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ABSTRACT 

The application of computing resources through mobile devices (MDs) is called Mobile Computing; between 

cloud datacentres and devices, it is known as (Mobile) Fog Computing (MFC). We ran Cloudsim simulator to 

offload tasks in suitable Fog Devices (FDs), cloud or mobile. We stored the outputs of the simulator as a dataset 

with features and a target class. A target class is a device in which tasks are offloaded and features of tasks are 

authentication, confidentiality, integrity, availability, capacity, speed and cost. Decision Tree (DT), Random 

Forest (RF), Extra-trees and AdaBoost classifiers were classified based on attribute values and the plot of trees 

was drawn. According to the plot of these classifiers, we extracted each sequential condition from root to leaves 

and inserted it into the simulator. What these classifiers do is to improve the conditions that should be inserted 

in the corresponding section of the simulator. We improved the response time of offloading by Random Forest, 

Extra-trees and AdaBoost over Decision Tree.      

KEYWORDS 

Fog computing, Decision tree classifier, Random forest classifier, Extra-trees classifier, AdaBoost classifier, 

Offloading, Machine learning. 

1. INTRODUCTION 

The application of computing resources through mobile devices (MDs) is called Mobile Computing. 

The Mobile Computing environment includes four properties of mobility; diversity of network access 

types, frequent network disconnection, poor reliability and poor security [1]. Between cloud 

datacentres and Internet of Things (IoT) devices is (Mobile) Fog Computing nods. MFC acts as an 

intermediate layer between IoT devices/sensors and cloud datacentres. So, it is closer to the IoT 

devices to handle real-time services and latency-sensitive services and provide better Quality of 

Service (QoS). Routers, switches, set top boxes, proxy servers, Base Stations (BS), …etc. are in the 

Fog Computing environment. They can support application execution [2]. 

Mobile Edge Computing provides services and computing capabilities at the edge of the mobile 

network and can optimize existing mobile infrastructure services. MEC servers are deployed at 

multiple locations at the edge of the mobile network to implement the MEC environment [3]. Mobile 

Cloud Computing extends the computing capabilities to constrained resource mobile devices and 

benefits from a combination of different technologies (e.g. service-oriented computing, virtualization 

and grid computing). Mobile devices, communication technology and cloud servers are three main 

portions of it. Storage, processing, computing and security mechanism for mobile devices are provided 

by a cloud server through communication technologies [4]. In Table 1, the differences between the 

three methods including Mobile Cloud Computing, (Mobile) Edge Computing and (Mobile) Fog 

Computing were presented [5]. 

Decision Tree can be defined as a non-parametric supervised learning method. It is trained on labeled 

data to classify it and an acyclic directed graph is built using top-down recursive partitioning of the 

dataset [6]. In this paper, the dataset has some features and labels that specify the target class. Decision 

Tree predicts the value of a target inferred from the data features. Iterative Dichotomiser 3 (ID3), 
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C4.5, C5.0 and Classification and Regression Trees (CARTs) are various Decision Tree algorithms. 

We use the Decision Tree classifier code in scikit-learn website which uses an optimized version of 

the CART algorithm [7].   

Table 1.  The difference between the three methods Mobile Cloud Computing, (Mobile) Edge 

Computing and (Mobile) Fog Computing. 
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Mobile 

Cloud 

Computing  

yes yes no yes yes no yes no no yes 

(Mobile) 

Edge 

Computing  

yes no yes yes no yes yes no yes yes 

(Mobile) 

Fog 

Computing  

yes yes yes yes no yes yes no yes yes 

Random Forest fits 100 Decision Tree classifiers by default on the dataset’s different sub-samples and 

improves the predictive accuracy using averaging [8]. We used the Random Forest classifier code in 

the scikit-learn website. It is applied to the dataset and trees are constructed while the resultant 

individuals are combined to predict the class label. The word random is for two reasons: first, random 

sampling for drawing samples and second, selecting attributes or features for generating Decision 

Trees randomly. AdaBoost and Bootstrapping techniques are used in Random Forest to construct 

multiple classifiers [9]. 

An Extra-trees classifier fits some randomized Decision Trees on various sub-samples of the dataset, 

improves the predictive accuracy and controls over-fitting implementing a meta-estimator and 

averaging, respectively. It is similar to the Random Forest [10].  

Another classifier is AdaBoost. It is a meta-estimator that begins by fitting a classifier on the original 

dataset. Then, additional copies of the classifier are fitted on the same dataset. However, the weights 

of wrong classified instances are adjusted such that subsequent classifiers focus more on difficult cases 

[11]. Boosting methods train predictors consecutively and try to improve their predecessors. AdaBoost 

is similar to Random Forest at a high level, because it collects the predictions made by each Decision 

Tree within the forest. Some differences between them are in AdaBoost; the Decision Trees have a 

depth of 1 and the final prediction made by the model is impacted by the predictions made by each 

Decision Tree [12]. All these classifiers are popular tools in machine learning. 

Key contributions of our paper are: 

1- Each FD has its features and parameters based on its internal structure on which the best FD is 

chosen for the module placement. The parameters that were used in this paper are authentication, 

confidentiality, integrity, availability, capacity, speed and cost. In this paper, we had four FDs that 

were called FD1, FD2, FD3 and FD4. The Cloudsim simulator that we used assigns values between 

0 and 1 to features at random. Depending on values, tasks are offloaded in suitable FDs and 

otherwise in cloud or mobile. We stored the outputs of the simulator as a dataset.  

2- Decision Tree, Random Forest, Extra-trees and AdaBoost classifiers classify based on feature 

values and draw the plot of a tree. According to the plot of these classifiers, we extracted each 
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sequential condition from root to leaves and inserted them into the simulator in the corresponding 

section. This reduced the number of conditions that should be inserted in the corresponding section 

of the simulator and response time of offloading. 

3- Since Random Forest, Extra-trees and AdaBoost classifiers consider 100 different trees by 

default from which we choose the best one with the highest accuracy, they had a better response 

time compared to that of Decision Tree.  

4- In practice, some of these parameters are not used. What these classifiers do is to improve the 

conditions that should be inserted in the corresponding section of the simulator. These methods are 

suitable for tasks that require a shorter response time. In fact, in the operational environment, the 

values of features and target class (a device in which tasks are offloaded, such as mobile, FD or 

cloud) can be stored as data in a dataset. Then, by using these classifiers and dataset, we can insert 

the conditions effectively into the simulator for the next tasks and achieve less response time.    

The rest of the paper is organized as follows. Related works are presented in Section 2. In Section 3, 

the system model is described. The proposed approach is provided in Section 4. In Section 5, the 

evaluation results of the simulation are described. At last, Section 6 presents the conclusions. 

2. RELATED WORK 

Task offloading has been noticed a lot in recent years. Related papers were categorized as follows: 

Authors in [13] expressed Android Unikernel, a short run time designed for mobile computing 

offloading under MFC and MEC scenarios. It also has been argued that advanced unikernel is used as 

a runtime in MEC or MFC to support mobile quality. To this, the concept of Rich-Unikernel was 

considered which aims to support various applications in one unikernel while avoiding their time-

consuming recompilation. In [14], a computation offloading problem was provided in a fog computing 

system, which uses fog computing to answer computation requests by validating requests through the 

fog node or central cloud increasing the performance of applications, such as power consumption and 

delay. Also, the game theory approach was used to minimize the running cost. Specifically, a 

Generalized Nash Equilibrium Problem (GNEP) was formulated and addressed with various 

constraints by using the exponential penalty function method and semi-smooth Newton method.  

Another way to minimize energy consumption, delays and costs was provided in [15]. Researchers 

investigated the problem of power consumption, performance delays and costs in a mobile fog 

computing system. Here, queue theory was used to derive analytical results on power consumption, 

delay in performance and cost by assuming three different queuing models in MD, fog node and 

central cloud. Based on this analysis, the multi-part optimization problem has been formulated with a 

common goal of minimizing energy consumption, delay in execution and cost by optimizing the 

probability of optimal offloading and power transfer for each mobile device. Also, using an Interior 

point method-based algorithm, a multi-segment problem with various limitations has been developed. 

Authors in [16] proposed container transfer algorithms and architectures to support moving tasks with 

different needs. Also, the container migration problem of mobile application tasks in large-scale FC 

was modeled. Then, container transfer algorithms to support moving tasks are proposed. This has 

significantly reduced latency, power consumption and transmission costs. In [17], the researchers 

investigated a problem of cost-based fairness in a min-max computation system by optimizing 

offloading and resource allocation decisions, which minimized the delay cost weighting and energy 

consumption in the system.  To address the Np-hard problem, the computation offloading and resource 

allocation algorithm (CORA) was proposed, which has low complexity and the offloading decisions 

are taken at random. 

In [18], the performance of SIMDOM (A framework for SIMD instruction translation and offloading 

in heterogeneous mobile architectures) framework was discussed from various dimensions, such as 

FMEC and MCC offloading, application partition and increasing input sizes. The SIMDOM 

framework was evaluated in terms of parameters, such as energy, time and performance of MFLOPS. 

Comparison with state-of-the-art Qemu-based compiled code-offloading framework was performed, 

where it was found that the SIMDOM framework provides better results. Paper [19] evaluates 

information about IoT programs in unstable channel conditions and suggests a new way to model the 
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quality of unstable channels. An optimal programming model and a way to reduce the complexity of 

the algorithm were proposed, which improved the quality of the algorithm. Besides, an offloading data 

scheduling algorithm (DEED) was proposed aiming at reducing energy consumption. 

In [20], a near-end network solution of computation offloading on the edge/fog of the mobile was 

presented. Mobility, heterogeneity and geographical distribution of mobile devices are challenges of 

computing offloading at the edge/fog. For consideration of the computational resource demand, an 

independent q-learning management framework was presented. The proposed method significantly 

improved computational offload discharge performance by minimizing computational delay. In [21], 

the various types of offloading techniques that have recently been introduced in fog-driven literature 

or edge computing in the cloud-IoT environment are discussed. Some criteria determine when 

offloading was performed. Finally, the research challenges related to offloading are highlighted in the 

fog calculations. 

In [22], deep reinforcement learning was proposed to solve the problem of offloading large-scale 

multi-service nodes of MEC and multiple dependencies in mobile tasks. Then, the offloading strategy 

by each algorithm was simulated on the edge computing iFogSim simulator platform. At last, the 

advantages and disadvantages of each algorithm are evaluated by comparing different factors, 

including power consumption, cost, load balancing, delay and network usage. Paper [23] has modeled 

the expected time and energy cost for different options for offloading a task on the edge, cloud or the 

device itself. Authors in [24] raised the issue of offloading optimization and then used the 

metaheuristic method to find the best policy. Also, Simulated Annealing-based Offloading Algorithm 

(SAOA) has also been proposed to provide a node access estimation policy based on a variety of 

health care information. Sensitive requirements should be met related to the different roles in IoT for 

architectural and algorithm design. A blockchain-based Edge ABC architecture and a Task Offloading 

and Resource Allocation (TO-RA) algorithm have been proposed to meet the requirements [25]. 

In [26], an efficient resource allocation and computation offloading model for a multiuser MEC 

system was proposed. Also, Advanced Encryption Standard (AES) method has been introduced to 

protect sensitive information from cyber-attacks and an optimization problem has been developed for 

mobile users to minimize energy consumption and delay latency. In [27], effective and efficient 

services in the fog computing environment called for a decentralized management plan of mobile edge 

server with p2p activation. In [28], a task-offloading and resource-scheduling algorithm was proposed 

to solve the problems of minimizing energy consumption and processing time of task offloading in the 

MEC system.  

Internet of connected vehicles (IoV) has been introduced as a technology to provide tracking 

information to drivers and transportation control systems [29]. In this paper, to reduce execution time 

and energy consumption while satisfying the privacy of computational tasks, an edge computing 

method called edge computing-enabled computation offloading (ECO) was presented [29]. In [30], a 

new offloading strategy based on the firefly technique was presented. The firefly method was designed 

to address the offloading strategy in the Fog-Cloud environment, which selects a suitable 

computational device for each application. 

In [31], a smart energy management method was proposed to increase the lifetime of the network in a 

fog computing network. A clustering mechanism was introduced for a computation degradation 

scenario. In [32], the problem of task mapping and scheduling (TMS) in wireless sensor networks was 

investigated. Its main goals were to improve runtime, power consumption and network lifetime. The 

MODIFIED RANDOM BIT CLIMBING (λ -MRBC) method was used to obtain the optimal solution 

faster. In [33], the negotiation between publisher and fog node was formed as an optimization issue. In 

[34], to provide effective services for performing tasks sensitive to latency and computation, a positive 

decision-making algorithm and resource allocation based on deep learning have been developed to 

minimize time and energy consumption in fog. In [35], fog calculations were introduced in a three-tier 

architecture to minimize energy consumption. To minimize energy consumption, an energy 

consumption oriented offloading algorithm for fog computing has been suggested.  

Paper [36] presented and analyzed a vector instruction offloading framework (SIMDOM) in 

heterogeneous compute architectures. In [37], a mathematical model is presented to facilitate the 

calculation of computational time and energy. 
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We compare the mentioned offloading and scheduling methods by objectives, network architecture, 

environment, advantages and disadvantages in Table 2. 

Table 2.  Comparison of offloading and scheduling methods mentioned. 

Algorithm Objectives Network and 

Environment  

(N and E) 

Advantages Disadvantages 

Unikernel [13] 

 

Time, 

memory and 

energy 

 

N: MFC 

E: Android- x86 

Compared to when 

running Android VM or 

Android container, it has 

the advantages of being 

small, fast and secure. 

- Multi-process 

applications are not 

allowed. 

- Those codes need to fork 

new processes and cannot 

run in Android Unikernel. 

MOIPM [15] 

 

Energy, delay 

and cost 

N: MFC 

E: Simulation 

Low algorithm 

complexity. 

 

Not suitable for delay-

sensitive applications. 

GNEP [14] 

 

Execution cost 

 

N: MFC 

E: Simulation 

The proposed algorithm 

improves performance and 

accuracy. 

Not suitable for delay-

sensitive applications. 

DQLCM [16] 

 

Computational 

delay and power 

consumption 

 

N: MFC 

E: Real 

 

Among the many deep 

learning reinforcement 

algorithms, it has the 

advantage of fast decision-

making. 

May lead to a long delay in 

processing the work. 

CORA [17] 

 

 

Energy, delay 

and cost 

 

N: MFC/ 

MCC 

E: MATLAB 

Unlike previous work, they 

emphasize influential 

decision-making [39], [40] 

or resource allocation [41], 

with consideration of cloud 

and fog in common. 

Has not considered the 

queue length and delay of 

user equipment request. 

SIMD [18] 

 

Energy, 

MFLOPS and 

execution time 

 

N: MFC/ MEC/ 

MCC 

E: Real 

 

Ability to reload from a 

server and execute SIMD 

instructions while saving 

energy and reducing 

runtime. 

The simdom 

framework does not 

provide energy efficiency 

for metrics that have less 

computation. 

OFFLOADING 

[21] 

 

Reducing 

energy 

consumption 

N: MFC/ 

MEC 

E: Real 

Offers complete 

classification of offloading 

schemes. 

Failure to explain how to 

do the review. 

DEED [19] 

 

Reducing 

energy 

consumption 

N: MFC/ MEC/ 

MCC 

E: Simulation 

Providing innovative work 

for optimal energy 

consumption. 

Too much interpretation 

IDRQN [22] 

 

latency and 

network load 

 

N: MEC 

E: Simulation 

 

Better performance in 

power consumption, load 

balance, latency and 

average runtime. 

Locking in scalability and 

limited to relatively few 

problems. 

Deep Q-learning 

[20] 

Minimizing 

delay 

N: MFC/ 

MEC 

E: MATLAB 

Ability of parallel 

execution. 

Lack of expression of the 

future work. 

Modeling time and 

energy cost [23] 

Time and 

energy cost 

N: MEC/ 

MCC 

E: Simulation 

Dynamic offloading 

decision-making 

Edge devices should be 

adjacent to IoT devices 

and their resources are 

limited. 

SAOA [24] Minimizing 

delay 

N: MFC 

E: MATLAB 

Quick response to a user 

request. 

Privacy may not be 

protected. 

TO-RA [25] Reduction of 

delay 

N: MEC 

E: Simulation 

Compared to other 

algorithms, more stable 

and higher user 

- Limitation on computing 

resources and storage of 

smart devices. 
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scarification. - Impossibility to perform 

computational tasks with 

high complexity for a long 

time. 

Multi-users 

Computation 

Offloading 

Decision [26] 

Minimizing 

time and energy 

consumption 

N: MEC 

E: MATLAB 

Low delay Increasing the number of 

Mus causes severe 

interference. 

Decentralized 

mobile edge server 

management plan 

[27] 

Minimizing 

runtime and 

reducing energy 

consumption 

N: MEC 

E: simulation 

The proposed method is 

effective and practical. 

The search space of this 

method is very large and 

time-consuming. 

Distributed 

[28] 

Minimizing 

energy 

consumption 

and processing 

time 

N: MEC 

E: simulation 

First work on dynamic task 

offloading and resource 

scheduling. 

Lack of expression of 

future work 

ECO [29] 

 

 

 

 

Optimizing time 

and reducing 

energy 

consumption 

N: MEC 

E: simulation 

Preservation privacy The smaller the scale of 

the vehicle, the longer the 

transmission time. 

Firefly [30] Minimizing 

computation 

time and energy 

consumption 

N: MFC/ 

MCC 

E: simulation 

- Automatic split  

- Easily finding the best 

solution 

It is difficult to efficiently 

allocate IoT applications 

between the fog node and 

the cloud datacenter. 

Prediction-based 

Energy Harvesting 

Scheme and 

Clustering 

[31] 

Increasing 

network lifetime 

N: MFC 

E: MATLAB 

Saving energy and 

reducing latency 

Management complexity 

λ -MRBC [32] Improvement of 

execution time, 

energy 

consumption 

and network 

lifetime 

N: Wireless 

E: simulation 

The network lifetime is 

prolonged through using 

the proposed algorithm. 

Lack of expression of 

future work 

Design of an 

incentive 

mechanism 

[33] 

Reducing 

energy 

consumption 

and delay 

N: MFC 

E: simulation 

Increasing transfer speed There may be an 

asymmetry between 

publisher and fog node. 

DLJODRA 

[34] 

Reducing 

energy 

consumption 

and delay 

N: MFC 

E: Tensorflow 

and  

MATLAB 

Increasing network 

efficiency 

Deep learning-based 

computation offloading 

scheme does not consider 

the optimization allocation 

of network resources. 

Energy 

consumption-

oriented offloading 

algorithm 

[35] 

Minimizing 

energy 

consumption 

N: MFC/ 

MCC 

E: MATLAB 

Better performance It would have been better 

if it had introduced a 

multi-user model. 

A framework for 

translating pre-

compiled vector 

instructions 

[36] 

Saving energy 

and time 

N: MEC/ 

MCC 

E: Real 

Leading to increased 

translation training 

efficiency. 

Lack of expression of 

future work  

Mathematical 

model for 

calculating the 

time and energy 

Reducing 

computational 

time and energy 

N: MCC 

E: simulation 

Boosting performance 

and  

energy efficiency 

It would have been better 

if authors also talked about 

the energy consumption 

coefficients of the 
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consumption of 

application models 

[37] 

prominent parameters for 

smartphones. 

3. SYSTEM MODEL 

The system architecture is shown in Figure 1 [41]. There are mobile devices at the lowest level. For 

transferring data to routers, access points or base stations are used and routers send data to the closest 

FDs for task processing. When the sum of memory power and CPU power consumption is less than 

Wi-Fi’s power consumption, tasks run in mobile; otherwise, they are offloaded in FDs according to 

their properties. If tasks do not execute in FDs, send them finally to the highest level in the cloud. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. System architecture. 

When computing is performed by mobile or portable devices (e.g. laptops, tablets or mobile phones), 

it is called mobile computing or nomadic computing. It is not suitable for many recent computational 

challenges, because of the requirements of connected consumer devices. Therefore, fog computing and 

cloud computing are used for more advanced calculations, because they have more resource-rich 

hardware [42].  

3.1 Calculating Power 

We used three resources for power consumption as CPU, RAM and Wi-Fi in our model, which are 

explained as follows [41]. 

3.1.1 Power Consumption of CPU  

Frequency and performance are the factors on which power consumption of CPU depends. The power 

consumption of CPU is: 

PCPU = fbase +                                                  (1)       

where fbase and fi are frequency-dependent coefficients, Ui is the utilization of the ith CPU and n is the 

number of CPUs.  

3.1.2 Power Consumption of RAM  

The power consumption of RAM depends on the type of modules and is calculated as:  

PRAM = Ps1 * U + Ps2                                               (2) 

where Ps1 and Ps2 are coefficients of power. U is the aggregated CPU utilization that is: 
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U =                                                    (3)  

Uj is the utilization of jth CPU and n is the total number of CPUs. 

3.1.3 Power Consumption of Wi-Fi  

Another source of energy consumption in MDs is the power consumption of Wi-Fi. Idle, initial, send, 

receive and tail are states of the Wi-Fi model, with the total Wi-Fi power consumption for the MDs 

being the sum of their power consumption as shown in Equation 4. Coefficients are based on quad-

core Galaxy S3. TState is the state’s time, where TSend and TIdle are calculated in runtime. Finally, N is 

the number of packets sent or received per second which considered more than 20.   

PWi-Fi = PInit + PSend + PReceive + PTail + PIdle                        (4)  

where  

PInit = (0.8613 * N + 98.612) * TInit 

PSend = (0.4049 * N + 686.93) * TSend 

PReceive = 0.0211 * N + 15.628 

PTail = 195 * TTail 

PIdle = 20 * TIdle 

4. THE PROPOSED APPROACH 

Each FD has its features and parameters based on its internal structure on which the best FD is chosen 

for the module placement. The parameters that were used in this paper are: authentication, 

confidentiality, integrity, availability, capacity, speed and cost. In this paper, we had four FDs that 

were called FD1, FD2, FD3 and FD4. For example, if the authentication, confidentiality, integrity, 

availability, capacity, speed and cost of the task that has arrived for processing are > 0.7, > 0.5, < 0.3, 

< 0.8, < 0.7, < 0.8 and < 0.9, respectively, then the task is performed on FD1. Checking these 

conditions for allocating the appropriate device can be carried out by Decision Tree or other trees. The 

features and values of each of the FDs are shown in Table 3. 

Table 3.  The features of FDs. 

 Authentication Confidentiality Integrity Availability Capacity Speed Cost 

FD1 > 0.7 > 0.5 < 0.3 < 0.8 < 0.7 < 0.8 < 0.9 

FD2 <= 1 < 0.4 > 0.1 < 0.7 < 0.6 < 0.7 < 0.8 

FD3 > 0.8 > 0.5 < 0.6 > 0.7 > 0.8 < 0.8 > 0.7 

FD4 < 0.9 < 0.7 < 0.8 > 0.9 > 0.7 < 0.8 > 0.6 

Cloud Other values 

Table 4.  Part of the dataset. 

No. Authentication Confidentiality Integrity Availability Capacity Speed Cost Target 

Classes 

1 0.1 0.16 0.32 0.94 1 0.51 0.69 FD4 

2 0.91 0.61 0.04 0.18 0.26 0.17 0.53 FD1 

3 0.86 0.18 0.64 0.55 0.05 0.66 0.28 Cloud 

4 0.61 0.33 0.28 0.24 0.4 0.13 0.13 FD2 

5 0.79 0.45 0.26 0.39 0.17 0.68 0.51 Mobile 

6 0.86 0.81 0.12 0.88 0.94 0.59 0.94 FD3 

… … … … … … … … … 

Our base article is [41]. The simulator assigns values between 0 and 1 to features at random. Tasks are 

offloaded in suitable FDs and otherwise in cloud or mobile, so that when the sum of memory power 

consumption and CPU power consumption is less than Wi-Fi’s power consumption, tasks run in 

mobile; otherwise, according to Table 3, they are offloaded in an FD or cloud. 
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We stored the outputs of the simulator as a dataset with 457 samples with 7 features and 1 target class, 

part of which is shown in Table 4.  

In general, with more data, classifiers are better trained to classify. The target class is the device in 

which the task is offloaded. Hence, we had sex targets, FD1, FD2, FD3, FD4, cloud and mobile. 

Decision Tree, Random Forest, Extra-trees and AdaBoost classifiers classify based on feature values 

and draw the plot of the tree. In the plot of the tree, each node is divided into two branches and leaves 

are the target classes. 

For example, in this code that runs by Decision Tree, availability is in the root. If its value in the 

sample is greater than 0.875, it goes to the left branch; otherwise, it goes to the right branch and so on. 

In Random Forest, Extra-trees and AdaBoost classifiers, 100 different trees are considered by default 

and we choose the best one with the highest accuracy. According to the plot of them, we extracted 

each sequential conditions from root to leaves and insert them into the simulator in the corresponding 

section. This reduced the number of conditions and response time. 

In practice, some of these parameters are not used. For example, the authentication parameter in FD2 

is not required for classification. What these classifiers do is to improve the conditions in practice. 

These methods can be used for tasks that require a shorter response time. In fact, in the operational 

environment, the values of 7 features and 1 target class can be stored as data in a dataset. Then, by 

using these classifiers, we can insert the conditions effectively into the simulator for the next tasks and 

achieve less response time.  

In Algorithm I, the steps are performed. In lines 1 to 3 FDs are created with time complexity O(k), so 

that k is the number of FDs and VMs created with time complexity O(t), where t is the number of 

VMs in line 4. Then, n tasks are taken from MDs with O(n) in line 5. The broker is created with O(1) 

and VMs and tasks are submitted to it in lines 6 and 7 with O(n+t). So time complexity until this stage 

is equal to O(k+n+t).   

Algorithm I 

Input: VMs, Tasks, FDs, cloud 

Output: VMs and tasks in the broker 

1: for each i ϵ FDs do 

2: Create micro DCs in FDi 

3: end for 

4: Create VMs 

5: Get tasks from MDs 

6: Create broker 

7: Submit VMs and tasks to the broker 

 

In Algorithm II, input includes dataset according to Table 4. By executing Decision Tree, Random 

Forest, Extra-trees and AdaBoost classifiers, its plot is obtained.  

Algorithm II 

Input: dataset 

Output: Plot of Trees 

1: Running Decision Tree  classifier by Python code to draw its plot  

2: Running Random Forest, Extra-trees and AdaBoost classifiers and choosing the best one with the    

heights accuracy by Python code to draw its plot           

 

In Algorithm III, tasks are offloaded in one of six modes that include mobile, FD1 to FD4 and cloud. 

Placement is prepared by calling Algorithm I in line 1. Then, in line 2, new conditions are inserted in 

the corresponding section of the simulator by running Algorithm II. In lines 3 to 10, tasks are 

offloaded in one of the six modes with O(n), where n is the number of tasks. In Equations 1 to 4 it is 

shown, how to calculate memory power, CPU power and Wi-Fi’s power consumption. When the sum 

of memory power consumption and CPU power consumption is less than Wi-Fi’s power consumption, 

tasks run in mobile; otherwise, they are offloaded in an FDs or cloud.  
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Algorithm III 

Input: VMs, Tasks, FDs, cloud 

Output: The places of Tasks 

1: Preparing placement by calling Algorithm I 

2: Insert new conditions by running Algorithm II to the simulator in the corresponding section 

3: for each n ϵ Tasks do 

4:  Calculate PCWi-Fi, PCCPU and PCRAM 

5: if  PCCPU + PCRAM <  PCWi-Fi then 

6:  Execute task in MD 

7: else  

8:  Place task in suitable FDj (j from 1 to 4) or cloud 

9: end if 

10: end for 

 

5. EVALUATION 

In this part, we compare three methods: mobile, Decision Tree, Random Forest, Extra-trees and 

AdaBoost classifiers. We used Cloudsim simulator. In the local mobile processing method, the tasks 

are executed in MD and don’t offload to FDs and cloud. These classifiers were executed and the plot 

of trees is drawn by Python code in the sci-kit learn website [7]. Then, new if statements are added to 

the relevant section in the simulator. Response time, power consumption of CPU, power consumption 

of RAM and performance were compared in these three methods. In the simulator, each of them has 

been run 30 times individually and the average values were presented.  

5.1 Configurations of the Simulator 

DC and micro DC configurations are shown in Table 5. 

We executed the simulation in different states of number of VMs and tasks, as shown in Table 6. In 

our simulation, the main classes are Cloudlet, Datacenter, DatacenterBroker and VM. Task offloading 

is carried out in the DatacenterBroker class. New conditions resulting from the implementation of the 

Decision Tree, Random Forest, Extra-trees and AdaBoost classifiers were inserted into Cloudlet class.   

Table 5.  DC and Micro DC configurations. 

Name  

 

DC Micro DC  

CPU  Octa-core Quad-core 

Memory size  8192 2048 GB 

Memory cost  0.015 0.005 

Storage size  1 TB 100 GB 

Storage cost  0.05 0.01 

Bandwidth rate  100 MB/S 10 MB/S 

Bandwidth cost 0.1 0.01 

Table 6.  Different states of the number of VMs and tasks in Cloudsim simulator. 

No. VMs Tasks No. VMs Tasks 

1 10 10 6 50 100 

2 10 20 7 100 100 

3 20 20 8 100 200 

4 40 50 9 200 200 

5 50 50 10 500 500 

5.2 Offloading Frequency 

Figure 2 shows the offloading frequency that is the frequency of offloading tasks to FDs or cloud. 

When the sum of memory power consumption and CPU power consumption is more than Wi-Fi’s 
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power consumption, tasks are offloaded in FDs and cloud. According to Table 1 and the simulator 

assign values of seven features between 0 and 1 at random, most tasks are offloaded in cloud, FD2, 

FD1, FD4 and FD3, respectively.  

 

Figure 2. Comparison of offloading frequency to cloud and FDs by decision tree, random forest, extra-

trees and AdaBoost and mobile methods.  

5.3 Response Time 

In Figure 3, the response time is shown. Response time of mobile is less than in Decision Tree, 

Random Forest, Extra-trees and AdaBoost classifiers, because there is no offloading. As can be seen in 

the Figure, the response time of Random Forest, Extra-trees and AdaBoost methods is better than that 

of Decision Tree, because they consider 100 different trees by default, where we choose the best one 

with the highest accuracy. The average response time in Random Forest, Extra-trees and AdaBoost 

methods is 649.361, 646.61 and 643.452ms, respectively, while in the Decision Tree method, it is 

696.363ms. 
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Figure 3.  Comparison of response time of decision tree, random forest, extra-trees and AdaBoost and 

mobile methods. 

5.4 The Power Consumption of CPU and RAM 

Total power consumption of CPU and RAM is presented in Figures 4 and 5. On average, they are 

almost the same in Decision Tree, Random Forest, Extra-trees and AdaBoost methods. In the mobile 
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method, it is higher than in the other methods. The average of power consumption of CPU in Decision 

Tree, Random Forest, Extra-trees and AdaBoost methods is 1874.174, 1875.074, 1877.667 and 

1878.147W, respectively, while in the mobile method, it is 1898.796W. The average of the power 

consumption of RAM in Decision Tree, Random Forest, Extra-trees and AdaBoost methods is 112.45, 

112.503, 113.034 and 113.038W, respectively, while in the mobile method, it is 113.842W.  
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Figure 4.  Total power consumption of CPU in decision tree, random forest, extra-trees and AdaBoost 

and mobile methods. 
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Figure 5.  Total power consumption of RAM in decision tree, random forest, extra-trees and AdaBoost 

and mobile methods. 

5.5 Performance 

In Figure 6, performance is presented. Its calculation is as follows:  

performance = 1 – (PReceive + PIdle) / PCPU                                 (5) 

where PIdle and PReceive are the power consumption of Wi-Fi in the idle and receive states and PCPU is the 

power consumption of CPU in MD (see Eq. 4) [42]. As a result, in Figure 5, the performance of 

Decision Tree, Random Forest, Extra-trees and AdaBoost is better than in the mobile method. 

5.6 Comparison of Algorithms 

Our simulation results show that the response time of the mobile method is less than in Decision Tree, 
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Figure 6.  Performance comparison of decision tree, random forest, extra-trees and AdaBoost and 

mobile methods. 

Random Forest, Extra-trees and AdaBoost classifiers, because there is no offloading and the response 

time of Random Forest, Extra-trees and AdaBoost methods is better than that of the Decision Tree 

method. AdaBoost is a meta-estimator that begins by fitting a classifier on the original dataset. Then, 

additional copies of the classifier are fitted on the same dataset. However, the weights of wrong 

classified instances are adjusted such that subsequent classifiers focus more on difficult cases [11]. 

Boosting methods train predictors consecutively and try to improve its predecessor, because they 

collect the predictions made by each Decision Tree within the forest. Some differences between them 

are in AdaBoost; the Decision Trees have a depth of 1 and the final prediction made by the model is 

impacted by the predictions made by each Decision Tree [12]. So, the tree of AdaBoost performs 

better in terms of the conditions that should be inserted in the corresponding section of the simulator 

compared to Decision Tree. Response time improved by 7.6 percent in this case. An Extra-trees 

classifier fits some randomized Decision Trees on various sub-samples of the dataset, improves the 

predictive accuracy and controls over-fitting implementing a meta-estimator and averaging, 

respectively [10]. Thus, the tree of Extra-trees performs better in terms of the conditions that should be 

inserted in the corresponding section of the simulator compared to Decision Tree. In this case, 

response time improved by 7.14 percent. Random Forest fits 100 Decision Tree classifiers by default 

on the dataset’s different sub-samples and improves the predictive accuracy using averaging [8]. So, 

the tree of Random Forest performs better in terms of the conditions that should be inserted in the 

corresponding section of the simulator compared to Decision Tree. Response time improved by 6.75 

percent in this case.  

Total power consumption of CPU and RAM is almost the same in these methods and in the mobile 

method, it is higher than in the other methods. Also, the performance of them is better than that of the 

mobile method, because there is no offloading on the mobile. Thus, our offloading methods of using 

Random Forest, Extra-trees and AdaBoost classifiers have a better response time than Decision Tree 

on MFC.    

6. CONCLUSIONS 

The application of computing resources through mobile devices (MDs) is called Mobile Computing. 

Between cloud datacentres and devices is (Mobile) Fog Computing (MFC). Tasks are offloaded in 

suitable FDs and otherwise in cloud or mobile. We used Decision Tree, Random Forest, Extra-trees 

and AdaBoost classifiers for task offloading on MFC, where Random Forest, Extra-trees and 

AdaBoost classifiers had a better response time than previous methods. Our simulation results showed 

that the response time of the mobile method is less than these classifiers, because there is no 

offloading and the response time of Random Forest, Extra-trees and AdaBoost methods was better 

than in the Decision Tree method. Thus, our offloading methods of using Random Forest, Extra-trees 
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and AdaBoost classifiers had a better response time than that of Decision Tree on MFC. Total power 

consumption of CPU and RAM was almost the same in these methods and in the mobile method, it 

was higher than in the other methods. Also, the performance of Decision Tree, Random Forest, Extra-

trees and AdaBoost was better than in the mobile method. 

For future work, we will try to implement an algorithm that gives better results in the simulator. Also, 

machine learning methods can be a great way to task offloading.     
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 ملخص البحث:

لالنقّمٌلقققققق  بالققققققال ّمل الأققققققب  لالنقّمّلقققققق    ّققققققي   إنّ تطبيققققققر الققققققمن  لال الأققققققب  اقققققق   قققققق   لا   قققققق  

االاكقققققق  لالبيمسققققققمو لالهّقققققق مّي   لا   قققققق   باهققققققّا ةلققققققم لال الأققققققب  لالّ ققققققبمّي  لالنقّمّلقققققق   لققققققق   ّنققققققم 

ّتشقققققليح لالّ قققققمكغ ال لتمابقققققز لالّ قققققما يقققققغ ة  ققققق   ّالأقققققب  ّ قققققبمّي  انملأقققققب  ة  يقققققغ لالهّققققق مّ  ة  

اجّاعقققققق  ّيمسققققققمو  ةلاو يققققققغ ة  قققققق   سقمّلقققققق     ّنققققققم ّتكقققققق ب  اكا ققققققمو لالّ ققققققمكغ يققققققغ  قققققق ح 

لِأقققققّمو اّيققققق  ا ّمد قققققمي  لالقققققا ن  ققققق  فققققق ل   لا  يقققققا  فقققققغ   قققققم  بقققققت  ييققققق  تمابقققققز لالّ قققققما  

ققققققل ا  قققققق ا  الال ّققققققم لا  لالتقّقققققالاياا  لالهِّ ققققققاب ا  لاله  ةاققققققم لِأققققققّمو لالّ ققققققما ي ققققققغس لا ةققققققمل ا  لالهِّ

  لالت لم  

م ل  اقم ست قققققAdaBoost; Extra-trees; RF; DTتققققق  لالأقققققتك لاا عققققق ن  اققققق  لالّلقققققنممو ا

ى للالأققققاامو  ققققّموا لالققققا  مسققققم  لأقققق  اكططققققمو لالشققققجا  ل ققققح ان ققققم    يقققققم ّنققققملى علققققا  ققققي  لالهِّ

لالتقققققغ تققققق  لال لقققققا  علي قققققم اققققق  تلقققققم لالّلقققققنمموا تققققق  لالأقققققتك   لالا ققققق  لالتتقققققمّلغ ل قققققحّ  ان قققققم 

 إن مل قققققم لالقققققا لالّ قققققمكغ   لالجققققق با ّملقققققاكا ةن اقققققم تققققققاا ّققققق   اققققق  "لالجقققققا "  ّتقققققا "لا   لا "

ا ط لالتققققققغ بتلققققققي  إن مل ققققققم لالققققققا لالجقققققق ل لالّنققققققم ا اقققققق  فققققققان لالّلققققققنممو فققققققا ت هققققققي  لالشقققققق

 RF  ققققققمنو لالنتققققققم ز لالققققققا ت هققققققي   اقققققق  لاتلأققققققتجمّ  للتمابققققققز ّملأققققققتك لاا الققققققنممو  لالّ ققققققمكغ 

  Extra-trees   AdaBoost   علققققققققا س ققققققققا  بمققققققققا  لالت هققققققققي  لالّت قققققققققر ّملأققققققققتك لاا الققققققققن
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