNN’s hyperparameter 

related to the number of epochs to train through and the size of the vectors for the dataset. We used 

only the FC part due to computational constraints. For the sake of showing the impact of these 

parameters on the VPM performance, we report results for different values of these parameters in the 

first rows of Table 3 and Table 4 for the number of epochs and in Table 6 for the size of the vectors. 

Table 3.  Results. 

Vulnerabilities No. of epochs Precision (%) FP Rate (%) FN Rate (%) 

 

FC 

100 95,1 13,25 4,84 

500 96,8 8,30 3,12 

1000 97,1 7,66 2,87 

AE 1000 98,0 7,48 1,93 

AU 1000 97,1 6,36 2,86 

PU 1000 98,6 5,51 1,44 

Table 4.  Results in terms of additional performance indicators. 

Vulnerabilities No. of epochs F1 (%) Recall (%) 

 

FC 

100 95,06 95,2 

500 96,84 96,9 

1000 97,1 97,1 

AE 1000 98.04 98,1 

AU 1000 97,1 97,1 

PU 1000 98,55 98,6 

As can be seen in Table 3 and Table 4, the obtained performances in terms of all the performance 

metrics (whether the main ones or the additional ones) and for all the studied types of vulnerabilities 

(FC, AE, AU and PU) are very excellent. Indeed, the obtained precision was between 97,1% and 

98,6%, the FNR was between 2,87% and 1,44% and the FPR was between 7,66% and 5,51%, which is 

very promising and outperformed the obtained performances in the previous works that used the same 

original dataset and the same granularity level (slice) ([16], [29]) and others ([18], [27])  that used 

different datasets and different granularity levels (Table 5). We believe that this performance 

improvement is due to the two strengths of the proposed input vectorization approach, which were 

missing in the previous approaches. The first is embedding the source code without reducing the 

vocabulary, which led to preserving all semantic and syntactic information of the source code related 

to vulnerabilities. The second is that this information is enriched by embedding source code in 

character n-gram level, because each token is embedded using its sub-tokens. For example, 

considering a token named “BufferSize”, using the technique of character n-gram embedding, this 

token will be embedded using all its character n-gram, including “Buffer” and “Size”, which means 

that two important things are granted. The first is that even if the token “BufferSize” does not exist in 

the training set, it will be possible to get its vector representation from its sub-tokens vector 

representations. The second is that the overall semantic meaning of the original token “BufferSize” 

will be enriched by the semantic meaning of its sub-tokens, including “Buffer” and “Size”.  

We observed that the obtained values in terms of FPR were slightly higher when compared to the 

obtained values in terms of FNR (5,51% vs 1,44%). We confirm what other researchers [29] 

concluded about this situation. Indeed, improving the performance of a VPM in terms of one of these 

two metrics can affect its performance in terms of the other. As we mentioned before and as it is clear 

in Table 6, our obtained results outperformed the reported results of all the previous studies in terms of 

all performance metrics, except in terms of FPR. While we obtained in the best case 5,51%, 

researchers in [29] reported a value of 1,4%. The reported value is better than what we got, but it 

comes at the cost of much higher FNR (5,6%) than what we got (1,44%). In vulnerability prediction, 

the negative impact of FNR is much important than the negative impact of FPR. This is because FPR  
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Table 5. Comparison with the reported results of previous studies. 

Study Granularity 

level 

Vocabulary 

reducing 

Vectorization 

Technique 

Performances 

       (%) 

[16] Slice yes word2vec-based techniques 

(Token level) 

-FPR: 5,7 

-FNR: 7,0 

-P: 88,1 

-R: / 

-F1: 90,5 

[29] Slice yes word2vec-based techniques 

(Token level) 
-FPR: 1,4 

-FNR: 5,6  

-P: 90,8 

-R: / 

-F1: 92,6 

[27] Function yes Custom embedding 

technique 

(Token level) 

-FPR: / 

-FNR: / 

-P:  / 

-R: / 

-F1:  84,0 

[18] File yes Custom embedding 

technique 

(Token level) 

-FPR: / 

-FNR:/ 

-P: 92,0 

-R:93,0 

-F1 :91,0 

Our 

Study 

Slice no fastText-based embedding 

(Character n-gram level) 

-FPR : 5,51 

-FNR :1,44 

-P :98,6 

-R :98,6 

-F1 : 98,55 

impacts the effectiveness of the model in terms of the cost of detection, while FNR impacts its 

effectiveness in the side of letting vulnerabilities undiscovered, which is very dangerous. Therefore, 

we believe that the advantages in terms of a lower FNR far outweigh the disadvantages concerning the 

slightly higher FPR. 

We observed also that all the best values for all the experimental cases were obtained using the part of 

the dataset that is related to PU vulnerabilities. Since this part is the larger one in the dataset (see 

Table1), we believe that this was due to the sufficient amount of data that this part contains, which let 

the DNN learn more efficiently than with the other parts. This lets us conclude that sufficient labeled 

data is very important when using the DL technique to predict vulnerabilities. 

Table 6. Results for different vector sizes. 

Vector size Precision (%) FP Rate (%) FN Rate (%) Recall (%) F1 (%) 

50 96,3 09,37 03,68 96,3 96,27 

100  97,1 7,66 2,87 97,1 97,1 

200 97,3 07,49 02,67 97,3 97,29 

To investigate the impact of the size of the vectors on the VPM performances, we pre-trained 3 

embedding models with 3 different values of the vector size parameter: 50,100 and 200. Then, we 

used the pre-trained models to prepare 3 datasets. The prepared datasets were then used to train and 

validate 3 VPMs. The obtained results are shown in Table 6. As can be seen, there were no significant 

differences between the 3 VPMs performances. This can be interpreted by the fact that models with 

higher vectors size (>200) need very big training data to capture much useful vector representation. 

Finally, we can conclude that the difference in performances (Precision: +0.2%, FPR: -0,17%, FNR: -

0,2%) obtained by increasing the vector size to 200  is not worth the constrains in terms of increasing 

the model size induced by increasing the size of the vectors. That way in this study, we opted for 100 

as the size of the vectors.  
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5.1 Limitations 

We are aware that our work may have the following limitations: 

 Since the original dataset from which we generated the data used to evaluate the proposed 

approach is limited to C/C++ code, we cannot conclude that the approach is suitable for other 

types of applications that are written in other languages. Evaluating the proposed approach for 

these types of applications represents an intersecting open problem for future research works. 

 As the focus of the study was on proposing an input vectorization approach, we used only one 

DNN model, the MLP. Even though the obtained results using this model were very sufficient, 

other DNN models, such as RNN and CNN, must be considered in future works. 

 We evaluated our approach for 4 types of vulnerabilities using binary classification. A 

multiclass classification will be a better choice for future works. 

 More types of vulnerabilities must be considered in future works. 

6. CONCLUSIONS 

This paper investigated predicting vulnerabilities using the technique of deep learning. We aimed at 

improving the communally adopted approach in recent similar works which was inspired by the 

previous application of DL in NLP.  Our contribution was to propose an efficient input vectorization 

approach based on embedding source code in the character n-gram level. Using the proposed approach 

with DNNs, we were able to efficiently learn deep hidden features and detect vulnerabilities with 

much better accuracy. The strengths of our method lie in preserving and enriching semantic and 

syntactic information related to vulnerabilities that can be extracted from the code. Indeed, the 

achieved performance outperformed those obtained in previous similar works, which means that our 

method represents a valuable alternative to the input vectorization methods used in previous works.  

As part of this research, we proposed a dataset extracted from a labeled and large C/C++ codebase. 

The dataset was prepared based on the proposed input vectorization approach. We make it with other 

important data publically available for the community. As part of the future works and since the 

results obtained have been very promising, we plan to implement the proposed approach in a concrete 

solution that can be used in production. The solution can be in the form of a standalone AVP tool or an 

IDE plug-in. Improving further the proposed approach by addressing the limitations and the open 

research problems indicated in the previous section and considering more code structure for learning 

more comprehensive program semantics that is suitable for AVP, represent subjects for interesting 

future works a well. 
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 ملخص البحث:

لقدددددب جدددددط يق دددددت ا جّعلدددددع جققلدددددتش لالددددد تشكلط لالشالدددددع ل ددددد  لالا ددددد  ش لال ددددد  ج ددددد   ج دددددب تشا  ددددد  

م ددددددتج مشتل ددددددب لالك.ددددددتش لالّعلشلددددددب. نص دددددديلاي تر امدددددد  لالا ددددددبا نلالددددددق  لالّعلشدددددد    دددددد ي تر 

مثدددددد   - دددددد   ددددددبل مدددددد  لاتمددددددعا لالا  ددددددتييب   قددددددب  م دددددد  لا  اددددددتل جققلددددددتش ج ددددددقل  لالق ددددددع  

سددددددد قب  كدددددددق لالددددددد شكط لالشالدددددددع لكقلدددددددت  يدددددددتل تقع  لا لددددددد  طدددددددي ا ج لاق ددددددديلا  -جضدددددددال  لال كادددددددتش 

. ن كدددددددق لالددددددديئط مددددددد   ر لالق دددددددتكن  تصددددددد  مثلدددددددي  ل   ادددددددت    كدددددددط ج ددددددد  ث.يلاش لالعيم لدددددددبيدددددددتل

 يتل عل  لال ت لب مقتاصبي ي كك لال   جط لال  عج  كليت    مشتل ب لالك.تش لالّعلشلب.

يقدددددت ي  ث.يلاش لالعيم لدددددب دددد   ددددد،  لالعاقددددب  صق دددددي  طي قدددددب م سددددقب قتكادددددب  كددددق لال قعددددد  لا لددددد  يددددتل

ئددددديلا د. نقدددددب  اكقدددددت  كدددددق جقلدددددلط لالّي قدددددب لالاق ي دددددب تايشدددددب - كدددددق جققلدددددب جضدددددال  لاليمدددددع   ر

مسددددد  بمل  قت دددددب  امدددددع  فددددد اب  لاش م دددددبا م  دددددع  يك.دددددب  ث.ددددديلاش لالعيم لدددددب صدددددعلاا مددددد  لال

C/C++ لالّي قدددددددب لالاق ي دددددددب ج ا دددددددت يددددددد للا ا  لدددددددب لك.ت دددددددب    دددددددع  . نقدددددددب  نيددددددديش لالق دددددددتكن  ر

  كق  ثليا م  لالّي  لالعلاال     لالاستشا ستيقب.

This article is an open access article distributed under the terms and conditions of the Creative 
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