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ABSTRACT 

Enhancing the IoT health monitoring systems used in various environments, such as smart homes and smart 

hospitals, imply lively analyzing the patients’ critical streams (e.g. ECG stream). Conducting these tele-health 

applications over the traditional cloud violates the deadline constrains of the stream analytics applications, 

which results not only in performance degradation, but also in inaccurate analytics results due to patient's 

stream loss. Fog computing can take place within the patient's vicinity and is considered as the best candidate 

for critically analyzed stream applications. Fog nodes are geo-distributed and are poor in resources, thus a 

scalable and fault-tolerant resource management platform for stream analytics in fog computing is a must. 

Current Stream Processing (SP) resource managers are designed for massive resource nodes, deploying them 

over the poor resource edge fog nodes greatly decreasing the fog infrastructure utilization. Innovative SP 

resource managers that cope with the fog nature are needed. We propose Fog Assisted Resource Management 

(FARM) platform based on Apache Hadoop2 resource manager (YARN) for compatible stream/batch analytics. 

Static FARM (S-FARM) represents two YARN schedulers; per-user and per-module. Results indicate that per-

user scheduler overcomes the lack of resources issues of the edge fog nodes, fully utilizes the fog infrastructure 

and allows the system to expand safely up to its double size. In addition, Differentiated S-FARM scheduler is 

proposed to support per-user control to the analytic results' accuracy and speed. Stream CardioVascular 

Disease (S-CVD) application for patient's ECG analytics is simulated in iFogSim to judge the proposed YARN 

schedulers. The research is pioneer in enhancing the poor resource edge fog node utilization, supporting per-

user control to live big data analytics IoT applications and utilizing iFogSim to implement and evaluate the 

resource manager performance of a stream analytics platform. 
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1. INTRODUCTION 

According to the National Council on Aging, up to 80% of older adults have at least one chronic 

health condition that requires continual treatment management. This fact increases the burden on the 

world's health care systems. The evolution of the IoT technologies and health informatics systems 

aims to realize the remote patient's monitoring (tele-health) with high quality of care and to make the 

management of these populations more cost-effective [1]. Tele-health applications allow patients to 

live more independently and improve their quality of life while reducing the cost of medical care and 

hospital re-admissions. In addition, online patients’ data aids caregivers in early patient state 

classification, emergency situation management and following up patient adherence to the given 

treatments. 

Data analytics plays an important role in tele-health ecosystems, especially for smarter decision-

making within the time constrains; i.e., patient's critical state detection. For this fully distributed data 

sources, cloud data processing fails to meet the requirement of delay sensitive applications, which 

results not only in performance degradation, but also in inaccurate analytics results due to patient's 

stream loss [2]. Fog computing, also known as edge computing [3]-[4], is a distributed computing 

paradigm that aims to tackle the issue by offloading data analytics and sensitive delay tasks to the edge 

of the network closer to the data sources, leaving the delay tolerant highly computational tasks to be 

performed at the cloud. Resource management in fog computing is a challenging issue [5]-[6]. This is 

because fog allows application modules to be distributed along the fog tiers to provide an enhanced 
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application delay and network usage [2], [7]. However, deployment of critical tele-health stream 

applications in such manner degrades the application performance, because edge fog nodes are geo-

distributed, poor in resources and sustain to failure that will affect the patient's experience and prevent 

achieving the main purpose of tele-health applications [2]. A scalable and fault tolerant Stream 

Processing (SP) platform in fog computing overcomes these issues. The on-market SP resource 

managers are designed for massive resource nodes. Deploying these resource managers over poor 

resource edge fog nodes degrades the fog infrastructure utilization. Innovative SP resource managers 

in fog computing are needed. All the reviewed literature depends on real cluster implementation. To 

the best of our knowledge, the research is pioneer in utilizing iFogSim simulator [8] to implement and 

evaluate the performance of SP platform resource manager. This contribution may guide researchers in 

implementing and judging the resource management performance of other various on-market SP 

platforms; i.e., Apache (Samza, Flink, Spark,...). 

This work proposes a Fog Assisted Resource Management (FARM) platform based on YARN for 

compatible short-term and long-term big data analytics. Static FARM (S-FARM) represents YARN 

schedulers. Two schedulers are proposed to control the fog nodes CPU load: per-user and per-module. 

Per-user scheduler is a YARN scheduler that copes with the edge fog nodes lack of resources. In 

addition, Differentiated S-FARM scheduler is proposed to allow per-user control to the analytics 

results QoS. Analytics results are controlled by the analytics tuples' Million Instructions Per Second 

(MIPS) to represent accurate versus fast results. Stream CardioVascular Disease (S-CVD) application 

is modelled. It lively analyzes the patient's ECG streams to conduct the patient's state using a linear 

classifier machine learning tool. IFogSim is used to judge the application and the fog infrastructure 

performance under the proposed YARN schedulers. 

The paper is organized as follows: Section 2 introduces a brief background about live big data 

analytics. Section 3 provides a literature review. Section 4 presents the research methodology. Section 

5 presents S-CVD application and system model. Section 6 presents FARM platform and YARN to 

fog mapping. Section 7 presents the YARN schedulers (S-FARM algorithms). Section 8 analyzes the 

application and infrastructure performance. Finally, Section 9 concludes the paper and presents 

suggestions for future work. 

2. LIVE BIG DATA ANALYTICS  

Big data is characterized by its volume, variety, veracity, velocity and value. Big data could be 

analyzed either in stream or batch mode [11]-[12], see Table 1. 

Table 1. Comparison between stream and batch data analytics Modes. 

Differences Stream Mode Batch Mode 

Mode Short-term (live) analytics Long-term analytics 

Management target Transient streams Persistent data 

Amount of data Unknown in advance Finite 

Processing model On the fly Store then process 

Query model Continuous One-time query 

Access model Sequential access Random access 

Result repeatability Nearly impossible Easy 

Result update Incremental update Global update 

Focus of processing Low latency High accuracy 

Platforms Storm, Spark, Samza, Flink,… Apache Hadoop,… 

In the domain of healthcare, IoT big data has several challenges, including high data rate with variable 

volume, semi-structured or unstructured format (i.e., echo image, voices), correlation across several 

dimensions (i.e., time, location) and its social relations among related healthcare devices [1]. 

Analyzing the healthcare IoT streams at the fog network has a set of advantages, including real-time 

handling, user-centric processing, user’s mobility support and geo-distribution, location and context 

awareness applications support [10]. 

Stream Analytics for Critical Healthcare Decision-making: A stream is defined as a sequence of  
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data elements ordered by time. Each data element has a time stamp that measures the data order. 

Stream processing SP is a one-pass data processing that aims to achieve low processing latency by 

keeping data in motion. The complete stream analytics data life cycle includes [12]: 

1. Data generation stage. 

2. Data collection and aggregation stage: from different distributed sources. 

3. Messaging and buffering stage: IoT streams are gathered into a centralized buffer. 

4. Continuous Logic Processing (CLP) stage: processes data according to the designed continuous 

logic. Current CLP Systems (CLPS) are scalable and fault-tolerant. 

5. Presentation and storage stages: deliver the insights to end users and store them. 

Table 2 presents a comparison between Apache’s Stream Processing (SP) platforms that represent the 

third-generation CLPS. SP platforms are characterized by [12]-[13]: 

 Programming components of the CLPS: graph name, nodes and edges. 

 Type of process: client (graph builder), task scheduler and task executer. 

 CLPS capability of accurate recovery of the same processing results when system failures occur. 

 State consistency of all participating components during processing, which is related to the fault 

recovery methods implemented by the system. 

Apache Hadoop2 YARN (Yet Another Resource Management Negotiator) [18]-[19] can serve as the 

core of various Apache’s SP platforms. YARN can serve as the core of various Apache’s SP 

platforms. Thus, the proposed FARM platform is based on YARN for compatible stream/batch 

analytics. 

Table 2. Comparison between open-source stream analytics platforms. 

Apache’s SP Platform Storm [14] Spark [15] Samza [16] Flink [17] 

Processing Type Stream Stream-Batch Stream-Batch Stream-Batch 

Type of processes: 1-

Client 

2-Task scheduler 

3-Task executer 

1-Topology 

builder 

2-Nimbus and 

Zookeeper 

3-Workers 

1-Spark DAG 

2-YARN 

scheduler or 

standalone  

3-Workers 

1-User-defined 

2-YARN 

scheduler or 

Zookeeper 

3-Workers 

1-Graph builder  

2-YARN scheduler 

or standalone  

3-operators 

executer 

Accurate Recovery  Yes  Yes  Yes  Yes  
State Consistency  No  Yes  Yes  Yes  
Adopted by  Twitter, Yahoo eBay Inc. LinkedIn Research gate 

3. LITERATURE REVIEW: STREAM ANALYTICS IN FOG COMPUTING 

Stream analytics research in fog computing could be classified as: 

 Stream Analytics Platform Deployed Stream Applications: [20]-[24]. See Table 3. In this 

literature, performance was measured for general-purpose applications. It did not consider 

healthcare stream applications with high sensor rates and critical reading that concerns patient’s 

safety and security. In addition, no study considered a single platform for both short/long-term 

analytics that is required for accurate remote patient monitoring. 

 Healthcare Stream Analytics Platforms: proposed to deploy healthcare stream applications 

only. The healthcare application modules are placed on the fog network according to the type of 

the analytics task; i.e., [25]-[27] for healthcare data critical analysis task and [28]-[29] for 

healthcare data critical control task. See Table 4. In this literature, three tiers of IoT data network 

are used for permanent task allocation regardless of the encountered application performance: 

smart watch or smart phone tier was used for data collection tasks, fog/cloud tier was used for data 

computations tasks and the cloud tier was used for data storage and long-term analytics tasks. 

 Stream Analytics Platform Deployed Healthcare Stream Applications: [30]-[32]. See 

Table 5. In this literature, the evaluation method depends on real cluster implementation only. In 

addition, the lack of resources of the edge fog nodes has not been addressed. 

To the best of our knowledge, no research addressed the edge fog node lack of resources, provided 
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 per-user control to the accuracy and speed of the analytic results or utilized iFogSim as an innovative 

tool to implement and judge the performance of a stream analytics platform resource manager. 

Table 3. Stream analytics platform deployed general-purpose application in fog computing. 

REF. Platform Perf. Metric Scheduler Imp. 

[20] Storm Utilization, latency, inter- 

node traffic 

distributed Storm scheduler that adapts to 

fog network’s changes 

R 

[21] Storm Comm. latency to 

external IoT actuators or 

databases 

modified Storm with a decision module 

that decides whether to place selected 

tasks on edge devices at run time 

R 

[22] Storm, 

Nimbus 

Latency, average inter-

node traffic 

modified Nimbus by adding offline and 

online schedulers that analyze the 

topology and monitor the effectiveness 

of the schedule at run time 

R 

[23] Spring cloud 

dataflow 

Optimization problem resource elasticity mechanism to deal 

with changing rates of streaming data 

R 

[24] Spark Job completion time, 

scalability, power 

consumption 

Modified Spark to utilize the whole 

processing capacity of all the available 

edge devices 

R 

R: Real Implementation. 

 

Table 4. Healthcare stream analytics platform in fog computing. 

REF. Perf. Metric Per. Task Allocation Application Imp. 

[25] Data size, processing and 

transmitting time 

At LAN level ECG monitoring R 

[26] Processing time, system 

reliability 

At PAN level for transport 

scenario 

ECG feature 

extraction 

R 

[27] End-to-end data delay, mobile 

battery life time 

At PAN level for user 

mobile scenario 

Patient monitoring R 

[28] Patient deterioration and re-

admission incidence rate 

User mobile scenario Oxygen level control R 

[29] Stable patient heart beat At LAN level for hospital 

scenario 

Pacemaker monitoring R 

Per.: Permanent Task Allocation. 

 

Table 5. Stream analytics platform deployed healthcare stream applications in fog computing. 

REF Platform Perf. Metric Scheduler Application Imp. 

[30], 

[31] 

Storm, 

Kafka 

- Kafka and Storm cluster 

architecture for S/B analytics 

i.e., pervasive 

health 

- 

[32] Flink, 

Kafka 

CPU, memory 

usage, average 

data loss 

Stream computing at 

Kafka’s broker and Flink’s 

cluster processing layer 

Anomaly detection 

REALDISP dataset 

R 

4. RESEARCH METHODOLOGY 

In this research, we aim to develop a FARM platform for critical tele-health stream analytics 

applications. Figure 1 presents our research methodology. 

5. S-CVD APPLICATION MODEL 

Stream CardioVascular Disease (S-CVD) application analyzes an ordered Electrocardiogram (ECG) 

stream with a sensor transmission rate of (25ms: 1000ms). The application is modelled as a Directed 

Acyclic Graph (DAG), where modules are represented as vertices and inter-module communications 

are represented as edges, see Figure 2. Client module accepts the sensor ECG stream, adding any  
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Figure 1. Research methodology. 

 
Figure 2. S-CVD application model. 

related information and securing the packets. Filtering module cleans the data, eliminates inaccurate 

and out-of-range readings. Monitoring module is a linear classifier machine learning tool that 

continuously classifies the patient’s state. Caregiver module gets the analytics results and reports the 

online consultant about the current patient state. Online consultant has a complete access to the 

patient’s electronic health record along with a knowledge base that aids him/her in decision-making. In 

emergency situations, the consultant can send an ambulance or contact the patient’s family for help. 

After analyzing the data, the patient is informed by his state or with the ongoing actions. Cloud 

analytics module is located at the remote cloud and is responsible for long-term analytics and 

managing the analytical operators supervised machine learning for the patient state classifiers.  

System Model 

 Body Area Network of ECG sensors are connected to the patient and through WiFi or Bluetooth to 

the smart e-health gateway 1. 

 Smart e-health gateway 1 (Mobile) is the patient’s smart phone that carries out the data collection 

task; i.e., S-CVD (Client module). 

 Smart e-health gateway 2 (Dept) is located at the patient’s vicinity (smart home, smart vehicle or 

smart hospital ward) and carries out the data analysis tasks of the tele-health applications. 

It is connected to the healthcare center. 

 Remote healthcare center (Proxy-Server) is located at the smart hospital and carries out the 

decision-making and permanent data storage tasks; i.e., S-CVD (Caregiver module). Data 

management tasks; i.e., S-CVD (Filtering, Monitoring modules) could be utilized at smart gateway 

or at the proxy-server according to the required application and fog infrastructure performance. 

 Remote cloud is responsible for long-term data analytic; i.e., S-CVD (Cloud analytics module). 

Deploying YARN over this system model enables a scalable and fault-tolerant platform for the tele-

health application. Also, it preserves the patient’s security and privacy, because his/her sensory data is 

processed locally at his/her vicinity or at his/her smart hospital. 
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6. FOG ASSISTED RESOURCE MANAGEMENT (FARM) PLATFORM 

Based on the complete life cycle of the IoT stream analytics systems [12] and the Apache Hadoop2 

YARN architecture [18]-[19], Figure 3 is proposed to represent the FARM platform based on YARN 

for compatible stream/batch analytics in the fog/cloud system. For a smart hospital system model, the 

fog nodes (i.e., smart e-health gateway 2 and the remote healthcare center) represent the YARN nodes 

that carry out the stream analytics. A remote cloud represents YARN nodes that carry out batch 

analytics tasks for multiple hospital branches that belong to the same owner. For the S-CVD 

application, patients’ streams are queued in messaging system (i.e., Kafka) before turning into the 

hospital’s stream analytics platform. The Hadoop Distributed File System (HDFS) can comprise a 

large number of directly connected individual fog nodes at the smart hospital. For decision-making, 

caregiver queries are sent to HDFS in fog network and cloud data center. 

 
Figure 3. FARM platform based on YARN for compatible stream and batch analytics. 

YARN to Fog Mapping: Table 6 proposes YARN to fog physical entity mapping, where Fog 

Manager Server and Fog Domain Servers are presented to carry out the main YARN responsibilities. 

Also, it presents YARN to iFogSim mapping. 

Table 6. YARN concept to fog physical entity components and iFogSim mapping. 

YARN Concept Fog Physical Entity iFogSim Mapping 

ResourceManager (Master): 

Scheduler: global resource 

scheduler 

Application Manager: 
follows up the progress for 

executing the application’s 

specific ApplicationMaster 

Fog Manager Server (Master): 

Scheduler: determines how 

application’s modules are placed 

across fog devices upon 

submission of the application 

Application Manager: monitors 

the performance and reschedule 

resources of each host fog device 

to the application modules 

Fog Master Server: Console for 

user interface and modules 

Scheduler: represented by: 

controller class,  

per-user-Basic-MP class,  

per-module-MP class,  

per-user-Diff-MP class, 

StreamOperatorScheduler, 

TupleScheduler class 

ApplicationManager: 

CheckDelay-Enh-Diff method 

(FogDevice class),  

MY-updateAllocatedMips 

method (FogDevice class) 

NodeManager (slaves): 

Host: tracks the running 

Virtual Machines (VMs) 

Container: VMs 

ApplicationMaster: global 

monitoring daemon, negotiates 

resources for VMs. 

Fog Domain Server:  
one or multiple tiers 

Wireless End Fog Nodes:  
light-weight cluster slaves 

ApplicationMaster: allocated over 

certain host or centralized 

Host: FogDevice class. 

Container: AppModule class 

ApplicationMaster: main class 
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7. FARM ALGORITHMS 

This work proposes Static FARM (S-FARM) representing YARN ResourceManager(Scheduler). 

Other YARN components will be studied as future work, see Table 6. 

7.1 Basic S-FARM Algorithm 

S-FARM schedulers determine how the application’s modules are placed across the fog nodes upon 

the application submission. Two modes are used: 

 Per-user Mode, where each user has his own Virtual Machines VMs carrying out his own 

workload. Resources are managed by placing the user’s modules (VMs) individually and one by 

one according to the user’s priority, until the required RM objectives are reached. This mode 

allows explicit user differentiation according to the user’s Service Level Agreement (SLA). 

 Per-module Mode, where all users’ workloads are placed together and carried out over one VM. 

Each VM represents one application module. Resources are managed by placing the whole module 

according to the application DAG until the required RM objectives are reached. 

Per-user S-FARM scheduler, Algorithm 1, places the high-priority user modules at its closest fog 

nodes first; if there is a shortage in the closest fog node computational resources, the remaining users’ 

(the lower priorities) modules are shifted up to the next fog node in the fog node path hierarchy. Per-

module S-FARM scheduler, Algorithm 2, places and shifts up the modules that carry the whole user 

instances according to the application’s DAG. 

UsrMIPS in algorithm 1 and ModMIPS in algorithm 2 represent the analytics tuple’s CPU length. 

They are permanently assigned by caregivers based on the requested analytics accuracy, where heavy-

weight tuples represent accurate results and light-weight tuples represent fast results. They are used 

across all the module’s edges to calculate the required CPU load for this module 
q

ModCPULoad Re
. 

Algorithm 1: S-FARM Per-user Scheduler Algorithm 
1: procedure SFARM-PERUSER(PATHS,App,Usrprio,UsrMIPS) 

2: Arrange all FogDevices within PATHS (leaf to root traversal)  

3: Arrange PATHS according to the Usrprio (high to low priority users). 

4: for (P ∈ PATHS) do 

5: for (endFogDev ∈ P) do 

6: for (UsrModule ∈ App) do 

7: Assign the UsrMIPS (analytics tuple’s CPUlength). 

8:             if 
Curr

DevCPULoad  + 
req

ModCPULoad .≤ 
av

DevCPULoad max
. then 

9: Place the UsrModule on the endFogDev 

10:      else 

11: Shift up the UsrModule to ParentFogDev 
 

Algorithm 2: S-FARM Per-module Scheduler Algorithm 
1: procedure SFARM-PERMODULE(PATHS,App,ModMIPS) 

2: Arrange all FogDevices within PATHS (leaf to root traversal) 

3: for (P ∈ PATHS) do 

4: for (endFogDev ∈ P) do 

5:  for (Module ∈ App) do 

6:  Assign the ModMIPS (analytics tuple CPUlength). 

7:  if (Module is Placed on this endFogDev ) 

8:   if (
Curr

DevCPULoad  + 
req

ModCPULoad .≤ 
av

DevCPULoad max
.) then  

9:    Place this Module instance on this endFogDev 

10:   else 

11:    Shift up the whole Module to ParentFogDev 

12:  else 

13:    if 
Curr

DevCPULoad  + 
req

ModCPULoad .≤ 
av

DevCPULoad max
.then  

14:    Place the Module’s first instance on this endFogDev. 
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In addition, in both algorithms, the modules are placed at a fog device until the device’s maximum 

available 
av

DevCPULoad max
 is reached. In this study, dept and proxy fog devices are loaded up to 100% 

of their maximum CPU load, while the user’s mobile is loaded to <= 0.15% of its maximum CPU 

load. Increasing the allowable mobile’s CPU load permits more application modules to be placed at 

the user’s mobile, which is not a desired performance. 

Both schedulers shift up the modules to the next level on the fog devices’ path hierarchy if: 
Curr

DevCPULoad  + req

ModCPULoad  
av

DevCPULoad max
. 

7.2 Differentiated S-FARM Algorithm 

Basic S-FARM assigns a constant analytics tuples’ MIPS to all users. Differentiated S-FARM assigns 

a variable analytics tuples’ MIPS to each user, according to the user’s requested analytics accuracy 

and speed. 

8. RESULTS 

Simulation parameters are the same used in [2]. S-CVD are tested for heavy-weight processing 

modules (10MB RAM, 2000 MIPS) and tuples (2000 MIPS and 500 Byte network length). Both 

modules (VMs) and tuples (Tasks) are time-shared scheduled, with device scheduling interval (10 ms) 

and application scheduling interval (300 ms). Fog devices’ CPU processing is: Mobile (1000 MIPS), 

Dept (2800 MIPS) and ProxyServer (16800 MIPS) to express the edge fog node lack of resources. 

Simulation time is up to 600000ms. The system is configured by the number of depts and the number 

of mobiles per each dept. The simulated (Depts/Mobile) are: 1D/3M, 2D/4M, 2D/6M, 2D/8M and 

3D/10M. Performance Metrics include: 

 Stream Analytics Loop Delay (ALD-Mean): the average delay for all tuples within the analytic 

loop for all users. The analytic loop executes the modules: ECG, client, filtering, monitoring and 

caregiver, in order. 

 Stream Analytics Loop Delay User (ALD-User): the average delay for all tuples within the 

analytics loop for a single user. 

 Standard Deviation of the Analytics Loop Delay (ALD-SD): for N users, the standard deviation is 

the root of variance: 

 σˆ2 = 



N

i

MeanUseri ALDALD
N 1

2)(
1

 

 Percentage of unsatisfied users per fog device: percentage of users with analytics loop delay 

greater than the delay threshold at this device. For SP, the max. allowed analytics delay for all 

devices should be less than or equal to the sensor’s transmission rate. 

 Device’s Power Consumption (Watt/hour): measured by the device’s utilization percentage over 

the simulation period. 

 Total Network Usage (kByte). 

8.1 Basic S-FARM Performance 

8.1.1 At Various System Configurations 

Figure 4 shows the analytics loop delay for ECG with a sensors’ transmission rate of 50ms, at two 

user’s Mobile CPU load percents (0.1% and 0.15%) of its max. CPU load. Results indicate that at 

1D3M, per-user and per-module modes have the same analytics delay; where the modules are placed 

similarly in both algorithms. Analytics delay is acceptable (<50ms) under all system configurations 

for per-user and per-module modes with Mobile CPU load of 0.15%. Expanding the system to 3D8M, 

both per-user and per-module modes with Mobile CPU load of 0.1% encounter unacceptable analytics 

delay (>50ms), but per-user mode delay is within the reasonable limit. 

Figure 5 shows the energy consumption of dept and proxy fog devices. Starting from 2D/6M 

configuration, per-module dept device flushes all its load to the proxy device and works by its idle 

power. At 3D/8M per-module mode, proxy device reaches its maximum allowable CPU load, flushes 
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Figure 4. Analytics loop delay under various system configurations. 

 

Figure 5. Fog devices energy consumption under various system configurations. 

all its workload to the remote cloud and works also by its idle power, leaving the smart hospital fog 

system completely un-utilized. Per-user mode dept and proxy devices work under all system 

configurations; even if the device’s maximum CPU load is reached, the device shifts up selected user’s 

modules only to the higher fog device. Thus, per-user mode permits for safer system expansion than 

per-module mode. The same information is deduced from Figure 6 that shows the dept and proxy fog 

devices CPU utilization at 3D/8M configuration. Per-user devices have 100% CPU utilization, while 

pe- module devices have 0% CPU utilization. Cloud datacenter carries out the heavy cloud analytics 

module for batch analytics, consumes higher energy in per-user mode than in per-module mode. Thus, 

cloud datacenter by its massive resources is not preferable to work in per-user mode. We suggest a 

hybrid mode of operation, where the limited resource fog nodes can work in per-user mode to save the 

system expandability, where the massive resource nodes like the cloud datacenter should work in the 

pe- module mode to save its power consumption. Also, within the same fog node, the hybrid mode 

could be studied to optimize the fog infrastructure energy consumption while allowing for safe system 

expansion. 

Figure 7 shows Mobile energy consumption. Results indicate that Mobile devices consume lower 

energy with per-user mode under all system configurations. Also, more energy is consumed when the 

mobile CPU load is 0.15% of its max. available CPU load. 

8.1.2 At Various Sensor Transmission Rates 

Figure 8 shows analytics loop delay under various sensor transmission rates, at 2D/4M and 3D/8M 

configurations. AT 2D/4M, all sensor transmission rates >=25ms are acceptable for per-module mode, 

while sensor transmission rates >= 40 ms are acceptable for pe- user mode. At 3D/8M, per-module 

analytics delay is acceptable for sensor rates >=500ms, while per-user analytics delay is acceptable for 

rates >= 100ms. 

 

Figure 6. Fog devices CPU utilization at 3D/8M configurations. 
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Figure 7. User mobile energy consumption under various system configurations. 

 

Figure 8. Analytics delay at various sensor transmission rates. 

Figure 9 shows that at 2D/4M, per-user network usage is lower than that of per-module mode under all 

the sensor transmission rates. Same result is obtained under various system configurations and tuple 

MIPS. 

 

Figure 9. Total network usage at various sensor transmission rates. 

 

Figure 10. Fog devices energy consumption at various sensor transmission rates. 

 

Figure 11. User mobile energy consumption at various sensor transmission rates. 
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Figure 10 shows the energy consumption of dept and proxy devices. Sensor transmission rate is not 

linearly affecting fog device energy consumption. Sensor rates 100ms gives the lowest devices’ energy 

consumption under both per-user and per-module modes. The same information is deduced from 

Figure 11, where the minimum Mobile energy consumption is obtained at a sensor transmission rate of 

100ms. Under all rates, per-user mode saves Mobile energy more than per-module mode. 

8.1.3 At Various Analytics Tuples’ MIPS 

Varying the analytics modules (Filtering, Monitoring and Caregiver) and their analytics tuples 

between 500 and 4000 MIPS, while keeping the remaining modules constant to their original MIPS, 

Figure 12 shows delay under two situations. Situation1: transmission rate 50ms and 2D4M 

configuration, we found that delay is acceptable (<50ms) under all analytics tuples’ MIPS for per -ser 

and per-module modes. Situation2: transmission rate 100ms and 3D8M configuration. In per-user 

mode, the variation in analytics tuples’ MIPS doesn’t linearly affect the delay and the delay is 

acceptable (<100ms) under all analytics tuples’ MIPS. In per-module mode, delay is acceptable only 

for analytics tuples’ MIPS <= 1000 MIPS. 

Figure 13 shows the analytics tuples’ MIPS limit that affects the dept utilization. Situation1, analytics 

tuples’ MIPS >= 3000, makes per-module dept CPU utilization=0. Situation2, analytics tuples’ MIPS 

>= 1000, makes per-module dept CPU utilization=0. All tuples’ MIPS make per-user mode dept work 

by its full utilization. 

 

Figure 12. Analytics delay under various Tuple MIPS. 

 

Figure 13. Dept CPU utilization limits under various Tuple MIPS. 

Safe Stream Analytics under S-FARM at 3D8M Configuration 

Tracing the analytics tuples’ MIPS limit that is necessary to obtain an acceptable analytics delay while 

keeping the dept device working, we found that: 

 Rate 50ms: per-user tuple MIPS <= 400; per-module tuple MIPS <= 1000. 

 Rate 100ms: per-user tuple MIPS <= 4000; per-module tuple MIPS <= 1000. 

8.2 Differentiated S-FARM Performance 

Differentiated S-FARM is studied by considering the safe analytics delay limit at 3D8M for per-user 

basic S-FARM. Two situations have been simulated. Situation1: a random analytics tuples’ MIPS 

between (500:4000) with sensor rate 100ms. Situation2: a random analytics tuples’ MIPS between 

(50:400) with sensor rate 50ms. The average of 10 simulation runs is figured out at each case to test 

the dept device safe capacity under four configurations: 1D4M, 1D6M, 1D8M, 1D10M. 
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Figure 14. Differentiated S-FARM: analytics delay. 

 

Figure 15. Differentiated S-FARM: average number or unsatisfied users. 

Figure 14 shows that average analytics delay is acceptable up to 8 Mobiles per dept for 100 ms sensor 

rate, but the standard deviation is very high (30 ms) due to the variation in the users’ analytics tuples 

MIPS and the delay is not acceptable for 4 users (50%) on average, as seen in Figure 15, while the 

average analytics delay is acceptable up to 10 Mobiles per dept for 50 ms sensor rate, but the standard 

deviation is 10 ms and the delay is not acceptable for only 2 users (20%) on average, as seen in Figure 

15. 

WORK LIMITATION  

To minimize the number of unsatisfied users, performance monitoring should be done on the 

application run. Analytics delay should be calculated at each fog device to discover the risky users and 

the risky devices that may cause a problem. If a user’s delay at a device exceeds his allowable 

analytics delay at this device, the device resources should be managed by reallocating more resources 

to that user (enhanced time-shared scheduling). This will be implemented by the Dynamic FARM (D-

FARM) algorithm that represents the YARN ResourceManager (ApplicationManager). It monitors the 

performance and reschedules resources either locally or by migration to the risky user VMs. 

9. CONCLUSIONS AND FUTURE WORK 

Fog Assisted Resource Management FARM platform based on YARN for compatible short-term/long-

term data analytics is presented. S-FARM is proposed using per-user and per-module modes; it 

represents the YARN ResourceManager (Schedulers). S-FARM schedulers are simulated over 

iFogSim. Results indicate that although per-module scheduler minimizes the analytics delay and 

energy consumption, it is a risky scheduler. It leaves fog devices un-utilized in case that it encounters 

a shortage in its CPU resources. Per-module scheduler shifts up the whole module to a higher fog 

device, if there is an increase in: the number of users, the sensor transmission rate or the analytics 

tuple MIPS. In addition, per-module consumes the user’s mobile energy and the network usage more 

than the per-user scheduler under all the simulated scenarios. 

Conducting stream analytics over the poor resources fog nodes, per-user scheduler allows for safer 

system expansion. If there is a shortage in the device’s CPU resources, selected users’ modules only 

could be shifted up to the higher fog device in the path hierarchy. Although being better for the fog 

infrastructure utilization, per-user scheduler has an average analytics loop delay higher than in per-

module mode. Per-user analytics tuples’ MIPS should be adjusted carefully under the variable system 

configurations and transmission rates to allow for a safe stream analytics platform that avoids losing 
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any sensor reading or violating the stream analytics restrictions of the continuous query result. 

Managing the fog network resources, differentiated S-FARM scheduler is the best methodology for 

the per-user control to the live analytic results, as it allows users to request their specified analytics 

tuple MIPS and thus their analytics QoS. Heavy-weight analytics tuples allow accurate analytics 

results, while light-weight analytics tuples allow fast analytics results and allows accommodating 

more users per fog device. 

The application’s mean analytics delay and the standard deviation are not sufficient parameters to 

judge the resource management algorithms’ performance. Maximum users’ analytics delay should also 

be figured out at each simulation run, in order to figure out whether there is any loss in the user’s 

stream. 

The future work is to minimize the number of unsatisfied users of the differentiated S-FARM 

algorithm by monitoring the stream analytics application and fog infrastructure performance, as well 

as to propose Dynamic FARM (D-FARM) that represents the YARN ResourceManager 

(ApplicationManager) with enhanced time-shared scheduling algorithm to support per-user 

differentiation. 
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 ملخص البحث:

نّتحسمممممظنّ ال ممممم ّلص يل اممممم ّلصىمممممحظ ّلصياء ممممم ّدمممممم ّ اتياممممم ّل  مممممظا ّ لص سمممممت    ّ ممممم ّيتضممممم ّ 

مممممص ّّحمظمممممنّلصحممممم ّ لصت ّّ- كظ ممممم ّ لص ستشممممماظاوّلص  ّكظ ممممم ثمممممنّلص  ممممما  ّلص  ّ-ّبظئممممماوّ ت  دممممم  نّلصاظااممممماوّظّ س 

ممممم كيّ نّ جممممميل ّ ممممم  ّنّبظااممممماوّ  ااممممماوّلصيمممممموّلصدييباءظممممم   ّ لص ممممم ييّباصممممم  ّظّ لصحممممميلّس ثمممممنّ  

مممممملصتااظيمممممماوّلصىممممممحظ ّدممممممنّب ّ ممممممحاب ّلصت ّعمممممم ّب ل مممممما ّلصس  دلوّلص ياءظمممممم ّيٌّي مممممميدّلص حمممممم  ّ يمظ يمممممم ّ   

مممممصمت ّ يممممملدنّلصممممم ّّ  ّلصاظااممممماورّل  ممممميّلصممممم نّصمممممظ ّ مممممنّ ممممم ا ّ نّ ظّ ااظيممممماوّلصياء ممممم ّدمممممم ّتحمظمممممنّ  

لصممممم ّاتممممماء ّ ظممممميّد ظيممممم ّصع مظممممماوّلصت ّ ةّ ّصايمممممتممممم   اّل دل ّ حسمممممورّبمممممنّ يضممممما  لنّحمظمممممنّالممممميلةّ

 ّ نّتممممممتمّدممممممم ّ ييبمممممم ّ ممممممنّلص ممممممييورّ  مممممم ّبظاامممممماوّلص ممممممييو ّ ي دممممممنّصمح  مممممما ّلصضمممممماابظ ّ

ّااظياو  ّصي لّلص  عّ نّلصت ّ بي ّلصتي ظاوّلص اضم ّ

مممممي مممممميمممممتمّت  يممممم ّلصع ّ ةّ تدمممممم نّ يظممممميذةّ مممممم ّلص ممممم لاد ّصممممم لّ مممممم نّ اابظ ّ ّلصض  لصحاجممممم ّلصمممممم ّّ ّجغيل ظممممما

مممممم ىمممممماًّ  مممممميلةّعا ممممممنّ مممممم ّل  امممممما ّت ّلصت ّ  ممممممع ّ  مممممماداذّدممممممم ٍّ ّلإدلاذّلص مممممم لادّ ابممممممم ّصمت ّ  ى 

ة ّ  مممممم مممممم ّلص  مممممم ّلصمممممميّ  لجامممممما عا ممممممنّظ  ّلصاظاامممممماوّصمت ّل نرّيممممممتمّتىمممممم ظمّ ال مممممم ّ دلاذّص عاص مممممم ّ  

ممممميممممم ّلص ممممم لادّ ت  ظايممممماّبممممم  ةّ مممممنّلصع ّ ممممم ّ دممممم لدّ ممممم   ّ مممممنّدّ   ّ يظممممميذّلص ممممم لاد ّاابظ ّيممممم ّلصض 

ممممم  ّتىممممم ظمّ  ىممممماوّ ّلصممممملمممممان ّ   ممممما ّ اجممممم ّ ا  ممممميصّ ممممم ّل مممممتغن ّب ظممممم ّلص  ّاّيعممممماص ّلصممممم  ّ   

ّ  ّاابظ ّ دلاذّ  لادّ اداذّدم ّ  لكا ّطاظع ّلصح  ا ّلصضّ 

ممممم مممممايتممممميهّ ممممم ّ ممممم  ّلص ا ممممم ّ  ى  ّاابظ ّ ّ دلاذّ ممممم لادّ اتدممممميذّتسمممممت  ّلصممممم ّلصح  ممممما ّلصض   ّب ممممما ة

 Apache Hadoop2ّ ّ ممممممممنّسYARNدممممممممم ّ دلاذّلص مممممممم لادّبا ممممممممت  لنّالممممممممانّيمممممممماانّس

ممممممممظ      نّلصاظاامممممممماصمت ّ ممممممممحمممممممممظنوّلص ت ل يمممممممم ّ مممممممم ّ   مممممممم   ّ  S-FARMّ ّسوّ ت ثممممممممنّ  ى  صظنّ    

ّقّلص   لو  ظنّ لصثاا ّيع نّ  ّ قّلص ست  ّ  ّ     اّيع نّ  ّ  YARN نّا عّس

ممممممّتمممممماء ّ نّ ليمممممميّلص  ّ ت ّ مممممم ّ  ّ لص    وّدممممممم ّ شممممممدم ّايممممممصّ ظنّيتغم ممممممقّلص سممممممت  ّ  ّلصمممممم نّيع ممممممنّ   

مممممي ممممملص ممممم لادّلصتممممم ّتعممممماا ّ  يممممماّلصع ّ مممممحتظ مممممصت ّكا مممممنّلصا ظممممم ّلّبشمممممدنٍّّ رّ يسمممممتغنّ اابظ ّ ّلصض   رّاابظ ّ ّلصض 

ممممم ّ   ممممم  ّ  ممممما  ّلصممممم ّ صممممم رّيمممممتمّل تممممميلهّ ّ م مممممث ّلصممممم ّ ّ ّدّب  مممممانٍّ ممممم  ّلمممممانّباصت ّ يسممممم ًّصم  ّ    ّ  ّ ّ 

YARNّمممممممنّطممممممميل ّس S-FARM ّ مممممممصممممممم دمّلصمممممممتحدّ ّ ّلصتاا مممممممم قّمّ ممممممم ّا ممممممم ّل  مممممممت  لنّ   

حمظممممممنّ  مممممميد ّلصحىمممممم  ّدمظيمممممما ّ يسممممممت  نّتااظممممممقّ ّاتمممممماء ّلصت ّ ظنّ ممممممنّ ظمممممم ّد  مممممملص سممممممت  ّ 

ممممممحمظممممممنّ  اّ  ّصتS-CVDس وّلصدييباءظمممممم ّصم ي مممممم رّ  مممممم ّتمممممممّ جمممممميل ّ حاكمممممماذٍّصمممممم ّامممممماوّلصيم 

ّ ّلص يتي ظن YARNص ّس ّ  ّ  ّ حيقّ نّ دل ّ ّ  ّصمت iFogSimّ  ّس

مممممم مممممم لّلصاحمممممم ّالءمممممم لةّ مممممم ّتحسممممممظنّل  ممممممتغن ّلصايظمممممميّصم مممممم لادّصمع ّّعمممممم  ّ ي ّ  رّ ددمممممممّاابظ ّيمممممم ّلصض 

ممممممحدّ لصممممممت ّ وّلصضمممممم   ّتحمظممممممنّلصاظاامممممماّ ظنّ مممممم ّتااظيمممممماوقّلص سممممممت  ّ مّ مممممم ّا مممممم ّل  ممممممت  لنّ   

لصمممممم ّ اتيامممممم ّل  ممممممiFogSim ممممممظا رّ ل  ممممممتاادذّ ممممممنّسل ممممممت ادلةّ اوّ دلاذّ ّ مممممم ّتيظممممممظمّ دل ّ  ى 

 ال  ّتحمظنّ ظ  ّلصاظاااو  لص  لادّ  ّ
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