
434 

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 04, December 2020. 

 

 
S. F. A. Abuowaida and H. Y. Chan are with School of Computer Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia. 

Emails: suhilaowida@student.usm.my and hychan@usm.my 

IMPROVED DEEP LEARNING ARCHITECTURE FOR 

DEPTH ESTIMATION FROM SINGLE IMAGE 

Suhaila F. A. Abuowaida and Huah Yong Chan 

(Received: 28-Jun.-2020, Revised: 3-Aug.-2020 and 20-Sep.-2020, Accepted: 27-Sep.-2020) 

ABSTRACT 

Numerous benefits of depth estimation from the single image field on medicine, robot video games and 3D 

reality applications have garnered attention in recent years. Closely related to the third dimension of depth, this 

operation can be accomplished using human vision, though considered challenging due to the various issues 

when using computer vision. The differences in the geometry, the texture of the scene, the occlusion scene 

boundaries and the inherent ambiguity exist because of the minimal information that could be gathered from a 

single image. This paper, therefore, proposes a novel depth estimation in the field of architecture, which 

includes the stages that can manage depth estimation from a single RGB image. An encoder-decoder 

architecture has been proposed, based on the improvement yielded from DenseNet that extracted the map of an 

image using skip connection technique. This paper also takes on the reverse Huber loss function that essentially 

suits our architecture hand driven by the value distributions that are commonly present in depth maps. 

Experimental results have indicated that the depth estimation architecture that employs the NYU Depth v2 

dataset has a better performance than the other state-of-the-art methods that tend to have fewer parameters and 

require fewer training time. 
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1. INTRODUCTION 

Numerous benefits in the use of depth estimation from the single image field on medicine [33], robot 

video games [4] and 3D reality applications [15] have resulted in a spike of interest to the operations 

of 3D in recent years. Closely related to the third dimension of depth, this application can be 

accomplished using human vision, but is considered challenging through the computer vision. However, 

the differences in the geometry, the texture of a scene, the occlusion scene boundaries and the inherent 

ambiguity could not be captured in depth when employing a single image [26]. The estimation of 

depth is essential to obtain the ideal distance for each pixel in a single image between an observer and 

the visual detail [15]. Traditional algorithms that manage monocular images in recognising the 

dimension of depth, which include Structure from Motion (SfM) [27], as well as differences in shading 

and lighting of images [28] [1], require specific environmental assumptions. Besides, there are other 

issues related to finding the depth of the images, such as determining the heterogeneity of the depth 

[3] and the quality image processing after identifying the depth [22]. Initially, researchers have 

focused on the stereo vision to acquire depth estimation by using multi-view images [20] [32] [21]. 

Nevertheless, this method appears to have several setbacks, such as low efficiency of depth estimation 

due to blind region repetition and unmatching texture at areas of the same point. Since then, the use of a 

single image for depth estimation has been given much attention [7] [18] [9] due to the manageable 

cost, specialized equipment in use and flexibility in capturing the image. The devices, though light in 

weight, are reliable. By adapting Markov Random Field (MRF) [24] and Conditional Random Field 

(CRF) [19] [16] [29], the first algorithms; superpixels, are created to be used in discovering the 

depth from a single image. 

Recently, deep learning has been used in computer vision tasks and proven to be useful in obtaining 

satisfactory results. The Convolutional Neural Network (CNN) of deep learning was receiving much 

attention for handling computer vision applications, such as object recognition [11] [13] [30] and 

segmentation [6] [17] [12], due to the self-learning feature. A study [7] has proposed a framework 

that would be the first to integrate CNN for depth estimation through multi-scale CNN. However, the 

framework took a long time to produce a depth estimation for each image. Since then, many methods 
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based on CNN had been proposed, as reported in a study by Eigen et al. [7]. Several researchers [16] 

[31] suggested a framework that merged CNN and CRF methods. CNN would extract features from 

the image and CRF would provide the final result of the prediction. However, these algorithms had 

high computation time and issues with the inferences. 

The process of creating a CNN that contained multiple layers was also complicated due to the 

emergence of gradient vanishing problem in the training process. Many studies were affected by the 

increase in the number of these layers in CNN, which demonstrated a positive effect of obtaining 

high performance [14] [10] [2] [8]. The ResNet architecture designed by He et al. [11] was adopted 

in a study by Laina et al. [14] to observe up-sampling blocks for depth estimation, which found that 

the property related to translating invariance that existed in deep CNN may adversely affect the 

process of depth estimation. This issue, however, could be overcome by a skip connection technique 

[5] [2] [23]. The researcher in [2] utilizes the DenseNet [13] to determine the depth of a single image. 

Despite that, this algorithm was needing a long computation time, due to adopting DenseNet [13]. 

Hence, this paper intends to use a novel depth estimation architecture that can discern depth 

estimation from a single RGB image to improve the accuracy of depth estimation and reduce the 

number of parameters, which affects reduced computation time and is efficient even with the use of a 

huge dataset. This architecture consists of many stages, whereby firstly an encoder-decoder 

architecture has been improved from DenseNet [13] to deal with some implied problems in DenseNet 

that still exist, such as recognition of layers that have failed to have enough training, recognition of 

layers that have had more focused training and the use of a large filter size for the first convolution 

layer. Then, the standard loss function can be observed and adopted. The evaluation of depth 

estimation tends to be carried out by employing four types of measurements, which are average 

relative error (rel), root mean squared error (rms), average (log10) error and threshold accuracy. The 

algorithms in the proposed architecture of this study were also compared to algorithms used in other 

studies, such as Eigen et al. [7], Laina et al. [14], Alhashim et al. [2], Hao et al. [10], Wang et al. 

[29], Ren et al. [23] and Carvalho et al. [5]. The results from the four types of algorithms in 

measurement are described before concluding the observations of this study. 

2. METHODOLOGY 

This paper deals with investigating depth estimation of a single RGB image using an end-to-end 

learning architecture that produces a direct mapping of RGB in depth, as shown in Figure 1. 

2.1 Encoder-Decoder Architecture 

Figure 1 shows the proposed encoder-decoder architecture for depth estimation from a single RGB 

image. Many researchers have argued that the performance of the CNN architecture may increase with 

the depth of the CNN architecture. Nevertheless, stacking many layers on the CNN architecture cannot 

guarantee improved performance of the network and may alternatively lead to a significant decrease in 

performance. This issue exists because of the gradient vanishing problem during the training phase 

[24], which happens when the CNN architecture is stacked with too many layers. By using the 

DenseNet, the vanishing problem can be avoided through a connection between the layers. However, 

the DenseNet has been found to disregard the activation layer during the backpropagation process, as 

there is no formula within the parameters of DenseNet that describes the changing process, which 

leads to reduced accuracy in the gradient formula. The formula used in the DenseNet may not 

ascertain the layers that need more training than others. The novel architecture proposed in this study 

has improved the DenseNet [13], as shown in Figure 2, by simplifying and analyzing forward and 

backward propagation. The new rules of the different parameters in the DenseNet are obtained based 

on the new gradient formula in determining the layer that needs more or reduced training. A filter size 

more suitable than DenseNet is also selected to extract high and low levels of the features from the 

input image and the reduction parameters requirement, which leads to a reduced computation time 

based on the Formula 2. 

 DenseNet Analysis 

The connection between the layers through the gradient formula [13] is the key to solve the gradient 

vanishing problem. However, there are challenges when directly inferring forward and backward  
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Figure 1. Encoder-decoder architecture for depth estimation from a single RGB image. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (a) DenseNet architecture 169 and (b) Improved DenseNet architecture. 
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propagation of DenseNet through gradient formula. Therefore, forward propagation and backward 

propagation of the DenseNet within a network addressing gradient vanishing are analyzed. 

o Forward Propagation Analysis 

The total loss function in the DenseNet is calculated using the square of the difference between the 

predicted output and the ground truth, as represented in the following formula: 

𝐿 =
1

𝑁
∑ |

𝑐

𝑖=1

�̂�𝑖 − 𝑦𝑖|2 =
1

2
∑ |

𝑐

𝑖=1

𝑒𝑖|2                                                           (1)  

where N = The normalization term, yi= The ground truth value, ŷi = Predicted value, ei= yi − ŷI 

and c = Number of classification layers. 

Forward propagation, which is the first convolution layer the DenseNet, is represented by the following 

formula: 

𝑠0 = ∑ 𝑥𝑖 . 𝑤𝑖

𝑛

𝑖=0

                                                                      (2) 

The dense block (DenseB) contains the h(.) function that has three operations: Batch normalization 

(BN), Rule layer and convolution kernel, which is a set of the first input layer [s0, s1, ......, si-1], where 

each layer receives the maps of the feature from all previous layers as input, as demonstrated by 

Formula 3. 

DenseB = 𝑤1ℎ1(𝑠0) + 𝑤2ℎ2(𝑠0, 𝑠1) + 𝑤3ℎ3(𝑠0, 𝑠1, 𝑠2) + 𝑤4ℎ4(𝑠0, 𝑠1, 𝑠2, 𝑠3)                    (3) 

𝐷𝑒𝑛s𝑒𝐵𝑖 = ∑ ∑ 𝑤𝑖

4

𝑖=1

𝑅

j=1

ℎ𝑖(s)                                                             (4) 

where R is represents the repeated number of the dense block. 

Then, the feature maps from the dense block input to the transaction layer are connected to the 

different dimensions through the following formula: 

𝑦0 = ∑ 𝑤𝑖

𝑛

𝑖=0

 . 𝜃(𝐷𝑒𝑛𝑠𝑒𝐵𝑖)                                                               (5) 

where θ(.) is the activation function and y0 is the output from the first transaction layer. Forward 

propagation for the encoder uses the following formula: 

𝑦𝑗 = ∑ ∑ 𝑤𝑖

𝑁

𝑖=1

. 𝜃(𝐷𝑒𝑛𝑠𝑒𝐵𝑖)

3

j=0

                                                                (6) 

where j= 1...3 (number of dense block in the architecture). 

o Back Propagation Analysis 

The predicted output of the simplified encoder is obtained from the weight of the last layer that 

employed backpropagation. The gradient, L, is represented in the following formulae. 

 

𝜕𝐿

𝜕𝜔𝐵
=

𝜕𝐿

𝜕�̂�𝐵

𝜕�̂�𝐵

𝜕𝜔𝐵
 

= 𝛿𝐵

𝜕(𝛴𝑖=1
4 ∑ 𝑊𝐵.𝜃(𝑆𝐵𝑖)𝑁

𝑗=1 )

𝜕𝜔𝐵
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where  

𝛿𝐵4
=

𝜕𝐿

𝜕𝑆𝐵4
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𝑐 (�̂�𝑖 − 𝑦𝑖)

𝜕𝑆𝐵4

 

= 𝑒𝑖. 𝜃′(𝑆𝐵4
)                                                                                    (8) 

 
The hidden layers of the encoder of this study have the same gradient formula: 

𝛿𝑖 = 𝜃′ (𝑦𝑖 . ∑ 𝛿𝑖+1.

3

𝑖=0

𝑤𝑖+1)                                                              (9)  

The gradient of the first connected weight fades as the number of layers increases in the network. This 

study defines ∆δn as the gradient that increases based on the number of layers (n) in the encoder, as 

shown in the following formula. 

△ 𝛿𝑖
𝑛 = 𝜃′(𝑦𝑖

𝑛) ∑ 𝛿𝑖
𝑛+1

𝑐

𝑖=0

, 𝑛 = 1, … ,4                                                (10)   

△ 𝛿𝑖
𝑛 solved the vanishing problem in a deep network. 

Skip connection technique is used to connect the encoder and decoder transferring the features of the 

maps to the decoder during the up-sampling process for depth estimation, which tends to speed up the 

learning of context awareness and overcome the translation invariance. The decoder in this study uses 

bi-linear up-sampling, as shown in Figure 1, where the up-sampling block utilizes ReLU for activation 

and convolution of the layers. 

2.2 Loss Function 

In this study, the encoder-decoder architecture has adopted various loss functions as represented in the 

following formulae: 
 

𝐿𝑚𝑒𝑎𝑛𝑎𝑏s𝑜𝑙𝑢𝑡𝑒(𝐿1) =
1

𝑁
∑ |

s

𝑖=1

�̂�𝑖 − 𝑦𝑖|                                                        (11)  

𝐿𝑚𝑒𝑎𝑛s𝑞𝑢𝑎𝑟𝑒(𝐿2) =
1

𝑁
∑(�̂�𝑖 − 𝑦𝑖)2

s

𝑖=1

                                                         (12) 

𝐿ℎ𝑢𝑏𝑒𝑟 = {

𝐿1(𝑙𝑖)           𝐿1(𝑙𝑖) ≥ 𝑐,

𝐿2(𝑙𝑖) + 𝑐2

2𝑐
           𝑒𝑙𝑠𝑒

                                                             (13) 

𝐿𝑏𝑒𝑟ℎ𝑢𝑏 = {

𝐿1(𝑙𝑖)           𝐿1(𝑙𝑖) ≤ 𝑐,

𝐿2(𝑙𝑖) + 𝑐2

2𝑐
           𝑒𝑙𝑠𝑒

                                                             (14) 

where yi= The ground truth value, yˆi = Predicted value, s = Number of classification layers, N = 

Normalization term, 𝑐 =
1

5
max (|�̂�𝑖 − 𝑦𝑖|) and i = Index value of pixel for each depth image in the 

current batch. 

3. RESULTS AND DISCUSSION 

The experimental results and evaluation of the algorithms presented have been analysed and 

interpreted. The evaluation of the encoder-decoder architecture has employed the following four 

measurements: 

1) Average relative error (rel) = 

1

𝑛
∑

|𝑦𝑖 − �̂�𝑖|

𝑦

𝑛

𝑝

                                                                             (15)  
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2) Root mean squared error (rms) = 

√
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑝

                                                                       (16) 

3) Average (log10) error = 

1

𝑛
∑ |

𝑛

𝑝

log10𝑦𝑖 − log10�̂�𝑖|                                                                    (17) 

4) Threshold accuracy = 
 

max (
𝑦𝑖

�̂�𝑖
,

�̂�𝑖

𝑦𝑖
) = 𝛿 <threshold = 125,1252, 1253                                                (18) 

where yi= The ground truth value, ŷi = Predicted value and n= Total value of pixel for each 

depth image. 

3.1 Experimental Specifications 

The architecture implemented in this study is built using TensorFlow [11], Amazon Web Services (AWS) 

and Amazon Machine Image (AMI), whereby the GPU-Us-Tesla V100 was at 16GB, while the VCPUs-

8 cores had 61GB.  

The algorithm of optimization used in is Stochastic Gradient Descent (SGD) [13]. The weight decay 

is 0.0001, with the learning momentum at 0.9 and the learning rate at 0.001 for 20 epochs. 

3.2 Dataset 

The quality of depth estimation has been evaluated using the NYU Depth v2 benchmark [25], which 

is considered one of the most well-known datasets for RGB single-image depth estimation. This 

dataset contains 1449 densely labeled pairs of images from indoor scenes with depth, 464 new scenes 

and 407,024 new unlabeled images that have been captured using Microsoft Kinect. Based on 

previous works that employed the NYU Depth v2 benchmark in examining depth estimation [7] [14] 

[2], the standard training and testing split was used to evaluate 654 image-depth pairs from the set. 

3.3 Backbone Result 

The proposed network has been chosen through the specific number of duplicates for each dense 

block based on the acquired results, as shown in Table 1. A selection of suitable duplicates for each 

layer of the dense block is carried out to improve the performance of the backbone network after the 

filter size is decreased. 

Table 1. Number of duplicates for each dense block. 

Block of dense layers Number of duplicates ↓ rel 

1 
1,1,1,1,1 

2,1,1,1,1 

3,1,1,1,1 

0.6630 

0.6656 

0.6705 

 1,2,1,1,1 0.5410 

 1,4,1,1,1 0.5403 

2 1,6,1,1,1 0.5333 

 1,8,1,1,1 0.5200 

 1,10,1,1,1 0.5170 

 1,8,2,1,1 0.4801 

 1,8,4,1,1 0.4711 

3 1,8,6,1,1 0.4287 

 1,8,8,1,1 0.4122 

 1,8,12,1,1 0.4036 

 1,8,12,2,1 0.3885 
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 1,8,12,4,1 0.3806 

 1,8,12,6,1 0.3705 

 1,8,12,8,1 0.3674 

 1,8,12,10,1 0.3506 

 1,8,12,12,1 0.3302 

4 1,8,12,14,1 0.3089 

 1,8,12,16,1 0.2883 

 1,8,12,18,1 0.2615 

 1,8,12,20,1 0.2505 

 1,8,12,22,1 0.2366 

 1,8,12,24,1 0.2307 

 1,8,12,26,1 0.2277 

 1,8,12,28,1 0.2186 

 1,8,12,30,1 0.2185 

 1,8,12,28,2 0.2092 

 1,8,12,28,4 0.2025 

5 1,8,12,28,6 0.2003 

 1,8,12,28,8 0.1945 

 1,8,12,28,12 0.1920 

 1,8,12,28,14 0.1858 

 1,8,12,28,16 0.1789 

 1,8,12,28,18 0.1603 

 1,8,12,28,20 0.1552 

 1,8,12,28,22 0.1501 

 1,8,12,28,24 0.1483 

 1,8,12,28,26 0.1382 

 1,8,12,28,28 0.1241 

 1,8,1228„30 0.1220 

 1,8,12,28,32 0.1220 

Based on Table 1, the most suitable duplicates for each dense block are as follows: 

1) One-time repetition of the first convolution layer. 

2) Eight-time repetition of the second dense block. 

3) Repetition of the third dense block 12 times. 

4) Repetition of the fourth dense block 28 times. 

5) Repetition of the fifth dense block 30 times. 

As shown in Table 1, it is found that some dense blocks need to be repeated more to obtain better 

results (second dense block), while some dense blocks do not need duplicates of training. So we have 

reduced the number of repetition of training for these dense blocks (fourth dense block and fifth dense 

block), because it not needed to repeat the training, which leads to reduce parameters and then leads 

to reduce computation time. 

3.4 Loss Function 

The various loss functions of the encoder-decoder architecture tend to be compared using mean 

absolute, mean square, Huber and BerHub. Table 2 shows the results of this comparison. 

As shown in Table 2, the performance of the loss function using BerHub is found to be the best for the 

different measurements used, which are rel error, rms error, log10 error, θ < 1.25 accuracy, θ < 1.252 

accuracy and θ < 1.253 accuracy. The results for the architecture are 0.1220, 0.4584, 0.0531, 0.8525, 

0.9735 and 0.9946, respectively per sequence of measurements, as previously mentioned. 

The loss function using Berhub is also found to be balanced between ground truth depth map values. 

When the differences between the ground truth depth map values are small, there will not be big 

differences in the weights and the dependence in this case is on L1, but when the differences between 
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Table 2. Performance of various loss functions. 

Loss function ↓ rel ↓ rms ↓ log10 ↑ θ < 1.25 ↑ θ < 1.252 ↑ θ < 1.253 

Mean absolute 0.1367 0.5809 0.0582 0.8214 0.9670 0.9926 

Mean square 0.1308 0.4820 0.0557 0.8408 0.9708 0.9934 

Huber 0.1357 0.4949 0.0563 0.8363 0.9724 0.9942 

BerHub 0.1220 0.4584 0.0531 0.8525 0.9735 0.9946 

the ground truth depth map values are large, we tend to choose the equation 
𝐿2(𝑙𝑖)+𝑐2

2𝑐
 and this equation is 

meant to reduce the loss in weights, which leads to a convergence between (ŷi, yi) so that we can get 

the best distribution of the ground truth depth map values. Hence, the loss function using Berhub is 

also found to be more appropriate for the architecture proposed in this study because of the small 

residuals that are utilized in the training stage, which has resulted in a better weight adjustment to 

achieve a better result. 

3.5 Encoder-Decoder Comparison with Various Backbones 

Table 3 presents the results of a comparison between various implementations to the backbone. 

Table 3. Performance of various implementations of backbone. 

Backbone ↓ rel ↓ rms ↓ log10 Parameters Computation time per hour 

DenseNet 121 0.1312 0.4970 0.0571 21.2M 16.28 

DenseNet 169 0.1281 0.4740 0.0551 47.0M 21.13 

DenseNet 201 0.1289 0.5515 0.0537 55.9M 26.34 

ResNet50 0.1571 0.5590 0.0672 49.5M 30.55 

ResNet101 0.1441 0.5559 0.0687 68.5M 40.23 

Ours 0.1220 0.4584 0.0531 44.3M 19.31 

The performance of the proposed backbone was found to exhibit better results. The rel error, rms error 

and log10 error accuracy of our backbone network amounted to 0.1220, 0.4584 and 0.0531. These 

values were significantly higher compared to other backbone values. The proposed backbone network 

solved the issue of vanishing gradient through identity shortcut based on a new gradient formula while 

taking the efficiency training for each dense block into account, as shown in Table 1. This aspect was 

considered through a specific duplicate increase or decrease in training and the reduction in the filter 

size to extract a certain amount of features from the input image and transfer this amount to other 

layers. The benefit obtained from the features led to positive results compared to other algorithms. 

The proposed backbone has consumed 44.3M parameters and 19.31 computation time per hour, 

making it the second in terms of the parameters and computation time per hour after DenseNet 121 

backbone due to the increased repetition for some dense blocks to obtain better results, despite the high-

speed characterization of the DenseNet 121 backbone algorithms in this process. Simultaneously, this 

is due to accuracy in terms of rel error, rms error and log10 error. 

3.6 Comparison with the State of the Art Architecture 

The results from this study are compared to those of studies conducted by Eigen et al. [7], Laina et al. 

[14], Al- hashim et al. [2], Hao et al. [10], Wang et al. [29], Ren et al. [23] and Carvalho et al. [5]. Table 

4 shows the results of these comparisons. As shown in Table 4, the performance of the proposed 

architecture in this study obtained better results compared to other types of architectures when 

calculated using the different measurements; rms error, log10 error, θ < 1.25 accuracy, θ < 1.252 

accuracy and θ < 1.253 accuracy. The results of the proposed architecture are 0.4584, 0.0531, 0.8525, 

0.9946, respectively, per the sequence of measurement previously mentioned. This result has 

suggested that the framework of the new backbone proposed in this study is extremely crucial in 

achieving desirable results. The proposed network has taken into account the efficiency of training for 

each dense block by increasing specific duplicates or decreasing training. Moreover, the filter size is 

decreased to obtain the number of features extracted from the input image so as to be fed to other 
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layers. These steps have resulted in a better performance compared to other algorithms. Besides, this 

study has adapted the various loss functions and chosen the most suitable loss function for the proposed 

architecture, as shown in Table 2. The visual experimental results obtained from this study are clearly 

shown in Figure 3. The visuals illustrated in sequence are: the original RGB image, the depth 

prediction and the map of ground truth 

Table 4. Performance of state-of-the-art architectures on NYU Depth v2 dataset. 

Architecture ↓ rel ↓ rms ↓ log10 ↑ θ < 1.25 ↑ θ < 1.252 ↑ θ < 1.253 

Eigen et al.[7] 0.158 0.641 - 0.769 0.950 0.988 

Laina et al. [14] 0.127 0.573 0.055 0.811 0.953 0.988 

Alhashim et al.[2] 0.123 0.465 0.053 0.846 0.974 0.994 

Hao et al. [10] 0.127 0.555 0.053 0.841 0.966 0.991 

Wang et al. [29] 0.220 0.745 0.094 0.605 0.890 0.970 

Carvalho et al. [5] 0.135 0.600 0.059 0.819 0.957 0.987 

Ren et al. [23] 0.113 0.501 - 0.833 0.968 0.993 

Ours 0.122 0.458 0.052 0.853 0.974 0.995 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The visual experimental results of our encoder- decoder architecture from NYU Depth v2 

dataset. 
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4. CONCLUSION 

In this study, a novel encoder-decoder architecture has been proposed to investigate depth estimation 

from a single RGB image. There are several stages in this architecture, whereby firstly the encoder-

decoder architecture has been simplified from the DenseNet and analyzed using forward and 

backward propagation. Then, the new rules for the different parameters of the DenseNet are obtained 

based on the new gradient formula to search for the layer that needs more or less training. The filter size 

that is selected to extract high and low feature levels from the input image for solving the gradient 

vanishing problem should be more suitable than DenseNet. Results from this study on the NYU Depth 

v2 dataset have also shown that the loss function using Berhub has produced the best performance. 

Experiments on the NYU Depth v2 dataset further demonstrated that the encoder-decoder architecture 

in this study has achieved a state-of- the-art performance based on the consistent performance in 

obtaining depth estimation from a single RGB image. 
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 ملخص البحث:

ا  ديتتتتتف ائد  تتتتتل اا تتتتت   جلبتتتتتوائد ائعتتتتتلائديل تتتتتل اد متتتتتل ةائديحدتتتتت التتتتتوالعتتتتتفيايتتتتتا   ا ئ تتتتتل  ا تتتتت ائد  

ثلاث تتتتتتوائاويتتتتتتفاائدما تتتتتتةالتتتتتتوائ   دتتتتتتف ا تتتتتت ائد تتتتتت ائلائدخفيتتتتتتواوتتتتتتفدة والا ق ب متتتتتتفلائدائ تتتتتت ا

دتتتتت نا دمتتتتتواالعتتتتتف ا تتتتت  ائديدل تتتتتوائاخ تتتتتة لاا ديلا  وتتتتتفائداث متتتتتواوفدبيتتتتتلائدافدتتتتت ائدد داتتتتت ا تتتتت ائديحا

ئلإل تتتتتفرااللاتتتتتةئ ا ف بف  تتتتتفالت ا تتتتتو اوفد تتتتتتل فلاو تتتتتب ا  تتتتتف فال  افتتتتتواف تتتتتلاوفستتتتت خلئ ا   تتتتتوا

ئستتتتتت خلئ ا   تتتتتتوائدتفستتتتتتا لاا ف خ لا تتتتتتفلا تتتتتت ائدو لستتتتتتونا ل تتتتتت  ائدد تتتتتتولنا ئدتتتتتتتل اائدخفيتتتتتتوا

تتتتتتت ا تتتتتتت دوائدديلالتتتتتتتفلا تتتتتتت اا لوتتتتتتتفا  تتتتتتتف فالاجتتتتتتتاا او ي  وفل تتتتتتتلئاائدد تتتتتتتولنا ئد دتتتتتتتااائدد دي 

ائد  ا دموائدتصايافل وفالوايا   ال ةا  لا

ا تتتتتت  ائدا  تتتتتتواقم تتتتتتةااعة متتتتتتو الب متتتتتتة  اد متتتتتتل ةائديحدتتتتتت ا تتتتتت العتتتتتتفيائدديدف  تتتتتتونادتتتتتت د كنا تتتتتتهر 

ق  تتتتتتتدوائددةئ تتتتتتت ائد تتتتتتت ا دم وتتتتتتتفا راقمتتتتتتتا او متتتتتتتل ةائديحدتتتتتتت التتتتتتتوايتتتتتتتا   ال تتتتتتتةا  اوتتتتتتتفا دةا

دمتتتتتتتتلاقتتتتتتتتة ائ  تتتتتتتتةئااليدف  تتتتتتتتوال د تتتتتتتتوالتتتتتتتتوا  تتتتتتتتل اقةل تتتتتتتت ا (لااRGB ئاخ تتتتتتتتةا ئا   ا 

افلتتتتت ائد ت تتتتت وائدتتتتت  اقتتتتت ائد ةل تتتتت ناو تتتتتفت  (ااDenseNetةائدتصتتتتتايافل تتتتت التتتتتوا   ختتتتتةّاد تتتتتك 

تتتتتت لاا اذاجتتتتتتةّائستتتتتت خلاراخة  تتتتتتوادلصتتتتتتا  اوفستتتتتت خلئ اقم  تتتتتتوائد ايتتتتتت  ائدمفعدتتتتتتوافلتتتتتت ائد  خ  

تتتتتلائديم تتتتت وادوتتتتتاوةا   ا ختتتتتةّناقي دتتتتتلا تتتتت  ائدا  تتتتتواائد تتتتتوائد م  ئد تتتتت اقلاعتتتتتةاا(Huberلتتتتتوالف  تتتتتو 

افتتتتتف  اوصتتتتتا  ا سفستتتتت وائدديدف  تتتتتوائددم ة تتتتتوالتتتتتواختتتتتلاياقا  يتتتتتفلائدمتتتتت ةائد تتتتت اقحاجتتتتتلاو تتتتتم  

ا  اخةئعطائديحد لا

اليدف  تتتتتتواقمتتتتتتل ةائديحا تتتتتت العدافتتتتتتوا  تتتتتتلا لتتتتتتف لائد  تتتتتتفع ائد عة ب تتتتتتوائدتتتتتت ا ر  دتتتتتت ائد تتتتتت اقا   

ا   تتتتتتت المف لتتتتتتتواوتتتتتتتفد ة ائاختتتتتتتةّاNYU Depth v2ئدب فلتتتتتتتفلا  (ا فلتتتتتتتواذئلا ائت 

التتتتتوائدد   تتتتتتةئلا ا  تتتتتت   ئدد تتتتت خللوا تتتتت العتتتتتتفياقمتتتتتل ةائديحدتتتتتت ائد تتتتت اقد تتتتتت ائدتتتتت ائلتتتتتت لا افتتتتتلا 
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