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ABSTRACT 

This paper deals with modeling and verification of software systems by combining UML diagrams and Pi-

calculus. UML 2.0 Activity diagrams are used for modeling the behavior of software systems, while Pi-calculus 

is used for semantic and verification purposes. More precisely, UML is a semi-formal language and so it needs 

formal semantics for its constructs and lacks tools for verifying properties. To this end, we propose an approach 

and a tool called AD2PICALC for transforming UML 2.0 Activity diagrams to Pi-calculus processes using 

Eclipse Xpand and TGG tools. The obtained Pi-calculus processes are then used as input for Pi-calculus tools, 

like MWB, to verify some properties as deadlocks, safety, determinism, termination and livelock. We illustrate 

our contribution through an example from the literature and verify the property of deadlock using MWB tool. 

The main contribution of this paper lies in the automation of the transformation approach using TGG tools. 

KEYWORDS 

Model-driven engineering, TGG, Xpand, UML activity diagrams, Pi-calculus, Model transformation, Graph 

transformation, Software systems. 

1. INTRODUCTION 

A critical system is a system the "failure" of which is a threat to human life, to the environment of the 

system or to the existence of the organization that manages it. Examples of critical systems include - 

among others- communication systems, embedded control systems, command and control systems and 

transport systems. The cost of a failure in a critical system could exceed the cost of the system itself. 

Nowadays, most of critical systems are computer-based. Therefore, to develop powerful and 

sophisticated software, the modeling and verification of such systems seem to be the best solution for 

such task.  Specifically, modeling facilitates the understanding of their complex behavior and also 

simulates these systems, while verification ensures their accuracy. The combination of UML diagrams 

and formal methods is a very suitable approach for the development of software systems [1]-[2]. 

Unified Modeling Language (UML) [3] is a well-known standard notation used to model object 

oriented software systems. It provides methods that are structured, semi-formal and graphical for 

specification, but not suitable for verification and validation of software systems. UML has different 

kinds of structural and behavioral diagrams. Each diagram is dedicated to a description of different 

aspects of a complex (software) system. UML Activity diagrams are used to model easily the dynamic 

behavior of workflow systems. One of their main purposes is to model software processes and 

business processes and represent control flows between activities. On the other hand, formal methods 

are used in software engineering to reason about mathematical models by proving or verifying 

properties (e.g. deadlock) of models. They are used to ensure that these systems are developed without 

error; i.e., these systems are free of deadlock, safe, deterministic, terminating and free of livelock. 

However, the analysis and design work with formal methods is very expensive and requires 

mathematical skills. To bridge the gap between formal methods and semi-formal ones [4], several 

researchers proposed approaches allowing the integration of formal models supporting formal 

verification in semi-formal models.  
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In the present work, our main contribution consists of an integrated approach and a tool (called 

AD2PICALC) combining UML 2.0 activity diagrams and Pi-calculus [5]-[6] for the development of 

software systems. This approach is based on modeling, meta-modeling and model transformation, 

which are the fundamental concepts of Model Driven Engineering (MDE) [7]. Indeed, MDE is an 

active research area in both academia and industry. It aims to decrease the complexity of software 

development. It allows portability, interoperability and reuse. In this paper, we propose another way 

and a tool for transforming UML 2.0 Activity diagrams to Pi-calculus. This approach is based on 

Xpand [8] and TGG tool [9] which permits a bidirectional approach. As a semi-formal notation, UML 

2.0 Activity diagrams need formal semantics.  So, to implement a formal analysis of a UML activity 

diagram specification, we propose to translate it to Pi-calculus process. Therefore, the obtained 

process model can be automatically verified (whether it satisfies or not certain properties, such as 

deadlock) using Pi-calculus analytical tools, such as MWB [10]. Pi-calculus is a simple mathematical 

process model based on CCS, which stands for Calculus Communicating System, a language proposed 

by Milner in 1980 [11]. It belongs to the family of process algebras. Since UML activity diagrams are 

graphs, the proposed approach is based on graph grammars. TGG is used to implement the graph 

grammar.  

The rest of the paper is organized as follows. In Section 2, we discuss some related works. In Section 

3, we recall some basic concepts about UML 2.0 activity diagrams, Pi-calculus and graph grammars. 

In Section 4, we propose our approach and tool that combine UML 2.0 activity diagrams and Pi-

calculus process algebra for the development of software systems. In Section 5, we apply our approach 

on an illustrative example from the literature. Section 6 concludes the paper and gives some 

perspectives of this research work. 

2. RELATED WORK 

Many works tackled the problem of formalizing UML Activity diagram through translating it to 

formal standards supported by analysis facilities. In [12], the authors proposed activity diagram 

patterns for modeling business processes and a semantics for the activity diagrams, formalized by 

colored Petri nets. In [13], the authors defined semantics for activity diagram of UML by means of 

regular expression and its equivalent transition system. Moreover, they proposed a formal verification 

and traceability method for any activity model with the help of Arden's lemma. In [14], the authors 

transformed automatically UML 2.0 activity diagram to Petri nets. This transformation helps software 

designers analyze and verify properties using INA analyzer tool. In [15], the authors presented a 

transformation from Activity Diagram into its semantically equivalent Colored Petri Nets using 

Weighted Directed Graph. This transformation consists of two steps. In the first step, the UML 

Activity Diagram is transformed into a Weighted Directed Graph and in the second step, the Weighted 

Directed Graph is transformed into semantically equivalent Colored Petri Nets. In [16], the authors 

proposed a framework that provides formal definitions for UML Activity diagrams by transforming 

them to a formal representation called point graph (PG). The approach is illustrated with a case study 

at King’s College Hospital to improve patient flows of an accident and emergency department. In [17], 

the authors developed a specific tool, called MAV-UML-AD, allowing the specification and the 

verification of workflow models using UML activity diagrams and Event-B. The developed tool 

transforms an activity diagram model into an equivalent Event-B specification according to a 

mathematical semantics. They illustrated the use of the developed tool MAV-UML-AD using an 

example of specification and verification. In [18], the authors presented an approach that transforms 

the UML sequence diagrams, behavioural state machines and activity diagrams into a single Transition 

System to support model checking using NuSMV tool [19].  In [20] and [21], the authors presented an 

approach based on SCALA, an environment of executing Isabelle/HOL specifications that allows to 

transform UML State machine diagrams to Colored Petri Nets models. The authors also proved the 

correctness of certain structural properties of this transformation. 

Several approaches proposed semantics for UML diagrams using process algebras, like Pi-calculus. In 

[22], the authors have proposed an automatic translation of UML specifications made up of sequence 

and state diagrams into Pi-calculus processes. The central point of their proposed translation was the 

coherence of the two types of diagrams. In [23], the authors proposed an approach for mapping only 

UML state machine diagrams into Pi-calculus using TGG tool. In [24], the authors presented an 
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approach for capturing and verifying dynamic program behaviors using UML communication 

diagrams and Pi-calculus. In [25], the authors proposed an approach based on ATOM³ tool [26] for 

mapping UML 2.0 Activity diagrams to Pi-calculus. Other works used Petri nets and their extensions, 

like Colored Petri nets to formalize UML diagrams. In [27], the authors presented π-calculus 

semantics as a formal basis for UML activity diagrams. They showed manually and formally the 

consistency between the concepts of activity diagrams and π-calculus expressions. In our present 

paper, we propose an automatic mapping using TGGs tools [9] based on ideas presented in [27]. The 

main differences between our approach and the previously cited approaches of transforming UML 

diagrams to π-calculus are summarized in the following table. 

 Used UML Diagrams Manual Automatic Used Transformation Tool 

[22] Activity, sequence and 

state charts 

x   

[23] State chart  x TGG 

[24] Communication  x   

[25] Activity  x ATOM3 

[27] Activity x   

Our Approach Activity  x TGG 

 
The use of TGG graph transformation tool instead of ATOM3 is due to its ability to perform complex 

transformation and offer the capabilities needed to realize our ideas. Moreover, we have applied our 

approach and the developed tool on a complex illustrative example. 

3. BACKGROUND 

In the following sub-sections, we briefly recall some basic concepts about UML 2.0 Activity 

diagrams, Pi-calculus and graph grammars. 

3.1 UML Activity Diagrams 

Activity diagram is an important UML diagram to describe dynamic aspects of a system. Activity 

diagram is the object-oriented equivalent of flow charts and Data Flow Diagrams (DFDs) from 

structured software development. It is used to represent the flow from one activity to another activity. 

The activity describes a particular operation of the system. So, the control flow is drawn from one 

operation to another. This flow can be sequential, branched or concurrent. Activity diagrams allow 

dealing with all types of flow control by means of different elements, like initial, flow final, activity 

final, decision, merge, fork and join nodes. For more details, the reader is referred to [3].  

3.2 Pi-calculus 

The Pi-calculus [5] is an extension of CCS [11]. It is a process algebra where processes interact by 

sending communication links to each other. It can be considered as a mathematical model of processes 

the interconnections of which change when they communicate [6]. The transfer of a communication 

link between two processes is the basic computational operation. Then, the link is used for further 

interaction with other processes. Pi-calculus offers primitives for describing and analyzing global 

distributed infrastructure, focusing on process migration between peer process interaction via dynamic 

channel-private channel communication. Example applications include languages supporting 

distributed programming with process mobility: polyphonic C#, BPML description and analysis of 

authentication protocols: spi calculus typed processes to ensure fine-grained resource access control. 

For more details, see the excellent introduction to the Pi-calculus by Joachim Parrow [6]. 

3.3 Graph Grammars and TGG 

In the following part, we recall some concepts about graph grammars and TGG. 

3.3.1 Graph Grammars 

Before presenting the idea of TGGs, we begin with graph grammars [28]. A graph grammar evolves 

from Chomsky grammar on strings to graphs. It consists of a set of graph-rewriting rules. Each one 
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has a graph at its Left Hand Side (LHS) and another graph at its Right Hand Side (RHS), as shown in 

Figure 1. 

 

Figure 1. LHS and RHS of a rule. 

The semantics of a graph grammar rule is similar to classical grammars in formal languages. A graph 

grammar rule can be applied to some graph called host graph. If the LHS of the rule matches a part of 

the host graph, this part is replaced by the RHS of the rule. 

3.3.2 Triple Graph Grammars (TGGs) 

Triple Graph Grammars (TGGs) have been proposed by Andy Schϋrr in 1994 for model 

transformation using graph grammars [28]. They allow the user to define a transformation (in both 

directions) in a declarative way. More precisely, Triple Graph Grammars (TGGs) are used for defining 

the correspondence between two different types of models via sets of corresponding graphs [29]. Each 

element of this set is a triple consisting of two independent graphs that are linked via a third graph, 

called the correspondence graph. Because of this triple structure, such a graph is also called a triple 

graph. These different graphs in a triple graph are typed over different type graphs. TGG rules are 

non-deleting graph production rules that describe how, based on a start graph or axiom, triple graphs 

can be created. Triple graphs that can be created by a TGG are called valid triple graphs. Transferred 

to the modeling world, TGGs define sets of corresponding models, also called triple models, where the 

independent models, called domain models, are instances of different meta-models. The domain 

models are linked via a correspondence model, which is an instance of a correspondence meta-model. 

The advantages of TGGs reside in the fact that the definition can be made operational, so that one 

model can be transformed into the other in either direction; even more, TGGs can be used to 

synchronize and maintain the correspondence of the two models, even if both of them are changed 

independently of each other; i.e., TGGs work in an incremental way. 

3.3.3 Description of a TGG Rule 

It is important to notice that the models to be transformed by TGGs will be represented as object 

diagrams; and a class diagram represents the set of models to be considered (meta-model). So, a TGG 

rule consists of nodes and arcs that represent objects and links in the domain models. LHS and RHS of 

a rule contain nodes and arcs.  The old nodes and arcs are also called context nodes (nodes products) 

and edges of context (arcs products). The context nodes are shown as white boxes with a black border; 

nodes products are shown as green boxes with a border-dark green and labeled “+ +”. The arcs of 

context are shown as black arrows; arcs products are shown as arrows with dark green labeled ’’+ +”.  

Further constraints on attribute values and states of implementation can be formulated in a TGG rule. 

In a transformation, it has many strings as values of any price in the target model to be chained to 

different information in the source model. In a TGG rule, OCL expressions can be used in the 

constraints of attribute values and states of implementation. They are shown as rounded rectangles in 

yellow TGG rule [30]. 

4. OUR APPROACH 

In this section, we present an approach of mapping UML 2.0 Activity diagrams to Pi-calculus 

expressions. The objective of this transformation is to formally verify the desired properties of models 

using the analytical techniques and verification tools of Pi-calculus.  

The main idea of our approach is depicted in Figure 2. It consists of three steps: (1) transforming an 

activity diagram into its equivalent Pi-calculus model using TGG, (2)   generating the Pi-calculus code 

from the Pi-calculus model using eclipse Xpand code generator, (3) verifying the desired properties of 

the target model using the MWB Tools. In the following, we present first the meta-models, next the 
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transformation of activity diagrams to Pi-calculus processes using TGG tool and finally the translation 

of Pi-calculus models in abstract syntax to Pi-calculus code with Xpand tool. 

 

Figure 2. The architecture of our approach. 

4.1 Meta-models 

We follow the approach of triple graph grammars (TGGs), where the abstract syntax of both activity 

diagrams and Pi-calculus expressions is represented by UML object diagrams. A third meta-model is 

used to capture the relation between corresponding elements of activity diagrams and Pi-calculus 

expressions. In the following, we give the three meta-models in detail. 

4.1.1 UML Activity Diagram Meta-model 

We propose in Figure 3 a modified version of the meta-model of UML activity diagram (as a UML 

class diagram) presented in [3]. The motivation behind the modification is to adapt it to our purpose, 

sine the meta-model of [3] is bigger. In this meta-model, the class ModelElement is abstract, since a 

concrete element is Activity, or ActivityPartition, or ActivityEdge, or ActivityNode. Activity is 

composed from three classes ActivityPartition, ActivityEdge and ActivityNode. ActivityNode can be 

InitialNode, FinalNode, DecisionNode, MergeNode, ActionNode, ObjectNode, JoinNode or 

ForkNode. Activity Partition is composed from Activity Edge and Activity Node; Activity Edge can be  

ControlFlow or ObjectFlow. 

We have added to the ControlFlow class the following attributes: 

- visitorIN (integer)  to mark the  input edges of JoinNode and MergeNode.  

-  FinIN (boolean) to mark the last input edge of JoinNode and MergeNode. 

- visitorOUT (integer) to mark the output edges of ForkNode and DecisionNode. 

-FinOUT (boolean) to mark the last output edge of ForkNode and DecisionNode. 

An example of how a simple activity diagram is represented according to this meta-model is shown in 

Figure 4. On the left side, we find the graphical representation of an activity diagram as a concrete 

syntax. On the right side, we find the same pattern in its abstract syntax represented as a UML object 

diagram needed by TGG. 

4.1.2 Pi-calculus Meta-model  

Figure 5 shows the meta-model of the Pi-calculus processes. In this meta-model, there is a class for the 

root element ProcessComposition. This class is composed of a set of ProcessAssignments with at least 

one process. The left side of the assignment statement is the defined process (processIdentifier) and 

the right side refers to a ProcessExpression (process). The ProcessExpression can be an expression of 

Pi-calculus: Prefix, internalchannel, BinaryOperation, Restriction or Empty. A Prefix is composed of 

two parts; the left side one is an Event and the right side one is a ProcessExpression. An Event is: a 

Silent_Event, an Output_Event, an Input_Event, a Condidion or a Concurrency. An Output_Event is 
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composed of a Name. An Input_Event consists of a Name. A BinaryOperator (Choice, Concurrency 

or Condition) consists of a ProcessExpression. A Process consists of a Name or more. 

 
Figure 3. Adapted UML activity diagram meta-model from [3]. 

 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A simple activity diagram and its corresponding object diagram (in abstract syntax). 
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4.1.3 The Correspondence Meta-model 

In defining the relationship between activity diagrams and Pi-calculus processes, we establish the 

relationship by additional nodes that refer to elements of both diagrams. These nodes are called nodes 

of correspondence. The exact meaning will be clearer when we define the matching rules in Section 

4.2. Figure 6 shows the correspondence meta-model. We notice that these classes have other 

associations to classes of the two meta-models (Pi-calculus and activity diagrams), which are not 

shown in this diagram. 

4.2 The Transformation of Activity Diagrams to Pi-calculus by a TGG Graph 

Grammar  

In this part, we propose twenty (20) rules for transforming UML Activity diagrams to Pi-calculus 

processes. We recall that the source and target models are expressed as UML object diagrams. The 

transformation scheme is based on [27], where activity diagram nodes are transformed to Pi-calculus 

processes, whereas activity diagram transitions are transformed to input or output channels (names).  

In the following, we give the idea of some transformation rules and their representation in TGG. 

 
Figure 5. The Pi-calculus meta-model. 
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Figure 6. The correspondence model. 

4.2.1 The Axiom 

The axiom is the simplest relationship that transforms a simple activity diagram to Pi-calculus (Figure 

7). On the right side of Figure 7, the process InitialProcess is still left open, as indicated by points 

then, that part will be supplemented by other rules later. 

            ++ Activity: InitialProcess                                  InitialProcess ( …  )=(v …  ) ........... 

 

Figure 7. The idea of transforming an activity diagram into an initial process in Pi-calculus. 

 

The axiom shown in Figure 8 is the starting point of all transformations. An Activity corresponds to a 

ProcessComposition, which contains a ProcessAssignement. On the left side of ProcessAssignement, 

there is a ProcessIdentifier (Process) which takes the name of the Activity by OCL expression. On the 

right side, there is a Process (Restriction). Every pair of object diagrams for Activity diagrams and Pi-

calculus that can be constructed by applying the graph grammar rules, starting from this axiom at any 

matching position, represents a legal relation between the two kinds of models. This is the semantics 

of a set of TGG-rules. From this axiom, we will now discuss the new construction occurring in the 

activity diagram and show how the corresponding states are created in the Pi-calculus. 

 
Figure 8. The axiom in TGG. 

4.2.2 TGG Rule Transforming an Initial Node (InitialNode)  

The idea of transforming an initial node is shown in Figure 9. At the left side, there is an initial node 

IN1 connected to a control flow (indicated by green color and label-quests by + +). At the right side is 
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the corresponding Pi-calculus code. 

 
 

 

 

 

 

 

Figure 9.  The idea of transforming the initial node into Pi-calculus in concrete syntax. 

This idea of transforming an initial node is expressed by the TGG rule in Figure 10. 

4.2.3 TGG Rule Transforming an Action Node (ActionNode) 

The idea of transforming an action node is shown in Figure 11. We assume that the control flow x 

exists and now an action A and a control flow y are added to the diagram (shown in green and marked 

with ++). Now, at the right side, a ProcessAssignment is composed of two parts: a right side Process- 

 

Figure 10. TGG rule transforming an initial node. 

Identifier A (x, y) and a left side ProcessExpression containing a Prefix process. For the InitialProcess, 

we add a local port y, an operator of concurrency (|) and the process A (x, y). The corresponding TGG 

rule is shown in Figure 12. 

++ IN1 

++ X 

     IN1 (InStart, x) =   InStart.x̅. IN1 (InStart, x) 

     InitialProcess( InStart,… )= (v  xIN1 (InStart, x) | … 

 

++ IN1 

++ X 

     IN1 (InStart, x) =   InStart.x̅. IN1 (InStart, x) 

     InitialProcess( InStart,… )= (v  xIN1 (InStart, x) | … 

 

++ IN1 

++ X 

     IN1 (InStart, x) =   InStart.x̅. IN1 (InStart, x) 

     InitialProcess( InStart,… )= (v  xIN1 (InStart, x) | … 

 

++ IN1 

++ X 

     IN1 (InStart, x) =   InStart.x̅. IN1 (InStart, x) 

     InitialProcess( InStart,… )= (v  xIN1 (InStart, x) | … 

 

     IN1 (InStart, x) =   InStart.x̅. IN1 (InStart, x) 

     InitialProcess( InStart,… )= (v  xIN1 (InStart, x) | … 

 

++ IN1 

++ X 

     IN1 (InStart, x) =   InStart.x̅. IN1 (InStart, x) 

     InitialProcess( InStart,… )= (v  xIN1 (InStart, x) | … 
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Figure 11. The action node between two control flows. 

Figure 12. TGG rule transforming an Action node. 

4.2.4 TGG Rule Transforming a Final Node (ActivityFinalNode) 

The idea of transforming a final node is shown in Figure 13. We assume that the controle flow y exists 

and now a final node FNA is added to the diagram (again shown by green color and marked with ++). 
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A new ProcessAssignment is generated which consists of two parts: the ProcessIdentifier AFN (y) at 

the right side and the prefix process y.AFN (y) at the left side. In the process InitialProcess, we add a 

local port y as well as the Process AFN (y). The corresponding TGG rule is shown in Figure 14 

 

 

 

 

 

 

 
Figure 13. The idea of transforming a final node. 

 

Figure 14. TGG rule for a final node. 

Note: For lack of space, the reader is referred to our internal report [32] to see the rules of 

transforming the fusion node, the fork node, the join node and the decision node 

4.3 Generating the Pi-calculus Code from the Pi-calculus Model 

In order to check the correction of the target Pi-calculus models, we translate the Pi-calculus models in 

abstract syntax (conforming to meta-model) to Pi-calculus code (concrete syntax). This transformation 

is of model to text (M2T) type and is carried out using the Xpand tool of the EMF framework [31]. 

def 
y 

 AFN    ++           

AFN 

AFN (y) = y.AFN (y) 

 InitialProcess( … )=(v.. y..) …….| AFN (y) 
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First, we use the Ecore meta-model of the source Pi-calculus shown in Figure 5. Second, we define the 

Xpand template shown in Figure 15. This template maps a Pi-calculus model in abstract syntax to Pi-

calculas code. 

 
Figure 15. The Xpand template defined to translate a Pi-calculus model to Pi-calculus code. 

5. ILLUSTRATIVE EXAMPLE: TRANSFORMING AN ACTIVITY DIAGRAM TO A PI-

CALCULUS EXPRESSION 

We first deal with the transformation of the example. Then, we show the verification of Deadlock 

property using MWB Tool. 

5.1 The Transformation Process 

We have applied our approach on the example of Figure 16 representing an example of UML 2.0 

Activity diagram borrowed from [33] with some modifications. We have first expressed this example 
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in its abstract syntax (tree), as shown in Figure 17.  Then, we have executed our graph grammar on 

this example using the TGG interpreter, as depicted in Figure 18. 

Figure 17. The activity diagram example in 

its          abstract syntax (tree). 

Figure 16. The activity diagram in concrete 

syntax. 

Figure 18. Transforming the example        Figure 19. The corresponding Pi-calculus of the activity

using TGG interpreter.         diagram example in abstract syntax. 
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As a result, we have obtained the Pi-calculus model (abstract syntax tree) shown in Figure 19. 

Then, we have used Xpand tool to transform the Pi-calculus model (abstract syntax as a tree) to its 

textual form and obtained the final Pi-calculus code shown in Figure 20. 

Notation: The generated symbols of Pi-calculus are as follows: 

RESTRICTION: represented by the alphabet 'v' 

OUT_EVENT: represented by the channel name + _BAR   example: x = x_bar 

SILENT_EVENT: represented by 'Tau' 

InitialProcess(InStart,nohelp,askhelp,else,else,real)= 
( v  S1 S2 M1 M2 M3 M4 DM1 DM2 D3 C1 F1 F2 F3 F4 J4 J3 J2 J1 C2 E1 E2)(Initial(InStart,S1) 

|(calldriver(S1,S2)|(((decision1(M1,S2,nohelp,askhelp,M2,M3,else) 

|(assessdescription(M3,M4)|0))|(merge1(M2,DM1,M4)|((decision2(DM2,DM1,else,D3, 

real)|((((fork(F1,D3,F2,F3,F4)|(getD(F4,J4)|0))|(getC(F3,J3)|0))|(getB(F2,J2)|0))|(getA(F1,J1) 

|(join(E1,J1,J2,J3,J4)|(creatservicedescription(E1,E2)|final1(E2))))))|(merge2(DM2,C1,M1) 

|(creatalert(C1,C2)|final2(C2))))))|0))) 

Initial(InStart,S1)= InStart.S1_BAR.Initial(InStart,S1) 

calldriver(S2,S1)= S1.Tau.S2_BAR.calldriver(S1,S2) 

decision1(M1,S2,nohelp,M2,askhelp,else,M3)= S2.( v  X)Cn_BAR<X>.X(Y).( 
[Y=nohelp]M1_BAR. decision1(M1,S2,nohelp,M2,askhelp,else,M3)+([Y=askhelp]M2_BAR. decision1(M1,S2,nohelp,M2,askhelp,else,M3)+ 

[Y=else]M3_BAR. decision1(M1,S2,nohelp,M2,askhelp,else,M3))) 

assessdescription(M4,M3)= M3.Tau.M4_BAR.assessdescription(M3,M4) 

merge1(M2,DM1,M4) = (M2.DM1_BAR. merge1(M2,DM1,M4)+M4.DM1_BAR. merge1(M2,DM1,M4)) 

decision2(DM2,DM1,else,real,D3)= DM1.( v  X)Cn_BAR<X>.X(Y).( [Y=else]DM2_BAR. decision2(DM2,DM1,else,real,D3)+ 

[Y=real]D3_BAR. decision2(DM2,DM1,else,real,D3)) 

merge2(DM2,C1,M1)= (DM2.C1_BAR. merge2(DM2,C1,M1)+M1.C1_BAR. merge2(DM2,C1,M1)) 

fork(F1,D3,F2,F3,F4)= D3.( v     traversed)(F1_BAR.traversed_BAR.0|(F2_BAR.traversed_BAR.0| 

(F3_BAR.traversed_BAR.0|F4_BAR.traversed_BAR.0))).fork(F1,D3,F2,F3,F4) 

getD(J4,F4)= F4.Tau.J4_BAR.getD(F4,J4) 

getC(J3,F3)=  F3.Tau.J3_BAR.getC(F3,J3) 

getB(J2,F2)=  F2.Tau.J2_BAR.getB(F2,J2) 

getA(J1,F1)=  F1.Tau.J1_BAR.getA(F1,J1) 

creatalert(C2,C1)= C1.Tau.C2_BAR.creatalert(C1,C2) 

final2(C2)= C2.final2(C2) 

join(J1,E1,J2,J3,J4)= 

( v  received)(J1.received_BAR.0|(J2.received_BAR.0| (J3.received_BAR.0|J4.received_BAR.0))).E1_BAR.join(J1,E1,J2,J3,J4) 
creatservicedescription(E2,E1)=E1.Tau.E2_BAR.creatservicedescription(E1,E2) 

final1(E2)= E2.final1(E2) 

Figure 20. The final Pi-calculus expression. 

5.2 Verification of Deadlock Property 

In order to verify the deadlock property, we have first installed the Microsoft windows version of 

MWB Tool Version 4.137 under Standard ML of New Jersey (SML/NJ) Version 110.57 [34].  We 

will verify in the following the deadlock property on two examples: the illustrative example and 

another example with a deadlock.  

5.2.1 The Illustrative Example:  with No Deadlock 

The following subset has been taken as an input file process3.txt to MWB tool. We have adapted the 

pi-calculus expression of Figure 20 to the syntax of MWB, as shown in Figure 21. 
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agent Initialp(i,n,a,e,e10,r,c3,c4)= (^s1,s2,m1,m2,m3,m4,dm1,dm2,d3,c1,f1,f2,f3,f4,j4,j3,j2,j1,c2,e1,e2)(Initial(i,s1)  \ 

|(Calldriver(s1,s2)|(((Decision1(m1,s2,n,a,m2,m3,e,c3) |(Assessdescription(m3,m4)|0))|(Merge1(m2,dm1,m4)|  \ 
((Decision2(dm2,dm1,e10,r,d3,c4) | (((Fork(f1,d3,f2,f3)|(Getd(f4,j4)|0)|(Getc(f3,j3)|0))|(Getb(f2,j2)|0))| \ 

(Geta(f1,j1)|(Join(e1,j1,j2,j3,j4)|(Creatservicedescription(e1,e2)| \ 

Final1(e2))))))|(Merge2(dm2,c1,m1)|(Creatalert(c1,c2)|Final2(c2))))))|0))) 

agent Initial(i,s1)= i.'s1.Initial(i,s1) 

agent Calldriver(s1,s2)= s1.'s2.Calldriver(s1,s2) 
agent Decision1(m1,s2,n,a,m2,m3,e,c3)= s2.(^x)'c3<x>.x(y).([y=n]'m1.Decision1(m1,s2,n,a,m2,m3,e,c3)+ \ 

([y=a]'m2.Decision1(m1,s2,n,a,m2,m3,e,c3)+ [y=e]'m3.Decision1(m1,s2,n,a,m2,m3,e,c3))) \ 

agent Assessdescription(m3,m4)= m3.'m4.Assessdescription(m3,m4) 

agent Merge1(m2,dm1,m4)= (m2.'dm1.Merge1(m2,dm1,m4)+m4. 'dm1.Merge1(m2,dm1,m4)) 

agent Decision2(dm2,dm1,e10,r,d3,c4)= dm1.(^x)'c4<x>.x(y).([y=e10]'dm2.Decision2(dm2,dm1,e10,r,d3,c4)+ 

[y=r]'d3.Decision2(dm2,dm1,e10,r,d3,c4)) 

agent Merge2(dm2,c1,m1)=(dm2.'c1.Merge2(dm2,c1,m1)+m1.'c1.Merge2(dm2,c1,m1)) 

agent Fork(f1,d3,f2,f3,f4)= 

d3.(^traversed)('f1.'traversed.0|'f2.'traversed.0|'f3.'traversed.0|'f4.'traversed.0|traversed.traversed.traversed.traversed.Fork(f1,d3,f2,f3,f4)) 

agent Getd(f4,j4)= f4.'j4.Getd(f4,j4) 

agent Getc(f3,j3)= f3.'j3.Getc(f3,j3) 

agent Getb(f2,j2)= f2.'j2.Getb(f2,j2) 

agent Geta(f1,j1)= f1.'j1.Geta(f1,j1) 

agent Creatalert(c1,c2)= c1.'c2.Creatalert(c1,c2) 

agent Final2(c2)= c2.Final2(c2) 

agent Join(e1,j1,j2,j3,j4)= 

(^received)(j1.'received.0|j2.'received.0|j3.'received.0|j4.'received.0|received.received.received.received.'e1.Join(e1,j1,j2,j3,j4)) 

agent Creatservicedescription(e1,e2)=e1.'e2.Creatservicedescription(e1,e2) 

agent Final1(e2)= e2.Final1(e2) 

Figure 21. The final Pi-calculus expression respecting the syntax of MWB. 

This code is written in the file test14.txt. 

We have applied the command input "test14.txt" on MWB followed by the command deadlock Name 

of the agent as follows: 

F:\sml nj 110.57\mwb99-sources>sml @SMLload=mwb $* 

 The Mobility Workbench 

 (MWB'99, version 4.137, built Fri Jul 24 18:10:22 2020) 

MWB>input "test14.txt" 

MWB>deadlocks Geta 
No deadlocks found. 

MWB>deadlocks Getb 

No deadlocks found. 
MWB>deadlocks Getc 

No deadlocks found. 

MWB>deadlocks Fork 
No deadlocks found. 

MWB>deadlocks Join 

No deadlocks found. 
MWB>deadlocks Final1 

No deadlocks found. 

MWB>deadlocks Final2 
No deadlocks found. 

...... 

MWB> 

In conclusion, all the agents do not contain deadlock. 

In the following, we show an example containing a deadlock. 
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5.2.2 Example of UML-AD with the Presence of Deadlock 

The UML Activity diagram shown in Figure 22 is used to illustrate the presence of a deadlock. 

Agent Initialp(i,t1,f,c)=(^s0,s1,s2,s3,s4,s5,s6,s7)(Initial(i,s0)|A0(s0,s1)| 
Decision1(s1,s2,s4,t1,f,c)|\ 

A1(s2,s3)|A2(s4,s5)|Join(s3,s5,s6)|A3(s6,s7)|Final(s7)) 

agent Initial(i,s0)= i.'s0.Initial(i,s0) 

agent A0(s0,s1)= s0.'s1.A0(s0,s1) 

agent Decision1(s1,s2,s4,t1,f,c)= 
s2.(^x)'c<x>.x(y).([y=f]'s1.Decision1(s1,s2,s4,t1,f,c)+ \ 

[y=t1]'s4.Decision1(s1,s2,s4,t1,f,c))  

agent A1(s2,s3)= s2.'s3.A1(s2,s3) 

agent A2(s4,s5)= s4.'s5.A2(s4,s5) 

agent Join(s3,s5,s6)= 

(^received)(s3.'received.0|s5.'received.0|received.received.'s6.Join(s3,s5,s6)) 
agent A3(s6,s7)= s6.'s7.A3(s6,s7) 

agent Final(s7)= s7.Final(s7) 

Figure 23. The Pi-calculus code equivalent to the UML-AD of 

Figure 22. 

Figure 22. Example of AD with deadlock presence. 

First, we have transformed this UML-AD to its equivalent Pi-Calculus code, as shown in Figure 23. 

Then, we have executed the command input "deadlock1.txt" under MWB, followed by the 

command deadlocks Initialp, as follows: 

F:\sml nj 110.57\mwb99-sources>sml @SMLload=mwb $* 

The Mobility Workbench 

 (MWB'99, version 4.137, built Fri Jul 24 18:10:22 2020) 

MWB>input "deadlock1.txt" 

MWB>deadlocks Initialp 
Deadlock found in (^~v,~v6,~v7,~v8,~v9,~v10,~v11,~v12)('~v.Initial<i,~v> | '~v6.A0<~v,~v6> | 

~v7.(^x)'c<x>.x(y).([y=f]'~v6.Decision1<~v6,~v7,~v9,t1,f,c> + [y=t1]'~v9.Decision1<~v6,~v7,~v9,t1,f,c>) | ~v7.'~v8.A1<~v7,~v8> | 

~v9.'~v10.A2<~v9,~v10> | (^received)(~v8.'received.0 | ~v10.'received.0 | received.received.'~v11.Join<~v8,~v10,~v11>) | 
~v11.'~v12.A3<~v11,~v12> | ~v12.Final<~v12>) 

 reachable by 3 commitments 

MWB> 

The response is that there is a deadlock. The interpretation of this deadlock is that the corresponding 

activity diagram has a design error. The result of the decision node is true or false. So, the join node 

will never be executed.  

6. CONCLUSION

This paper is a contribution in the area of model-driven engineering; it is essentially based on the 

combined use of meta-modeling and model transformation. We have proposed an integrated approach, 

supported by a tool called AD2PICALC, which combines UML 2.0 Activity diagrams and Pi-calculus 

process algebra for the development of software systems. More precisely, we have proposed an 

automated approach for transforming UML 2.0 Activity diagrams to Pi-calculus processes using 

Eclipse Xpand and TGG tools. First, we have proposed three meta-models; one for activity diagrams, 

the second for Pi-calculus and another one for correspondence. Second, we have presented the first 

transformation (TGG rule graph grammar) from UML activity diagram to Pi-calculus models using 

TGG tool. Finally, we have defined the second transformation that generates the Pi-calculus code from 

the Pi-calculus models (abstract syntax) using Xpand tool. We have illustrated our approach through 

an example from the literature. In a future work, we plan to apply our approach on several real case 

studies and use the Pi-calculus tools, such as MWB, to verify other properties of the modeled system, 

such as safety, non-determinism, termination and liveness. We plan also to transform other UML 

diagrams, like overview interaction diagrams. Finally, we plan to deal with the verification of the 

transformation itself based on the work published in [26]. 
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 ملخص البحث:

تعُااااااه الواااااابحلي  نمااااااظلي البرااااااظللتبقااااااظلنلطتااااااظلي ا   رااااااه ل ي  ل اااااا ل   ااااااهل اااااا ل   اااااا ل  ااااااال

(.ل تساااااااا خت ل خططااااااااه لي تعه رااااااااه لPI(ل حسااااااااهللي  تهااااااااا ل ي   ه اااااااا ل UML خططااااااااه ل 

 UML 2.0ل  تبقااااااظلنااااااب ملنلطتااااااظلي ا   رااااااه فلضاااااا لحاااااار ل ساااااا خت لحسااااااهللي  تهااااااا ل)

ل PI ي   ه ااااااا ل  لن    لضااااااا    (لUML(للأغااااااا ي لت عبااااااا لااااااااتبب ليلأ تاااااااه ل ي  ل ااااااا .ل ا ااااااا   

ل    اااااا لضرتاااااااهل  عباااااا لااااااات بب ليلأ تاااااااه لواااااا ل  ااااااظلوااااااااال    رااااااظفل اااااااب  لتل اااااااه ل  طااااااه  

ل   كراهت هفلكتهلت  ص هليلأ  ي لي لاز ظل ب ل  ل  لخصهئص ه.

(ل  ل  ااااااااا ل خططاااااااااه لAD2PICALCذ ااااااااا فلل  ااااااااا ىل    اااااااااه ل ن ي لتسااااااااات ل  ااااااااا لنقااااااااا ل

 Eclipse(لي اااااا ل تبرااااااه لتتهااااااا ل ت ه اااااا لاهناااااا ختي لن  ي ل UML 2.0ي تعه رااااااه ل 

Xpand ل ل)TGGلأ  ي لحسااااااااااهلل(.ل  اااااااااا ل ااااااااااللتسُاااااااااا خت لي عتبرااااااااااه لي  هت ااااااااااظلكتااااااااااتخ ل

؛ل ب ل ااااااا ل ااااااا ل ااااااات ل ااااااا لي خصاااااااهئ فل بااااااا  لحاااااااهب لMWBي  تهاااااااا ل ي   ه ااااااا فل بااااااا ل

ي   ماااااالي  اااااه فل ي سااااالا ظفل ي ل تراااااظفل ي ل اااااهرفل ي  بارااااا .ل  ااااا للهحراااااظلنخااااا  فلتااااالل ااااا  ل

 ساااااهوت  هل ااااا لخااااالاال باااااهال ااااا ليلأ اراااااه لذي لي علاماااااظفلاه ااااااهضظلي ااااا لي  ل ااااا ل ااااا لخه ااااارظل

(.ل ت تااااااا لي تساااااااهوتظليلأنهنااااااارظل  ااااااابيلي الااااااا لضااااااا لMWB ي   ماااااااالي  اااااااه لاهنااااااا ختي لن ي ل

(.TGGنتت ظل    ظلي  ل   لاهن ختي لن  ي لم ي تلي  ن  لي ارهلرظلي بلا رظل 
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