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ABSTRACT 

The number of applications needing big data is on the rise nowadays, where big data processing tasks are sent 

as workflows to cloud computing systems. Considering the recent advances in the Internet technology, cloud 

computing has become the most popular computing technology. The scheduling approach in cloud computing 

environments has always been a topic of interest to many researchers. This paper proposes a new scheduling 

algorithm for data-intensive workflows based on data dependencies in computational clouds. The proposed 

algorithm tries to minimize the makespan by considering the details of the workflow structure and virtual 

machines. The concepts and details defined and considered in this study have received less emphasis in previous 

works. According to the results, the proposed algorithm reduced the duration of communication between tasks 

and runtimes by taking into account the features of data-intensive workflows and proper task assignment. 

Consequently, it reduced the total makespan in comparison with previous algorithms. 
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1. INTRODUCTION 

The current computing structures for today’s applications are growing in the form of a variety 

of networks, clusters and clouds, among which cloud computing has rapidly become a widely 

acceptable sample for scientific experiments, big data analysis and data-intensive applications.  In 

such a distributed computing environment, data-intensive applications require high-performance 

computing resources to facilitate proper execution of tasks [1][2]. Scheduling is a very 

important problem in cloud computing systems, a goal of which is to make optimal and 

efficient use of resources and respond to users in real time. Due to the massive system scale and 

inherent complexity of applications, workflow scheduling is considered an NP-hard problem. 

Most of the big data applications contain hundreds of closely related tasks requiring to read 

or write massive amounts of data [3]. These applications which usually need to interact with 

their data are called data-intensive applications. The makespan of a data-intensive application is a 

very important efficiency criterion, which can be affected by many factors, such as the task 

scheduling mechanism, server load, communications and data access delay. For instance, the 

network performance can significantly affect data access delay and, as a result, the makespan 

[4][5][6]. The Directed Acyclic Graph (DAG) model is a popular, effective and common 

method of displaying complicated applications [7][8][9][10]. The workflows in data-intensive 

applications usually act as a series of interconnected tasks with data/control dependencies [11]. 

Increasing communication costs is evidently ideal for performance enhancement, especially for 

data-intensive applications. However, this is not always possible for various reasons. For 

example, data might be located in the local storage facilities, but the user is forced to outsource 

the computation to a cloud because of overloaded local processing nodes or needs to higher 

computing capacity [12]. Since the workflow scheduling of data-intensive applications has been 

considered a serious problem recently, this paper proposes a low-complexity heuristic algorithm 

to improve the runtime by considering data exchange, workload balance, properties of data-

intensive applications and heterogeneity of machines. 

The proposed algorithm attempts to reduce the average makespan by considering the properties 

of applications needing big data by defining new concepts, such as sensitive tasks and bottleneck 

tasks and scheduling based on considering machines’ characteristics (such as powerful or weak 
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communicating capabilities), noting the homogeneity and heterogeneity of tasks in the workflows 

of data-intensive applications and resources in the cloud environment. The proposed algorithm 

analyzes the workflow’s graph structure and identifies the important subtasks (sensitive and 

bottleneck subtasks) considering the degree of vertices and the number of parents and children to 

reduce the runtime by striking balance in task mapping between machines. The algorithm consists 

of two steps to find the best machine for task assignment. The first step identifies and assigns 

sensitive tasks and the second step assigns insensitive and bottleneck tasks. 

The rest of this paper is structured as follows: Section 2 reviews the literature. Section 3 presents 

the relevant concepts. In Section 4, the proposed algorithm and solution are introduced. Section 5 

presents the simulation results. Finally, Section 6 reaches a conclusion and discusses future works. 

2. RELATED WORKS 

Cloud computing environments are nowadays used in nearly every field, such as engineering, 

mathematics, fundamental sciences and biotechnology. Significant studies have been conducted 

on management, scheduling and resource allocation and provisioning in cloud computing 

environments [3][7][13]. Workflow scheduling is used as an effective tool for system efficiency 

and performance enhancement. The workflows of data-intensive tasks (refer to large-scale 

data) are increasingly becoming more common in today’s applications. Thus, scheduling 

algorithms should be modified and redesigned with respect to the specific features of these data-

intensive workflows. Some of the studies on scheduling and resource allocation are reviewed in 

this section. 

The paper presented by [14] introduced a workflow scheduling method for large-scale distributed 

systems from the perspective of Quality of Service (QoS) and data location analysis. The goal of 

this method is usually to provide a single relation and a scalable storage solution for cloud 

applications through storage on public services. The paper presented by [15] proposed an efficient 

algorithm for cloud workflow scheduling named Efficient Workflow Scheduling Algorithm 

(EWSA), which can manage a large number of applications simultaneously. The goal of this 

algorithm is to estimate the runtimes of all dynamic resources in order to maximize the use of 

resources and execute workflows in predetermined intervals. The paper presented by [16] 

introduced a Grouped Task Scheduling (GTS) algorithm by using QoS to estimate user 

requirements. This scheduler employs the min-min algorithm for the prioritization of batches. The 

authors in [17] employed the division algorithm for cloud computing scheduling with various 

databanks. A Divisible Load Theory (DLT) scheduling strategy is used for data-intensive 

computational loads in a heterogeneous cloud computing environment to minimize the total 

makespan and maximize the system efficiency by recovering a partitioned load from numerous 

databanks with respect to the distribution rate of databanks and the speed of each role. The paper 

presented by [18] analyzed task scheduling in the cloud environment by adopting a soft computing 

technique, in which the Genetic Algorithm (GA) was integrated with fuzzy sets for load balancing 

in the cloud environment. The final goal was to reduce the makespan in the cloud environment, 

so that computing resources would not be wasted. The paper presented by [19] introduced a 

Modified Genetic Algorithm (MGA) for resource-scheduling and proposed a workflow 

framework for cloud computing with a resource scheduling mechanism to improve the use of 

resources and system efficiency with respect to the QoS requirements. 

The paper presented by [20] proposed an algorithm based on the Augmented Shuffled Frog 

Leaping Algorithm (ASFLA). The proposed algorithm determines the number of available virtual 

machines and employs the ASFLA to map the tasks in batches onto virtual machines for 

makespans. The paper presented by [21] introduced a workflow-scheduling technique aware of 

the data transfer duration and location based on the network bandwidth in a distributed 

environment with heterogeneous resources in addition to a local resource management method 

for data workflows in the cloud environment. The proposed algorithm employs the data workflow 

parallelization technique along the execution of tasks to reduce the execution cost of a workflow. 

In the paper presented by [22], a data-intensive application workflow-scheduling method was 

proposed for the heterogeneous computing environment (I-PDEA: Improved Partition-based 

Data-intensive Workflow Optimization Algorithm) to enhance the system throughput by 
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partitioning data workflows and mapping each partition to the available heterogeneous resources 

having the minimum runtimes. A Partial Critical Path (PCP) algorithm was introduced in [11] to 

minimize the workflow execution costs while satisfying the makespan constraints. The Multi-

Cloud Partial Critical Paths with Pre-treatment (MCPCPP) algorithm reduces the execution cost 

of a workflow in a makespan by finding multiple critical paths in that workflow and assigning 

them to the available computing services with the lowest cost. The paper presented by [23] 

proposed a scheduling algorithm, named the Granularity Score Scheduling (GSS) based on the 

details of the tasks in a workflow to minimize the runtime and maximize the efficiency of the 

workflow system in data-intensive applications. The proposed algorithm consists of three phases 

named level B (the maximum task length of an output task), task ranking and task mapping onto 

virtual machines. The paper presented by [24] introduced a scheduling algorithm which not only 

considered the computing capacity of existing virtual machines, but also the connection and access 

delays. The proposed algorithm also considered the different makespans of tasks to reduce the 

runtime by allocating tasks to more powerful machines. In addition, some of the subtasks can be 

executed simultaneously. 

The paper presented by [25] introduced a scheduling algorithm on the volunteer computing 

systems. For this purpose, workflows were divided into sub-workflows to minimize data 

dependencies. The sub-workflows were then assigned to the distributed voluntary resources 

(executive nodes) with respect to the proximity of resources and load distribution policies. If the 

sub-workflows miss their sub-makespans due to a long waiting time, the scheduling will take 

place on the public cloud resources. The paper presented by [26] proposed a mechanism based on 

the workflow structure to identify the number of necessary virtual machines, configure these 

machines based on the aforementioned structure and optimize data transfer between tasks. This 

algorithm schedules tasks in a way that the number of executed tasks in each sample equals the 

number of virtual machines employed to run the workflow. The authors in [27] introduced a QoS-

based workflow scheduling method and described the minimum effect imposed by the new input 

data to force rescheduling the workflow process. For this purpose, a database was used for data 

storage. The proposed algorithm is run through the Markov chain by scheduling the most 

complicated branch to the least complicated branch and allocating them on highly accessible 

machines with low costs. Given the importance of workflow scheduling in data-intensive 

applications and relevant studies conducted in recent years, most of the proposed approaches have 

focused on optimization of general scheduling and runtime minimization. None of the studies 

dealt with the different features of machines and the effects they might have on the execution of 

the DAG workflow. The different structures of machines have also been neglected. 

The scheduling approach proposed in [28] considers the impact of communication between two 

tasks when building the schedule of a scientific workflow. It attempts to assign pairs of tasks with 

significant data transfers to the same computational node in order to minimize the overall 

communication cost. The authors in [29] proposed an immune particle swarm optimization 

algorithm (IMPSO) to solve the workflow scheduling problem with more speed and quality. In 

solving this problem, they have considered optimizing both execution time and cost criteria. In 

[30], the authors proposed a multi-objective workflow scheduler based on a prediction-based 

dynamic evolutionary algorithm. They also employed neural network to improve the answers' 

quality. They considered resources' failures to achieve more reliable task-resource mappings. 

They considered the estimated time to transfer data as a parameter in the objective function. 

Researchers in [31] proposed a list-based scheduling algorithm called CAS-L1, which is a 

contention- aware algorithm. CAS-L1 is a heuristic scheduler based on lookahead technique, 

which schedules data transfers explicitly. Although this scheduler is a successful one for data-

intensive workflows, it does not take into account the data exchanges of all workflows running at 

the same time and even other network traffic. The scheduler proposed in [32] called Minimum 

Communication Cost (MCC) algorithm focused on links’ available bandwidth and data files’ size 

that should be transformed. It can minimize communications effectively; however, lack of 

attention to the computing power of machines and their different ability to run different tasks is a 

point that has received less attention in this algorithm. 

Compared to these previous works, we have defined and considered new concepts to focus on the 

data dependencies of a workflow that help map sub-tasks to a more appropriate machine. Also, 
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the distinct ability of machines to perform different tasks has been considered in achieving better 

mappings. This paper tried to propose a novel approach by defining new concepts, considering 

different capabilities of machines to execute data-intensive tasks with respect to memory, 

processing speed, storage space, relevant effects on task execution, different structures of data-

intensive workflows and complying with balance in existing machines and necessary data. 

3. RELEVANT CONCEPTS 

3.1 Sensitive Task (Ts) 

If the runtime of a task on some machines differs significantly from that on other machines, this 

task is called sensitive. In fact, when the runtimes of a task on different machines are sorted in an 

ascending order, the task is defined as sensitive if its runtime on one machine is at least two times 

longer than its runtime on the previous one [33]. This new concept has been defined in order to 

identify tasks the execution time of which has undergone many changes according to existing 

computing resources and to allocate resources with more attention to them. 

3.2 Competent Machine 

A machine or a series of machines can be considered competent to execute a task if the task’s 

runtime on them is significantly shorter (at least a half) than the runtime on other machines. For 

instance, a machine with sufficient memory or high processing power is the competent machine 

for a task if it is capable of executing that task at a significantly shorter time interval compared to 

the other machines. Therefore, a competent machine is determined according to a specific task 

and the set of competent machines for a task includes all the machines from the whole cloud 

computing system that have a special ability to run that program and can do it at a run time at least 

a half of the run time on other machines. 

Depending on the characteristics of the tasks and the computing power of the resources, the 

execution time of the tasks will vary on different computing machines. The more the capabilities 

of a resource are in line with the requirements of a task, the more execution time will be reduced. 

The concept of a competent machine is defined so that the same fact (the suitability of some 

resources to perform certain tasks) can be considered in the scheduling problem. 

3.3 Bottleneck Task (Tbn) 

A bottleneck task in a workflow is defined to be the one which has a considerably high data 

dependency on the other tasks of the workflow. Considering the graph structure of a workflow, a 

node is called a bottleneck if its degree is three times higher than the average degree of the total 

nodes in that graph. The existence of sub-tasks that create bottlenecks in the execution of the 

workflow is common in parallel and distributed processing and therefore, this new definition can 

help identify these tasks and allocate a better resource to them. 

3.4 Machines with Fast and Slow Connections 

A machine is called fast-connected if the average delay time of its directly-connected channels is 

fewer than a half of the average delay time of all other machines. However, if this delay time is 

two times higher compared to the other machines, it is called slowly-connected. Paying attention 

to resource characteristics can help better map tasks. Recognizing high-speed communication 

machines will provide good options for bottleneck tasks. 

3.5 The Share of Each Virtual Machine from Computations 

The computation share of a virtual machine from executing a workflow is calculated as follows: 

m

m

Tn

j

m

i

ij

CV


 


1 1

                                                          (1) 

where m and n are parameters that indicate the number of machines and tasks, respectively and 
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Tij represents the execution time of task j on machine i. Since a balanced division of tasks between 

machines can help increase efficiency, calculating the estimated share of each virtual machine in 

total workflow processing can be a good indicator of achieving this balance and determining the 

appropriate amount of load to be placed on each resource. 

4. THE PROPOSED ALGORITHM 

4.1 Preliminary Definitions 

A data-intensive workflow is represented by a directed acyclic graph (DAG). Each workflow 

consists of edges showing the dependency between tasks. A time limit is defined as a deadline 

for each workflow. In this case, a workflow like w contains n tasks {T1, T2, …, Tn}. The system 

model includes m virtual machines {Vm1, Vm2, …, Vmm} and E shows the edges in the 

workflow graph. Figure 1 indicates a data-intensive workflow. The edge between i and j means 

that task Ti is the prerequisite of task Tj. In other words, Tj can start only after Ti is completed. 

The weights of edges indicate the time relationship between every two tasks. 

 
Figure 1. A DAG for a data-intensive application in the cloud computing environmen. 

The makespan is the total runtime of all tasks in a workflow and it is defined as follows: 

Ms=Mmax(Ms(VMj))                                                         (2) 

Expected Time to Compute (ETCij) is a matrix with i rows and j columns (1< i< n, 1< j< m) 

which shows the runtimes of tasks on different machines: 
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Moreover, CTij (1 < i, j< m) is introduced as a matrix indicating the relationship between VMi and VMj 

based on the communication times: 
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As discussed earlier, the goal of scheduling in cloud computing is to reduce the runtime by 

assigning the tasks of a data-intensive application to machines such that the total makespan is 

minimized. 
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4.2 The Proposed Scheduling Algorithm 

The proposed algorithm is a static workflow scheduling algorithm for the cloud computing 

environment. It is applied to the applications which require big data. It consists of two phases: 

sensitive tasks’ scheduling and insensitive/bottleneck tasks’ scheduling. The following pseudocode 

shows the details of the process. 

Algorithm 1: Pseudocode of the Proposed Algorithm 

Inputs: A DAG D = (T, E), an ETC matrix of size n × m and a CT matrix of size n × n 

Output: Schedule S of DAG 

  

 1     Tsort =Sort ETC Matrix Rows in Ascending Order  

2     sensitiveTasks=[ ] 

3     BestMachines=[ ] 

4     for i=1 to n 

5        for j=2 to m 

6           if Tsort(i,j)/Tsort(i,j-1) >=2 

7              Add i To sensitiveTasks set   // finding sensitive tasks 

8              BestMachines(i)=[M1, M2, ..., Mj]   //since the runtimes are sorted ascending 

9           end if 

10      End for j 

11   End for i 

12   AvgDeg=Calculate the average degrees of vertices of the DAG D 

13   BottleNodes=[ ] 

 14   for i=1 to n 

15      if  degrees of vertice(i) >= 3* AvgDeg 

16         Add i To BottleNodes set   // finding bottleneck tasks 

17      end if 

18   end for i 

19   AvgCommunications = Calculate the total average communication time based on CT matrix  

20   FastConnectionMachines=[ ] 

21   SlowConnectionMachines=[ ] 

22   For i=1 to n 

23      if  average time of communication for machine(i) <= AvgCommunications/2 then 

24         Add i To FastConnectionMachines set   // finding fast connected machines 

25      end if 

26      if  average time of communication for machine(i) >= AvgCommunication*2 then 

27         Add i To SlowConnectionMachines set 

28      end if 

29   end for i 

30   Sort sensitiveTasks by runtime in Descending Order 

31   sensitiveTasks = sensitiveTasks - BottleNodes 

32   ComputationalVolume = Sum(Average(runtime Tasks on machines)) /m 

33   for i=1 to m 

34      Capacity(i)= ComputationalVolume   // setting the computation share of each machine 

35   end for i 

36   Assign=[ ] 

37   for i=1 to length(sensitiveTasks)   // first phase 

38      for j=1 to length(BestMachines for task i) 

39         if (Capacity(BestMachines(j)>=ETC(i, BestMachines(j)) 

40            Assign(i)= BestMachines(j) 

41            Capacity(BestMachines(j))= Capacity(BestMachines(j))- ETC(i,BestMachines(j)) 

42         else if among the tasks of BestMachines(j), one can be moved to free space for task i 

43            move that task to another BestMachine  

44            Assign(i)= BestMachines(j) 

45            Capacity(BestMachines(j))= Capacity(BestMachines(j))- ETC(i,BestMachines(j)) 

46      end for j 

47      if the task i has not yet been mapped to a machine 

48         assign the machine with minimum runtime for task i and update the Capacity 

49      end if       

50   end for i   
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51   for each task i not assigned to a machine yet   // second phase 

52      candidate_1= Machine with max(capacity) 

53      candidate_2= Machine with min(ETC(task i)) 

54      candidate_3= Machine with the most parent or child tasks for the task i based on DAG D 

55      if task i is a bottleneck one 

56         candidate_4= Machine with fastest network connections 

57         if candidate_1 is a SlowConnectionMachine 

58            candidate_1=[ ] 

59         end if 

60         if candidate_2 is a SlowConnectionMachine 

61            candidate_2=[ ] 

62         end if 

63      else 

64         candidate_4=[ ] 

65      end if 

66      RT1 = Makespan of DAG D if  If the task i is mapped to candidate_1 

67      RT2 = Makespan of DAG D if  If the task i is mapped to candidate_2 

68      RT3 = Makespan of DAG D if  If the task i is mapped to candidate_3 

69      RT4 = Makespan of DAG D if  If the task i is mapped to candidate_4 

70      Assign task i to the machine with Min(RT1, RT2, RT3, RT4) and update its Capacity 

71   end for 

As can be seen, the proposed method considers the characteristics of resources and tasks, identifies 

sensitive and bottleneck tasks of the DAG and pays attention to the communicating capability of 

the machines. The resource allocation procedure is explained in more detail below. 

On Lines (1-11), the algorithm finds sensitive tasks and their competent machines. As discussed in 

the previous section, the rows of the ETC matrix are sorted out in an ascending order first. Every 

row is then checked to see whether the runtime (t) of a task on a machine is twice or greater 

than that  on the previous machine (Line 6). If true, that task is regarded as a sensitive task (Ts) 

and the previous machines (from the point on which the runtime is doubled) are considered 

competent for that task. 

Lines (12-18) show how the average degrees of graph nodes are determined and how the 

bottleneck tasks are found. On Line 12, the average degree of the graph nodes is calculated. Line 

15 determines whether there is a node the degree of which is three times or more than the average 

degree of the graph nodes. If there is a node matching the description, it is regarded as a bottleneck 

task (Tbn). 

On Lines (19-29), the algorithm finds and determines fast and slow machines. In this section, 

the machine communication time matrix (CTij) is employed to determine the average time of 

communications between machines (Line 19). It is then checked whether the runtime of a machine 

is shorter than a half of the total average and if this applies, the machine is considered to be fast-

connected. On the other hand, if the runtime is longer than twice the total average time, the machine 

is slowly-connected. 

The next steps deal with how each task is allocated to the best machine such that the total runtime 

of the graph is reduced. The algorithm instructions are discussed in the following sub-sections. 

The main algorithm consists of two phases, the first of which is the allocation of sensitive tasks 

and the second phase is about the allocation of insensitive and bottleneck tasks. 

4.2.1 First Phase: Allocation of Sensitive Tasks 

First, the sensitive tasks are sorted in a descending order based on the average runtime of each task 

on Line 30. If also included among the bottleneck tasks, that sensitive task is not considered in 

this step (Line 31). This is because proper scheduling of bottleneck tasks is a key factor in reducing 

runtime in data-intensive workflows. As discussed earlier, since the balance between machines is 

a condition for the execution speed of tasks, Line 32 determines the computational load share 

of each machine to comply with the balance. In the next step, the sensitive tasks should be 

allocated to the best machine, which is performed in Lines 37-50. All of the sensitive tasks are 

sorted out in a descending queue and then the largest one is selected and allocated to the most 
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competent machine. Since the computational capacity (the computation share) of each machine 

was determined earlier, the runtime of a task should be subtracted from the computational load 

of that machine after the task is allocated, so that the available time of each machine is obtained 

to observe the balance condition (Line 41). If a common machine is calculated to be competent 

for several sensitive tasks, then the best case should be selected for allocation. For instance, if 

multiple sensitive tasks are already running on a machine, when a new task is to be assigned to 

the machine to complete the computational capacity of that machine, some of the previous tasks 

should be allocated to their other competent machines in the following way: 

Regarding every sensitive task on that machine, it should be checked whether  there is another 

competent machine. If so, the reduction in the runtime should be determined. After determining 

the reductions in runtimes for all sensitive tasks on that machine, the machine offering the 

smallest runtime is selected and the sensitive task experiencing the smallest reduction is allocated 

(moved) to its other competent machine. After performing this process, all of the sensitive tasks 

are scheduled on their competent machines. When all the sensitive tasks are finished, the 

remaining tasks are allocated in the next phase. 

4.2.2 Second Phase: Allocation of Insensitive Tasks and Bottlenecks 

Regarding every insensitive task, three machines are selected from the existing available 

machines: 1- the emptiest machine (the machine with the lowest allocated computational 

load), 2- the fastest machine (the machine which performs the task in the shortest period) and 

3- the machine that hosts the largest number of parents or children of the intended task (Lines 52-

54). 

If the task is a bottleneck, there is also a fourth option: 4- the machine with fastest 

communications (Line 56). If a task is a bottleneck and the main share (more than a  half) in 

its degree is due to its children, this task should be assigned to a machine with high 

communication capacity. Therefore, if the fastest and the emptiest candidate machines are slow 

in terms of communication, these two machines will be excluded from the list of candidates 

(57-62). Lines 66-70 determine on what candidates the insensitive and bottleneck nodes have 

the minimum runtime. The best machine is found as follows: 

The graph is analyzed from the first node. Every insensitive and bottleneck task would be assigned 

to a candidate; i.e., the emptiest machine, the fastest machine, the machine with the largest 

number of parents and children or the machine with fast communications to determine the total 

runtime of the graph. The task is then assigned to the candidate offering the minimum makespan. 

The following steps are taken to determine the total runtime of a graph for each task on the 

candidate machines: 

1. If tasks are already assigned to a machine on both sides of an edge, both the runtime 

and connection delay will be known. 

2. If only one of the two-sided tasks of an edge is mapped, the average runtime of all machines 

for the unmapped task will be considered as an estimate for its runtime. Also, the average 

communication time between the mapped task’s machine and other machines will be 

considered as an estimate for communication delay for this edge. 

3. If no tasks are assigned on both sides of an edge, the runtime is considered the average runtime 

of all machines and the connection time is the average connection time of the entire graph. 

The same procedure is followed to assign all tasks to their corresponding proper machines 

offering the minimum workflow makespan. In this study, fast-connected machines were employed 

to execute the bottleneck tasks given their large number of connections required; i.e., parents 

and children, so that the runtime could be optimized by reducing the communication delays. The 

makespan of the workflow is determined by finding the critical path of the graph. 

4.2.3 Time Complexity of the Algorithm 

Based on the pseudocode provided, it can be stated that most of the computations occur in nested 

loops of lines 37 to 50. In the worst case, if all the tasks are sensitive and all the machines are 
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available for mapping, according to the search performed in the body of these loops, we can say 

that the algorithm of the proposed method has a complexity of the order of O(m x n x log n). 

Parameter m indicates the number of available machines and parameter n indicates the number of 

jobs. 

5. SIMULATION RESULTS 

This section describes the performance evaluation of the proposed method. First, the 

benchmark workflows used in the experiments are described and then the system simulation 

conditions and configuration are detailed. Finally, the results of evaluation and performance 

analysis of the proposed method in comparison with GSS [23], CAS-L1 [31] and MCC [32] are 

described. 

5.1 Benchmark Workflows 

The workflows used in the experiments are generated based on real applications’ structures. There 

are four types of workflow applications named Cybershake, Epigenomics, Montage and Inspiral 

(LIGO), which are used extensively for generating synthetic workflows in previous related 

research. Figure 2 shows these workflows: 

1. Cybershake: This application is utilized to describe the hazards of earthquakes in a 

specific region by using the seismic hazard curve. 

2. Epigenomics: This application is employed to show the epigenetic status of human cells 

on a large scale in genome. 

3. Montage: This application was developed by NASA/IPAC to generate the aerial input 

images in a customized tiled format. 

4. Inspiral (LIGO): This application was based on Einstein’s theory for the detection of 

gravity waves. 

 

 

 

 

 

 

(a)   (b)     (c)         (d) 
 

Figure 2. The structures of benchmark workflow applications [24]. 

More details of these applications can be found in [34][35]. Based on these structures, 400 

synthetic workflows are generated using [35], 100 instances of each type. Since these structures 

are derived from real applications, it helps to have a fairer evaluation than using graphs that are 

made completely at random. Since this research focuses on data-intensive workflows and to better 

evaluate the proposed method, these workflows have been created from various CCR 

(communication to computation ratio) values (from 0.3 to 0.7). Higher values of the 

communication to computation ratio correspond to more intensives workflows. Task compute 

amounts and data transfer sizes are generated randomly with uniform distribution. 

5.2 Simulated System Configuration 

Cloudsim simulator [36] is used to model a realistic computing system and network. The 

system includes a cluster of 10 processing elements each one having 8 computing cores. 
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Therefore, 8 virtual machines can be run in parallel on each physical host. The computation 

power of these machines is set based on the characteristics of real-world cloud systems (i.e., 

Amazon’s EC2). These machines are connected with Gigabit Ethernet network. However, 

communication links are considered to have different delays, which are determined randomly in 

the range of 10 to 100 milliseconds. 

In the following part, the experiments performed are described and their results are analyzed. In order 

to examine the effect of defined concepts, such as sensitive work and bottlenecks, an attempt has been 

made to examine the performance of the proposed method in different cases of the number of sensitive 

tasks and the heterogeneity of resources in the system. The experiments described in the next sub-section 

were repeated 10 times and the mean values obtained were reported as a more reliable result. 

5.3 Experimental Results 

As discussed earlier, paying attention to the structure of workflows and considering the fact that 

one machine may be good for running one program while being not well for another, the proposed 

scheduling method is distinguished from previous ones. In fact, looking at the features of the 

task and the machine separately cannot always lead to proper mapping and one must look at 

the program and machine together. The concept of sensitive task defined in this research wants 

to say that among the available resources, some machines may be much more suitable for 

performing some tasks than others and this issue should be a priority in mapping tasks to resources. 

Three factors are considered in the performance of the proposed method and its performance is 

compared with previous work in terms of: the number of sensitive tasks, the number of employed 

machines and the heterogeneity or homogeneity of resources. 

5.3.1 Different Numbers of Sensitive Tasks 

In the first scenario, the number of sensitive tasks of each graph was changed in the workflows 

when the number of machines was constant. These changes can be controlled when setting the 

runtimes of each workflow on each virtual machine (the ETC matrix). Figure 3 shows the 

experimental results for performance evaluation of the proposed method. 

 
 

Graph (a) with 5 virtual machines Graph (b) with 7 virtual machines 

 

 
 

Graph (c) with 8 virtual machines Graph (d) with 12 virtual machines 

Figure 3. The performance of the proposed method in comparison with previous related 

works for different numbers of sensitive tasks in the workflows. 



359 

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 04, December 2021. 

According to the results, a reduction in the execution time of workflows for the proposed method 

is visible compared to other methods. Paying attention to sensitive and vulnerable tasks and the 

priority in scheduling these tasks has led to this improvement. As the number of sensitive tasks in 

the workflow increases, the superiority of the proposed method in improving execution time 

becomes more apparent. 

5.3.2 Different Numbers of Virtual Machines 

In the second scenario, the performance of the proposed method in comparison with other methods 

is evaluated for different numbers of virtual machines. Other factors such as the number of 

sensitive tasks and the data-intensive nature of workflows are considered the same. Figure 4 

shows the results for each type of workflow structure. 

Graph (a) with 6 sensitive tasks Graph (b) with 7 sensitive tasks 

Graph (c) with 4 sensitive tasks Graph (d) with 6 sensitive tasks 

Figure 4. The performance of the proposed method in comparison with previous related works 

for different numbers of virtual machines. 

Based on the results, it can be said that regardless of the number of virtual machines used, 

the proposed method shows better performance compared to similar previous methods. This may 

be due to the fact that the proposed method pays special attention to the structure of workflows, 

bottlenecks and sensitive tasks. The increase in the number of virtual machines in general has 

further improved the performance of the proposed method and this may be due to more options for 

scheduling decisions. 

5.3.3 The Degree of Resource Heterogeneity 

In the third scenario, an attempt has been made to evaluate the performance of the proposed method at 

different levels of resource heterogeneity. The results are presented in three categories: homogeneous, 

heterogeneous and moderate heterogeneity. It is expected that as the heterogeneity in resources 

increases, the performance of the proposed method will also improve. Since the proposed method 

pays attention to the fact that some resources have special capabilities to run some tasks, so 

increasing heterogeneity while increasing the options for scheduling, the chances of such 

capabilities among the available machines for execution of a task also increase. 
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                                 Graph (a)                                                                        Graph (b) 

                              Graph (c)                                                                          Graph (d) 

Figure 5. The performance of the proposed method in comparison with previous related 

works at different levels of resource heterogeneity. 

As can be seen from the results, the proposed method has been successful in reducing the 

execution time of data-intensive workflows compared to similar previous works. Attention to 

the graph structure of workflows, detection of bottlenecks and sensitive programs and 

allocation of appropriate resources to them with higher priority, attention to different features 

of machines in communication delays and balancing computational load can be mentioned as 

reasons for this performance. 

6. CONCLUSIONS AND FUTURE WORK 

Applications requiring big data have now gained more importance as their usage continues to 

grow. Therefore, it is necessary to focus on their scheduling methods and consider their differences 

to manage them better. In the proposed m e t h o d ,  a heuristic scheduling algorithm with a low 

time complexity was introduced to minimize the workflow makespan by analyzing workflows’ 

graph structure and the tasks’ runtime on machines of different physical capabilities. This 

procedure also considered that all the data required by a task might be read from the database 

in a single attempt. Additionally, the connections between machines were taken into account 

to find fast-connected machines for those tasks requiring more data transformation; i.e., 

bottleneck tasks, in order to reduce the makespan of data-intensive workflows. The proposed 

method, based on the results, has had a more successful performance in reducing the total time 

required to execute workflows compared to other previous methods. 

In future work, it is possible to deal with the interference of virtual machines located on one host 

on each other's performance and by modeling these effects to incorporate them into decisions. 

Also, considering the chance of machine failure when scheduling to increase system reliability 

can be another effective factor in scheduling decisions. Reducing energy consumption along with 

workflow execution time can turn the scheduling problem into a two-criterion optimization 

problem. 
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 ملخص البحث:

تقتررررره  لرررررخو رزميةرررررة  مريدةًرررررة ات زرررررةث ات رررررتات زترررررتى ق   رز  ررررر    ً رررررة رز ً  ررررر     ررررر  ت   ررررر  

رررررر      رز   ررررررم ًة    ت رررررر  ا رزيمريدةًررررررة رز قتهلررررررة رزتق ًرررررر  رزرررررر  ر ت  د ررررررة رز ً  رررررر   ىررررررب رز  

ًررررررررة تررررررررتى   رز  رررررررر   ر       رز ررررررررت  رند رررررررر  ةررررررررف  يرررررررر   رز  رررررررر  ةرررررررر  ر ت رررررررر ي ت   ررررررررً     

ر ىتهرضرررررًة   تلإرررررتي رأنررررر يا رزررررر  يل  رز  ررررر لًف  رزت   رررررً  رزترررررب ترررررف  ت ه   ررررر   ي رررررخل    رررررًف 

ر  ت ررررر ي ىرررررب رزيمريدةًرررررة رز قتهلرررررة زرررررف ت ررررر   ةررررر     رررررب ةرررررف ر لت ررررر   ىرررررب ي  ررررر  ث  ررررر  قةث 

 ة  ث ة 

ف رز   ررررررر     ررررررر  رز تررررررر الخ ىقرررررررت ة   رررررررت رزيمريدةًرررررررة رز قتهلرررررررة دةرررررررف ر ت  ررررررر ا  رررررررً    ررررررر  ت 

رررررر    تررررررتى ق   رز  رررررر    ً ررررررة رز ً  رررررر    رزت ي ررررررً    ىتررررررهر  رزتنررررررأً   ررررررف ّه رررررر  ي ررررررخ  ن

ة رز  يررررررر   رز    رررررررف ز    ررررررر     رررررررًف ر  ت ررررررر ي     ز تًلإرررررررةخ     رررررررت رزيمريدةًرررررررة رز قتهلررررررر

   زيمريدةً   رزمريدا ىب ي   اث    قةث لما رز مضمع  رأا  زب ز     ةق ي ةت 
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