
25

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 01, March 2021.

1. M. Alenezi and Y. Javed are with Department of Computer Science, Prince Sultan University, Riyadh, KSA.

Emails: malenezi@psu.edu.sa, yjaved@psu.edu.sa

2. M. Zagane is with Department of Computer Science, University Mustapha Stambouli of Mascara, Mascara, Algeria. Email:
mohamed.zaagane@univ-mascara.dz

EFFICIENT DEEP FEATURES LEARNING FOR

VULNERABILITY DETECTION USING CHARACTER N-
GRAM EMBEDDING

Mamdouh Alenezi1, Mohammed Zagane2 and Yasir Javed3

(Received: 19-Aug.-2020, Revised: 2-Oct.-2020 and 28-Oct.-2020, Accepted: 5-Nov.-2020)

ABSTRACT

Deep Learning (DL) techniques were successfully applied to solve challenging problems in the field of Natural

Language Processing (NLP). Since source code and natural text share several similarities, it was possible to

adopt text classification techniques, such as word embedding, to propose DL-based Automatic Vulnerabilities

Prediction (AVP) approaches. Although the obtained results were interesting, they were not good enough

compared to those obtained in NLP. In this paper, we propose an improved DL-based AVP approach based on

the technique of character n-gram embedding. We evaluate the proposed approach for 4 types of vulnerabilities

using a large c/c++ open-source codebase. The results show that our approach can yield a very excellent

performance which outperforms the performances obtained by previous approaches.

KEYWORDS

Software security, Vulnerability detection, Deep features learning, Character N-gram embedding.

1. INTRODUCTION

Disastrous consequences related to exploiting software vulnerabilities can be avoided if these

vulnerabilities are early detected and fixed before software deliverance. Many solutions to automatic

vulnerabilities prediction (AVP) have been proposed. Manual vulnerable code detection is very hard

and very costly, especially when dealing with software with a large codebase. These solutions aim to

assist developers and minimize costs related to detection and fixing of vulnerabilities by letting them

focus their effort and time on the components (files, classes or functions) that are most probable to be

vulnerable. Researchers have proposed several approaches to develop vulnerability prediction models

(VPMs) that are cable of discriminating vulnerable components from clean components. The most

important works were to propose data-driven approaches based on using software attributes, such as

software metrics with machine learning (ML) techniques to build VPMs. The major limitation of these

approaches lies in the fact that important semantic and syntactic characteristics of the code that may

give insight about vulnerabilities cannot be captured by using only static code attributes.

Motivated by the success of using deep learning (DL) techniques in other fields, such as natural

language processing (NLP) and image processing, researchers in recent research works (see related

work section) in the field of AVP begin to apply DL techniques to predict and locate vulnerabilities.

Since source code shares several characteristics of the natural text and the same thing is valid for

programming language and natural language (both have: vocabulary, syntactic and semantic

characteristics, …etc), researchers have proposed to deal with source code written in a programming

language like dealing with the natural text of a natural language. Therefore, techniques used in some

applications of NLP, such as text classification, are adopted in the field of AVP to predict and locate

vulnerabilities: classifying source code entities (file, function or slices) as vulnerable or clean (Figure

1). More specifically, the techniques, such as word embedding and bag-of-word used in NLP to

automatically extract features from the natural text, are applied to automatically extract features from

the source code. The automatically-extracted features are then used as input for a classifier based on

machine learning (ML), which classifies source code as vulnerable or clean (Figure 1: solid lines). In

DL-based approaches, the output of the first step of feature extraction (the input vectors) is passed to a

deep neural network (DNN) to learn more hidden features (deep features). Since the important hidden

26

"Efficient Deep Features Learning for Vulnerability Detection Using Character N-Gram Embedding", M. Alenezi, M. Zagane and Y. Javed.

features which become the actual classifier inputs are learned via the DNN, the first step of feature

extraction (word embedding, bag-of-word, …etc) is considered in the DL-based approach as input

vectorization.

Two main DL-based approaches are proposed (Figure 1: dashed lines). In the first approach, a DNN is

used to deeply learn hidden features from the vectorized inputs and predict vulnerabilities (i.e., as a

classifier), while in the second approach, a DNN is only used to learn hidden features which are then

used as inputs (features) for an ML-based classifier that predicts vulnerabilities.

Figure 1. Vulnerabilities prediction approaches inspired by NLP techniques (dashed lines: DL-based

approach, solid lines: ML-based approach) (1: learning deep hidden features, 2: classification).

Source code and natural text have main similarities that make it possible to adopt techniques used in

NLP also in AVP. The most important adopted technique is the word embedding technique. The word

or token embedding allows representing the words of a text in the form of vectors suitable to be

processed by DNNs. The efficiency of this method compared to other methods, such as Bag-of-Word,

is that it allows preserving semantic and syntactic information of words. On the other hand, there are

characteristics which are specific to source code, making obtaining good performance very

challenging. The most important characteristic is the large vocabulary and the rare words that can have

source code. To address this problem, researchers proposed to apply vocabulary reduction methods.

These methods allowed them to initiate using word embedding on the code, but at the expense of

reduced performance. This represents a limitation, because these methods can cause a significant loss

of valuable information related to vulnerabilities.

This research aims to address this limitation by proposing a code embedding solution that can be

applied without reducing vocabulary, thus improving the vulnerability detection performance. The

proposed approach lies in using N-gram-based embeddings at the character level. Compared with

previous methods, the proposed embedding method can be applied without reducing vocabulary and

enables the semantics of sub-tokens to be learned, which can avoid out-of-vocabulary tokens, thus

reducing the possibility of information loss. Besides, we embed code at the slice granularity level,

which allows the vulnerable code to be precisely identified.

The contribution of this work is two-fold:

 Proposing and evaluating an efficient and effective input vectorization approach based on the

character n-gram embedding technique proposed by the Facebook research team [1]. The

proposed approach allowed us to improve the performance of vulnerability detection.

27

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 01, March 2021.

 Proposing and making publically available a dataset generated following the proposed

approach. This dataset can be used by other researchers in other research works or to train

concrete vulnerability detection systems.

The remainder of this paper is organized as follows: in Section 2, we present the most relevant related

works, while in Section 3, we describe the proposed approach and in Section 4, we present the

experimental evaluation. In Section 5, we discuss the obtained results, while in Section 6, we highlight

the limitations of the study and in Section 7, we summarize the work done in this study and indicate

some perspectives for future works.

2. RELATED WORK

In this section, we present the most related works in the field of vulnerability prediction. To show the

difference and the contribution of the recent DL-based approach, we begin by briefly presenting the

previous ML/static-code-attributes-based approaches in the first sub-section, then in the second sub-

section, we present DL/automatically-learned-features approaches. For the sake of brevity, we will

focus only on the works that used the technique of word embedding to represent source code.

2.1 Traditional ML-based Approaches

Applying traditional ML techniques to predict software vulnerabilities has attracted the attention of

several researchers. Indeed, considerable research works have been done to propose automatic

vulnerability prediction (AVP) approaches based on machine learning (ML) and manually-defined

static code features, such as software metrics ([2]–[9]) and text-based features [7], [10]. These works

were motivated by the success of similar works [11]–[15] that have been done to predict software

defects and by the fact that several code attributes, such as complexity, size and coupling (which can

be quantified by corresponding software metrics), are proven in practice to be correlated to

vulnerabilities. As reported in [16], the task of defining features is tedious, subjective and sometimes

error-prone because of the complexity of the problem. This means that the quality of the resulting

features and therefore the effectiveness of the resulting detection system varies with the individuals

who define them. Another major drawback of these approaches lies in the fact that important semantic

and syntactic characteristic of the code, which may give insight about vulnerabilities, cannot be

captured by using only static code attributes. Another limitation of these approaches inherited by the

coarse granularity level (file, class and method), in which software metrics are calculated, is that

vulnerabilities cannot be located in much fine granularity. Recent works have tried to improve these

approaches. Researchers in [9] have tried to combat the limitation of coarse granularity by proposing

to calculate metrics at the slice granularity which allowed to improve the performance of the proposed

VPMs (Precision: 95.1%, Recall: 95.0% FN Rate: 4.91%) and to locate with much precision the

vulnerable lines. Other studies, such as [17]-[18], investigated using the automatically-learned features

to build prediction models. However, the ML-based approaches still suffer from the missing semantic

and syntactic features of the code and cannot learn deeply hidden features of the code which may

exhibit a better way of characteristics of vulnerabilities. This is why in recent studies, researchers

begin to use DL in AVP to benefit from the power of DL in learning hidden features. The most

important of these studies are presented in the next sub-section.

2.2 DL-Based Approaches

DL techniques have been successfully applied to solve challenging problems in fields, such as NLP

and image processing. Motivated by this success, researchers of the field of AVP in recent years begin

investigating the application of DL techniques to predict and locate vulnerabilities in source code. The

researchers’ aim was essentially to benefit from the power of DNNs to learn deep hidden features that

can perfectly characterize the vulnerable code, which was impossible using classic ML techniques, as

well as to use them as a classifier (Figure 2).

Unlike the ML-based approach where several works have been carried out, few researchers have

addressed AVP using DL techniques. The first use of DL in AVP was done by Catal et al. in [19]-[20].

In the first study, they conducted a literature review to investigate DL algorithms that can be applied in

AVP. They concluded that, depending on the availability of the data, different kinds of DL algorithms

can be applied in AVP: supervised learning models, unsupervised deep learning models or semi-

28

"Efficient Deep Features Learning for Vulnerability Detection Using Character N-Gram Embedding", M. Alenezi, M. Zagane and Y. Javed.

supervised learning. In the second study, they proposed a web service-based VPM to predict

vulnerable files of web applications. They used a dataset [21] proposed by [7] to train several machine

learning techniques that exist in the Azure Machine Learning Studio environment and a Multi-Layer

Perceptron (MLP). They reported that the best performance (AUC: 76,5%) is achieved by the MLP.

The type of VPMs’ inputs was a set of code metrics. Researchers in [22] also used software metrics

with DL to predict vulnerabilities. The authors investigated the usefulness of using software metrics as

input for DNNs to locate vulnerabilities. Researchers reported that they used a large dataset [23]

suitable for DL. The code metrics used as inputs for the DNNs (MLP and LSTM) were calculated at

the slice ([24]–[26]) granularity level which allows them to locate the vulnerable lines of code. Based

on comparing the obtained results (Recall: 73.9%, Precision: 74.4% and FN Rate: 26.14%) with the

results reported by similar works that adopted techniques used in the field of NLP, the authors

concluded that software metrics represent good -but not the best- data to use with DL-based

approaches in AVP and that software metrics are more suitable for ML-based approaches which gave

them very good results (Recall: 93.7%, Precision: 93.2% and FN Rate: 6.25%).

Figure 2. Using DNNs to predict vulnerabilities.

As we said before, the similarities between source code and the natural text have motivated

researchers in the field of AVP to adopt techniques used in NLP to predict vulnerabilities. Essentially,

techniques, such as word or token embedding used in NLP to “vectorize” inputs (representing text as

vectors suitable to be used as inputs for DNNs), were adopted by recent works [16], [18], [27]–[30] to

represent source code as vectors. The DNNs are used to learn from the vectorized inputs deep hidden

features of the code that are related to vulnerabilities (Figure 1). Z. Li et al. in their works [16], [28]-

[29] used the word2vec tool [31]-[32] which is based on using NNs to learn a vector representation of

the word that preserves its semantic meaning based on its context, starting from the idea that words

with similar meanings will tend to appear in contexts with similar words. Researchers in [18], [27]

used custom embedding techniques inspired by previous works done on sentence classification, such

as [33].

In all of these studies, token embedding was at the token level. This means that a distinct vector is

assigned to each token in the training set. For an embedding model to be efficient and effective, it

must provide representation for all or at least most of the words that compose the vocabularies. In

AVP, this represents a challenging problem to solve, because source code may have very large

vocabularies and many rare words induced by the fact that ways of writing code, especially the task of

naming variables and functions, vary from developer to developer. To combat this problem,

researchers used techniques to reduce vocabulary size by mapping user-defined variables and

functions and all literal values (number and string) to special tokens. For example, in [18], all integers,

real numbers, exponential notation and hexadecimal numbers are replaced with a generic <num> token

and constant strings are replaced with a generic <str> token. Also, all rare tokens (e.g. occurring only

29

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 01, March 2021.

once in the corpus) and tokens which exist in test sets but do not exist in the training set are replaced

with a special token <unk>. In [16], [28]-[29], all user-defined variables and functions were mapped to

representations, such as VAR1, VAR2, FUN1, FUN2, …etc.

Using these techniques, researchers were able to reduce the vocabularies size and partially benefit

from the power of token embedding. However, these techniques of reducing vocabularies may lead to

a very important loss of information by abstracting away certain syntactic and semantic characteristics

of the code that are useful for vulnerability detection, which represents a limitation. To the best of our

knowledge, no recent work has addressed this limitation. Instead, in recent works, researchers tried to

address other aspects of DL-based AVP. In [30], researchers studied the cross-domain AVP. They

proposed and evaluated a method to learn cross-domain representations in a range of cross-domain

settings, including cross-project, cross-vulnerability and prediction of recent software vulnerabilities.

Researchers in [34] addressed the problem of class imbalance between vulnerable code and non-

vulnerable code. A new fuzzy oversampling method is proposed to rebalance the training data. In [35],

both cross-project and class imbalance problems were studied.

To fill the research gap highlighted in the previous paragraph, we propose in this study an improved

DL-based approach to detect vulnerabilities. Instead of reducing vocabularies and using token-level

embedding, we propose an approach based on the works [1], [36] done by Facebook AI Research. The

proposed approach is presented in detail in the next section.

3. PROPOSED APPROACH

The proposed approach is adopted from the communally used approach described in Figure1 (dashed

lines) which was inspired by the previous works in the field of NLP. In our approach, DNNs are used

to learn deep hidden features and as a classifier Figure 2 (approach 1). The different aspects of the

proposed approaches: granularity level and input vectorization, are described in the following sub-

sections.

 3.1 Granularity Level

In previous studies of AVP, whether ML-based or DL-based, researchers investigated vulnerabilities

prediction at different levels of granularity: file [7]-[8], [18], function/method [27], [37] and slice [9],

[16], [22], [28]-[29]. Prediction at a coarse level (file and function) does not locate the vulnerable lines

of code; instead, it can identify the components (files or functions) that require more focus from

developers, which is less useful especially when the components are very large. Because the objective

of the AVP is to assist developers and minimize the costs of vulnerabilities detection by minimizing

the human intervention as much as possible, these coarse granularity levels are to be avoided.

A slice is a reduced version (few lines of code) of a source component automatically-extracted from

the original component by analyzing its data flow and control flow in respecting a slicing criterion

[25]. Slicing is useful in several software engineering applications, such as debugging, program

Figure 3. The adopted granularity level.

30

"Efficient Deep Features Learning for Vulnerability Detection Using Character N-Gram Embedding", M. Alenezi, M. Zagane and Y. Javed.

comprehension and change impact prediction because it can give insight into multiple behavioral

aspects of the source entity, such as all lines that change the value of a variable or that participate in

computing the return value of a function [38]. In AVP, this can be useful, for example, to get all

statements that are related to critical function calls (memory management, string manipulation, …etc.).

This way, only lines of code that are related to vulnerabilities can be extracted and analysed, which

leads to indicate the exact location of vulnerabilities [22].

Currently, the slice level is the finest level of granularity to locate vulnerabilities. Predicting the status

of a slice (clean or vulnerable) is just like locating the vulnerable lines (that the vulnerable slices

contain) (Figure 3). Therefore, the slice level of granularity is adopted in this study.

3.2 Input Vectorization

As shown in Figure 3, a detection system built based on our proposed approach will take as input the

source code of a software component (s) (file(s) or function(s)) and give in the output the vulnerable

lines (those lines that compose the slices predicted as vulnerable). Since the prediction (deep features

learning + classification) is made via DNNs, the source code of each extracted slice must be converted

into vectors suitable to be used as input for DNNs (Figure 4, solid lines).

Figure 4. The proposed input vectorization approach (VTi means the vector representation of the ith

token).

We aim to benefit from the power of embedding techniques to vectorize source code without losing

useful semantic and syntactic information related to vulnerabilities induced by reducing vocabularies

techniques. To achieve this aim, instead of reducing the vocabularies and applying token-level

embedding as it was done in previous works (see related works section), we adopted solution [1], [36]

proposed by the NLP community to deal with the embedding task in languages with large vocabularies

that contain many rare words which is the case with source code. The strength of the solution

proposed by [1] lies in using character n-gram-based embedding, which means that every token is

embedded using all its character n-gram (sub-tokens). This has two advantages:

 Avoiding vocabulary reduction, because it is possible to embed almost any token using

vectors of its sub-tokens.

 Enriching semantic information of tokens by the information of their sub-tokens.

In our approach, a very light pre-processing (removing comments and lowercasing the code) is made

31

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 01, March 2021.

on the source code before transforming it into a set of tokens. Then, all the tokens are embedded using

a pre-trained embedding model which gives a set of vectors. Because on one hand, the DNNs take as

input vectors with fixed size and on the other hand slices may contain a variable number of tokens, we

relied on the principle of sentence embedding to get a fixed-length that represents the slice (which is

considered as a sentence). This can be done using a very simple approach, such as summing or

averaging all token vectors of the sentence [39] or with sophisticated approaches, such as the approach

proposed in [40]. We applied the simple approach by averaging all the token vectors of a slice to get

its vector representation.

4. EXPERIMENTAL EVALUATION

In this section, we present the experiments conducted to evaluate our proposed approach. We begin by

presenting the data preparation in 4.1 and then in 4.2, we present the implementation and architecture

of the DNNs and finish by presenting the performance evaluation.

4.1 Data Preparation

To carry out the experiments, we prepared a dataset generated following the steps of the proposed

input vectorization approach (Figure 4). The prepared dataset is then used to train and validate the

DNNs to detect vulnerabilities. Before presenting our dataset, we begin by briefly describing the

original dataset from which we retained the labeled source codes used to generate our dataset.

4.1.1 Slices Dataset

The labeled source codes from which we generated the dataset are retained from a dataset proposed by

[28] which is publically available in [41]. The original dataset contains 420627 labeled slices,

including 56395 vulnerable slices and 364232 clean slices. The slices were generated based on 1591

open-source C/C++ programs from the National Vulnerability Database (NVD) and 14,000 programs

from the Software Assurance Reference Dataset (SARD). For the sake of brevity, the process of

extracting and labeling the slices will not be described here. For more information about that process,

see the slices dataset in [28]. We have chosen this dataset because it meets our needs:

 The source codes are organized inside the dataset in the form of labeled slices.

 Several types of vulnerabilities are considered (Library/API function call, array usage, pointer

usage and arithmetic expression-related vulnerabilities).

 The dataset is very large, which makes it very suitable for DL techniques.

 On the contrary to other proposed datasets, the labeling process is based on real vulnerability

reports mined from famous vulnerability databases, such as NVD, which is more efficient than

using static analyzer tools to label source codes which can lead to mislabeling the source

entities, because these tools can make high false-positive/negative reports.

4.1.2 Embedding Model Preparation

The proposed dataset contains two parts. The first part (vector dataset), which is used to train and

validate the proposed DL-based VPMs, contains the vector representations and the class labels

(Vulnerable/Clean) of each slice from the slices that exist in the original dataset. As shown in Figure

4, the vector representations are calculated based on the pre-trained embedding model. This model is

prepared and trained using the second part of the dataset.

The data used to train the embedding model contains the tokenized slices (the tokens) without class

labels. To prepare this data, we developed a C++ parser to parse the original dataset and do the

following steps :

1. Extracting the slice.

2. Applying a minimalist pre-processing (removing comments if any).

3. Tokenizing the slice.

4. Composing a dataset line by gathering the tokens (separated by spaces) and adding it to the

dataset.

5. Repeating the above steps for all the slices of the original dataset.

32

"Efficient Deep Features Learning for Vulnerability Detection Using Character N-Gram Embedding", M. Alenezi, M. Zagane and Y. Javed.

Using this data and the fastText tool [1], [36], we built the embedding model. The most important

parameters of the model are its dimension (dim) and the range of size for the subwords (the minimum

character n-grams size (minn) and the maximal character n-grams size (maxn)). The dimension

controls the size of the vectors, where the larger they are, the more information they can capture, but

the model requires more data to be learned. The range of size for the subwords controls the character

n-grams that can be extracted from the tokens [42]. Building the embedding model with the defaults

recommends that the values of these two parameters (dim:100, minn:3 and maxn:6) were very

sufficient (see results section). However, since the size of the vectors also controls the architecture of

DNNs (the number of neurons in the input layer = the size of the vectors), we built two other models

with the size of the vectors of 50 and 200. The other parameters related to training the models were

also set to their default recommended values: 5 for the number of epochs and 0.05 for the learning

rate.

4.1.3 Vectors Dataset (The Proposed Dataset)

To predict the status (vulnerable or clean) of a slice, its vector representation is extracted and passed to

the trained DNN which learns more deep hidden features from the input vector and classifies them

(Figure 4). To train the DNN, we prepared a labeled dataset that contains all the vector representations

of the slices which exist in the original dataset with their class label (vulnerable or clean). As we

mentioned before, the vectors are calculated based on the built embedding model. We developed a

Java application to generate the dataset. The application is based on the Java implementation of the

fastText API provided by the famous deep learning library Deeplearning4J [43]. The dataset contains

a total number of 420627 instances, including 56395 instances with the ‘vulnerable’ class label and

364232 instances with the ‘clean’ class label. Detailed descriptive statistics by each type of

vulnerabilities can be observed in Table 1.

Table 1. Descriptive statistics about the proposed dataset.

Type of vulnerabilities Number of instances

with class label

(vulnerable)

Number of instances

with class label (clean)

Total

Part1: Function Call (FC) 13603 50800 64403

Part2: Array Usage (AU) 10926 31303 42229

Part3: Pointer Usage (PU) 28391 263450 291841

Part4: Arithmetic Expression

(AE)

3475 18679 22154

Total 56395 364232 420627

The embedding models and all the tools developed and used to generate them are made publically

available in the public Github repository [44] for researchers who may want to replicate the study or to

use it in other works.

4.2 DL-based VPM Construction and Evaluation

4.2.1 DL-based VPM Construction

We used the implementation of the Multi-Layer Perceptron (MLP) provided by the Java API of the

WekaDeeplearning4J package [45] to construct our DL-based VPMs. This package provides a rich

API inherited from the Weka API [46] and the Deeplearning4J library that facilitate not only the

construction and the validation of a prediction model, but also the deployment of the built models in a

concrete Java application to be used in production.

The effectiveness of the deep hidden features learning and consequently the overall prediction

performance of the DL-based VPMs can be affected by several parameters related to the used DNN

architecture: number of hidden layers, number of neurons in each layer, …etc. and the parameters

related to the training process: learning rate, number of epochs, …etc. We considered all these

parameters when conducting experiments. Some of these parameters, such as the learning rate, were

set to their recommended values based on previous similar studies and what experts in the field of DL

recommend. Other parameters, such as those related to the DNN architecture, were tuned

33

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 01, March 2021.

experimentally. For example, when tuning the number and the size (in terms of the number of

neurons) of the hidden layers, we started with simple architecture and each time we increased the

complexity of the architecture, we observed the obtained results until we got the best performance.

4.2.2 VPM Evaluation

To accurately evaluate our DL-based VPMs and avoid the possibility of obtaining biased results, we

used the technique of K-fold cross-validation to train and validate them. Using this technique, the

dataset is randomly divided into K folds of equal sizes. K-1 folds are retained and used as the training

set and the remaining fold is used as the testing set. This process is repeated such that all folds are

used as the testing set and also as part of the training set. The final performance results are then

calculated by averaging the results of all the iterations. Because our dataset is large enough, we set the

value of K to 3. This allowed us to get very good results and reduce computation time.

A perfect VPM must have the following features:

 The VPM must predict as vulnerable only the actually vulnerable source entities. If this

feature is not sufficiently achieved (i.e., the model leverages high false-positive predictions),

the costs of vulnerability detection will not be minimized, since developers will still waste

time and effort in looking for vulnerabilities in non-vulnerable source entities. This

characteristic can be measured by the metric of the False Positives Rate (FPR).

 The VPM must not miss any vulnerability. This characteristic is very important, because if it

is altered, vulnerabilities will be delivered with the software and can be exploited, which can

lead to disastrous security issues. This characteristic can be measured by the metric of the

False Negatives Rate (FNR).

 The VPM must make a precise and effective prediction. This characteristic can be measured

by metrics, such as Precision or Recall.

Since obtaining a perfect VPM (FPR=0%, FNR=0% and Precision=100%) is impossible in practice,

the objective is to minimize as much as possible the FPR and the FNR and to maximize as much as

possible Precision. These metrics can be calculated from the outputs of the VPM: True Positive (TP),

True Negative (TN), False Positive (FP) and False Negative (FN). The descriptions and the formulae

of these metrics are shown in Table 2. For the sake of completeness, we also considered reporting in

the results section, the obtained performance in terms of additional performance metrics that are

communally reported in related works.

Table 2. The performance metrics.

Metric Formula Description

Precision TP
*100

TP+FP

The percentage of instances classified as positives and are actually

positives.

FP Rate FP
*100

FP+TN

The percentage of positives that are falsely classified as real

negatives.

FN Rate FN
*100

FN+TP

The percentage of negatives that are falsely classified as real

positives.

5. RESULTS AND DISCUSSION

In Table 3, we report the obtained results in terms of the main performance metrics which we based

our work on, in order to draw the conclusions: Precision (the higher the better), FPR and FNR (the

lower the better). For the sake of completeness and for comparing the obtained results with the

reported results in similar works, we report in Table 4 the obtained results in terms of additional

performance metrics: Recall and F1 (the higher the better).

These results were obtained using a Multi-Layer Perceptron with the following architecture: 1 input

layer with 100 neurons, 3 hidden layers with 128, 64 and 32 neurons and an output layer with 2

neurons. The MLP was trained and validated using the proposed dataset and 3-fold cross-validation.

The parameters related to the training algorithm were set as follows (learning rate: 0,01, batch

34

"Efficient Deep Features Learning for Vulnerability Detection Using Character N-Gram Embedding", M. Alenezi, M. Zagane and Y. Javed.

size:128) and the other parameters were set to their default recommended values (more information

about these defaults recommended values can be found in the documentation of the Java API of

Wekadeeplearning4j [47]). When carrying out the experiments, we begin by using the first part of the

dataset which is related to the FC vulnerabilities to tune experimentally the DNN’s hyperparameter

related to the number of epochs to train through and the size of the vectors for the dataset. We used

only the FC part due to computational constraints. For the sake of showing the impact of these

parameters on the VPM performance, we report results for different values of these parameters in the

first rows of Table 3 and Table 4 for the number of epochs and in Table 6 for the size of the vectors.

Table 3. Results.

Vulnerabilities No. of epochs Precision (%) FP Rate (%) FN Rate (%)

FC

100 95,1 13,25 4,84

500 96,8 8,30 3,12

1000 97,1 7,66 2,87

AE 1000 98,0 7,48 1,93

AU 1000 97,1 6,36 2,86

PU 1000 98,6 5,51 1,44

Table 4. Results in terms of additional performance indicators.

Vulnerabilities No. of epochs F1 (%) Recall (%)

FC

100 95,06 95,2

500 96,84 96,9

1000 97,1 97,1

AE 1000 98.04 98,1

AU 1000 97,1 97,1

PU 1000 98,55 98,6

As can be seen in Table 3 and Table 4, the obtained performances in terms of all the performance

metrics (whether the main ones or the additional ones) and for all the studied types of vulnerabilities

(FC, AE, AU and PU) are very excellent. Indeed, the obtained precision was between 97,1% and

98,6%, the FNR was between 2,87% and 1,44% and the FPR was between 7,66% and 5,51%, which is

very promising and outperformed the obtained performances in the previous works that used the same

original dataset and the same granularity level (slice) ([16], [29]) and others ([18], [27]) that used

different datasets and different granularity levels (Table 5). We believe that this performance

improvement is due to the two strengths of the proposed input vectorization approach, which were

missing in the previous approaches. The first is embedding the source code without reducing the

vocabulary, which led to preserving all semantic and syntactic information of the source code related

to vulnerabilities. The second is that this information is enriched by embedding source code in

character n-gram level, because each token is embedded using its sub-tokens. For example,

considering a token named “BufferSize”, using the technique of character n-gram embedding, this

token will be embedded using all its character n-gram, including “Buffer” and “Size”, which means

that two important things are granted. The first is that even if the token “BufferSize” does not exist in

the training set, it will be possible to get its vector representation from its sub-tokens vector

representations. The second is that the overall semantic meaning of the original token “BufferSize”

will be enriched by the semantic meaning of its sub-tokens, including “Buffer” and “Size”.

We observed that the obtained values in terms of FPR were slightly higher when compared to the

obtained values in terms of FNR (5,51% vs 1,44%). We confirm what other researchers [29]

concluded about this situation. Indeed, improving the performance of a VPM in terms of one of these

two metrics can affect its performance in terms of the other. As we mentioned before and as it is clear

in Table 6, our obtained results outperformed the reported results of all the previous studies in terms of

all performance metrics, except in terms of FPR. While we obtained in the best case 5,51%,

researchers in [29] reported a value of 1,4%. The reported value is better than what we got, but it

comes at the cost of much higher FNR (5,6%) than what we got (1,44%). In vulnerability prediction,

the negative impact of FNR is much important than the negative impact of FPR. This is because FPR

35

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 01, March 2021.

Table 5. Comparison with the reported results of previous studies.

Study Granularity

level

Vocabulary

reducing

Vectorization

Technique

Performances

 (%)

[16] Slice yes word2vec-based techniques

(Token level)

-FPR: 5,7

-FNR: 7,0

-P: 88,1

-R: /

-F1: 90,5

[29] Slice yes word2vec-based techniques

(Token level)
-FPR: 1,4

-FNR: 5,6

-P: 90,8

-R: /

-F1: 92,6

[27] Function yes Custom embedding

technique

(Token level)

-FPR: /

-FNR: /

-P: /

-R: /

-F1: 84,0

[18] File yes Custom embedding

technique

(Token level)

-FPR: /

-FNR:/

-P: 92,0

-R:93,0

-F1 :91,0

Our

Study

Slice no fastText-based embedding

(Character n-gram level)

-FPR : 5,51

-FNR :1,44

-P :98,6

-R :98,6

-F1 : 98,55

impacts the effectiveness of the model in terms of the cost of detection, while FNR impacts its

effectiveness in the side of letting vulnerabilities undiscovered, which is very dangerous. Therefore,

we believe that the advantages in terms of a lower FNR far outweigh the disadvantages concerning the

slightly higher FPR.

We observed also that all the best values for all the experimental cases were obtained using the part of

the dataset that is related to PU vulnerabilities. Since this part is the larger one in the dataset (see

Table1), we believe that this was due to the sufficient amount of data that this part contains, which let

the DNN learn more efficiently than with the other parts. This lets us conclude that sufficient labeled

data is very important when using the DL technique to predict vulnerabilities.

Table 6. Results for different vector sizes.

Vector size Precision (%) FP Rate (%) FN Rate (%) Recall (%) F1 (%)

50 96,3 09,37 03,68 96,3 96,27

100 97,1 7,66 2,87 97,1 97,1

200 97,3 07,49 02,67 97,3 97,29

To investigate the impact of the size of the vectors on the VPM performances, we pre-trained 3

embedding models with 3 different values of the vector size parameter: 50,100 and 200. Then, we

used the pre-trained models to prepare 3 datasets. The prepared datasets were then used to train and

validate 3 VPMs. The obtained results are shown in Table 6. As can be seen, there were no significant

differences between the 3 VPMs performances. This can be interpreted by the fact that models with

higher vectors size (>200) need very big training data to capture much useful vector representation.

Finally, we can conclude that the difference in performances (Precision: +0.2%, FPR: -0,17%, FNR: -

0,2%) obtained by increasing the vector size to 200 is not worth the constrains in terms of increasing

the model size induced by increasing the size of the vectors. That way in this study, we opted for 100

as the size of the vectors.

36

"Efficient Deep Features Learning for Vulnerability Detection Using Character N-Gram Embedding", M. Alenezi, M. Zagane and Y. Javed.

5.1 Limitations

We are aware that our work may have the following limitations:

 Since the original dataset from which we generated the data used to evaluate the proposed

approach is limited to C/C++ code, we cannot conclude that the approach is suitable for other

types of applications that are written in other languages. Evaluating the proposed approach for

these types of applications represents an intersecting open problem for future research works.

 As the focus of the study was on proposing an input vectorization approach, we used only one

DNN model, the MLP. Even though the obtained results using this model were very sufficient,

other DNN models, such as RNN and CNN, must be considered in future works.

 We evaluated our approach for 4 types of vulnerabilities using binary classification. A

multiclass classification will be a better choice for future works.

 More types of vulnerabilities must be considered in future works.

6. CONCLUSIONS

This paper investigated predicting vulnerabilities using the technique of deep learning. We aimed at

improving the communally adopted approach in recent similar works which was inspired by the

previous application of DL in NLP. Our contribution was to propose an efficient input vectorization

approach based on embedding source code in the character n-gram level. Using the proposed approach

with DNNs, we were able to efficiently learn deep hidden features and detect vulnerabilities with

much better accuracy. The strengths of our method lie in preserving and enriching semantic and

syntactic information related to vulnerabilities that can be extracted from the code. Indeed, the

achieved performance outperformed those obtained in previous similar works, which means that our

method represents a valuable alternative to the input vectorization methods used in previous works.

As part of this research, we proposed a dataset extracted from a labeled and large C/C++ codebase.

The dataset was prepared based on the proposed input vectorization approach. We make it with other

important data publically available for the community. As part of the future works and since the

results obtained have been very promising, we plan to implement the proposed approach in a concrete

solution that can be used in production. The solution can be in the form of a standalone AVP tool or an

IDE plug-in. Improving further the proposed approach by addressing the limitations and the open

research problems indicated in the previous section and considering more code structure for learning

more comprehensive program semantics that is suitable for AVP, represent subjects for interesting

future works a well.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers for their insightful comments and

suggestions that helped in improving the paper.

REFERENCES

[1] P. Bojanowski, E. Grave, A. Joulin and T. Mikolov, "Enriching Word Vectors with Subword

Information," Trans. Assoc. Comput. Linguist., vol. 5, pp. 135–146, DOI: 10.1162/tacl_a_00051, Dec.

2017.

[2] Y. Shin, A. Meneely, L. Williams and J. A. Osborne, "Evaluating Complexity, Code Churn and

Developer Activity Metrics As Indicators of Software Vulnerabilities," IEEE Trans. Softw. Eng., vol. 37,

no. 6, pp. 772–787, DOI: 10.1109/TSE.2010.81, 2011.

[3] T. Zimmermann, N. Nagappan and L. Williams, "Searching for a Needle in a Haystack: Predicting

Security Vulnerabilities for Windows Vista," Proc. of the 3rd International Conference on Software

Testing, Verification and Validation (ICST 2010), pp. 421–428, DOI: 10.1109/ICST.2010.32, Paris,

France, 2010.

[4] P. Morrison, K. Herzig, B. Murphy and L. Williams, "Challenges with Applying Vulnerability

Prediction Models," Proceedings of the 2015 Symposium and Bootcamp on the Science of Security

(HotSoS '15), pp. 1–9, DOI: 10.1145/2746194.2746198, 2015.

37

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 01, March 2021.

[5] S. Moshtari and A. Sami, "Evaluating and Comparing Complexity, Coupling and a New Proposed Set of

Coupling Metrics in Cross-project Vulnerability Prediction," Proceedings of the 31st Annual ACM

Symposium on Applied Computing (SAC ’16), pp. 1415–1421, DOI: 10.1145/2851613.2851777, 2016.

[6] I. Abunadi and M. Alenezi, "Towards Cross Project Vulnerability Prediction in Open Source Web

Applications," Proceedings of the the International Conference on Engineering & MIS 2015 (ICEMIS

’15), pp. 1–5, DOI: 10.1145/2832987.2833051, 2015.

[7] J. Walden, J. Stuckman and R. Scandariato, "Predicting Vulnerable Components: Software Metrics vs.

Text Mining," Proc. of the 25th IEEE International Symposium on Software Reliability Engineering

(ISSRE), pp. 23–33, DOI: 10.1109/ISSRE.2014.32, Naples, Italy, 2014.

[8] M. Zagane and M. K. Abdi, "Evaluating and Comparing Size, Complexity and Coupling Metrics As

Web Applications' Vulnerabilities Predictors," Int. J. Inf. Technol. Comput. Sci., vol. 11, no. 7, pp. 35–

42, DOI: 10.5815/ijitcs.2019.07.05, 2019.

[9] M. Zagane, M. K. Abdi and M. Alenezi, "A New Approach to Locate Software Vulnerabilities Using

Code Metrics," Int. J. Softw. Innov., vol. 8, no. 3, pp. 82–95, DOI: 10.4018/IJSI.2020070106, Jul. 2020.

[10] A. Hovsepyan, R. Scandariato, W. Joosen and J. Walden, "Software Vulnerability Prediction Using Text

Analysis Techniques," Proceedings of the 4th International Workshop on Security Measurements and

Metrics (MetriSec '12), p. 7, DOI: 10.1145/2372225.2372230, 2012.

[11] B. Turhan and A. Bener, "A Multivariate Analysis of Static Code Attributes for Defect Prediction,"

Proceedings of the 7th IEEE International Conference on Quality Software (QSIC 2007), pp. 231–237,

DOI: 10.1109/QSIC.2007.4385500, 2007.

[12] H. Abandah and I. Alsmadi, "Call Graph Based Metrics to Evaluate Software Design Quality," Int. J.

Softw. Eng. and Its Appl., vol. 7, no. 1, pp. 1–12, 2013.

[13] T. Hall, S. Beecham, D. Bowes, D. Gray and S. Counsell, "A Systematic Literature Review on Fault

Prediction Performance in Software Engineering," IEEE Transactions on Software Engineering, vol. 38,

no. 6. pp. 1276–1304, DOI: 10.1109/TSE.2011.103, 2012.

[14] B. Turhan, A. Bener and T. Menzies, "Nearest Neighbor Sampling for Cross Company Defect

Predictors," Proceedings of the 1st International Workshop on Defects in Large Software Systems

(DEFECTS’08), p. 26, DOI: 10.1145/1390817.1390824, 2008.

[15] T. Menzies, J. Greenwald and A. Frank, "Data Mining Static Code Attributes to Learn Defect

Predictors," IEEE Trans. Softw. Eng., vol. 33, no. 1, pp. 2–14, DOI: 10.1109/TSE.2007.10, 2007.

[16] Z. Li et al., "VulDeePecker: A Deep Learning-based System for Vulnerability Detection," Proceedings

of Network and Distributed System Security Symposium, DOI: 10.14722/ndss.2018.23158, 2018.

[17] T. Shippey, D. Bowes and T. Hall, "Automatically Identifying Code Features for Software Defect

Prediction: Using AST N-grams," Inf. Softw. Technol., vol. 106, pp. 142–160, DOI:

10.1016/j.infsof.2018.10.001, Feb. 2019.

[18] H. K. Dam, T. Tran, T. T. M. Pham, S. W. Ng, J. Grundy and A. Ghose, "Automatic Feature Learning

for Predicting Vulnerable Software Components," IEEE Trans. Softw. Eng., pp. 1–1, DOI:

10.1109/TSE.2018.2881961, 2019.

[19] C. Catal, "Can We Predict Software Vulnerability with Deep Neural Network ?" Proc. of the 19th

International Multiconference INFORMATION SOCIETY- IS, 2016, no. October, pp. 19–22, Ljubljana,

Slovenia, 2016.

[20] C. Catal, A. Akbulut, E. Ekenoglu and M. Alemdaroglu, "Development of a Software Vulnerability

Prediction Web Service Based on Artificial Neural Networks," Proc. of the Pacific-Asia Conference on

Knowledge Discovery and Data Mining, pp. 59–67, DOI: 10.1007/978-3-319-67274-8_6, 2017.

[21] J. Walden, J. Stuckman and R. Scandariato, "Web Apps Vulnerability Dataset," [Online], Available:

http://seam.cs.umd.edu/webvuldata, 2014.

[22] M. Zagane, M. K. Abdi and M. Alenezi, "Deep Learning for Software Vulnerabilities Detection Using

Code Metrics," IEEE Access, vol. 8, pp. 74562–74570, DOI: 10.1109/ACCESS.2020.2988557, 2020.

[23] M. Zagane and M. K. Abdi, "Code Mmetrics Dataset (PU)," [Online]. Available:

https://github.com/codemetricsdaset/slice_codemetricsdataset/.

[24] F. Tip, "A Survey of Program Slicing Techniques," J. Program. Lang., vol. 5399, no. 3, pp. 1–65, DOI:

10.1.1.43.3782, 1995.

38

"Efficient Deep Features Learning for Vulnerability Detection Using Character N-Gram Embedding", M. Alenezi, M. Zagane and Y. Javed.

[25] M. Weiser, "Program Slicing," IEEE Trans. Softw. Eng., vol. SE-10, no. 4, pp. 352–357, DOI:

10.1109/TSE.1984.5010248, Jul. 1984.

[26] J. Silva, "A Vocabulary of Program Slicing-based Techniques," ACM Comput. Surv., vol. 44, no. 3, pp.

1–41, DOI: 10.1145/2187671.2187674, Jun. 2012.

[27] R. Russell et al., "Automated Vulnerability Detection in Source Code Using Deep Representation

Learning," Proceedings of the 17th IEEE International Conference on Machine Learning and

Applications (ICMLA), pp. 757–762, DOI: 10.1109/ICMLA.2018.00120, Orlando, USA, 2019.

[28] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu and Z. Chen, "SySeVR: A Framework for Using Deep Learning to

Detect Software Vulnerabilities," arXiv:1807.06756v2, pp. 1–13, DOI: 10.21227/fhg0-1b35, Jul. 2018.

[29] Z. Li, D. Zou, J. Tang, Z. Zhang, M. Sun and H. Jin, "A Comparative Study of Deep Learning-based

Vulnerability Detection System," IEEE Access, vol. 7, pp. 103184–103197, DOI:

10.1109/ACCESS.2019.2930578, 2019.

[30] S. Liu et al., "CD-VulD: Cross-Domain Vulnerability Discovery Based on Deep Domain Adaptation,"

IEEE Trans. Dependable Secur. Comput., pp. 1–1, DOI: 10.1109/TDSC.2020.2984505, 2020.

[31] T. Mikolov, K. Chen, G. Corrado and J. Dean, "Efficient Estimation of Word Representations in Vector

Space," Proc. of the 1st International Conference on Learning Representations (ICLR 2013),

arXiv:1301.3781v3, [Online], Available: https://storage.googleapis.com/pub-tools-public-publication-

data/pdf/41224.pdf, 2013.

[32] C. Tomas Mikolov, "Word2Vec.," Google Inc., Mountain View, [Online], Available:

https://code.google.com/archive/p/word2vec/.

[33] Y. Kim, "Convolutional Neural Networks for Sentence Classification," Proceedings of the Conference

on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751, DOI:

10.3115/v1/D14-1181, Doha, Qatar 2014.

[34] S. Liu, G. Lin, Q.-L. Han, S. Wen, J. Zhang and Y. Xiang, "DeepBalance: Deep-Learning and Fuzzy

Oversampling for Vulnerability Detection," IEEE Trans. Fuzzy Syst., pp. 1–1, DOI:

10.1109/TFUZZ.2019.2958558, 2019.

[35] X. Ban, S. Liu, C. Chen and C. Chua, "A Performance Evaluation of Deep-learnt Features for Software

Vulnerability Detection," Concurrency Computation, vol. 31, no. 19, DOI: 10.1002/cpe.5103, 2019.

[36] T. M. P. Bojanowski, E. Grave and A. Joulin, "fastText," Library for Efficient Text Classification and

Representation Learning, [Online], Available: https://fasttext.cc/.

[37] X. Du et al., "LEOPARD: Identifying Vulnerable Code for Vulnerability Assessment through Program

Metrics," Proceedings of the 41st International Conference on Software Engineering (ICSE '19), vol.

2019-May, pp. 60–71, DOI: 10.1109/ICSE.2019.00024, Jan. 2019.

[38] K. Pan, S. Kim and E. Whitehead, Jr., "Bug Classification Using Program Slicing Metrics," Proc. of the

6th IEEE International Workshop on Source Code Analysis and Manipulation, pp. 31–42, DOI:

10.1109/SCAM.2006.6, 2006.

[39] J. Wieting, M. Bansal, K. Gimpel and K. Livescu, "Towards Universal Paraphrastic Sentence

Embeddings," Proc. of the 4th International Conference on Learning Representations (ICLR 2016), pp. 1-

19, [Online], Available: https://arxiv.org/pdf/1511.08198.pdf, 2016.

[40] S. Arora, Y. Liang and T. Ma, "A Simple But Tough-to-beat Baseline for Sentence Embeddings," Proc.

of the 5th International Conference on Learning Representations (ICLR 2017), pp. 1-16, [Online],

Available: https://openreview.net/pdf?id=SyK00v5xx, 2019.

[41] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu and Z. Chen, "SeVC and SyVC Dataset," [Online], Available:

https://github.com/SySeVR/SySeVR/.

[42] T. M. P. Bojanowski, E. Grave, A. Joulin, "fastText Documentation," [Online], Available:

https://fasttext.cc/docs/.

[43] DL4J, "Deep Learning for Java," [Online], Available: https://deeplearning4j.org/, 2020.

[44] GitHub, "Char N-gram Embedding Dataset for DL-based AVP," [Online], Available:

https://github.com/dzresearcher/char_n-gram_embedding_dataset_for_DL_AVP.

[45] S. Lang, F. Bravo-Marquez, C. Beckham, M. Hall and E. Frank, "WekaDeeplearning4j: A Deep

Learning Package for Weka Based on Deeplearning4j," Knowledge-Based Syst., vol. 178, pp. 48–50,

DOI: 10.1016/j.knosys.2019.04.013, Aug. 2019.

39

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 01, March 2021.

[46] Machine Learning Group at the University of Waikato, "Weka API Online Doc," [Online], Available:

http://weka.sourceforge.net/doc.dev/.

[47] GitHub, "Online Documentation of the Wekadeeplearning4j Java API," [Online], Available:

https://waikato.github.io/wekaDeeplearning4j/.

 ملخص البحث:

لقدددددب جدددددط يق دددددت ا جّعلدددددع جققلدددددتش لالددددد تشكلط لالشالدددددع ل ددددد لالا ددددد ش لال ددددد ج ددددد ج دددددب تشا ددددد

م ددددددتج مشتل ددددددب لالك.ددددددتش لالّعلشلددددددب. نص دددددديلاي تر امدددددد لالا ددددددبا نلالددددددق لالّعلشدددددد دددددد ي تر

مثدددددد - دددددد ددددددبل مدددددد لاتمددددددعا لالا ددددددتييب قددددددب م دددددد لا اددددددتل جققلددددددتش ج ددددددقل لالق ددددددع

سددددددد قب كدددددددق لالددددددد شكط لالشالدددددددع لكقلدددددددت يدددددددتل تقع لا لددددددد طدددددددي ا ج لاق ددددددديلا -جضدددددددال لال كادددددددتش

. ن كدددددددق لالددددددديئط مددددددد ر لالق دددددددتكن تصددددددد مثلدددددددي ل ادددددددت كدددددددط ج ددددددد ث.يلاش لالعيم لدددددددبيدددددددتل

 يتل عل لال ت لب مقتاصبي ي كك لال جط لال عج كليت مشتل ب لالك.تش لالّعلشلب.

يقدددددت ي ث.يلاش لالعيم لدددددب دددد ددددد، لالعاقددددب صق دددددي طي قدددددب م سددددقب قتكادددددب كددددق لال قعددددد لا لددددد يددددتل

ئددددديلا د. نقدددددب اكقدددددت كدددددق جقلدددددلط لالّي قدددددب لالاق ي دددددب تايشدددددب - كدددددق جققلدددددب جضدددددال لاليمدددددع ر

مسددددد بمل قت دددددب امدددددع فددددد اب لاش م دددددبا م دددددع يك.دددددب ث.ددددديلاش لالعيم لدددددب صدددددعلاا مددددد لال

C/C++ لالّي قدددددددب لالاق ي دددددددب ج ا دددددددت يددددددد للا ا لدددددددب لك.ت دددددددب دددددددع . نقدددددددب نيددددددديش لالق دددددددتكن ر

 كق ثليا م لالّي لالعلاال لالاستشا ستيقب.

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

