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ABSTRACT 

Dealing with the different artifacts in medical images is necessary to perform several tasks, including 

segmentation. We introduce in this paper a novel method for bias field correction in Magnetic Resonance Imaging 

(MRI). Using the segmentation results obtained by a modified Expectation Maximization clustering, the bias field 

is fitted as a hyper-surface in a 4D hyper-space. Then, it is corrected based on the fact that voxels belonging to 

the same tissue should have the same intensity in the whole image. So, after a quick and coarse unsupervised voxel 

labeling by clustering by parts is performed, the bias field is computed for reliably labeled voxels. For the less 

reliably labeled voxels, the bias field is interpolated using a hyper-surface, estimated by a 4D Lagrangian 

interpolation. We evaluated the efficiency of the proposed method by comparing segmentation results with and 

without bias field correction. Also, we used the coefficient of variation within the MRI volume. Segmentation 

results and the coefficient of variation results were significantly enhanced after bias field correction by the 

proposed method.  
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1. INTRODUCTION 

One of the specific artifacts in Magnetic Resonance Imaging (MRI) is the Intensity Non-Uniformity 

(INU) across the data volume. This artifact consists in a slow and smooth variation of the intensity, 

whereas it should be the same for all the voxels in the same tissue. The Intensity Non-Uniformity (INU) 

is caused by several combined factors, the two main of which are the lack of sensitivity of the radio-

frequency (RF) of the coils and the attenuation of the RF signal inside the tissues [29]. The challenge in 

such a problem is that it cannot be considered as a conventional additive Gaussian noise that can be 

efficiently removed by denoising methods. So, the intensity non-uniformity, produced as a bias field, is 

a full hard problem and thus it requires specific methods for estimation and correction. Methods for 

image segmentation or image registration must take into account the bias field and deal with it in order 

to provide reliable processing results. Some of these methods proceed by jointly, correcting the bias 

field and segmenting or registering images [4], [27], [6], [8], [13]. Nevertheless, most of them consider 

the bias field correction as a pre-processing task that precedes the segmentation or the registration [5], 

[16], [13]. The hardness of the problem lies in the fact that the intensity variation caused by the bias 

field is very slow and so, it is hard to detect locally.  

We propose in this paper a novel method for bias field correction in MR images, based on a quick and 

coarse segmentation of MR data. Using the resulting segmentation, a hyper-surface in a 4D space, that 

models the bias field in the whole 3D image volume, is fitted using a Lagrangian interpolation. First, a 

modified EM (Expectation Maximization)-based clustering is performed on a set of sub-volumes, 

covering the entire volume of the image. So, the obtained labeling results in the different sub-volumes 

are merged in order to obtain the segmentation of the whole volume. Such an EM-clustering by parts 

allows to reduce false voxel labeling that occurs when the clustering is performed in the whole volume. 

The labeling in the whole volume results in three sets of voxels, corresponding respectively to the three 

tissues of interest of the brain matter; namely: Cerebro-Spinal Fluid (CSF), Gray Matter (GM) and White 

Matter (WM). Then, only the voxels with high membership certainty (most confidently labeled) are used 

to estimate the bias field at their respective positions in the image. Using the estimated bias field values 

at the reliably labeled voxels, a 4D  hyper-surface is fitted in the 4D hyper-space (X,Y,Z,I), using a 4D 

Lagrangian surface [38]. Based on the fitted hyper-surface, the bias field is calculated for the remainder 

of the less reliably labeled voxels and so, the intensity can be corrected in the whole image. According 
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to the literature, polynomial fitting was used several times to model the bias field [36], [34], [19]. 

However, on one hand, if the used polynomials are with low order, they do not well fit the bias field 

[19]. On the other hand, if the order of the used polynomials is high, such in polynomials, computation 

results in a combinatorial explosion of the number of parameters and therefore a prior knowledge must 

be provided in order to use low-order Legendre polynomials [34]. Unlike the state-of-the-art methods 

that use highly computational polynomials for the bias field surface fitting, our method is based on 

Lagrangian polynomial, where the order can be high, nevertheless the number of the involved 

parameters remains low. 

Evaluating the performances of a method for bias field correction can be performed by comparing the 

segmentation results without and with bias correction, by using the same method of image segmentation 

[9]. It has been obtained that the bias field estimation and correction according to our method, using the 

proposed modified EM clustering algorithm, allows to significantly enhance the segmentation of MR 

images. Furthermore, the coefficient of variation (CV) has been used to show that the intensity 

homogeneity was enhanced for both the simulated and the real MRI involved in the experimentation. 

The remainder of the paper is organized as follows: In Section 2, we introduce a short review of some 

well-referenced works in the literature, having dealt exclusively or jointly with bias field correction. 

Section 3 is devoted to the new method proposed in this work, where we show how a prior fast and 

coarse segmentation is performed using a modified EM-based clustering by parts, then how the bias 

field is firstly calculated for the reliably labeled voxels. In the remainder of the same section, we show 

how the bias field is fitted using a hyper-surface and how the image intensity is corrected. Section 4 is 

reserved for the experimentation of the proposed method, where we show and compare the segmentation 

results with and without bias field correction. Furthermore, the results of the coefficient of variation are 

computed and compared with those of other methods. It will be noted that the intensity was significantly 

enhanced in the involved MRI. In Section 5, we summarize the work and highlight some of its potential 

perspectives. 

2. RELATED WORK  

Several authors have proposed different methods for bias field correction in MR images. Some methods, 

in particular the earlier ones, were filtering-based [36]. For such methods, the bias field is removed by 

considering it as a low-frequency artifact, compared to high-frequency anatomic structures [24]-[25]. 

Filtering-based methods suffer from two common problems that lead to less accurate bias field removed 

and therefore to less efficient image post-processing: First, they significantly alter the image near the 

edges of the regions (Hallo effect), so that a special processing should be considered to preserve edge 

sharpness [2], [18]. Second, they erase low-frequency structures as a result of spatial blind filtering. To 

deal with this problem, some authors, such as those in [21], were able to preserve low-frequency 

structures by a combination of singularity functions. Following the same approach, the authors in [33] 

have applied homomorphism filtering for bias-field correction. Their method consists in extracting the 

log-bias by low-pass filtering, then the latter is subtracted from the log-image in order to obtain the log-

corrected image. Aiming at preserving image details while the bias field is corrected, the authors in [8] 

remove the bias field by extracting image details after multi-layered Gaussian filtering. 

Level set formulation was used by Li et al. for jointly correcting the bias field and segmenting the image 

[20]. By minimizing the level set functional that defines the clustering criterion, the segmentation of the 

image and the correction of the bias field are jointly performed. In another work, Chang et al. have 

proposed a new variation model for INU correction for Rodent Brain MRIs [7]. Based on Mumford–

Shah functional, the authors define several terms to be minimized, aiming at extracting the bias mask. 

A morphological processing is also applied in order to enhance the obtained mask. Based on local and 

global information, Cong et al. proposed a novel model for MRI segmentation and INU correction [10]. 

Neighborhood information defines local constraints and the global regularization is performed based on 

global spatial information.  In a recent work, Shan et al. [28] proposed a region-based active contour 

model with interleaved image segmentation and INU correction. A global energy functional, which was 

obtained by combining local energies, is fitted thanks to a level set method, where two regularization 

terms allow to fit the image energy functional.   

Other authors have assumed that the intensity of a given tissue does not change in the whole image 

unless because of the bias field. So, the bias field is estimated as the intensity variation within the same 
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type of tissue. This variation is often represented by a surface that must be fitted, often by B-spline 

approximations. In [22], the authors use a second-order polynomial to model the intensity within a 

dominant tissue, automatically extracted. A Gaussian model of the dominant tissue was beforehand 

proposed in [35]. The main drawback of such methods is that they were designed for a dominant tissue. 

For the other tissues, the bias field is not or at most roughly estimated. In [32], the bias field was taken 

into account in the similarity measurement that allows to enhance the separability of MRI data. 

Moreover, the formulated objective function of the Fuzzy C-Means (FCM) algorithm integrates a 

regularization term that compensates the bias field. Meena Prakash et al. have combined the FCM 

algorithm and Expectation-maximization (EM) algorithm for brain MRI segmentation with bias 

correction [26]. In their implementation, they take into account the spatial information, by incorporating 

it by convolution of the posterior probability during E-Step of the EM algorithm. Mishro et al. have also 

opted for fuzzy clustering for INU correction in brain MRIs [23]. They also incorporate spatial 

information by altering the membership matrix of standard FCM, aiming to attenuate the effect of noise 

and INU. So, equidistant pixels are assigned to a single cluster.  

Recently, machine leaning-based methods for INU correction started to be proposed. Dai et al. [11] 

proposed a deep learning-based INU correction algorithm, called residual cycle generative adversarial 

network (res-cycle GAN), which consists of the calculation of the inverse transformation between the 

INU uncorrected and corrected MRIs; so it will be possible to compute the INU corrected MRIs.   

3. PRIOR SEGMENTATION AND BIAS FIELD ESTIMATION AND CORRECTION 

We remind that the bias field, which consists in a non-uniformity of the intensity of the magnetic field, 

causes a slow and smooth variation of the luminance within MR images. This artifact leads to erroneous 

results of image segmentation, because voxels belonging to a same tissue could have significantly 

different intensities, especially if they are far from each other (see Figure 1). In order to correct the 

intensity in the raw image, the bias field must be estimated. In this work, a 4D hyper-surface is fitted in 

order to model the bias field in the whole 3D image. The principle of the proposed method consists to 

asses that in a small region, after it is smoothed to reduce the noise within, voxels should have the same 

average intensity if they belong to the same type of tissue. According to this principle, we proceed by 

segmenting small sub-volumes in the MRI, where we can assume that the intensity variation due to the 

bias field can be neglected. Then, the segmentation of the whole MRI is obtained by the fusion of the 

different sub-segmentations. So, as the segmentation is assumed correct, the bias field at a given voxel 

is expressed by the ratio between the intensity of the voxel and the intensity of a selected voxel, called 

voxel of reference that belongs to the same tissue as the voxel in question. Such an assumption is based 

on the following model that expresses how the true image I was altered by the bias field β and affected 

by a Gaussian noise η, resulting in the measured image Î. 

𝐼(𝑥, 𝑦, 𝑧) = (𝐼(𝑥, 𝑦, 𝑧) + η(𝑥, 𝑦, 𝑧)) × β(𝑥, 𝑦, 𝑧)     (1) 

So, the main stages for bias estimation and intensity correction according to our method are as follows: 

First, a voxel labeling is performed by an EM-based clustering algorithm that is executed separately on 

several sub-volumes. Then, the results of voxel labeling in the different sub-volumes are merged. Such 

a local clustering avoids to gather voxels that belong to a given same tissue, but have different intensities 

because they are far from each other. Note that a global clustering that involves the whole 3D volume 

results in a high rate of erroneous voxel labeling, in particular when the bias field level is high (see 

Figure 1). So, we introduce in sub-section 3.1 a new iterative EM-based algorithm for voxel labeling. 

The algorithm generates random sub-volumes within the MRI volume, where the bias field at each sub-

volume is low, what allows sufficiently reliable voxel labeling. After the voxels in the whole volume 

are labeled according to a given merge scheme, the bias field is estimated first for the set of the voxels 

that are reliably labeled, according to their membership certainty. Then, for each connected set of less-

reliably labeled voxels, where the bias was not calculated, a cuboid is set, in which a 4D hyper-surface 

will be fitted. Control points used to fit the hyper-surface are the voxels in the cuboid where the bias 

field was calculated. Finally, the bias field at the less reliably labeled voxels in the cuboid is interpolated 

using the fitted hyper-surface (see Figure 2). 

3.1 Voxel Labeling by Iterative EM Clustering by Parts 

We assume that MR images are skull-striped, using a brain extractor tool, such as BET of FSL [30], 
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(d) (e) (f) 

Figure 1. Erroneous labeling with presence of high INU: a) Raw MRI with 3% noise level and 90% 

INU level; b) Extracted brain tissues; c) Global EM clustering results, where we can notice the strong 

alteration of the white matter at the top of the image which was erroneously labeled as gray 

matter; d) Extracted white matter, where an important part at the top is truncated; e) Voxel 

labeling by the modified EM by parts algorithm; f) Resulting white matter. 

 
Figure 2. Processing steps according to the proposed method for bias field estimation and INU 

correction. 

where only the brain tissues remain in the image; namely: CSF (Cerebro Spinal Fluid), GM (Gray 

Matter) and WM (White Matter). Considering the model for image formation cited above, it is not 

required that the image be denoised in order to perform the correction of the bias field. Indeed, the used 

bias represents the ratio between the noised measured image and the noised bias-free one (see Formula 

1). Nevertheless, after the bias is corrected, it is suitable to denoise the image after assuming a noise 

model or by jointly image denoising and voxel labeling, as done in several works [12], given that prior 

global denoising could aggravate the partial volume effect problem, by which MR images are affected 

[2]. However, this issue is not included in our interest in this work. 

By considering that MR data follows a Gaussian Mixture Model (GMM), the EM algorithm is well 

suited for both the estimation of the distribution parameters and image segmentation by voxel labeling. 

By taking into account the particularity of the bias field, that produces significantly different intensities 

for the set of voxels that belong to a same tissue, the EM clustering is performed for a set of sub-volumes, 

where the bias field is sufficiently weak in each sub-volume and then the resulting partitions are merged. 

In a sub-volume, noted s, there should exist the 3 classes of the brain tissues; namely, CSF, GM and 
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WM. The parameters to estimate by the EM algorithm for each tissue class T (T = 1, 2, 3) in the sub-

volume s are the mean intensity µs
T and the standard-deviation s

T . The probability density, assuming 

a Gaussian mixture, is given for a tissue class (T), by: 

𝑓𝑇(𝑥𝑖;  𝜇𝑇
𝑠 , 𝜎𝑇

𝑠) =  
1

𝜎𝑇
𝑠 √2𝜋

𝑒−
1

2
(𝑥𝑖−𝜇𝑇

𝑠 )/2𝜎𝑇
𝑠 2

                                          (2) 

According to this model, the adequacy of the voxel i to the tissue class T, which we consider as the 

membership certainty, is expressed as follows: 

𝑝𝑖
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By using the adequacy probability, the distribution parameters are readjusted as follows: 
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where ns and ns
T  are respectively the size of the set of all the voxels in the considered sub-volume s and 

the size of the cluster corresponding to the tissue class T in the same sub-volume. 

To insure label integrity across the different sub-volumes, each one of the latter must contain all the 

considered labels (CSF, GM and WM). So, a sub-volume is set randomly within the global volume and 

after the EM clustering by parts is executed, the sub-volume will be retained only if the 3 labels are 

present. Otherwise, the sub-volume is rejected and another is randomly reset. As sub-volumes are 

randomly selected, a given voxel can be labeled several times according to the different sub-volumes to 

which it belongs. Also, the labels assigned to a same voxel may be different from a sub-volume to 

another. So, we calculated, for each voxel, the occurrences of labels assigned to it during sub-clustering 

that include the voxel. At the end of the clustering iterations, the label retained for a given voxel is that 

having maximum number of occurrences.  

The following algorithm shows how the iterative clustering by parts is performed. We have opted for an  

Algorithm 1 Iterative EM Clustering by Parts() 

Inputs:    Skull stripped MRI volume 

Outputs:  Labels    

for every voxel v in the MRI volume do 

for every label l do 

      LabelOccurencies[v][l] 0 

end for 

end for 

NumberIterations 0 

repeat 

repeat 

Subvolume   random subvolume (xt, yt, zt, xb, yb, zb) 

Perform EM Clustering in Subvolume 

        until Number of labels in Subvolume = 4 // background included 

       for every voxel v in Subvolume do 

l label of v 

LabelOccurencies[v][l]++ 

      end for 

           NumberIterations++ 

   until NumberIterations = maxIterations 

for every voxel v in the MRI volume do 

Labels[v]  ArgMaxl(Label Occurencies[v][l], l   [0..3]) // 0: background 

end for 
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EM-based clustering instead of k-means one, because the former provides for every voxel the 

membership certainty to a given cluster. This certainty allows us to select only the voxels that certainly 

belong to their respective tissues. K-means clustering, which does not use a mixture of distributions, 

cannot quantify the membership certainty to the clusters and so does not allow to select reliably labeled 

voxels to fit the bias field. 

As a result of this first stage, we obtain a segmentation of the image, where each voxel is assigned to a 

tissue class with its membership certainty. For each tissue class, the voxels that will be used to estimate 

the bias field are those with the membership certainty greater than a given threshold Tp, which will be 

set experimentally by using a set of MRIs with their respective group truth segmentation (see Section 

4). 

3.2 Bias Field Estimation and Intensity Correction 

The intensity non-uniformity of the magnetic field leads to a disparity of the intensity values of the 

voxels belonging to the same tissue. It consists of a slow variation of the intensity according to an 

unknown model. So, the latter must be estimated in order that intensities can be corrected. In our work, 

we compute an initial voxel labeling in order to estimate the bias field and then correct the intensities. 

So, a coarse segmentation of the image is performed using an EM algorithm executed by parts in the 

global volume. After merging partial labeling results and the final labels affected to the image voxels, 

the bias field is estimated as a hyper-surface β, where β(x,y,z) expresses the ratio between the mean 

intensity around the voxel (x,y,z) and the mean intensity at a voxel of reference (xr,,yr,,zr) belonging to 

the same type of tissue and having the best membership certainty among all the voxels in the current 

sub-volume. We consider a neighborhood of 3×3 voxels around a given voxel to calculate the mean 

intensity value.  

𝛽(𝑥, 𝑦, 𝑧) =
𝐼
^
~

(𝑥,𝑦,𝑧)

𝐼
^
~

(𝑥𝑟,𝑦𝑟,𝑧𝑟)

                                                                              (7) 

where,  

𝐼
^
~

(𝑥, 𝑦, 𝑧) =
1

|𝜒(𝑥,𝑦,𝑧)|
∑ 𝐼(𝑥𝑖, 𝑦𝑖 , 𝑧𝑖)𝑖∈𝜒(𝑥𝑖,𝑦𝑖,𝑧𝑖)                                                 (8) 

where (xi, yi. zi) is the set of neighboring voxels {(xi, yi, zi)} of (x, y, z) that belong to the same tissue.  

For the previous treatment, we consider only the voxels {i} that certainly belong to their respective 

tissue classes. A voxel i is retained for bias estimation, if its corresponding membership certainty, 

expressed by the probability pT
i is greater than a given threshold Tp.  For the rest of the voxels, the bias 

field is computed by interpolation using a Lagrangian hyper-surface [38] that we introduce in this work. 

The hyper-surface is computed using a set of voxels, sampled from those for which the bias field has 

been estimated. For each set of connected unlabeled voxels, for which we aim at computing the bias 

field, an including volume area is defined for this set. Within this volume, a set Ω of approximatively 

uniformly distributed labeled voxels are selected (see Figure 3(c)). This set is used as the control points 

to generate the Lagrangian hyper-surface, estimating the bias field in this area (see Figure 3(d)). 

The Lagrangian interpolated hyper-surface, �̂�(x,y,z) in an including volume area is expressed as follows: 

�̂�(𝑥, 𝑦, 𝑧) = ∑ 𝛽𝑘

∏ (𝑥−𝑥𝑖)(𝑦−𝑦𝑖)(𝑧−𝑧𝑖)
𝑖≠𝑘

∏ (𝑥𝑘−𝑥𝑖)(𝑦𝑘−𝑦𝑖)(𝑧𝑘−𝑥𝑖)
𝑖≠𝑘

𝑘∈Ω

                                       (9) 

where {(xk, yk, zk)  Ω} is the set of control points in the including volume area used to express the 

Lagrangian polynomial. Furthermore, a given point (xk, yk, zk) is retained as a control point only if: first 

it was labeled belonging to one tissue and second its membership certainty is greater than the threshold 

Tp. Once the bias field is computed in the whole MRI volume, the voxel intensity 𝐼�̂�(x,y,z) at every voxel 

(x,y,z) of the volume is corrected as follows: 

𝐼𝑐
^

(𝑥, 𝑦, 𝑧) = 𝐼
^
(𝑥, 𝑦, 𝑧) × 𝛽

^

(𝑥, 𝑦, 𝑧)                                                  (10) 

The obtained corrected image 𝐼�̂�  is considered bias field-free and it can be used for further processing, 

such as more accurate image segmentation or image registration. 
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Contrary to non-interpolation-based methods, such as B-spline-based ones [14], the proposed INU 

correction based on Lagrangian interpolation allows to preserve the values of the bias field at the reliably 

labeled voxels, considering that the latter are not affected by other artifacts, such as noise or partial 

volume effect. For less reliably labeled voxels, the bias field is estimated by the Lagrangian 

interpolation, resulting in a value better than the one directly calculated (according to Formula 7). 

The overall proposed method can be expressed according to the following algorithm: 

Algorithm 2 INU Correction() 

Inputs:  MRI volume 

Outputs:  Free-INU Skull stripped MRI volume 

  

MRI Skull Stripping by BET 

Labels  EM-Clustering-by part (Skull Stripped MRI) 

for each connected part CP of homogeneous voxels in Skull stripped MRI do 

   Set1  Set of reliably labled voxels of CP 

   Set2  Set of less reliably labeled voxels of  CP // Set2 =  CP-Set1 

   Compute the bias field B according formula 7 for the voxels in Set1 

   Compute Lagrangian polynome using bias fiels of all connected parts of Set1  (formula 9) 

   Estimate bias field of set2 using the computed Langrangian polynomial (using formula 9) 

end For 

Correct the MRI INU for all the voxels by formula 10  

 

 
 

(a) (b) 

 

 

(c) (d) 

Figure 3. Selection of control points for fitting the hyper-surface: a) Slice from a clustered MRI,  

b) Point selection on 2D grid: for each regular position on the grid, the best voxel in the neighborhood 

are selected, having the highest membership certainty, c) Control points for Lagrangian interpolation, 

d) Bias field surface. The 3D surface is the projection of the 4D surface on the space (X,Y,I) 

corresponding to the 2D considered slice. 

4. EXPERIMENTATION 

We have experimented our method on simulated MRIs from the Brain Web database 

(https://brainweb.bic.mni.mcgill.ca) and on real MRIs from the Internet Brain Segmentation Repository 

IBSR database (https://www.nitrc.org/projects/ibsr). Simulated MRIs from the Brain Web were widely 

used in similar works, given that the Brain Web platform allows to customize artifact levels, in particular 
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INU. All used simulated MRIs are 181×217×181 voxels of size. Brain Web provides also ground-truth 

segmentation that allows us quantifying the efficiency of our method by comparing the segmentation 

results before and after bias field removal. We have considered several MRIs all with T1 modality. The 

INU in the considered MRIs ranges in {30%, 40% and 70%} and noise in {3% and 5%}. For real MRIs 

from IBSR database, all the 18 skull-stripped MRIs were considered. Each IBSR MRI is a volume of 

256×256×128 voxels. We quantify the efficiency of the intensity correction by two different methods: 

First, by measuring the quality of the MRI segmentation by referring to its ground-truth segmentation 

provided by the used databases. Second, by measuring the coefficient of variation obtained for each 

image before and after bias field removal. For the first method, we use the overlap index kappa (). For 

a given tissue class T, it is expressed as: T = 2×TPT / (2×TPT + FPT +FNT ), where TPT , FPT  and FNT 

are the numbers of respectively, correctly labeled voxels (true positives), voxels wrongly labeled as 

belonging to the tissue class T (false positives) and voxels wrongly labeled not belonging to the tissue 

class T (false negatives). Dice index expresses the overlap between the resulting segmentation and the 

ground truth segmentation, which expresses in turn several aspects, including accuracy. For the second 

method, the coefficient of variation is calculated as follows:  CVT = T/µT. It allows to estimate the 

variation amount around the mean value. When CVT is low, the intensity non-uniformity is well 

corrected for the tissue class T. 

4.1 Threshold Initialization  

Only one threshold, Tp is used for our method for bias field estimation that we initialize experimentally 

by using a set of MRIs with their ground truth segmentation, as a learning set. The latter is composed of 

6 MRIs, obtained by varying the couple (N%, INU%) in {1,3,5} x {20,60}. The optimal value of Tp 

corresponds to the maximum of the  averages for the gray matter in the whole learning set. 

Table 1. Initialization of the threshold Tp according to  index for the training MR images. 

Tp 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 

 0,84 0,85 0,87 0,91 0,91 0,92 0,92 0,90 0,90 0,84 

 

 

 
Figure 4. Average  index according Tp threshold. 

Table 1 and Figure 4 show the variation of the  average for the gray matter. According the obtained 

results, Tp is set to 0.775. 

4.2 Experimental Results 

We consider only MRIs corresponding to healthy subjects, where the aim is to correct the INU after 

segmentation by extracting the three MRI tissues (CSF, GM and WM). To perform fully automatic 

segmentation, we should automatically set the tissue class T according to the tissue in which we have 
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interest. To do that, we take into account the knowledge that the cluster of the gray matter is the largest 

one and the cerebrospinal fluid is the smallest one (see Figure 5). The white matter cluster is in the 

middle [1]. 

  

(a) (b) 

Figure 5. Distributions of the intensities of an MRI: a) For a raw MRI : modes of the graphic, starting 

from left,  correspond respectively to CSF, GM and WM, b) Distribution of the labels in the 

corresponding ground truth segmentation. 

4.2.1 INU Correction Evaluation by Segmentation Comparison 

Figure 6 shows the steps of the bias field correction and the obtained labeling of the tissues of interest: 

CSF, GM and WM. The MRI was generated by setting the noise level N% to 3 and the bias field INU% 

to 50. By observing images of EM clustering by parts (see sub-section 3.1), before and after bias field 

correction, we can see the set of voxels where the labels were corrected, in particular voxels at the top 

of the image after bias correction. The bias field in Figure 7 is a projection of the hyper-surface on the 

3D space (X, Y, I), resulting in a conventional 3D surface. 

Table 2. Dice coefficient for several MRIs obtained by different combinations of noise N% and 

intensity non-uniformity INU% before and after bias field correction. 

 After bias correction Before bias correction 

 N%=3 N%=5 N%=3 N%=5 

INU%=30 

Dice(WM) 93,87 92,60 90,82 88,43 

Dice(GM) 92,01 90,58 87,14 84,21 

Dice(CSF) 86,74 84,73 81,52 80,81 

INU%=40 

Dice(WM) 92,85 92,46 89,49 87,73 

Dice(GM) 92,01 90,58 87,14 84,21 

Dice(CSF) 84,21 82,76 79,63 78,93 

INU%=70 

Dice(WM) 91,52 90,94 87,34 85,15 

Dice(GM) 90,82 89,59 86,38 85,13 

Dice(CSF) 83,64 81,19 77,14 74,24 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 6. Steps for bias field correction : a) Raw MRI (before skull-stripping), b) Skull-stripped MRI, 

c) EM clustering before bias field correction, d) A slice from the bias field (projection) e) Brain after 

bias correction, f) EM clustering after bias field correction, g) Extracted GM, h) Extracted WM and i) 

Extracted CSF. 

 

 
Figure 7. Projection of the bias field in the 3D space (X, Y, I) corresponding to a slice for which Z is 

fixed. 

Table 2 and Figure 8 show how the bias field estimation and correction have allowed to enhance the 

labeling of the voxels in the different tissues. We can notice that for different combinations of noise 

level and INU level, the intensity disparity was corrected in the images even with high values of noise 

and INU, leading to better Dice coefficients. 
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(a) (b) 

 
(c) 

Figure 8. Dice coefficient according the different tissues and according to several artifact 

combinations (N% and INU%): a) WM before correction (BC) and after correction (AC) , b) GM (BC 

and AC) and c) CSF (BC and AC). For all the combinations, voxel labeling was significantly 

enhanced after the bias field was corrected. 

4.2.2 Evaluation Using the Coefficient of Variation 

Coefficient of variation is an indirect evaluation of performance of bias field correction [9], expressed 

as the fraction of the mean intensity µT of a given tissue class T to its standard deviation T. For a tissue 

class T, it is expressed as follows: 

𝐶𝑉𝑇 =
𝜎𝑇

𝜇𝑇
 

Weak values of CV indicate a low bias field. So, when CV significantly decreases after bias field 

correction, that reflects a good performance of the used method. Furthermore, the coefficient of variation 

can be used as a metric to compare bias field correction methods. 

Obtained results expressed by the coefficient of variation were compared to some well-referenced work 

in the literature. These are the works respectively of Ashburner and Friston [3], Guillemaud et al. [17], 

Gisper et al. [15] and Ardizzone et al.  [2]. In the first work, the authors relied on surface fitting of the 

bias field after considering image data as a mixture model. In the second work, the authors combine 

homomorphism filtering and normalize convolution after operating a coarse segmentation to separate 

tissues from the image background. Gisper et al. presented a locally adaptive algorithm based on the 

minimization of the Classification Error Rate (CER) between different cerebral tissues. Finally, 

Ardizzone et al. used Homomorphic Unsharp Masking (HUM), which is a filtering technique for INU 

correction, without producing the Halo around the edges, resulting in a HUM-based halo compensation 

(HC-HUM). For comparison and as for the involved authors, we have considered different INU levels, 

which are respectively 20%, 40% and 70%. Table 3 and Figure 9 show the ranges of the coefficient of 

variation for the methods involved in the comparison and for the different levels of INU. For the different 

tissues (CSF, GM and WM) and for the different considered INU levels (20, 40 and 70%), the proposed 

method (Azz.) performs better than most of the methods involved in the comparison. Indeed, it performs 

better than the methods of respectively Ashburner et al., Guillemaud et al. and Gisper et al. for all the 

tissues and all the involved INU levels. Also, the proposed method performs better than that of 

Ardizzone et al. in 66% of cases (tissues and INU). We note here that using simulated MRIs from the 

Brain Web dataset, as most of the works which have dealt with the bias field in MRIs, allows well 



234 
"A Hyper-surface-based Modeling and Correction of Bias Field in MR Images", D. Azzouz and S. Mazouzi. 

 
understanding how MRIs are affected by the bias field and showing how bias field correction methods 

operate according to different levels of artifacts, in particular the bias field. 

Table 3. Coefficient of variation obtained by the involved methods in the comparison, for different 

levels of INU. 

INU  level 

 20% 40% 70% 

Method CFS GM WM CFS GM WM CFS GM WM 

Gui. [17] 0,209 0,093 0,047 0,208 0,093 0,047 0,212 0,096 0,050 

Ash. [3] 0,227 0,091 0,042 0,229 0,091 0,043 0,235 0,094 0,045 

Gis. [15] -  0,090 0,059 -  0,076 0,076 -  -  -  

Ard. [2] 0,208 0,078 0,022 0,207 0,078 0,022 0,211 0,081 0,024 

Azz. (proposed) 0,193 0,073 0,028 0,195 0,075 0,031 0,203 0,079 0,039 
 

 

  
(a) (b) 

 
(c) 

Figure 9. Coefficient of variation comparison for different levels of INU. 

Considering real MRIs from IBSR, results of bias field correction, expressed by the coefficient of 

variation, were significantly enhanced. Figure 10 shows a sample of an IBSR MRI and the computed 

bias field. Figure 11 shows the CV values for the 18 skull-stripped MRIs. Obtained results for the 18 

real MRIs, expressed by CV before and after correction, show that the bias field was significantly 

corrected for the whole images.  

  

(a) (b) 

Figure 10. Bias field in a sample of real IBSR MRI: a) Raw MRI, b) Computed bias field. 
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(a) (b) 

Figure 11. CV with IBSR: a) Average CV before correction for the 18 MRIs of the IBSR dataset, b) 

Average CV after correction. 

4.3 Analysis of Results and Discussion 

Obtained segmentation results of noisy MRIs affected by different levels of intensity non-uniformity 

were significantly enhanced by the proposed method. In this work, we have opted for EM clustering 

performed by parts in several sub-volumes, in order to produce a fast and reliable labeling of voxels. 

However, any method that produces voxel labeling according to the anatomical tissues can be used on 

condition that it should define a membership certainty for voxel labeling. With the modified EM 

clustering algorithm proposed in this work, the remaining voxels for which the membership certainty is 

below the threshold Tp and the bias field was not initially estimated were not numerous. For such sets 

of voxels, it was always possible to define an including sub-volume that contains sufficiently voxels for 

which the bias field was calculated. The latter are used as control points for fitting a hyper-surface that 

will be used later to interpolate the bias field at the voxels less-reliably labeled. To contrast our method, 

we remind that most of the proposed methods for bias field modeling and intensity correction are 

Bayesian- or Markovian-based [36], [31]. They proceed by simultaneously compute the restored image 

I, the bias field β and the noise η, considering different priors. Others are optimization-based; such as 

those using some objective functions, expressing in most of the cases an energy function that must be 

minimized [28],[37]. For our case, we have opted for a first fast voxel labeling method that produces 

coarse image segmentation. The latter is used to estimate and correct the INU, then the final voxel 

labeling is performed using the corrected data. Furthermore, using high-reliably labeled voxels in order 

to fit the bias hyper-surface has allowed to obtain accurate interpolation for the voxels that are less-

reliably labeled. 

5. CONCLUSIONS 

We have introduced in this paper a novel method for bias field estimation and correction in MR images. 

Computing the bias field is necessary to obtain enhanced segmentation results for such images. Contrary 

to B-spline approximation, we have opted for Lagrangian interpolation to estimate the bias field in the 

whole 3D data volume as a hyper-surface in a 4D space. Such a choice allows to accurately compute the 

bias field at the voxels that are reliably labeled and approximate it for the remainder voxels which are 

less reliably labeled. For that, we have introduced the membership certainty of voxel labeling to select 

the voxels which will be considered as control points for Lagrangian interpolation. The reliably labeled 

voxels allow computing a confident estimation of the bias field. Such enhancements were possible by 

introducing EM clustering by parts using several sub-volumes that allow to produce usable labeling 

even if the levels of the different artifacts are high in the MRI volume, in particular the INU level. 

Experimental results using several MRIs by considering different combinations of noise and INU levels 

and the comparison with other methods from the literature, showed the efficiency of the proposed 

method to estimate and correct the bias field in MR images. As most of methods for bias field correction 

in MRIs, our method does not consider ground-truth MRIs provided in different MRI databases. So, in 

future work, it is possible to consider other models for hyper-surfaces by integrating data and using 

machine learning methods. Furthermore, selecting reliable voxels for surface fitting was ad hoc, so a 

machine learning-based selection will enhance the accuracy of the computed hyper-surface that models 

the bias field.   
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 ملخص البحث:

ة أمللللللي لألللللليدرد   ا  الع  لللللل   لّلللللور ال بّ ة فلللللل  الّ للللللالاصلللللل  ا  ّ ات عامللللللل ملللللل  الع   لّلللللإنّ التّ 

  فللللل  للللللطر الوربلللللة صي  لللللة مبت لللللي  لت للللل      لللللل جزئلللللة    للللل ّ ، ب لللللا فللللل   لللللل  التّ مللللله ال  لللللا ّ 

 جزئللللللللة التلللللللل   للللللللت ّ   ه ال غ اص سلللللللل   فباتللللللللت  ا   تللللللللائ  التّ  للللللللو ي بللللللللاليّ الا   للللللللا  فلللللللل  التّ 

ملا ملللللة   لللللل   ، تلللللت ّ وبلّللللبتعظللللل   التّ  لللللة للللللة ال تع ّ ال  لللللوه     لللللا  للللله صي للللل  الع  للللل   ال ع ّ 

 ا بعا     وح ربا  ّ ز كث ي السّ ف    ّ  الا   ا  كس   فوب ّ 

 ة التللللل  تتبللللل  بعللللل   لللللل ،  جللللليد ت للللل      لللللل الا   لللللا  ب لللللا     للللل      لللللة أنّ الللللل ّ   ال جسّللللل

 لللللا  دل لللللطا، فبعللللل  ور  ك ّ   الإلألللللا    جسللللل ا فللللل  الّ لللللسللللل    جسلللللك  جلللللد أن ت لللللون ل لللللا  للللل ّ ل  ّ 

 ة  للللله صي للللل  الع  للللل   تبعلللللا  ل  لللللزا ،  لللللت   عة دغ لللللي  ب  لللللة لوتللللل  الللللل ّ   ال جسّللللل    لللللة تلللللي

ال وتللللللومة بولللللل ل  مولللللللون  أمّللللللا بال سللللللبة ل لللللل ّ     ة  سللللللاا   للللللل الا   للللللا  ل لللللل ّ   ال جسّلللللل

 ة ال وتلللللومة   للللل    لللللو  أبللللللّ مولوب لللللة، فلللللانّ   لللللل الا   لللللا   لللللت  اتلللللت جا ر باتلللللت  ا  ال جسّللللل

  ة اتت جا  "لا يا  " ربا   ا بعا  ت   فوبّ   جيد ت   ير بوات 

ل لللللل  ب  للللللا بت  لللللل   ال ي  للللللة ال  تي للللللة  لللللله صي لللللل  م ار للللللة  تللللللائ  التجّزئللللللة بو للللللو  ت لللللل    

  للللللل الا   للللللا  دغ للللللاا ت لللللل   ك  كللللللطل  اتللللللت  م ا معامللللللل التغّ لّلللللي لألللللل ه  جلللللل  صللللللور  

–اللللللليّ  ه ال غ اص سلللللل   دكا للللللض  تللللللائ  الت  لللللل   أفغللللللل ملللللله   لللللل  التجّزئللللللة دمعامللللللل التغّ لّلللللي 

  باتت  ا  ال ي  ة ال  تي ة  بع  ت       ل الا   ا -دبو ل م  وس
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