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ABSTRACT 

Spectrum sensing is a key enabling technology for cognitive radio networks (CRNs). The main objective 

of spectrum sensing is to provide more spectrum access opportunities to cognitive radio users without 

interfering with the operations of the licensed network. Spectrum sensing decisions can lead to erroneous 

sensing with low performance due to fading, shadowing and other interferences caused by either terrain 

inconsistency or dense urban structure. In order to improve spectrum sensing decisions, in this paper a 

cooperative spectrum sensing scheme is proposed. The propagation conditions such as the variance and 

intensity of terrain and urban structure between two points with respect to signal propagation are taken 

into consideration. We have also derived the optimum fusion rule which accounts for location reliability 

of secondary users (SUs). The analytical results show that the proposed scheme slightly outperforms the 

conventional cooperative spectrum sensing approaches.  
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1. INTRODUCTION 

Today’s wireless networks are characterized by a fixed spectrum assignment policy. As a result 

of increasing demands for wireless applications, there is a lack of frequency resources. In recent 

years, we have seen a significant interest in quantitative measurements of licensed and 

unlicensed spectrum utilization. Several research groups, companies and regulatory bodies have 

conducted studies of varying times and locations with the aim to capture the overall utilization 

rate of spectrum. These studies have given a significant amount of insight into spectrum use [1], 

[2]. Most of these studies have shown that a large amount of allocated spectrum are under-

utilized and create what is called spectrum holes, resulting in a waste of valuable frequency 

resources [3]–[5]. Spectrum holes represent the potential opportunities for non-interfering use of 

spectrum and are considered as multi-dimensional regions within frequency, time and space. 

Consequently, high blockage probabilities are unavoidable for many users due to shortages of 

frequency resources caused by inefficient utilization. Cognitive radio (CR) technology is 

introduced in the literature to solve these ongoing spectrum inefficiency problems. The term 

cognitive radio was first introduced by Mitola in the 1990s to take advantage of the under-

utilized scarce wireless spectrum [6]. CR is a key enabling technology for dynamic spectrum 
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access, which provides higher bandwidth to mobile users via heterogeneous wireless 

architectures [7].  

There are three main CR paradigms for sharing the spectrum: interweave, overlay and underlay. 

In interweave paradigm, cognitive users opportunistically exploit the primary radio spectrum 

only when the primary signal is detected to be idle. In overlay paradigm, cognitive users help 

maintain and/or improve primary users’ (incumbent users) communication while utilizing some 

spectrum resources for their own communication needs. The underlay paradigm allows 

cognitive users to share the frequency bandwidth of the primary network only if the resultant 

interference power level at the primary receiver is below a given threshold.  

CR is performed by a cycle which consists of three main stages: spectrum sensing, dynamic 

spectrum allocation and transmit power control, see Figure 1. Spectrum sensing is considered as 

one of the most challenging tasks in CR technology [8]-[9]. In dynamic spectrum allocation, 

channels are allocated to users based on spectrum availability. This allocation also depends on 

internal and/or external policies between cooperative networks. Transmit power control enables 

CR transmission to be controlled at the beginning of and during the transmission. This enables 

CRNs to serve more users and to lower the interference to the spectrum owners [10]. In 

spectrum sensing, the performance is usually measured by two key factors: probability of 

detection and probability of false alarm. The former is a probability that the detector correctly 

detects the signal when it is present in a given band. On the contrary, probability of false alarm 

is a probability that the detector incorrectly detects the presence of a signal though it is actually 

in temporal/permanent idle state. Probabilities are usually represented in a plot of the 

probability of detection versus the probability of false alarm, which is commonly referred to as 

radio operating characteristics (ROC). In this paper, these two factors will be the basis for 

determining the reliability of the proposed scheme and the results will be compared with the 

performance of the conventional hard combining scheme. The main contributions of this paper 

are as follows: 

 We analyze the effect of the SUs’ locations on spectrum sensing. 

 We derive the fusion rule with consideration of SUs’ locations within cooperative 

cognitive spectrum sensing. 

 We propose a location-aware cooperative sensing scheme that combines the sensing 

results from multiple SUs. The sensing results are considered according to the reliability 

measured by the location information.  

The remainder of the paper is organized as follows. Back- ground and motivation are presented 

in the next section. In Section 3, we define the system model and assumptions of the 

cooperative CR network that is used in our analysis. Section 4 gives a review of our proposed 

sensing method. Analytical results are discussed in Section 5. Finally, we make our concluding 

remarks in Section 6.  

2. BACKGROUND AND MOTIVATION 

2.1 Spectrum Sensing 

Spectrum sensing is considered as one of the most challenging tasks in CR technology [8]-[9]. 

In the literature, various spectrum sensing methods and algorithms have been investigated, each 

having different operational requirements, advantages and disadvantages. The most common 

sensing methods are: feature detector, matched filtering and energy detection. Feature detector 

is performed using cyclic spectrum density function of the received signal or by matching 

general features of the received signal to the already known primary signal characteristics. If the 

structure of the signal source is known, optimal detection in stationary Gaussian noise is 

achieved by matched filtering method and coherent detection. This type of coherent detection 

may be a viable approach for early CR deployment, where the secondary system is limited to 
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operate within a few systems such as Television (TV) and Digital Video Broadcasting (DVB). 

However, if more bands are being opened for opportunistic access, the implementation cost and 

complexity associated with this approach will increase [11]. A simpler alternative for the 

detection of a signal in Gaussian noise is to employ energy detection, which has drawn more 

attention in recent years, mainly due to its low complexity [12]. Energy detection determines the 

existence or absence of PUs by comparing the received energy at a CR to a pre-defined 

threshold. The performance of the energy detection increases monotonically with the quality of 

the received signal [13]. In [9], energy detection technique has been tested in an environment of 

low signal to noise ratio (SNR), while in [14] sequential energy detection was proposed to 

reduce sensing time. The authors in [15]-[16] studied the performance of energy detection under 

different channel constraints, such as additive white Gaussian noise (AWGN) and fading 

channels. Measuring the power of the received signal is the only requirement for energy 

detection, which then can be compared with a pre-defined threshold [17].  

2.2 Cooperative Spectrum Sensing 

The main challenge faced today by CR researchers is the ability to detect and utilize spectrum 

opportunities on a non-interference basis. Constructive and/or destructive interference can occur 

when signals travel along different paths to reach receivers, which causes attenuation and delay 

to the signal. 

 

Figure 1. Cognitive cycle. 

The received signal consists of several multi-path components, each of which is the result of the 

interaction of the transmitted waves with the surrounding environment. This issue has prompted 

researchers to turn to cooperative cognitive radio (CCR) networks, where all CRs collaborate in 

the spectrum sensing process. The advantage gained by using CCR networks lies at the 

achievable space diversity due to using multiple CRs [18]-[19]. In this context, cooperation 

indicates that a number of CRs are responsible to sense one particular channel at defined time 

and location. Cooperative sensing has gained interest in recent research papers, such as the work 

in [20]–[23]. Different cooperative sensing strategies have been studied to achieve better 

reliability of detecting primary signals. Sensing performance of a multiple primary user detector 

is discussed in [11]. Analytical formulae have been found for its false alarm probability and 

decision threshold. Numerical examples show significant performance gain over several 

detection algorithms in scenarios with realistic parameters. In [24], a weighted cooperative 
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spectrum sensing scheme based on energy detection for minimizing the total error probability in 

CCR networks is investigated and analyzed, with resorting to allocation of optimal weight 

coefficients to individual cooperative secondary users.  

Cooperative sensing is proposed in the literature as a solution to the problems that arise in 

spectrum sensing due to noise uncertainty, fading and shadowing [20]. However, the 

performance of cooperative spectrum sensing can be deceptive, because it highly depends on the 

reliability of the global decision. To address this challenge, various potential solutions were 

presented, as in [24] and [11]. In these studies, it is assumed that all secondary users are capable 

of estimating the received power with equal accuracy. However, such an assumption may not be 

always realistic, especially in high terrain and urban areas, where the structure of signal paths 

can vary dramatically. In this paper, we specifically address this issue and propose a new 

scheme to optimize spectrum sensing by considering location awareness. We show that the 

accuracy of spectrum sensing can be improved by avoiding secondary users’ incorrect decisions 

caused by refraction and diffraction of primary signals. Furthermore, the proposed scheme takes 

advantage of spatial diversity raised due to the random distribution of secondary users within 

the coverage area.  

Table 1. Notations used. 

 

3. SYSTEM MODEL AND ASSUMPTIONS 

In this paper, we consider an infrastructure-based CCR network which consists of one primary 

and one secondary network. A secondary base station (SBS) which also functions as a fusion 

center is also part of the secondary network. The network includes 𝑀 number of secondary 

users (SUs), which are scattered in a given geographical area at the periphery of the coverage of 

the SBS.  
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Figure 2. System model. 

In Figure 2, SUs observe the same hypotheses independently and transmit their measurements 

to the SBS through a dedicated control channel which is assumed to maintain communication 

between SUs and their associated SBS. Here, the control channel is considered to be perfect. 

Similarly, the primary network consists of a primary base station (PBS) and primary users 

(PUs). Since we are interested in the downlink frequency channels of the primary network, SUs 

only perform spectrum sensing to target downlink channels (from the base station to the user), 

which are transmitted by the PBS. SBS decides whether a primary signal exists or not, which is 

a normal random process that depends on both the PBS activities and the spectrum sensing 

accuracy of SUs. Spectrum sensing at the SUs is performed using energy detection, which is 

commonly formulated as a Neyman-Pearson (NP) type binary hypothesis test problem. In such 

sensing technique, the received signal at each SU and at time t is given by [16].  

if channel is free 
0H  

if channel is busy 1H              (1) 

where h  is the channel given,is the AWGN with zero )(twi
and  is the transmitted signal )(tsi

 

mean and unit power 𝒩(0,1). The hypothesis models 
0H  and 1H  as presented in Equation (1) 

denote the absence and the presence of the primary signal, respectively. The performance 

measurement of any CR system is determined by its probability of detection  idP ,  and 

probability of false alarm  
ifP , . High  idP , guarantees minimal interference with primary 

network, and low  
ifP ,  guarantees throughput improvement for the secondary network. Both 

measurements are used as the basis to determine the performance of CR systems in this paper. 

idP ,  and ifP ,  can be estimated by:
 

 1, Pr HYP id 
                                                        

(2) 

and
         

 0, Pr HYP if  ,                                                       (3) 

where Y is the received energy. The probability of detection in Equation (2) refers to the 
probability of accepting H1 when H1 is true. The probability of false alarm in Equation (3) 

refers to the probability of accepting H1 when H0 is true [9]. With direct computation of (2) and 
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(3), we have:  





































21
1

2,

N

N
QP

w

id                                            (4) 

and 




























 N

N
QP

w

if 1
2,




,                                                (5)

 

where   is the threshold, 
2

w is the noise power, (.)Q is the Q function,   is the average 

signal to noise ratio and N is the sample number [16]. According to the information collected 

from SUs, the SBS makes its final decision about the spectrum availability. A specified decision 

method is adopted in order for the SBS to reach its final conclusion. Decision methods are 

generally divided into hard combination decision and soft combination decision. In hard 

combination decision, each SU reports its local decision to the SBS and the decision is made 

from a specific rule, such as logic “AND” and logic “OR”. Hard combining is simple to 

implement and requires lower overhead (e.g., one-bit) [25]. For soft combination decision, the 

original observed data at the SUs, such as received power, is reported to the SBS and the 

decision is obtained by using one of the available techniques, such as equal gain combining 

(EGC) and log likelihood ratio (LLR) [25]–[27]. Soft combining method outperforms hard 

combining method in terms of the probability of missed opportunity. However, hard combining 

decisions are found to perform as good as soft decisions when the number of SUs is high [25]. 

In this paper, we consider hard combination decision as the core of our cooperative spectrum 

sensing decision method. In order to improve the accuracy of the chosen sensing method, we 

assume that the system is aware of the SU’s location. SUs can be located in high dense built 

areas, where power measurements are less reliable due to various phenomena such as diffraction 

and reflection. It is important that the sensing decision method considers the SUs’ locations to 

determine the environmental conditions of SUs, because the sensing accuracy is a function of 

location in respect to the source signal. Inaccurate sensing measurements, which are sent to the 

SBS, can potentially degrade the sensing accuracy. In a typical cellular network, the locations 

are stored in the HLR (Home Location Register). The HLR is the central user database in the 

mobile radio network. It stores the user and subscriber information. The location of both PBS 

and SUs can be described by longitude and latitude, which are a random collection of points on 

a coverage area [7]. The locations of PBSs can be obtained based on publicly available data, 

such as Consolidated Database System (CDBS). The locations of mobile SUs can be determined 

by various location estimation techniques, such as time-of-arrival (TOA), angle-of-arrival 

(AOA), received signal strength (RSS), pattern recognition and Bayesian filters [28]. 

 4. LOCATION-AWARE COOPERATIVE SPECTRUM SENSING 

4.1 Urban Propagation 

Since spectrum is a very limited commodity in mobile communication systems, particularly in 

urban areas, we focus our study on urban environment [29]. Propagation of electromagnetic 

waves in urban areas in cellular frequencies is influenced by the geographical and structural 

area. Therefore, a detailed vector database of the buildings is required in order to establish a 

propagation map. Typically, the multi-path propagation is very important in urban 

environments. Urban propagation models already play an important role in the development, 

planning and deployment of mobile radio systems where coverage is the primary goal. Urban 

propagation models could also be used for signal detection reassessment, as we show in this 
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paper. The attenuation of the signal strength in cellular frequencies is caused by three factors: 

path loss, multi- path fading and shadowing [30]. Here, we define the three attenuation factors:  

 Path loss factor characterizes the rate at which the signal strength decays with the 

increase of the distance from a transmitter. Path loss factor increase is observed when 

signal propagation is subject to reflection and deflection from surrounding objects, such 

as floors, walls and trees.  

 Multi-path fading, also called fast fading, is the propagation phenomenon that results in 

radio signals reaching the receiving antenna by two or more paths. This is caused by 

reception of multiple copies of a transmitted signal through multi-path propagation. An 

amplitude distribution is often described by a Rician or Rayleigh distribution, 

depending on whether a dominant component among the multiple copies exists or not. 

Usually, fast fading effect can be removed by averaging the received power over a time 

interval. 

 Shadowing, often referred to as slow fading, represents a slow variation in a received 

signal strength due to obstacles in propagation paths. This factor increases the signal 

detection uncertainty.  

4.2 Proposed Scheme 

We propose a scheme, which is capable of improving the sensing accuracy of a CCR system. In 

this scheme, SUs determine their locations to realize the signal path quality in reference to the 

PBS (source signal). The location data of SUs are sent to the SBS for further investigation, see 

Figure 3. Knowledge of SUs’ locations at the SBS can determine whether a line-of-sight (LOS) 

between transmitter and receiver exists and whether the path is obstructed by large building 

developments and structures such as wind turbines (e.g., Non- line-of-sight (NLOS) 

propagation), …etc., which can potentially cause the received signal to be less detectable at the 

SUs. Such consequential impact can degrade the sensing quality when considering a global 

decision. 

4.3 Trust Value 

In the proposed scheme, the sensing results from SUs are returned to the SBS along with 

location coordinates. We note that when SBS is in possession of the locations of SUs and PBS 

and PBS’s networking information, including channel, height, transmit power antenna 

directionality …etc., the SBS will have the ability to approximate a trust value. There are a 

number of propagation models, which are well designed and give good accuracy of signal 

propagation, such as Okumura-Hata model, which is one of the most widely used empirical 

propagation prediction models. It was developed through works of Y. Okumura and M. Hata 

and is based on the results of extensive measurements in certain urban and sub-urban areas of 

Japan. Such propagation model is used to predict the signal power of any point on a map, which 

could be used to assign trust values for SUs. The pattern shown in Figure 4 is typical for a 

power law based empirical model used in an urban environment. The sector antenna patterns are 

clearly seen from the shape of the results. The lobes in the vertical pattern of each antenna 

explain the alternating colours along a radius away from each antenna [31]. 

The trust value accounts for the density of the surrounding structure of a given SU and the 

propagation environment in reference to the PBS (source signal) and can be written as:  

𝑇𝑖(𝑡) = 𝑓(𝑑𝑖,𝑃𝐵𝑆(𝑡), ℎ𝑖(𝑡), ℎ𝐵, 𝑓0, 𝐿, 𝐶),                                   (6) 

where 𝑇𝑖(𝑡) ∈ ≤ 𝑇𝑖(𝑡) ≤ 1, 𝑑𝑖,𝑃𝐵𝑆(𝑡) denotes the distance between the 𝑖th SU and the PBS at 

time 𝑡, ℎ𝑖(𝑡) denotes the SU height at time 𝑡, ℎ𝐵 denotes the PBS height, 𝐿 denotes the 

propagation loss, 𝑓0 denotes the central frequency of the signal and 𝐶 is any physical constant. 
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Figure 3. Proposed scheme. 

The coverage area of the SBS can be divided into smaller sectors and a trust value is assigned 

for each sector to represent the environmental propagation in respect to the relevant PBS. The 

trust value reassesses the sensing data before the fusion process to obtain the global decision. 

The motivation is to make a comparison between the real sensed signal power, which is 

received at the SUs, and the expected signal power at each corresponding sector in the coverage 

area. Trust value contributes to enhance the accuracy of the SBS when the global decision of a 

particular channel status is calculated.  

4.4 Elimination 

An SU can be assigned either a low or high trust value. A low trust value indicates that an SU is 

located in a shadowed area (e.g., highly dense urban area); whereas a high trust value indicates 

that an SU is located in a less structured region (e.g., LOS propagation is predicted). If an SU is 

assigned a low trust value, it will be eliminated from subsequent procedures. This step ensures 

that such an SU does not make any significance when considering a global decision at the SBS. 

SUs submit the locations and the sensing results simultaneously; therefore, assigning trust 

values to SUs is time and space dependent. When an SU moves to a new location, a new trust 

value is assigned which reflects the current location of the SU.  

In this paper, we assume that all SUs in the coverage area of the SBS follow the same process. 

Further steps are taken to SUs, which are assigned a high trust value. SUs measure the received 

power using energy detection technique, which we briefly discussed in section 3. 

SUs submit their local decision to the SBS in a form of hard decision (H0, H1). These 

measurements are further processed at the SBS. Based on the results obtained from the SUs, the 

SBS determines whether the corresponding channel is free of any primary transmission. We list 

the detailed procedure in Algorithm 1. 

4.5 Proposed Fusion Rule 

In cooperative spectrum sensing and in hard combining scheme, SUs send their final one-bit 

decisions to the SBS.  1,0iu  is the binary decision made by the 𝑖th SU, which in essence is a 

logical decision metric. In this context, 0 and 1 indicate the absence and the presence of the 

primary signal, respectively. There can be a number of fusion rules which are represented by  
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Fig. 1 Signal strength from empirical propagation predictions.  

 

Fig. 2 Signal strength with ray tracing propagation predictions 

[9] 

Figure 2 shows the results for the ray-tracing model [9]. The 

canyon effect of streets and the impact of the buildings on 

the propagation are obvious. Comparing Figures 1 and 2, it 

is observed that the field strength predicted by the empirical 

COST231-Hata model is underestimated in most streets and 

in open spaces. This is readily explained by the contribution 

from diffractions and reflections that cannot be taken into 

account in the empirical. Since UMTS radio network is 

sensitive to interference, it is of interest to visualize the area 

where strong interference may occur due to cell overlap. 

Thus, Figure 3 and 4 shows only the area where the received 

power is above –80 dBm for at least two base station 

antennas. 

Fig. 3 and 4 provide the “overlap” results for the COST231-

Hata and ray-tracing model, respectively. The overlapping is 

severely underestimated in the empirical prediction case. 

The regions with overlap are concentrated near the base 

station when predicted by the empirical model. However, the 

more accurate ray-racing model shows that the inter-cell 

interference is wider spread especially in open areas. The 

users in these regions (where the interference was 

underestimated) will not only suffer themselves but also will 

lead to a decrease in quality or even a lack of service for 

others in the network because of the power control 

algorithm. This leads to a loss of offered UMTS capacity as 

shown in the next section. 

V. UMTS NETWORK SIMULATION 

Based on the coverage prediction shown above, Monte-Carlo 

simulations of users in a UMTS network were computed as 

described in section III. For a given user and traffic 

distribution, the coverage predictions are used to compute 

the offered service based on UMTS simulations. The results 

of one user and traffic distribution are gathered in a so-called 

snapshot. The results presented here are a superposition of 

30 snapshots. 

In Figures 5 and 6 each dot represents a mobile user. A dark 

colour (red or purple) means that the user cannot be served 

using the service that was required. Lack of sufficient power 

is coded in red. Outage due to interference is shown in 

purple. Most “interfered” (purple) dots are mainly in the 

open areas and the “insufficient power” (red) dots are the 

remaining dark dots.  

The simulations based on the empirical COST231-Hata 

coverage predictions are far more optimistic then when using 

the physical ray tracing propagation model: almost no outage 

is found. This would be ideal if this result was correct. But 

this would be a severe problem for any network operator 

desiring to implement such a real UMTS network. 

Expectation of good service quality would not be met but 

this fact would discover only after deployment. Corrective 

actions or the re-design of the network would drain human 

and financial resources. 

A. Qualitative results 

The simulations based on the empirical COST231-Hata 

coverage predictions are far more optimistic then when using 

the physical ray tracing propagation model: almost no outage 

is found. This would be ideal if this result was correct. But 

this would be a severe problem for any network operator 

desiring to implement such a real UMTS network. 

Expectation of good service quality would not be met but 

this fact would be discovered only after deployment. 

Corrective actions or the re-design of the network would 

drain human and financial resources. 

 

 

 

 

 

 

 

 

 

Figure 4. Signal strength from empirical propagation predictions [31]. 
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SBS receives decisions from M SUs, decide 
1H  if any of the total M  individual decisions is 

1H  and decides 
0H  otherwise. This fusion rule is known as the OR-rule or 1-out-of-M rule, 

while AND rule corresponds to the case where .Kk   SBS receives decisions from M SUs and 

decides 1H if all of the total M individual decisions are 1H and decides 
0H otherwise. The 

global probabilities of false alarm and detection for the two fusion rules can be obtained as: 

 OR fusion rule: 

 M

dord PQ  11,                                                      (10) 

and 

 Mforf PQ  11,                                                      (11) 

AND fusion rule: 

 M

dandd PQ ,                                                          (12) 

and 

 Mfandf PQ , .                                                        (13) 

Fusion of incoming local decisions and decisions that are made at the SBS are considered in this 

paper. In the scenario discussed here, SUs could make only hard decisions, such that 
iu could 

take only two values 0 or 1 based on its local observation  1,0iu . All the local detector SUs 

observe the same channel at the same time. Each SU makes a local binary decision 
iu , where 

i =1,..., M{ } based on the local observation. The SBS produces the global decision  1,0ou . 

This problem is known as the binary hypothesis test, since the system chooses, between two 

hypotheses, where 
0H  and 1H  are the noise only hypothesis and the signal plus noise 

hypothesis, respectively. The optimum fusion rule for this problem is given by the likelihood 

ratio test (LRT) as: 


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Huuu
,                                              (14) 

where 𝜂 is a threshold which is determined by the specified values of 𝑃𝑑,𝑖 and 𝑃𝑓,𝑖. Next, we 

assume that ifid PP ,,  , where i =1,..., M{ }. This assumption is common in CCR network 

sensing scenarios. We also make the following definitions: 

Pf ,i = Pr ui =1 H0( )                                                     (15) 

and 

 1, 1Pr HuP iid  ,                                                    (16) 
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where 
ou  is the global decision at the SBS. Given this assumption, the optimum fusion rule can 

be written as: 
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where 𝑆𝑗 is the set of all decisions made at the SBS that are equal to  𝑗, 𝑗 = 0, 1. The fusion rule 

that minimizes the probability of false alarm and maximizes the probability of detection is given 

by: 
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So far, we have discussed the fusion rules for the binary hypothesis problem. Next, we include 

the case in which the SU is assigned a trust value which represents the signal strength in its 

respective region. Trust values are modeled as the probability of an SU to be located in a region 

of acceptable reception, e.g., 𝑇𝑖 = 𝑗, and 𝑗 ∈ 0 ≤ 𝑗 ≤ 1, where 𝑇𝑖 is spatially independent and 

𝑗 = 0 represents the respective SU location being in a high shadowed area, while 𝑗 = 1 

indicates that a user is located within a line of sight in respect to the sensed signal (source 

signal). These trust values are transmitted to the fusion center for further processing to reach the 

global decision. The fusion rule in this case is given by the LRT in (19), since it indicates for 

each value of Ti the likelihood of 𝐻1 versus the likelihood of 𝐻0 and can be expressed as: 
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Now, let us define the following probabilities: 

𝛼𝑖,𝑗 =  𝑃𝑟{𝑇𝑖 = 𝑗 |𝐻0}                                                (20) 

𝛽𝑖,𝑗 =  𝑃𝑟{𝑇𝑖 = 𝑗 |𝐻1}.                                                (21) 

The ratio 
Pr(T1,T2,...,TM H1)

Pr(T1,T2,...,TM H0 )
 in Equation (19) can be expressed as: 
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Substituting (20) and (21) in (22), we obtain the following expression: 
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Subsequently, by substituting (23) and (18) in (19), we obtain the following fusion rule: 
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and by taking the logarithm of both sides, we obtain the optimum fusion rule that minimizes the 

false alarm and maximize the probability of detection as: 
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5. ANALYSIS AND RESULTS 

In order to evaluate the performance of our scheme, analytical results are given in this section. 

In our analysis, it is assumed that the SBS is aware of the relevant primary network parameters, 

as well as the locations of SUs and PBS and the trust value can be calculated. In the analysis, we 

set the number of cooperative SUs to be 30. For the analytical results, it is reasonable that we 

compare our proposed scheme with the conventional cooperative spectrum sensing schemes. 

The comparison is presented in Figure 5. We varied the signal to noise ratio (SNR) form (-2dB) 

to (2dB). We consider two false alarm probability Pf values which are set to be 0.1 and 0.2, 

while the SUs which are located in high trust value are set at 0.75. Figure 5 shows the improved 

performance of our proposed scheme when eliminating the SUs which are considered to be 

located in high shadowed areas, with a percentage of 25% of all participating SUs. Because 

these SUs are eliminated from further processing, they have no impact on the final global 

decisions. It is clear for both values of false alarm probabilities that the probability of detection 

Pd
 increased when we apply our proposed scheme. Results also indicate a slight improvement 

in terms of required average SNR for detection. 

The results in Figure 6 show the ROC performance comparison of the proposed location-aware 

and conventional (or the case where location and propagation models are not considered) 

cooperative spectrum sensing schemes when T = 0.78 and T = 0.6. T = 0.78 indicate that 22% 

of the SU are located in a highly shadowed areas. These SUs are eliminated from further 

processing at the SBS. The location-aware scheme slightly outperforms the conventional 

scheme when most of the SUs are located in the same environment. However, Figure 6 shows 

that the performance has improved further when T = 0.6, which indicates that 40% of the SUs 

are located in unreliable locations. 

Table 2. Sensing procedure comparison. 
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Figure 5. Probability of detection comparison of proposed location-aware scheme and 

conventional hard combining scheme for different SNR when false alarm probability 

constraint is 0.1 and 0.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. ROC comparison of proposed location-aware scheme and conventional hard 

combining scheme under Gaussian channel when the number of cooperative users = 30 for 

different trust values. 
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Figure 7 depicts the ROC analytical curves using the proposed scheme when the number of 

cooperative users is 30 and 35% of the SUs are located in highly shadowed areas. The high 

value of sensing results means that most of the participating CRs are located nearby the source 

signal. On the other hand, since 35% of the CRs are located too far from the source signal 

and/or NLOS is predicted, because they are located in highly shadowed areas, those CRs can 

not be considered as valuable sources of information. Therefore, they are eliminated from 

further action. It is evident from Figure 7 that the proposed cooperative sensing scheme 

provides better performance than the conventional hard combination scheme. When T=0.65, for 

the detection probability of 0.9, the false alarm probability of the proposed scheme is 0.25, 

while for the conventional scheme it is 0.32. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. ROC comparison of proposed location-aware scheme and conventional hard 

combining scheme under Gaussian channel when the number of cooperative users = 30 and 

35% of the SUs are located in highly shadowed areas. 

In Figure 8, we plot the probability of detection against the SNR. The figure presents the 

probabilities of detection for different numbers of cooperative cognitive radios in the network. 

It is evident that the detection improves with increased number of CRs, since more accurate 

results mean better performance for the network. The number of CRs is typically large in the 

case of urban networks. However, the proposed scheme can eliminate the CRs with low trust 

value from participating in the cooperative sensing. The proposed scheme does not only 

improve performance of detection, but also reduces sensing time. 

Cooperative spectrum sensing may become impractical in CRNs with a large number of SUs, 

because in a time slot only one SU sends its local decision to the SBS in order for the decisions 

to be separated easily. Hence, it may make the whole sensing time intolerably long. The scheme 

proposed here does not take into account the users that are located in low trust value regions, 

therefore it minimizes the number of participating SUs in a selective manner. Consequently, the 

processing time for the global decision at the SBS will be minimized while not compromising 

spatial diversity. This implies that SBSs have the incentive to adapt the proposed sensing 

decision method, since it can lead to achieve higher reliability and lower sensing time. The 
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fundamental differences between our proposed scheme and the conventional methods are shown 

in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. ROC of proposed location-aware scheme with different numbers of cognitive 

radio users under Gaussian channel and 35% of the SUs are located in highly shadowed 

areas. 

 

6. CONCLUSIONS 

We have studied the performance of cooperative cognitive spectrum sensing with energy 

detection in CR networks. Location-aware cooperative spectrum sensing has been investigated. 

We have derived the optimum fusion rule, as well as the probability of detection, taking location 

reliability into consideration. The proposed scheme has proved to exhibit better ROC, especially 

in highly shadowed regions (e.g., under NLOS propagation conditions). Analytical results of the 

proposed location-aware scheme show an improved performance over the conventional hard 

combining schemes (e.g., [32]), highlighting the requirements of location knowledge in CRNs, 

especially in urban environments. Since this sensing accuracy is mainly related to the signal 

propagation environments, the more accurate the propagation models are, the better the 

expected performance will be from our proposed scheme. Moreover, for a cognitive radio 

network, high probability of detection results in less interference to the primary network, which 

means more capacity and more offered service at high quality. A major issue concerning the 

practical implementation of the proposed scheme is the availability of complete statistical 

information corresponding to source signal parameters, particularly their variation with distance. 

However, lack of spectrum resources encourages the adoption of new ways of sharing, 

including sharing of specific data related to the incumbent operators. 

There are several natural directions suggested by our paper. The most obvious one is to utilize 

the eliminated CRs from the first step of the cooperative sensing. For example, it would be 

interesting to develop some more complex schemes of spectrum sensing, e.g., assign the 

eliminated CRs to sense different channels which are in LOS and/or in close proximity to 
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different source signals. This could improve the efficiency of sensing, not only by sensing more 

channels simultaneously but also with high accuracy. Moreover, to gain further understating of 

our proposed scheme, the sensing time performance could be evaluated. 

In the case of Universal Mobile Telecommunications System (UMTS), the transmitting power is 

adapted to the propagation conditions. The transmitting power is always selected to be only as 

high as necessary for adequate connection quality. Moreover, each service supported by UMTS 

networks requires specific threshold values and the network behavior and size change with 

traffic. Data transmission adds yet another dimension of complexity. This makes detecting 

UMTS signals much more difficult than in the case of other technology; e.g., Global System for 

Mobile Communications (GMS). Therefore, it would be very useful to conduct a study that 

specifically addresses UMTS networks. 
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 ملخص البحث:

قرك دددددد  يعُددددددشع ر الددددددعتق رات ددددددن ادددددد  شبك ددددددتي رااد دددددد   ر  ت دددددد   الدددددد  تي را ر يدددددد  ر  

(CRNs)   وراهددددددشي را ن ادددددد  ادددددد  ر الددددددعتق راتع ددددددن  دددددد  شدددددد     راد يددددددش ادددددد   دددددد .

را ر يددددددد  ر  قركددددددد ع  وم راادددددددشر   اددددددد   د  دددددددتي را صددددددد ل يادددددددم رات دددددددن ادادددددددا شا  

كددددددد . ويد ددددددد  ا بددددددد رقري راداع بددددددد   ت الدددددددعتق رات دددددددن  م شبددددددد   ياددددددد م رالددددددد    راد  ع

ر الدددددددددددعتق   ددددددددددد  صدددددددددددو ا تظ   رأ اادددددددددددشمع   اددددددددددد   ر  ددددددددددددو ل  و راا   ددددددددددد   و 

ددددددت  دددددد   ددددددش  ش ددددددت   راا ددددددتقي   و را ك دددددد  راو دددددد  ي  رااددددددشر  ي ر  دددددد ّ راكتعددددددد  ياع

 را ث ف .

 و  ددددت  شوادددد   ادددد رقري ر الددددعتق رات ددددنل  بادددد ا  دددد   دددد   را قادددد    تاددددت  شعتوادددد   عدددد  

ثددددد   ا  الدددددعتق رات دددددن. وي  ددددد  راك دددددت  رادباددددد ا  عددددد   ر  ا دددددتق  ددددد وي ر  الدددددتقل 

شفددددددددتوي راا ددددددددتقي  ولددددددددشعشهت ورا ك دددددددد  راو دددددددد ي   دددددددد    بتادددددددد    تاكادددددددد     الددددددددتق 

دددددد  ا   ا دددددد  راد عددددددتي. كدددددد اقل شددددددنع رلددددددابتت ات ددددددش  ر  ددددددشات  ر اثدددددد  راادددددد  شف اد ادددددد  راع

ض افددددددد ت  عدددددددا دادددددددا شا   راثدددددددت  يع  . وش ددددددد   راكادددددددتنح رااو    ددددددد   م راك دددددددت  رادباددددددد ا ي

 رال أ   م راتع ت رااب  شي  راداا شا     ر  العتق رااعتو   ا تع ن.
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