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ABSTRACT 

The Grey Wolf Optimizer (GWO) is a very recently developed and emerging swarm-intelligent algorithm. The 

GWO algorithm was inspired by the social dominance hierarchy and hunting strategy of the grey wolves that has 

been successfully tailored to tackle various discrete and continuous optimization problems. During its practical 

implementation, however, it may be stuck in sub-optimal solutions (stagnation in local optima) due to its less 

exploration in the early stages that show the main drawback of this algorithm. Therefore, this research work 

enhances the hunting and attacking mechanism in order to modify the corresponding position updated equation 

and exploitation equation, respectively, to propose a novel algorithm, called Weighted Grey Wolf Optimizer with 

Improved Convergence Rate (WGWOIC). The effectiveness of the proposed algorithm (WGWOIC) is 

investigated by testing it an 33 different and fairly popular numerical benchmark functions. Although, these test 

functions are considered from two different benchmark datasets to assess the strength and robustness of the 

proposed algorithm regarding the unknown search space of the problem. In order to carry out performance 

analysis, moreover, the WGWOIC’s results are compared against many other state-of-the-art meta-heuristic 

algorithms, such as Particle Swarm Optimization (PSO), Moth-Flame Optimization (MFO), Whale Optimization 

Algorithm (WOA), Grey Wolf Optimizer (GWO) and very recent variants of GWO. The comparative study for 

WGWOIC concludes that the proposed algorithm provides very competitive results against other studied meta-

heuristic algorithms. Furthermore, the hybridization of the WGWOIC meta-heuristic optimization algorithm with 

a Multi- Layer Perceptron (MLP) neural network is employed to improve the accuracy of the classification 

problem. WGWOIC trainer provides the optimal values for weight and biases to the MLP network. Further, the 

performance is tested in terms of classification accuracy on five popular classification datasets and assesses the 

efficiency of the WGWOIC trainer is assessed against many other meta-heuristics trainers. The results show that 

the proposed algorithm eventually provides very competitive outcomes, implying that the WGWOIC algorithm 

offers a better exploitation, explores the search space and effectively solves several different classification 

problems. 
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1. INTRODUCTION 

Real-world problems have a n  unknown search space with their unknown solution. Besides, 

only limited resources and limited time are available to tackle these problems. Therefore, an 

optimum solution should exist to resolve the above issues and overcome the limitations. 

Consequently, there should be the existence of such algorithms provided likely to the optimum 

solution. The optimization algorithms are able to fulfill the above requirements and overcome the 

above limitations. The optimization algorithms' particular category is called meta-heuristic 

algorithms, becoming more popular in the last two decades due to their simplicity and 

flexibility. Its processing begins with random solution(s) and ends at the optimum solution(s), 

making it more robust. In other words, the meta-heuristic algorithms' initial solutions are known as 

random solutions; evolve these random solutions evolve through the applied well-known algorithms 

and obtain final solutions known as optimum solutions. To sum up, the researchers' main aim is 

to design various new meta-heuristic optimization algorithms and enhance the existing algorithms to 

obtain global optimum solutions. Surprisingly, the No Free Lunch (NFL) theorem [1] states that 

a specific optimization algorithm cannot extensively tackle all types of problems; however, not all 
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kinds of optimization algorithms can solve a single problem. Consequently, this encourages 

designing various new meta-heuristic optimization algorithms and improving existing algorithms. 

Five types of optimization algorithms come under meta-heuristic algorithms: evolutionary 

algorithms, bio-stimulated algorithms, physics-based algorithms, nature-inspired algorithms and 

swarm intelligence-based algorithms. The hierarchical diagram of various meta-heuristic 

algorithms is depicted in Figure 1. Holland proposed the Genetic Algorithm (GA) [2] in 1992 

and it is the most famous algorithm of evolutionary class. The GA algorithm is typically justified 

by the Darwin's evolution theory. The first real-world application of GA was c ontrol system 

optimization using genetic algorithms, which was proposed by Krishnakumar and Goldberg [3]. 

Subsequently, the various other evolutionary algorithms such as Differential Evolution (DE) [4] 

algorithm, Biogeography-Based Optimizer (BBO) [5], Evolutionary Programming (EP) [6], 

Genetic Programming (GP) [7], …etc., came into the picture. In addition to the above 

evolutionary algorithms, Covariance Matrix Adaptation (CMA-ES) [8] and Fast Evolutionary 

Programming (FEP) [9] are other evolutionary meta-heuristic algorithms. In the second class, the 

Artificial Immune System [10], Bacterial Foraging Optimization (BFO) [11], …etc., come under 

bio-stimulated algorithms. 
 

 
Figure 1. Hierarchical representation of meta-heuristic optimization algorithms. 

The third class of meta-heuristic algorithms is referred to as the physics-based algorithms that 

mimic the physics rules. The Gravitational Search Algorithm (GSA) [12], Gravitational Local 

Search Algorithm (GLSA) [13], Black Hole (BH) [14] algorithm, Curved Space Optimization 

(CSO) [15], … etc., come under these algorithms. Subsequently, the Bat Algorithm (BA) [16], 

Moth-Flame Optimization (MFO) [17], Whale Optimization Algorithm (WOA) [21], …etc., are 

listed with nature-inspired algorithms that are the fourth category of meta-heuristic algorithms. In 

addition, the above algorithms are used to tackle real-world applications; for instance, Abed-alguni 

[22] introduced a novel Q-learning approach using the bat algorithm that finds optimal Q-values 

and validated the performance on the shortest path problem and the taxi problem. Besides the 

algorithms mentioned earlier, the State of Mater Search (SMS) [23], Flower Pollination 

Algorithm (FPA) [24], …etc., are called population-based algorithms that are inspired by a 

different source. 

The last but not most minor class is swarm intelligence-based algorithms, inspired by the 

intelligent swarm behavior. A large group of homogeneous living species is called a swarm, 

such as bird flocking and fish schooling. The Particle Swarm Optimization (PSO) [27] is the most 

famous swarm-based algorithm that mimics the social behavior of birds. Kennedy and Eberhart 

proposed this algorithm in 1995. In addition to the PSO, Ant Colony Optimization (ACO) [31], 

Firefly Algorithm (FA) [32], Cuckoo Search Algorithm (CSA) [33], Grey Wolf Optimizer 

(GWO) [34], …etc., are likely grouped into swarm-based algorithms. 
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The GWO is a novel and emerging swarm-intelligent algorithm inspired by the grey wolves' social 

dominance hierarchy and hunting strategy. The GWO has been successfully tailored to tackle 

various discrete and continuous optimization problems. The main drawback of the GWO is that it 

may be stuck in sub-optimal solutions (stagnation in local optima) due to its less exploration in the 

early stages. Nevertheless, the exploration and exploitation should be adequately balanced to 

extensively investigate the search space for achieving the most optimal solutions. In order to 

overcome the above limitations, Mittal et al. [35] proposed an advanced variant of GWO; namely, 

Modified Grey Wolf Optimizer (mGWO). This variant offers a pertinent equilibrium among 

exploration and exploitation for the search space; however, the modification is attempted in only 

controlling parameter �⃗�; hence, further improvement may be possible. Furthermore, Singh [36] 

enhanced the biological order of the social hierarchy of grey wolves in order to propose another 

variant of GWO. However, this research work improved only the biological structure regarding the 

social hierarchy of grey wolves, but not the significant enhancement in the mathematical model 

accordingly. In addition, Kumar et al. [38] proposed another variant of GWO, named WMGWO. 

This research work allocated the static weight instead of dynamic weights to the alpha, beta and 

delta search agents. Hence, the above limitations and drawbacks motivate the researcher, to propose 

another novel variant of GWO. 

In brief, our main contributions are as follows: 

• The position update equation has been modified to enhance the hunting behavior of grey 

wolves in order to propose a novel algorithm of GWO to overcome the above limitations 

and shortcomings of the basic GWO and its very recant algorithms. 

• In addition, the exploitation equation is adopted [35] to enhance the encircling and 

attacking mechanisms. 

• This research work considers 33 mathematical benchmark functions from two different 

datasets to examine the effectiveness and justify the robustness of the proposed algorithm. 

• The results are compared against various state-of-the-art meta-heuristics optimization 

algorithms: MFO [17], WOA [21], PSO [27], GWO [34], mGWO [35], MVGWO [36] 

and WMGWO [38]. 

• Furthermore, the proposed algorithm has been applied to optimize the weights and biases to 

train the MLP solving real-world classification problems considering five datasets and the 

results were compared with those of several well-known meta-heuristic trainers that 

eventually offer salutary influence against unknown search space. 

1.1 Roadmap 

The remaining sections of this paper are organized in the following way. The MFO, WOA, PSO and 

GWO and their many recent variants are discussed in Section 2 that addresses the limitations and 

shortcomings associated with grey wolf optimizers and their very recant variants, which 

eventually motivates to propose another enhanced algorithm of GWO. Section 3 describes the key 

functionality of basic GWO and a comprehensive discussion about the suggested novel algorithm. 

Section 4 discusses the performance results and experimental analysis of the proposed algorithm 

against state-of-the-art meta-heuristic algorithms. The proposed algorithm employed with a multi-

layer perceptron is presented in Section 5. Finally, Section 6 concludes this research work and 

provides a future research direction. 

2. LITERATURE REVIEW 

This section elaborates a comprehensive discussion regarding various state-of-the-art meta-heuristic 

optimization algorithms. The MFO, WOA, PSO, GWO and very recent algorithms of GWO will be 

the key focus in this study; however, the applied potential applications also will be extensively 

discussed. 

The Moth-Flame Optimization (MFO) [17] is the nature-inspired optimization algorithm that was 

proposed by Mirjalili in 2015. The transverse orientation is the inspiration to introduce this 

algorithm. The computational cost of MFO is O(t*n2 + t*n*d), in which 't' refers to the maximum 

number of iterations, 'n' indicates the number of moths and 'd' is the number of variables. This 

algorithm is tested on 29 benchmark functions and seven real-engineering problems. The 

effectiveness of the proposed algorithm is validated using the comparison of results against PSO, 
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GSA, BA, FPA, SMS, FA and GA. Consequently, this algorithm was able to outperform the 

comparative algorithms against the majority of test functions. The other very recent variants of MFO 

are proposed in [18]-[20]. 

The Whale Optimization Algorithm (WOA) [21] is the most recent meta-heuristic optimization 

algorithm. Mirjalili and Lewis proposed this algorithm in 2016. This proposed algorithm is another 

nature-inspired algorithm and is motivated by the bubble-net hunting strategy of humpback whales. 

The whale is a mammal, implying that whales provide milk for their children and are recognized as 

giant animals on earth. To validate the performance of this algorithm, it is benchmarked on 29 

optimization test functions and six engineering-design problems. The welded beam design, 

tension/compression spring design, pressure vessel design and other three bar truss design problems 

are considered to be solved using this algorithm. In bar truss design, 52-bar truss design, 25-bar truss 

design and 15-bar truss design are taken into account. The comparative analysis of results has 

validated the effectiveness of WOA against PSO, GSA, DE and CMA-ES / FEP. The Binary WOA 

[25] and another very recently enhanced algorithm of WOA with the map-reduced application are 

proposed in [26]. 

The Particle Swarm Optimization (PSO) [27] is a Swarm Intelligence (SI) meta-heuristic 

optimization algorithm. It was the first social behavior-based algorithm proposed by Kennedy and 

Eberhart in 1995. The algorithm mimics the social intelligence of bird flocking and fish schooling. 

The practical execution of the PSO algorithm starts with random solutions (called initial population), 

which are optimized over the course of iterations using PBEST (Personal best) and GBEST (Global 

best) parameters. The velocity and position vectors are the mathematical parameters, whereas inertia 

weight, the cognitive component and social components are the tuning parameters of this algorithm. 

The several other latest improved algorithms of PSO named UPSO [28] and population size in PSO 

are referenced in [29]. In addition, Alshdaifat and Bataineh [30] enhanced the PSO, named improved 

PSO and further employed it with Chebyshev distribution (which defines the search space for IPSO) 

for optimizing and thinning of the planar array. 

Mirjalili et al. [34] developed, theoretically defined and programmatically implemented the Grey 

Wolf Optimizer (GWO) in 2014. The GWO is a genuinely emerging meta-heuristic optimization 

algorithm in the literature. The grey wolves are found in Eurasia and North America called Canis 

lupus. The grey wolves' social structure and hunting mechanism were cited as influences for this 

approach. Figure 2 depicts the dominant social hierarchy. According to Figure 2, the pack's all grey 

wolves are categorized into four categories corresponding to their specific dominancy and pursuit 

role. The figure illustrates that the alpha wolf is at the top of the dominant social hierarchy. This wolf 

is the pack's leader and is referred to as the manager of the pack. The beta wolf is the pack discipliner 

and the alpha's counselor who endures the next step down. On the social hierarchy's third level, the 

delta wolf is located that is sentinel, hunter, advisor to beta and caretaker to the pack. As the group's 

helpers and babysitters, the omega wolves are left. The specific types' hunting method incorporates 

three pivotal steps that refer to additional motivation rather than the social hierarchy. As a result, the 

primary phases are to seek the prey and annoy the prey until it gives up or stops and then attack the 

target in the end. The mathematical model regarding the above lemma has been formulated to 

introduce the GWO algorithm. In addition, on 29 test functions and four engineering-design real-

world's problems, performance has been tested and certified. In addition, the PSO, GSA, DE and FEP 

algorithms were compared to the GWO in order to verify the findings of this work. Consequently, the 

experimental results determine the effectiveness of this algorithm that produces very competitive 

results. However, this algorithm may be stuck in local optima that refer to its main drawback. In 

addition, the poor solution accuracy and sluggish convergence rate address it more challenging for 

further improvement. 

Mittal et al. [35] proposed an advanced variant of GWO; namely, modified Grey Wolf Optimizer 

(mGWO), in order to maintain pertinent equilibrium among exploration and exploitation of the 

search space. In order to accomplish the focus on objective, they employed the exponential decay 

function instead of the linear function pertaining to the constant vector �⃗� in the enforcement of the 

standard algorithm of GWO. The exponential function devotes seventy and thirty percent iterations to 

exploration and exploitation, respectively. In comparison, in order to accomplish the linear function, 

half of the iteration; i.e., the first fifty percent is dedicated to the exploration and the remaining fifty 
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percent is committed to exploitation. Note that multimodal, unimodal, composite and fixed-

dimension multimodal benchmark functions are imposed to illuminate the proposed variant's 

performance, considering that standard deviation and average are statistical parameters of appraisal 

with 3000 iterations and 30 number of population. In addition, the selection of cluster heads in 

wireless sensor networks is often regarded as a relatively well-known real-world application. To sum 

up, the mGWO outperforms occasionally or has very competitive outcomes compared to other meta-

heuristic algorithms and original GWO. However, the modification is attempted in only controlling 

parameter �⃗�, hence further improvement may be possible. 

 

 

 

 

 

 

 

Figure 2. Social dominant hierarchy of grey wolves (dominance decreases from top down) [34]. 

The MVGWO is another variant of GWO proposed by Singh [36] in 2018. There was a 

biological improvement in the social hierarchy, in which five groups are formed for the total 

population of wolves. Thus, the proposed algorithm extends the social order up to five levels after 

including gamma wolves at the third level from the top. According to biological theory, the top four 

levels' wolves (i.e., delta, gamma, beta and alpha) participated in the hunting and finding of prey. 

In order to carry out mathematical implementation, encircling behavior and position update equation 

has been modified in terms of basic GWO to improve the results. The average of the best four 

solutions is utilized to update the remaining solutions over the course of iteration and find the most 

optimal solution at the end of the last iteration. The obtained results show that this algorithm 

provides very competitive results concerning PSO, GWO and modified mean GWO [37]. In 

addition, the newly modified algorithm performs considerably better to tackle the cantilever 

beam design problem and sine dataset. This research work improved only the biological structure 

of the grey wolves, but it has not led to significant enhancement in the mathematical model 

accordingly. 

Kumar et al. [38] proposed another variant of GWO, named WMGWO, in 2019. There are four 

levels of social hierarchy. The proposed variant employed a weighted mean factor instead of uniform 

distribution in order to update the omegas. It suggested 54, 30 and 16 percent weightage to alpha, 

beta and delta wolves (i.e., search agents or solution), respectively. The performance of the proposed 

variant is validated after comparing the results with these of GWO, mGWO and MVGWO. The 

outcomes of this algorithm are very competitive against comparative algorithms. In addition, this 

algorithm performs very well on the function approximation and classification datasets. This research 

work utilized static weight instead of dynamic weights to the alpha, beta and delta search agents, 

which pointed to the limitation of this work. To improve the diversity of GWO, Abed-alguni and 

Barhoush [39] introduced a distributed approach of GWO by organizing its population using the 

island model. Furthermore, the proposed algorithm was tested on thirty CEC 2014 functions and 

fifteen standard test functions that provide competitive performance against other tested algorithms. 

3. PROPOSED WORK 

The basic Grey Wolf Optimizer (GWO) and the novel proposed algorithm (Weighted Grey 

Wolf Optimizer with Improved Convergence Rate (WGWOIC)) will be discussed in this section. 

3.1 Grey Wolf Optimizer 

As we discussed in the preceding section, the grey wolf optimizer [34] mimics the social 

dominant hierarchy of grey wolves and their social hunting mechanism inspires this algorithm. 

According to the biological theory of grey wolves, hunting is attempted exclusively via the top three 
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levels' wolves (i.e., alpha, beta and delta). The alpha wolf is the dominant wolf, then beta and then 

delta. All other wolves dominate the omega wolves in the pack. The social dominant hierarchy 

of grey wolves has been depicted in Figure 2. In order to solve any optimization problem using 

GWO, the process commences with the random population (also designated as random search 

agents or random solutions). Subsequently, this algorithm's workflow would originate. For the 

mathematical model of GWO, the best three solutions obtained so far are saved and remaining 

solutions (including the omegas) are adapted based on the above three best search agents according 

to Equation 1. 

�⃗�(Curr_iter + 1) =
𝑋1⃗⃗⃗⃗⃗⃗ +𝑋2⃗⃗⃗⃗⃗⃗ +𝑋3⃗⃗⃗⃗⃗⃗

3
                                                  (1) 

According to Equation 1, Curr_iter refers to the current iteration value that linearly increases to 

Max_iter (maximum number of iterations). The vectors 𝑋1
⃗⃗⃗⃗⃗, 𝑋2

⃗⃗⃗⃗⃗ 𝑎𝑛𝑑 𝑋3
⃗⃗⃗⃗⃗ indicate the updated best 

positions (solutions) of alpha, beta and delta wolves, respectively. These three wolves update 

their positions according to the prey's position that is formulated by Equation 2. However, there is no 

idea regarding the location of the prey (optimum) in an abstract search space. Therefore, alpha, beta 

and delta determine the prey's probable location by taking the mean of their positions. The 

mathematical result of the mean is represented by �⃗�(𝐶𝑢𝑟_𝑖𝑡𝑒𝑟 + 1), on which basis the remaining 

wolves (omegas) update their positions. In order to determine the preceding best three positions, 

𝐷𝛼
⃗⃗⃗⃗⃗⃗ , 𝐷𝛽

⃗⃗⃗⃗⃗⃗  𝑎𝑛𝑑 𝐷𝛿
⃗⃗⃗⃗⃗⃗  vectors have to be figured out using Equation 2, whereas the vector D⃗⃗⃗ indicates the 

distance from wolf to prey. 

 𝐷α
⃗⃗ ⃗⃗ ⃗ = |𝐶1

⃗⃗⃗⃗⃗. 𝑋α
⃗⃗ ⃗⃗ ⃗ − �⃗�|, 𝑋1

⃗⃗⃗⃗⃗ = 𝑋α
⃗⃗ ⃗⃗ ⃗ − 𝐴1

⃗⃗ ⃗⃗⃗. (𝐷α
⃗⃗ ⃗⃗ ⃗) 

      𝐷β
⃗⃗⃗⃗⃗⃗  = |𝐶2

⃗⃗⃗⃗⃗. 𝑋β
⃗⃗ ⃗⃗⃗ − �⃗�|, 𝑋2

⃗⃗⃗⃗⃗ = 𝑋β
⃗⃗ ⃗⃗⃗ − 𝐴2

⃗⃗ ⃗⃗ ⃗. (𝐷β
⃗⃗⃗⃗⃗⃗ )                                              (2) 

𝐷δ
⃗⃗⃗⃗⃗⃗  = |𝐶3

⃗⃗⃗⃗⃗. 𝑋δ
⃗⃗ ⃗⃗⃗ − �⃗�|, 𝑋3

⃗⃗⃗⃗⃗ = 𝑋δ
⃗⃗ ⃗⃗⃗ − 𝐴3

⃗⃗ ⃗⃗ ⃗. (𝐷δ
⃗⃗⃗⃗⃗⃗ ) 

The vectors 𝐴 and 𝐶 are called controlling parameters that provide equilibrium among exploration and 

exploitation for the abstract search space. The value of these controlling parameters is calculated by 

using Equation 3. 

𝐴 = 2 ∗ �⃗�. 𝑟1⃗⃗⃗ ⃗ − �⃗�, 𝐶 = 2. 𝑟2⃗⃗⃗⃗                                                         (3) 

The vectors 𝑟1⃗⃗⃗ ⃗ and 𝑟2⃗⃗⃗⃗  are known as random vectors between [0, 1]; i.e., the computational value of 𝐶 

would be found between [0, 2] and the value of 𝐴 between [-2, 2]. The vector 𝐶 is deliberately used to 

provide a random value throughout the algorithm, which offers randomness to the GWO algorithm. In 

contrast, if vector 𝐴's mathematical weight is found in the interval [-1, 1], it supports the algorithm to 

converge toward the most optimal solution; otherwise, it diverges from the current solution in order to 

find the optimum. In addition to the above vectors, another vector,�⃗�, is also called a controlling 

parameter which is calculated by Equation 4. The value of this controlling parameter is decreased 

linearly to 0 over the course of iterations. Therefore, the initial fifty percent values oblige exploration 

and the remaining fifty percent is devoted to exploitation. 

�⃗� = 2 ∗ (1 −
Curr_iter

Max_iter
)                                                            (4) 

The GWO algorithm was tested on twenty-nine benchmark functions and the obtained results were 

analyzed to check the performance. In order to investigate the performance, the comparative analysis 

against other well-known algorithms asserts that the GWO algorithm encounters some limitations and 

challenges, such as stagnation in local optima, low solving accuracy and slow convergence rate. Hence, 

these limitations and challenges encourage proposing another algorithm of GWO. Therefore, we have 

introduced another algorithm of GWO titled Weighted Grey Wolf Optimizer with Improved 

Convergence Rate (WGWOIC), as discussed in the coming sub-section. 

3.2 Proposed WGWOIC Algorithm 

As we have discussed earlier, the basic GWO and its very recently developed algorithms have some 

limitations and shortcomings. Therefore, we have proposed another algorithm of GWO to 

overcome these limitations and resolve the deficiencies. The proposed algorithm is designated as 

Weighted Grey Wolf Optimizer with Improved Convergence Rate (WGWOIC). Therefore, we 

have modified the hunting (position update equation) and attacking (exploitation equation) 
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behavior of grey wolves to introduce this algorithm that indicates this research work's novelty. In 

addition to the above contribution, we have practiced two different benchmark datasets to 

determine the effectiveness of performance in terms of strength and robustness of the proposed 

algorithm against other comparative state-of-the-art optimization algorithms. 

According to the advancement in the biological theory of grey wolves to introduce this novel 

algorithm, the wolves hunt the prey and attack the target with a different mechanism. For the 

mathematical model, the position update equation (hunting) and exploitation equation (attacking the 

prey) are modified to assist the enhancement of the studied algorithm in the literature. Therefore, 

Equation 1 obliges hunting the prey; i.e., it is known as the hunting equation or position update 

equation. In contrast, Equation 4 obliges attacking the target; i.e., an attacking equation or exploitation 

equation. In order to accomplish our objective, we will apply Equation 5 instead of Equation 1 and 

Equation 7 instead of Equation 4. 

X⃗⃗⃗(Curr_iter + 1) = (w1⃗⃗⃗⃗⃗⃗ + r⃗). X1
⃗⃗⃗⃗⃗ + (w2⃗⃗ ⃗⃗ ⃗⃗ . X2

⃗⃗⃗⃗⃗ − w3⃗⃗ ⃗⃗ ⃗⃗ . X3
⃗⃗⃗⃗⃗)                                      (5) 

The vector 𝑟 is a random weight granted to the alpha solution computed as half of the random value 

over every course of iteration. This random weight obliges the computed solution to be slightly tilted 

toward the alpha, because the alpha is likely to be considered the best solution to the problem. It is 

brightly founded from the comprehensive literature that alpha, beta and delta wolves contain an 

excellent knowledge of prey (solution) against remaining wolves. Simultaneously, the alpha wolf 

comprises the most optimal solution among the population, then beta and then delta. We have utilized 

this lemma and accordingly updated the hunting and attacking mechanisms of the wolves. Therefore, 

the alpha wolf is not delivering decisions alone for hunting, staying and other pack activities. Thus, the 

alpha wolf has also taken the advice of beta and delta. For the mathematical model, these are the three 

best solutions among all solutions obtained so far. In this research work, we are giving extra weight to 

the alpha solution to update the solutions; alongside, we have also added a weighted difference of beta 

and delta solutions. Consequently, the updated solutions are slightly tilted toward the alpha solution 

and the weighted difference provides diversity to the proposed algorithm. In  Equation  5,  the  vectors 

𝑤1⃗⃗ ⃗⃗ ⃗,  𝑤2⃗⃗⃗⃗⃗⃗  and 𝑤3⃗⃗⃗⃗⃗⃗  are  considered  as  influence  factors  that  provide  the influence weighted to alpha, 

beta and delta solutions, respectively, during every course of iteration. These factors are 

mathematically formulated by Equation 6. 

𝑤1⃗⃗ ⃗⃗ ⃗ =  
𝑟1⃗⃗⃗⃗⃗

𝑟1⃗⃗⃗⃗⃗+𝑟2⃗⃗⃗⃗⃗+𝑟3⃗⃗⃗⃗⃗
 , 𝑤2⃗⃗⃗⃗⃗⃗ =  

𝑟2⃗⃗⃗⃗⃗

𝑟1⃗⃗⃗⃗⃗+𝑟2⃗⃗⃗⃗⃗+𝑟3⃗⃗⃗⃗⃗
 , 𝑤3⃗⃗⃗⃗⃗⃗ =  

𝑟3⃗⃗⃗⃗⃗

𝑟1⃗⃗⃗⃗⃗+𝑟2⃗⃗⃗⃗⃗+𝑟3⃗⃗⃗⃗⃗
                                      (6) 

It is clear that the total sum value of these influence factors is '1' (𝑤1⃗⃗ ⃗⃗ ⃗ + 𝑤2⃗⃗⃗⃗⃗⃗ + 𝑤3⃗⃗⃗⃗⃗⃗ = 1). In order to 

calculate the above influence vectors, the vectors 𝑟1⃗⃗⃗ ⃗,  𝑟2⃗⃗⃗⃗  and 𝑟3⃗⃗⃗⃗   are utilized with the random weights in 

[0, 1] to provide the randomness to the proposed algorithm; not only the initial iteration, even till the 

final iteration. The influence factors' values will assist to find the most optimal location of the prey 

after putting these values in Equation 5. 

In addition to the above contribution, we have adopted Equation 7 from reference [35] in order to 

compute the value of vector �⃗�. Now, we will use Equation 7 instead of Equation 4 to enhance the 

exploitation of the recommended algorithm. 

�⃗� = 2 ∗ (1 −
Curr_iter2

Max_iter2 )                                                        (7) 

From the comprehensive literature, the grey wolves accomplish their hunt by attacking the prey when 

it stops moving. In a mathematical model, the vector �⃗� performs this task. The value of this vector is 

decreased exponentially from '2' to '0' over the course of iterations. The initial seventy percent values 

of this vector that decrease slowly oblige extensive exploration of the search space, whereas the 

remaining thirty percent components that decrease quickly oblige fast exploitation toward the solution. 

This vector eventually maintains good equilibrium among exploration and exploitation of the abstract 

search space; i.e., it provides fast convergence and more diversity. This vector is also utilized to 

decrease randomness; implying that the WGWOIC algorithm would be converging toward the final 

solution. The pseudo-code of the proposed algorithm is depicted in Figure 3. 

4. RESULTS AND DISCUSSION 

In this section, we have benchmarked the WGWOIC algorithm on 33 fairly well-known 

numerical benchmark test functions. The first twenty-three classical functions are included from  
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Initialize the population of grey wolves (Search Agents) 𝑋k

⃗⃗⃗⃗⃗ (k = 1, 2, 3... n) 

Initialize controlling parameters �⃗�,  𝐴,  and 𝐶 
Compute the fitness of each search agent 

𝑋α
⃗⃗ ⃗⃗ ⃗ = the most fittest solution from all search agents  

𝑋β
⃗⃗ ⃗⃗⃗ = the second fittest solution from all search agents 

𝑋δ
⃗⃗⃗⃗⃗ = the third fittest solution from all search agents 

while (Curr_iter <= Max_iter) do 

for each search agent (𝑋k
⃗⃗⃗⃗⃗) do 

           Update the position of current 𝑋k
⃗⃗⃗⃗⃗ using equation (5) 

end for 

Update the value of controlling parameters �⃗� (using equation 7), 𝐴,  and 𝐶 

Compute the fitness of all search agents 

Update the value of 𝑋α
⃗⃗ ⃗⃗ ⃗, 𝑋β

⃗⃗ ⃗⃗⃗, and 𝑋δ
⃗⃗⃗⃗⃗  

Curr_iter = Curr_iter + 1 

end while 

return 𝑋α
⃗⃗ ⃗⃗ ⃗  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Pseudo-code of the WGWOIC algorithm. 

CEC 2005, which many researchers utilized in their work. These benchmarked functions are 

minimization functions and categorized into three groups: unimodal (first seven functions), 

multimodal (following six functions) and fixed-dimension multimodal (last ten functions) benchmark 

functions. However, these benchmark test functions have different dimensions and boundary ranges 

that indicate the main challenges for the proposed algorithm in order to optimize the above test 

functions. 

Subsequently, the remaining ten test functions are modern single objective minimization functions 

(CEC01 to CEC10) included from CEC-C06 2019. These test functions are scalable and known as the 

100-Digit Challenge. The functions from CEC04 to CEC10 are rotated and shifted, whereas the 

functions from CEC01 to CEC03 are not. The dimensionality of CEC 01, CEC 02 and CEC 03 test 

functions is 9, 16 and 18, whereas the boundary range is [-8192, 8192], [-16384, 16384] and [-4, 4], 

respectively. In contrast, the dimensionality of the remaining functions (from CEC04 to CEC10) is the 

same, each with 10-dimensional in [−100, 100] boundary range. The detailed discussion about the first 

twenty-three test functions is in reference [34] and that of the remaining ten functions of CEC-C06 

2019 are in [40]. At the same time, the programming implementation of CEC-C06 2019 functions is 

performed in reference [41]. Interestingly, this research work considers the above two different 

benchmark functions in order to evaluate the performance with the effect of the proposed algorithm that 

validates the strength and confirms the robustness of the WGWOIC algorithm. 

For the mathematical implementations, the population size of the proposed algorithm and other state- 

of-the-art comparative algorithms is 30. All algorithms are iteratively repeated 500 times over the 

course of iterations to obtain the most optimal solution in one independent run. Subsequently, all 

algorithms are repeated 30 separate runs on each benchmark function. The average (mean) value of 

these 30 independent runs eventually indicates the outcome (optimum global value) to the 

corresponding benchmark function. The other statistical variables (Best, Worst and Std.) are also 

utilized to validate the effectiveness of the proposed algorithm's outcomes against the studied 

comparative well-known algorithms. The best statistical variable shows the minimum value throughout 

the 30 independent runs, whereas the worst refers to the maximum value. On the other hand, Std. stands 

for standard deviation, estimated through 30 separate runs. Therefore, the lowest values represent the 

optimum values of each statistical variable regarding all algorithms concerning individual functions. 

The performance of the proposed algorithm is validated against many swarm intelligence-based 

algorithms, such as Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), Modified 

GWO (mGWO), Modified Variant of GWO (MVGWO) and Weighted Mean GWO (WMGWO). In 

addition, the proposed algorithm is also compared with two nature-inspired algorithms: Moth-Flame 

Optimization (MFO) and Whale Optimization Algorithm (WOA). However, the GWO has already 

been reached with PSO as the swarm intelligence-based algorithm, GSA as the physics-based algorithm 

and DE, FEP and CMA-ES as the evolutionary algorithms. Table 1 lists the simulation hardware and 

software environment on which the practical implementation of this work has been conducted. 
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Table 1. Experimental environment. 

Parameter Hardware and Software Configuration 

Implementation Tool MATLAB R2017a 

Processor Intel(R) Core(TM) i7-4770 CPU@ 3.40GHz 

RAM 12.0 GB 

Operating System 64-bit Operating System 

Table 2 shows the computational results of unimodal test functions of the WGWOIC algorithm and 

other comparative state-of-the-art meta-heuristic algorithms. It must be noted that there are seven 

unimodal functions (F1-F7) which are having single optima. These benchmark functions validate the 

effectiveness of the exploitation performance of the proposed algorithm. This algorithm highly 

outperforms on F1, F3, F4 and F7 functions against well-known meta-heuristic comparative algorithms 

and provides very competitive results on the remaining unimodal functions. 

Table 2. Results of unimodal benchmark functions. 
 

Functions Criteria PSO MFO WOA GWO mGWO MVGWO WMGWO WGWOIC 

 

F1 

Best 1.63886E-05 0.158221405 2.79122E-88 1.70234E-29 4.48066E-39 9.38977E-22 2.12829E-39 1.78217E-85 

Worst 0.000772625 20002.75312 3.06783E-69 3.2754E-27 3.39035E-34 5.58183E-20 2.9993E-36 5.13144E-81 

Mean 0.00015484 2670.895162 1.10514E-70 8.15964E-28 1.4291E-35 7.52036E-21 1.83367E-37 3.54905E-82 

Std 0.000155845 6395.635248 5.59769E-70 8.6975E-28 6.17581E-35 1.09375E-20 5.53603E-37 9.94418E-82 

 

F2 

Best 0.005416498 0.15259518 1.87787E-58 4.31376E-17 5.76217E-23 1.08145E-13 1.64269E-23 1.41081E-46 

Worst 0.122725197 60.04019074 2.18917E-50 4.50204E-16 7.94649E-21 2.57471E-12 1.02317E-21 5.6575E-44 

Mean 0.034715846 35.09009906 1.03354E-51 1.18525E-16 1.02612E-21 9.93847E-13 1.19183E-22 9.82965E-45 

Std 0.028536391 18.67345722 4.0533E-51 8.06393E-17 1.58156E-21 5.24122E-13 1.90205E-22 1.16457E-44 

 

F3 

Best 32.15428241 2669.898671 17647.46009 4.91195E-09 2.03961E-10 1.72282E-06 6.41861E-13 1.91335E-61 

Worst 184.6971148 43943.76011 72344.95817 0.001286365 5.57145E-06 0.008222075 2.37055E-06 2.20352E-55 

Mean 95.15931899 18590.53167 45553.67157 4.96083E-05 2.44554E-07 0.000462987 1.46535E-07 1.04907E-56 

Std 33.71188464 10843.57994 12483.87229 0.000234343 1.0163E-06 0.001481328 4.72723E-07 4.21886E-56 

 

F4 

Best 0.641915093 54.8705224 4.669865609 5.87068E-08 8.74413E-11 4.03672E-06 6.91339E-11 2.03365E-35 

Worst 1.787857145 81.0563014 89.38407148 2.28106E-06 7.62111E-09 0.000176699 6.02427E-09 1.21729E-31 

Mean 1.156085088 69.21414183 45.72716132 6.322E-07 1.66461E-09 3.74597E-05 9.19472E-10 8.08294E-33 

Std 0.319797238 6.824054473 27.6934708 5.65885E-07 1.91586E-09 3.84676E-05 1.25221E-09 2.54366E-32 

 

F5 

Best 27.20201917 309.3363674 27.24769259 25.74622807 26.05555255 25.9950154 26.04231519 27.24591773 

Worst 265.766625 80033040.29 28.76765556 28.55897177 28.72223185 28.80989169 28.73810387 28.90556925 

Mean 76.73511711 2686931.035 28.07688863 27.05204892 26.94454281 27.31357229 26.94364717 28.02425226 

Std 51.71636381 14608392.47 0.445358351 0.753119474 0.656530374 0.883426624 0.670585955 0.512886109 

 

F6 

Best 7.68491E-06 0.542083492 0.112093851 0.23186088 0.243501503 0.45882678 0.248906786 3.707888307 

Worst 0.00657646 10106.08889 0.959981164 1.755332071 1.255444247 3.264675357 1.507850263 4.764877793 

Mean 0.000365663 1013.161376 0.407078881 0.778026799 0.592550125 1.342234409 0.832794353 4.3288351 

Std 0.001186222 3081.722471 0.240597427 0.398519267 0.256924289 0.572752401 0.314861247 0.332820474 

 

F7 

Best 0.064203293 0.085215057 0.000116117 0.00043649 0.000379606 0.001117032 0.000518688 2.96069E-05 

Worst 0.302894078 29.62285404 0.012456871 0.006311453 0.003197678 0.005411433 0.003334457 0.001077777 

Mean 0.19398366 3.463092413 0.002654718 0.002235133 0.001484414 0.002787913 0.001564218 0.000380318 

Std. 0.064673982 6.895509972 0.00282493 0.001183375 0.000822758 0.001058371 0.000753789 0.000301542 

Table 3. Results of multimodal benchmark functions. 

Functions Criteria PSO MFO WOA GWO mGWO MVGWO WMGWO WGWOIC 

 

F8 

Best -6740.805369 -9602.385548 -12569.45849 -7442.734249 -7291.978467 -7600.083886 -7344.16222 -4427.955563 

Worst -2871.327832 -6870.808247 -7093.47263 -3480.901369 -2868.810357 -4831.305124 -3473.562341 -3093.946616 

Mean -4541.466559 -8394.321875 -10354.0438 -5966.223462 -5595.560325 -5733.209196 -6029.573094 -3631.225745 

Std 1141.174277 676.4760095 1819.704826 835.1905512 1210.17144 721.447048 954.272808

8 

343.1655987 

 

F9 

Best 36.32221174 100.7700387 0 5.68434E-14 0 9.01537E-11 0 0 

Worst 76.62989803 282.9948352 5.68434E-14 14.94139474 11.79543628 18.40187825 6.68404661

2 

0 

Mean 54.06197808 162.7394495 3.78956E-15 2.626204088 0.546080577 9.184836132 0.39661479

9 

0 

Std 9.810297529 43.58301536 1.44216E-14 3.749712597 2.28357397 4.675340967 1.52165200

7 

0 

 

F10 

Best 0.002695217 0.708412743 8.88178E-16 7.54952E-14 1.15463E-14 5.21627E-12 7.99361E-

15 

4.44089E-15 

Worst 1.360625922 19.96001708 7.99361E-15 1.46549E-13 3.64153E-14 3.58549E-11 2.22045E-

14 

7.99361E-15 

Mean 0.185936458 14.7958024 4.79618E-15 9.64562E-14 2.19676E-14 1.64674E-11 1.5928E-14 4.79616E-15 

Std 0.445780516 7.348608771 2.696E-15 1.5843E-14 5.89582E-15 8.36597E-12 3.5751E-15 1.08403E-15 

 

F11 

Best 4.39798E-07 0.691226662 0 0 0 0 0 0 

Worst 0.039404049 90.93765307 0.216365287 0.012173631 0.039658157 0.032276084 0.01695686

4 

0 

Mean 0.007400127 9.970233113 0.016906773 0.001148008 0.003918697 0.01048135 0.00056522

9 

0 

Std 0.009604463 27.38383546 0.05315222 0.00351309 0.010120281 0.011535548 0.00309588

6 

0 

 

F12 

Best 1.604334573 13619103.21 0.104111454 0.962482184 0.21421963 1.688354746 0.17418128

3 

0.380581756 

Worst 10.35348117 325818040.9 7.096752496 5.888719656 2.945625079 12.85348765 2.38358817

2 

1.169842467 

Mean 4.422974266 118292981.9 0.506732063 3.309574426 1.071433625 4.514060426 0.91067705

1 

0.721041352 

Std 2.343229343 83682241.01 1.27166015 1.191318431 0.726975915 2.312196846 0.52318395

1 

0.163739768 

 

F13 

Best 4.830503959 79928426.13 0.525800914 5.383776068 2.32031093 9.493814301 1.79363076

4 

2.545021523 

Worst 41.92960075 585026133.6 2.676185434 26.42349085 11.53322581 37.16601697 7.33130944 3.55702194 

Mean 17.38999252 237951829.1 1.400475334 10.32643742 4.515938171 19.2946504 3.81086210

4 

2.887597749 

Std. 9.929256026 113092504.8 0.465939596 4.177855191 1.866567399 6.642529041 1.43062099

8 

0.193337137 

In contrast to the unimodal functions, there are six multimodal functions (F8-F13) which are having a 

massive number of local optima. These functions are used to validate the effectiveness of the 
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exploration performance of the WGWOIC algorithm against comparative algorithms. Table 3 lists the 

computational results of multimodal benchmark functions. The proposed algorithm is considerably 

better than all comparative algorithms on F9, F10 and F11 functions and is very competitive an the 

remaining multimodal functions. 

Table 4. Results of fixed-dimension multimodal benchmark functions. 

Functions Criteria PSO MFO WOA GWO mGWO MVGWO WMGWO WGWOIC 

 

F14 

Best 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998003838 0.998004058 

Worst 10.76318067 8.840835963 10.76318067 12.67050581 10.76318067 16.44090731 10.76318067 10.76318067 

Mean 3.55705999 2.413759985 2.408871047 4.230081157 3.093536966 6.076285786 2.442656154 2.04960213 

Std 2.963055118 1.994557984 2.53814438 4.11037804 3.210295799 4.921621581 2.458950183 2.499411434 

 

F15 

Best 0.000626681 0.000443089 0.000308353 0.000307496 0.000307649 0.000307834 0.000307991 0.000320747 

Worst 0.001594171 0.020363339 0.001606437 0.020363361 0.020363369 0.020363377 0.020363351 0.001331427 

Mean 0.000898827 0.001628901 0.000784627 0.004401317 0.005094642 0.003063687 0.001827055 0.0005669 

Std 0.000174434 0.003564441 0.000391673 0.008119157 0.008570346 0.006901842 0.005048324 0.000300483 

 

F16 

Best -1.031628445 -1.031628453 -1.031628452 -1.031626947 -1.031628208 -1.031628131 -1.031626365 -1.031601951 

Worst -1.02451432 -0.215463311 -0.906007779 -0.999980519 -0.999025583 -0.988939132 -0.9988901 -1.011447444 

Mean -1.031280141 -1.004375325 -1.022052627 -1.029637815 -1.027771295 -1.028035569 -1.030414104 -1.028589411 

Std 0.001347638 0.149001867 0.028279174 0.007355832 0.009660761 0.009712765 0.005957786 0.004563169 

 

F17 

Best 0.397887358 0.397887358 0.397889389 0.3978963 0.397901342 0.397896281 0.39789264 0.398513531 

Worst 0.397903535 1.943140663 3.145500095 3.491223558 0.406921043 0.400650828 4.97391737 0.729053842 

Mean 0.397887912 0.505199511 0.691432704 0.502478431 0.400023301 0.39844679 0.557064981 0.442742179 

Std 2.95103E-06 0.391417638 0.557575662 0.564515144 0.00261759 0.00073983 0.83432747 0.065486544 

 

F18 

Best 3 3 3.000000147 3.000000205 3.000000115 3.00000016 3.000000194 3.00000061 

Worst 3 3 3.002647476 84.00001234 84.00012503 3.000177318 3.00007862 3.000237848 

Mean 3 3 3.000272395 5.700037282 5.700021785 3.000055953 3.000019692 3.000034633 

Std 1.96537E-15 2.15201E-15 0.000568143 14.78850434 14.78852855 5.11566E-05 2.03176E-05 4.77781E-05 

 

F19 

Best -3.862782147 -3.862782148 -3.862104082 -3.862771483 -3.862606236 -3.862651908 -3.862475174 -3.862328044 

Worst -3.862781313 -3.089764162 -2.773780759 -1.000795465 -3.810140407 -1.000783963 -3.814269526 -3.714218991 

Mean -3.862782021 -3.824806378 -3.698618476 -3.761584254 -3.855949456 -3.761104497 -3.852313926 -3.809338982 

Std 2.39265E-07 0.152632921 0.277569519 0.521471286 0.011160136 0.521408327 0.012798558 0.03926783 

 

F20 

Best -3.314418487 -3.06809545 -3.039630101 -3.301659308 -3.304775986 -3.288118188 -3.317169523 -3.007106385 

Worst -0.909982661 -0.373612111 -0.43072469 -1.746400274 -1.780786493 -1.065166152 -1.769534999 -0.956158259 

Mean -2.771059131 -2.042624029 -1.538709099 -2.862052074 -2.970472608 -2.770256553 -2.905743952 -2.132615795 

Std 0.60116875 0.867003605 0.751171691 0.424377537 0.325042763 0.546032058 0.449549744 0.667529105 

 

F21 

Best -10.15319968 -10.15319968 -10.1508081 -10.15276796 -10.15130887 -10.15295394 -10.15211863 -4.953161739 

Worst -2.630471668 -2.630471668 -2.627163857 -5.055188892 -2.6809166 -2.630342057 -5.054989528 -0.878075038 

Mean -7.594555698 -6.545794 -8.674089067 -9.644703023 -9.221455628 -8.981010629 -9.130220118 -4.15674959 

Std 3.197162146 3.139790866 2.682803809 1.545931042 2.137959972 2.693260569 2.063434258 1.339198363 

 

F22 

Best -10.40294057 -10.40294057 -10.40111333 -10.40280511 -10.40123363 -10.40284313 -10.40234302 -7.154492635 

Worst -2.751933564 -2.751933564 -1.836472833 -1.837523021 -10.38840976 -10.39856825 -2.765762625 -2.599856113 

Mean -9.317729361 -8.186183479 -7.787194844 -10.11578943 -10.39609553 -10.40120076 -10.14113624 -4.635777438 

Std 2.507392867 3.238901603 2.913737763 1.563515286 0.003127188 0.001018144 1.392993271 0.715724367 

 

F23 

Best -10.53640982 -10.53640982 -10.53595185 -10.53549351 -10.53507373 -10.53612511 -10.53434444 -7.527868551 

Worst -2.421734027 -2.421734027 -2.41789726 -2.421664232 -10.52035255 -2.421726384 -5.128106219 -0.942178182 

Mean -9.109575858 -7.255347769 -6.655315468 -9.54281558 -10.52853524 -10.26427221 -10.16837401 -4.564613794 

Std. 2.803435329 3.659985998 3.355458636 2.607522456 0.004334215 1.481220641 1.370062816 0.991545922 

On the other hand, the last ten functions (F14-F23) of the first benchmark dataset are known as fixed- 

dimension multimodal functions that validate the effectiveness of the exploration performance and the 

avoidance of local optima. Hence, the key focus is on global optima along with their exploitation 

performance for their convergence rate. Table 4 lists the computational results of fixed-dimension 

multimodal functions. The proposed algorithm outperforms all comparative well-known meta-heuristic 

algorithms an F14 and F15 functions and provides very competitive developments an remaining fixed-

dimension multimodal functions. Hence, the proposed algorithm is validated and justified for global 

optimum and good convergence rate. 

Table 5. Results of CEC-C06 2019 benchmark test functions. 

Functions Criteria PSO MFO WOA GWO mGWO MVGWO WMGWO WGWOIC 

 

CEC 01 

Best 84016047950 264438535.5 10875873.0

2 

63212.9355

4 

517904.745

2 

678610.799

8 

45647.22929 41835.65672 

Worst 5.74709E+12 1.13967E+11 1.34126E+1

1 

206372812

3 

452193546

4 

659991656.

9 

7947145755 40370564.89 

Mean 2.04372E+12 18693542941 3082400885

8 

197236612 467463912.

2 

101803359.

6 

512481102.5 1397974.063 

Std 1.26038E+12 29133114337 3328126714

9 

464739296.

7 

929119650.

7 

158517407.

8 

1455917657 7360752.576 

 

CEC 02 

Best 8997.812591 18.99160195 17.4052621

5 

17.3462161

2 

17.3541055

1 

17.3471554

2 

17.35019871 17.45346937 

Worst 24672.5164 165.4226319 18.9502206

9 

17.7073142

7 

17.6953701

1 

18.7855508

2 

17.37192198 17.94370798 

Mean 15385.68872 52.60855145 18.0426850

2 

17.3885923

9 

17.3974980

1 

17.5968274 17.3617251 17.67726882 

Std 3959.693873 30.69601113 0.41002520

4 

0.09915725

6 

0.09145850

1 

0.37644568

4 

0.005624935 0.111560162 

 

CEC 03 

Best 12.70240436 12.70240431 12.7024071 12.7024043

3 

12.7024044

5 

12.7024042

8 

12.70240438 12.70242326 

Worst 12.704906 12.70254569 12.7046566

8 

12.7047524

9 

12.7042670

3 

12.7059078

1 

12.70490424 12.70310611 

Mean 12.70254677 12.70243193 12.7025459

5 

12.7025361

1 

12.7025086

5 

12.7026334

7 

12.70257894 12.7025193 

Std 0.000525338 3.65032E-05 0.00040738

9 

0.00047321

5 

0.00037781

9 

0.00072414

6 

0.000631479 0.000159984 
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CEC 04 

Best 4.974795285 13.92941682 91.0796608

9 

25.4822642

7 

31.7801790

9 

16.6507263

8 

32.82018789 807.4234065 

Worst 45.95817019 601.633464 916.872185

7 

1013.16275

3 

2409.03329 2474.53275

9 

2351.156413 4595.461272 

Mean 15.6159303 177.0484372 328.230249

5 

95.6389720

4 

148.620689

3 

245.427925

5 

152.5301426 1926.940239 

Std 8.919899821 202.1005042 175.219281

4 

174.713382

1 

427.382512

5 

616.514640

8 

416.0275936 740.7697138 

 

CEC 05 

Best 1.858024186 2.344005101 1.95590679

6 

1.62002275

1 

1.79651098 1.65520471

4 

1.722212455 2.471959211 

Worst 4.812449362 4.161472658 4.12150312

5 

2.14344097

1 

2.10298904

3 

2.375428153 2.325748056 3.885164162 

Mean 3.42182944 3.190601392 3.16522614

1 

1.91598588

9 

1.95687935

4 

1.988312207 1.980947909 2.995941288 

Std 0.701206358 0.441984574 0.46085167

1 

0.10467692

3 

0.08432479

3 

0.166134256 0.122111473 0.306795588 

 

CEC 06 

Best 5.298933027 1.165535574 7.60266370

3 

8.98336563

5 

9.05185916

1 

10.02866692 6.086274462 9.75098118 

Worst 11.14441722 10.79436376 10.7467440

5 

12.1446098

2 

12.2400230

4 

12.43691074 12.33565412 12.03766536 

Mean 9.055851559 5.735387803 9.43556745

5 

11.0579200

4 

10.8917927

4 

11.24706021 10.93271595 10.80254285 

Std 1.375294442 2.517629806 0.96060985

5 

0.74307568

5 

0.79118878

5 

0.657555238 1.215991338 0.627645061 

 

CEC 07 
Best -74.10859072 -126.335496 208.750080

7 

11.2883697

8 

122.093624

8 

-26.62196701 158.3134872 494.7379115 

Worst 374.2502338 1252.64433 1168.45006

2 

1076.17473

8 

1095.05153

4 

960.270531

4 

1074.608334 1056.631639 

Mean 150.2608467 452.6023701 660.953618

7 

521.059954

7 

561.461254

5 

379.797949

6 

558.1062293 825.942669 

Std 113.9916614 260.2282114 240.432068

4 

290.169065

6 

296.427841

1 

269.355960

6 

257.1206831 133.0243803 

 

CEC 08 

Best 3.743690545 4.33845849 4.90500812 2.98562530

7 

2.66140208

7 

2.62848205

8 

3.247684807 4.818489682 

Worst 6.20863408 6.900537982 6.68769272

5 

6.61444688

9 

6.34279806

5 

6.54948398

8 

6.493956809 6.726253322 

Mean 5.147764502 5.710775289 5.81845279

4 

4.59610904 4.52684407 4.56915741

9 

4.852959507 5.683344627 

Std 0.56888959 0.642495043 0.48673659 0.94864667

7 

0.96882259

5 

0.89918493 0.998069408 0.455802888 

 

CEC 09 

Best 2.339280498 2.46217298 2.92218413 3.25728240

4 

2.63124987 2.78707052

7 

3.108344345 6.187666562 

Worst 2.355534157 1121.584371 6.79360902

5 

5.71864927

6 

5.98819892

1 

370.750220

7 

6.115638485 82.13447988 

Mean 2.346186889 39.94266085 4.24822211

1 

4.33404679

3 

4.37809308 16.4262217

8 

4.489645472 27.96418284 

Std 0.004419399 204.2895831 0.82564146

8 

0.83304097

7 

0.90941748

9 

66.9255875 0.785456542 16.20840294 

 

CEC 10 

Best 20.04350652 19.99983504 20.0762604

9 

20.2698906

3 

20.3293946

8 

20.3073990

4 

20.2193504 15.99976137 

Worst 20.64711606 20.39759247 20.6018988

2 

20.6921739

2 

20.6703872

6 

20.6638055

9 

20.62843663 20.69321035 

Mean 20.27204742 20.15907072 20.2779601

6 

20.5085575 20.498879 20.4792108

2 

20.50050223 20.23494306 

Std. 0.15193306 0.117342779 0.11900441 0.09854305

2 

0.09567490

7 

0.08456730

6 

0.088448808 0.902719447 
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Figure 4. Convergence curve of WGWOIC algorithm and other comparative algorithms. 

Subsequently, the last ten modern single objective functions (CEC01 to CEC10) have been included 

from CEC-C06 2019 to validate the scalability and effectiveness of the rotated and shifted ability of the 

proposed algorithm. Table 5 lists the computational results of these benchmark test functions. The 

proposed algorithm obtained very competitive effects on these functions against comparative well- 

known meta-heuristic algorithms. Hence, the proposed algorithm eventually offers very prominent 

scalability and the ability of rotated and shifted. 

In addition to the above mathematical results of the experiment, we have obtained some graphical 

results, as depicted in Figure 4. These graphical results demonstrate the convergence rate of the 

proposed algorithm against other literature algorithms. The cyan color line indicates the PSO's curve 

graph (convergence rate graph). Similarly, the curve graphs of MFO, WOA, GWO, mGWO, MVGWO 

and WMGWO are shown by black color dash-dot line, magenta color dash-dot line, red color line, 

green color line, blue color line and black color line, respectively. In contrast, the curvegraph of 

WGWOIC is indicated by a magenta color line. Consequently, these graphical results justify the 

excellent convergence rate of the proposed algorithm compared with all comparative meta- heuristic 

algorithms. 

5. WGWOIC IN TRAINING MULTI-LAYER PERCEPTRON 

Neural Networks (NNs) [43] represents the most prominent and emerging invention in the soft 

computing field, proposed by McCulloch and Pitts in 1943. These networks impersonate the 

biological neurons of the human brain; hence they contain the ability to learn from experience. The 

learning methods are classified into two categories: supervised and unsupervised. As the name 

implies, supervised learning is provided by the supervisor or external sources (feedback). In contrast 

to supervised learning, unsupervised learning is conferred by merely inputs, but not accompanied by 

any supervisor or external sources (feedback). Neural network learning method is known as a trainer 

that is responsible concerning the networks’ performance. Hence, the trainer is the most vital 

component of NNs. The set of input samples to the neural networks are notified as training samples 

and test samples are utilized in order to substantiate the effectiveness of their performance. 

However, the trainer has to accommodate the structural parameters of NNs to improve the 

performance in each training step. Consequently, the trainer extinctions after the training phase and 

the neural network are now ready to practice. 

There are several types of neural networks studied in the literature, such as Recurrent Neural Networks 

(RNNs) [44], Feedforward Neural Networks (FNNs) [45] and so forth. The two-direction information 

flow between the neurons is implied in the RNNs, whereas FNNs are the simplest, most widely 

employed and share the information in exclusively one direction. Furthermore, FNNs are classified 

into two categories: Single-Layer Perceptrons (SLPs) [46] and Multi-Layer Perceptrons (MLPs) [47]. 

The SLPs comprise only one perceptron that constitutes it suitable to solve linear problems. In contrast 

to SLPs, MLPs consist of more than one perceptron at several layers, making them ideal for solving 

non-linear problems. There are proposed numerous applications of MLPs in the literature, such as 

function approximation, pattern classification and so forth. The pattern classification [48] is a 

supervised learning approach and it classifies the input data in to preconcert labeled classes, whereas  
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Figure 4. (continued). 

function approximation [49] concerns the undertaking of modeling relationships amid input variables. 

The hierarchical classification diagram of neural networks is depicted in Figure 5. 

Yu et al. [50] introduced an algorithm in order to train Support Vector Machines (SVMs) to alleviate 

computational complexities. The proposed algorithm utilized Fisher projection for bound vectors set to 

tackle linear and non-liner separates problems, for which linear and kernel Fisher discriminants were 

used to compute projection line. Yu et al. [51] proposed a two-side (user-side and item-side) Cross 

Domain Collaborate Filtering (CDCF) algorithm in order to diminish the sparsity problem that 

occurred in the recommender systems. The recommendation problem is converted into a classification 

problem by using the proposed model, alongside the SVM model employed to tackle the resultant 

classification problem that eventually performs significantly better than comparative methods.  

 
 

Figure 5. Hierarchical classification of neural networks. 

Furthermore, Yu et al. [52] enhanced the CDCF algorithm and expanded user and item (two- 

dimensional) location as the feature vector using the Funk-SVD decomposition model. Further, the 

C4.5 decision tree algorithm has been utilized for training a classifier for predicting missing ratings. 

Kolisetty and Rajput [53] contributed to intensive study regarding the significance of machine learning 

in analyzing big data's analysis (implications and challenges) in terms of data heterogeneity, 

classification imperfection and computational complexity. The analyzed data is utilized for predictive 

analysis and decision-making via data transformation and knowledge extraction. Furthermore, Ottom's 

critical focus [54] has emphasized the significance of big data in healthcare and its implementation 
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tools and associated research challenges. The effectiveness of the Fuzzy-Rough Nearest Neighbour 

(FRNN) classifier is benchmarked by Liew et al. [55] for brainprint authentication over nine 

distinctive electroencephalogram channels' signals. Nahar et al. [56] employed a user-defined lexicon 

approach in order to determine the polarity (positive, negative) on Facebook posts and comments and 

achieved 98% accuracy. Apart from the above method, Naïve Bayes (NB), K-Nearest Neighbour (K- 

NN) and support vector machine classifiers have been utilized for polarity classification and produced 

95.6, 96.8 and 97.8%, respectively. Al-Abdallah et al. [57] proposed a firefly algorithm classifier in 

order to tackle five binary classification problems. The effectiveness of the proposed classifier 

demonstrates competitive outcome against comparative classifiers. Alweshah et al. [58] proposed a 

hybrid approach (African buffalo optimization algorithm employed with the probabilistic neural 

network) to address the classification problem and applied it on 11 benchmark datasets in order to 

assess its accuracy. Furthermore, the water evaporation algorithm employed with the probabilistic 

neural network in order to tackle classification problems very effectively was developed by Alweshah 

et al. [59]. 

As we discussed earlier, the trainer is the most influential component of neural networks. There are 

recommended several trainers to NNs in the literature, such as Genetic Algorithms (GAs) [60], 

Particle Swarm Optimization (PSO) [61], Evolutionary Strategies (ESs) [62], Ant Colony 

Optimization (ACO) [63]-[64], Grey Wolf Optimizer (GWO) [65]-[66], Teaching-Learning Based 

Optimization (TLBO) [67], Moth-Flame Optimizer (MFO) [68]-[69], Population-based Incremental 

Learning (PBIL) [70] and so forth. In order to find a most optimal prediction for Dairy Product 

Demand (DPD) in Iran, Goli et al. [71] proposed a hybrid approach using GWO and cultural algorithm 

to improve MLPs. We are focusing on tackling the pattern classification problem using MLPs in this 

research work employed by the preceding proposed novel algorithm of GWO designated as 

WGWOIC trainer. The proposed trainer may assist in this field and provide considerably better 

outcomes than other comparative trainers. 

5.1 Problem Formation 

As discussed earlier, MLPs are specific types of Feedforward Neural Networks that contain one 

hidden layer with one input and one output layer. However, the output of MLPs depends on the inputs, 

weights and biases. In order to tackle the pattern classification datasets, these datasets already contain 

the inputs and outputs, while optimum weights and biases are also required for significant 

computational results. In this research work, we proposed an algorithm-based trainer called Weighted 

Grey Wolf Optimizer with Improved Convergence Rate-Multi-Layer Perceptron trainer (WGWOIC- 

MLP trainer) in order to optimize the values of weights and biases. The block diagram of this 

proposed work regarding problem formulation is depicted in Figure 6. 

 

 

Figure 6. Block diagram of the proposed work. 

The block diagram illustrates that the proposed algorithm trainer provides optimized weights and 

biases to the MLP that returns the best score for the testing samples. The performance is benchmarked 

on 3-bits XOR, balloon, iris, breast cancer and heart datasets that are well-known classification 

datasets in the literature. These datasets are of different difficulty levels that are considered from 

University of California at Irvine (UCI) Machine Learning Repository and the researchers may follow 

reference [61] for a detailed description of them. Therefore, the number of attributes is represented by 
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#Attributes for each dataset according to Table 6. Similarly, the number of training samples (#Training 

Samples) and test samples (#Testing Samples), number of classes (#Classes) and the corresponding 

MLP structure for each dataset are listed in Table 6. 

Table 6. Details of pattern classification datasets. 

Classification Datasets #Attributes #Training Samples #Testing Samples #Classes MLP Structure 

3-bits XOR 3 8 8 2 3-7-1 

Balloon 4 16 16 2 4-9-1 

Iris 4 150 150 3 4-9-3 

Breast Cancer 9 599 100 2 9-19-1 

Heart 22 80 187 2 22-45-1 

The number of nodes in each MLP structure's hidden layer is two times the number of inputs plus one 

more (2*N+1, where N indicates the number of inputs in the particular dataset). The simulation results 

and discussion are described in the following sub-section. It may be noted that the training algorithms 

are represented by algorithm-MLP in this simulation. 

5.2 Simulation Results and Discussion 

The programming implementation for this research application has been done on the same platform as 

the preceding experiments. However, the settings of tuning parameters for the WGWOIC and other 

state-of-the-art meta-heuristic trainers are listed in Table 7. The population size (search agents) for 

each MLP training algorithm is 50 for the XOR and Balloon datasets, while it is 200 for the rest 

datasets. At the same time, the maximum number of generations is 250 for each training algorithm. 

The classification rate and best score have been considered as performance-evaluating parameters 

of these training algorithms. However, the highest value of classification rate and lowest value of the 

best score indicate the most optimal solution. The best score is also called mean square error 

that is calculated by the difference between the actual value and the desired value of the individual 

sample. 

According to Table 6, the XOR dataset contains three attributes, eight training/test samples and two 

classes. The MLP structure of this dataset is 3-7-1, implying that the multi-layer perceptron neural 

network contains three inputs nodes, seven hidden nodes and one output node and the trainer has 36 

dimensions. The results of sub-experiments of all datasets are depicted in Figure 7 and listed in Table 

8, which demonstrate that WGWOIC-MLP and GA-MLP trainers provide a 100 percent 

classification rate (accuracy) to classifying the XOR dataset. In contrast, the MFO-MLP trainer  

Table 7. The initial parameters of training algorithms. 

Training Algorithm Parameter Value 

 

WGWOIC 

�⃗� Exponentially decrease from 2 to 0 

Population 50 for the XOR and Balloon, 200 for rest 

#Generation 250 

 

GA 

Crossover Single point (probability=1.0) 

Mutation Uniform (Probability=0.01) 

Type Real Coded 

 

PSO 

Topology Fully Connected 

Social constant (C2) 1 

Cognitive constant (C1) 1 

Inertia constant (w) 0.3 

 

 

 
ACO 

Initial pheromone (τ) 1e-06 

Pheromone update constant (Q) 20 

Pheromone constant (q) 1 
Global pheromone decay rate (pg) 0.9 
Local pheromone decay rate (pt) 0.5 

Pheromone sensitivity (α) 1 

Visibility sensitivity (β) 5 

ES 
λ 10 

σ 1 

MFO 
b 1 

t [-1, 1] 

 

PBIL 

Mutational probability 0.1 

Learning rate 0.05 

Elitism parameter 1 
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provides the highest best score against other well-known comparative trainers, whereas GA and 

WGWOIC-MLP also offer very significant results. In the case of the balloon dataset, it possesses 

four features, 16 training/test samples and two classes, according to Table 6. The MLP structure of 

the current dataset is 4-9-1 and the trainer has to optimize 55 variables. Surprisingly, all trainers' 

classification rates are 100 percent, whereas the GA-MLP achieves the best score while the 

WGWOIC-MLP trainer reached the second rank. 

The iris is the most popular dataset in the literature and consists of four attributes, 150 training/test 

samples and three classes. The MLP structure of this current dataset is 4-9-3 and the trainer has 75 

dimensions that have to be optimized. The experimental results clarify that the MFO-MLP trainer 

provides the highest classification rate, while WGWOIC-MLP trainer obtained the second-best 

accuracy. Moreover, the WGWOIC-MLP trainer offers the highest best score compared to the other 

trainers. 

The breast cancer dataset is also a well-known dataset in the literature and contains nine features, 599 

training samples, 100 test samples and two classes. The MLP structure of this dataset is 9-19-1 and 

the trainer has 209 variables. The experimental results show that both WGWOIC and MFO-MLP 

trainers provide 99 percent accuracy, while GA offers 98 percent classification rate. Moreover, the 

MFO-MLP trainer offers the highest best score among other meta-heuristic comparative trainers, 

while the WGWOIC-MLP trainer acquired the second rank. 

The heart dataset is the most challenging dataset in the studied literature and consists of 22 attributes, 

80 training samples, 187 test samples and two classes. The MLP structure of this current dataset is 

22- 45-1 and the trainer has to optimize 1081 variables. The experimental results demonstrate that the 

WGWOIC-MLP trainer acquired the highest classification rate, while the MFO-MLP trainer 

provided the second-highest accuracy. Moreover, the GA and WGWOIC-MLP based trainer provides 

the highest best score compared other trainers. 

To sum up, the experimental results justify that the proposed WGWOIC-MLP trainer in order to 

tackle the pattern classification problems provides significantly better outcomes than other well-

known comparative trainers. In addition, the proposed algorithm extensively examines the search 

space in order to avoid the local optima and simultaneously offers an excellent equilibrium among 

exploration and exploitation to tackle the optimization problems; thus, its promising 

exploitation devotes considerably better convergence rate toward the most optimal solution to the 

proposed algorithm.  

Table 8. Best score for the XOR, Balloon, Iris, Breast cancer and Heart datasets. 
 

 

Training 

Algorithm 

Pattern Classification Datasets 

XOR (Best Score) Balloon (Best Score) Iris (Best Score) Breast Cancer (Best Score) Heart (Best Score) 

WGWOIC 0.0057382 3.8195E-22 0.016928 0.0021115 0.129182 

MFO 0.0000454 1.0876E-20 0.021996 0.0019964 0.178128 

PSO 0.0750883 2.9306E-05 0.134318 0.0267692 0.159182 

PBIL 0.0262799 5.2337E-06 0.059117 0.0243935 0.135457 

GA 0.0002162 1.2192E-24 0.022447 0.0026742 0.075491 

ES 0.1057665 0.0023197 0.299674 0.0401639 0.169544 

ACO 0.1172278 0.0017509 0.327935 0.0114927 0.219699 

In addition to the classification problem, the proposed method may be employed to tackle several 

potential applications of various crucial research domains of science and technology, such as machine 

learning applications (Training neural networks, feature selection, data clustering, optimizing SVMs), 

image processing applications (image thresholding, image classification), wireless sensor network 

applications (extending the network lifetime, network coverage problem, localization problem), 

engineering applications (robotics and path planning, power dispatch problems, designing and tuning 

controllers), Controller Placement Problem (CPP) in software-defined networking, software cost 

estimation and so forth. 

The proposed method provides considerably better performance in terms of exploration and 

exploitation of the search space. The finding of this research work is that the outcomes of the 

WGWOIC algorithm are significantly better on high-dimensional functions, whereas it lacks in terms  
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Figure 7. Classification rates for the XOR, Balloon, Iris, Breast cancer and Heart datasets. 

of low-dimensional functions. However, the result analysis elaborates that the proposed method offers 

comparatively better results if it is employed with less population and fewer iterations to optimize low-

dimensional problems. Moreover, there is scope for further research to overcome the above limitation 

adding some new operators or modifying the existing ones. On the other hand, the proposed method 

considerably tackles the classification problem of the real world. 

6. CONCLUSION 

This research work intends to introduce a novel algorithm of grey wolf optimizer to overcome 

its major impediment (stagnation in local optima) and the limitations of other algorithms. 

Further, the suggested algorithm is employed being a trainer of MLP neural networks to improve 

the accuracy of the classification problem. This paper introduced the novel algorithm nominated 

Weighted Grey Wolf Optimizer with Improved Convergence Rate (WGWOIC) for extensive 

exploration of the search space. Therefore, this research work has enhanced the hunting (position 

update equation) and the attacking (exploitation equation) mechanisms of basic GWO. In order to 

test the effectiveness of the WGWOIC algorithm's performance, it is benchmarked on 33 fairly 

popular numerical test functions that are considered from two different benchmark datasets. The 

experimental results of the benchmark datasets assist in justifying the strength and robustness of the 

proposed algorithm against the unknown search space of real-world applications. Surprisingly, the 

recommended algorithm outperforms on the majority of test functions against comparative studied 

meta-heuristic optimization algorithms, whereas it provides very competitive results on the remaining 

functions. 

In addition, the WGWOIC algorithm was further employed as a trainer for multi-layer perceptron to 

classify five viral pattern classification datasets. Conclusively, it produces very competitive outcomes 

regarding classification rate and best score, demonstrating that the proposed algorithm is robust 

against challenging problems with unknown search spaces. 

The experimental finding of the WGWOIC algorithm is that the proposed algorithm discovers better- 

quality solutions in terms of high exploration and exploitation abilities of abstract search space of 

numerical and real-world problems. The proposed algorithm may be further employed to tackle 

several potential applications of various crucial research domains; for instance, machine learning, 

image processing, wireless sensor network applications, controller placement problem in SDN and so 

forth. In addition, this algorithm may further improve after adopting the evolutionary mechanism, 

which is worth being the subject of further research works. 

REFERENCES 

[1] D. Wolpert and W. Macready, "No Free Lunch Theorems for Optimization," IEEE Trans. on 

Evolutionary Computation, vol. 1, no. 1, pp. 67-82, April 1997. 

[2] J. Holland, "Genetic Algorithms," Scientific American, vol. 267, no. 1, pp. 66-73, July 1992. 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

XOR Baloon Iris Breast Cancer Heart

A
cc

u
ra

cy

Datasets

Classification rates

WGWOIC MFO PSO PBIL GA ES ACO



309 

"Weighted Grey Wolf Optimizer with Improved Convergence Rate in Training Multi-layer Perceptron to Solve Classification Problems", A.  

Kumar, Lekhraj and A.  Kumar. 

 
[3] K. Krishnakumar and D. E. Goldberg, "Control System Optimization Using Genetic Algorithms," 

Journal of Guidance, Control and Dynamics, vol. 15, no. 3, pp. 735-740, 1992. 

[4] R. Storn and K. Price, "Differential Evolution: A Simple and Efficient Heuristic for Global 

Optimization over Continuous Spaces," J. of Global Optimization, vol. 11, no. 4, pp. 341-359, 1997. 

[5] D. Simon, "Biogeography-based Optimization," IEEE Trans. on Evolutionary Computation, vol. 12, no. 

6, pp. 702-713, March 2008. 

[6]  X.  Yao, Y.  Liu and G.  Lin, "Evolutionary Programming Made Faster," IEEE Trans. on Evolutionary 

Computation, Vol. 3, no. 2, pp. 82-102, July 1999. 

[7] J. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 

1, MIT Press, 1992. 

[8] N. Hansen, S. Müller and P. Koumoutsakos, "Reducing the Time Complexity of the Derandomized 

Evolution Strategy with Covariance Matrix Adaptation (CMA-ES)," Evolutionary Computation, Vol. 

11, no. 1, pp. 1- 18, March 2003. 

[9] X. Yao and Y. Liu, "Fast Evolutionary Programming," Evolutionary Programming, vol. 3, pp. 451-460, 

Feb. 1996. 

[10] S. Hofmeyr and S. Forrest, "Architecture for an Artificial Immune System," Evolutionary Computation, 

vol. 8, no. 4, pp. 443-473, December 2000. 

[11] K. Passino, "Bacterial Foraging Optimization," International Journal of Swarm Intelligence Research 

(IJSIR), vol. 1, no. 1, pp. 1-16, January 2010. 

[12] E. Rashedi, H. Nezamabadi-Pour and S. Saryazdi, "GSA: A Gravitational Search Algorithm," 

Information Sciences, vol. 179, no. 13, pp. 2232-2248, June 2009. 

[13] B. Webster and P. Bernhard, "A Local Search Optimization Algorithm Based on Natural Principles of 

Gravitation," Proc. of the 2003 International Conf. on Information and Knowledge Engineering 

(IKE’03), pp. 255–261, Las Vegas, Nevada, USA, April 2003. 

[14] A. Hatamlou, "Black Hole: A New Heuristic Optimization Approach for Data Clustering," Information 

Sciences, vol. 222, pp. 175-184, February 2013. 

[15] F. Moghaddam, R. Moghaddam and M. Cheriet, "Curved Space Optimization: A Random Search Based 

on General Relativity Theory," arXiv Preprint arXiv: 1208.2214, August 2012. 

[16] X. Yang, "A New Metaheuristic Bat-inspired Algorithm," Nature Inspired Cooperative Strategies for 

Optimization (NICSO 2010), Part of Studies in Computational Intelligence Book Series, vol. 284, pp. 

65-74, Springer, Berlin, Heidelberg, 2010. 

[17] S. Mirjalili, "Moth-flame Optimization Algorithm: A Novel Nature-inspired Heuristic Paradigm," 

Knowledge- based Systems, vol. 89, pp. 228-249, November 2015. 

[18] B. Mohanty, "Performance Analysis of Moth Flame Optimization Algorithm for AGC System," 

International Journal of Modeling and Simulation, vol. 39, no. 2, pp. 73-87, April 2019. 

[19] D. Pelusi, R. Mascella, L. Tallini, J. Nayak et al., "An Improved Moth-flame Optimization Algorithm 

with Hybrid Search Phase," Knowledge-based Systems, vol. 191, ID: 105277, 2020. 

[20] P. Singh and SK. Bishnoi, "Modified Moth-flame Optimization for Strategic Integration of Fuel Cell in 

Renewable Active Distribution Network," Electric Power Systems Research, vol. 197, Article ID: 

107323, 2021. 

[21] S. Mirjalili and A. Lewis, "The Whale Optimization Algorithm," Advances in Engineering Software, 

vol. 95, pp. 51-67, May 2016. 

[22] B. H. Abed-alguni, "Bat Q-learning Algorithm," Jordanian Journal of Computers and Information 

Technology (JJCIT), vol. 03, no. 01, pp. 52-71, DOI: 10.5455/jjcit.71-1480540385, April 2017. 

[23] E. Cuevas, A. Echavarría and M. Ramírez-Ortegón, "An Optimization Algorithm Inspired by the States 

of Matter that Improves the Balance between Exploration and Exploitation," Applied Intelligence, vol. 

40, no. 2, pp. 256-272, March 2014. 

[24] X. Yang, "Flower Pollination Algorithm for Global Optimization," Proc. of International Conf. on 

Unconventional Computing and Natural Computation (UCNC 2012), Part of the Lecture Notes in 

Computer Science Book Series, vol. 7445, pp. 240-249, Springer, Berlin, Heidelberg, September 2012. 



310 

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 03, September 2021. 

 
[25] A. G. Hussien, D. Oliva, E. Houssein, A. Juan and X. Yu, "Binary Whale Optimization Algorithm for 

Dimensionality Reduction," Mathematics, vol. 8, no. 10, 1821, October 2020. 

[26] AK. Tripathi, H. Mittal, P. Saxena and S. Gupta, "A New Recommendation System Using Map-reduce-

based Tournament Empowered Whale Optimization Algorithm," Complex & Intelligent Systems, vol. 

7, no. 1, pp. 297-309, February 2021. 

[27] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," Proceedings of the IEEE International 

Conference on Neural Networks (ICNN'95), vol. 4, pp. 1942-1948, November 1995. 

[28] K. Parsopoulos and M. Vrahatis, "UPSO: A Unified Particle Swarm Optimization Scheme," Proc. of the 

International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2004), 

CRC Press, pp. 868-873, April 2019. 

[29] A. Piotrowski, J. Napiorkowski and A. E. Piotrowska, "Population Size in Particle Swarm 

Optimization," Swarm and Evolutionary Computation, vol. 58, Article ID: 100718, November 2020. 

[30] N. S. Alshdaifat and M. H. Bataineh, "Optimizing and Thinning Planar Array Using Chebyshev 

Distribution and Improved Particle Swarm Optimization," Jordanian Journal of Computers and 

Information Technology (JJCIT), vol. 01, no. 01, pp. 31-41, December 2015. 

[31] S. Parsons, "Ant Colony Optimization by Marco Dorigo and Thomas Stützle, MIT Press, ISBN 0-262-

04219-3," The Knowledge Engineering Review, vol. 20, no. 1, pp. 92, 2005. 

[32] XS. Yang, "Firefly Algorithm, Stochastic Test Functions and Design Optimization," International 

Journal of Bio-inspired Computation, vol. 2, no. 2, pp. 78-84, January 2010. 

[33] X. Yang and S. Deb, "Cuckoo Search via Lévy Flights," Proc. of IEEE 2009 World Congress on Nature 

& Biologically Inspired Computing (NaBIC), pp. 210-214, Coimbatore, India, December 2009. 

[34] S. Mirjalili, S. Mirjalili S and A. Lewis, "Grey Wolf Optimizer," Advances in Engineering Software, 

vol. 69, pp. 46-61, March 2014. 

[35] N. Mittal, U. Singh and B. Sohi, "Modified Grey Wolf Optimizer for Global Engineering 

Optimization," Applied Computational Intelligence and Soft Computing, vol. 2016, Article ID: 

7950348, March 2016. 

[36] N. Singh, "A Modified Variant of Grey Wolf Optimizer," International Journal of Science & 

Technology, Scientia Iranica, DOI: 10.24200/SCI.2018.50122.1523, 2018. 

[37] N. Singh and S. Singh, "A Modified Mean Gray Wolf Optimization Approach for Benchmark and 

Biomedical Problems," Evolutionary Bioinformatics, vol. 13, DOI: 10.1177/1176934317729413, 2017. 

[38] A. Kumar, A. Singh and A. Kumar, "Weighted Mean Variant with Exponential Decay Function of Grey 

Wolf Optimizer on Applications of Classification and Function Approximation Dataset," Proc. of the 

International Conference on Hybrid Intelligent Systems, Springer, Cham, pp. 277-290, December 2019. 

[39] B. H. Abed-alguni and M. Barhoush, "Distributed Grey Wolf Optimizer for Numerical Optimization 

Problems," Jordanian Journal of Computers and Information Technology (JJCIT), vol. 04, no. 03, pp. 1-

20, DOI: 10.5455/jjcit.71-1532897697, December 2018. 

[40] K. Price, N. Awad, M. Ali and P. Suganthan, "The 100-digit Challenge: Problem Definitions and 

Evaluation Criteria for the 100-digit Challenge Special Session and Competition on Single Objective 

Numerical Optimization," Technical Report, Nanyang Technological University, November 2018. 

[41] M. Abdullah and T. Ahmed, "Fitness Dependent Optimizer Inspired by the Bee Swarming 

Reproductive Process," IEEE Access, vol. 7, pp. 43473-43486, March 2019. 

[42] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd Edn., Upper Saddle River, 

New Jersey: Prentice Hall, ISBN 0-13-790395-2, pp. 111–114, 2003. 

[43] W. McCulloch and W. Pitts, "A Logical Calculus of the Ideas Immanent in Nervous Activity," The 

Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115-133, December 1943. 

[44] G. Dorffner, "Neural Networks for Time Series Processing," Neural Network World, vol. 6, pp.447-

468, 1996. 

[45] G. Bebis and M. Georgiopoulos, "Feed-forward Neural Networks," IEEE Potentials, vol. 13, no. 4, pp. 

27- 31, October 1994. 

[46] P. Auer, H. Burgsteiner and W. Maass, "A Learning Rule for Very Simple Universal Approximators 

Consisting of a Single Layer of Perceptrons," Neural Networks, vol. 21, no. 5, pp. 786-795, June 2008. 



311 

"Weighted Grey Wolf Optimizer with Improved Convergence Rate in Training Multi-layer Perceptron to Solve Classification Problems", A.  

Kumar, Lekhraj and A.  Kumar. 

 
[47] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, 

Ph.D. Dissertation, Harvard University, 1974. 

[48] P. Melin, D. Sánchez and O. Castillo, "Genetic Optimization of Modular Neural Networks with Fuzzy 

Response Integration for Human Recognition," Information Sciences, vol. 197, pp. 1-19, August 2012. 

[49] W. Gardner and S. Dorling, "Artificial Neural Networks (the Multilayer Perceptron): A Review of 

Applications in the Atmospheric Sciences," Atmospheric Environment, vol. 32, no. (14-15), pp. 2627-

2636, August 1998. 

[50] X. Yu, J. Yang and Z. Xie, "Training SVMs on a Bound Vectors Set Based on Fisher Projection," 

Frontiers of Computer Science, vol. 8, no. 5, pp. 793-806, October 2014. 

[51] X. Yu, Y. Chu, F. Jiang, Y. Guo and D. Gong, "SVMs Classification Based Two-side Cross Domain 

Collaborative Filtering by Inferring Intrinsic User and Item Features," Knowledge-based Systems, vol. 

141, pp. 80-91, February 2018. 

[52] X. Yu, F. Jiang, J. Du and D. Gong, "A Cross-domain Collaborative Filtering Algorithm with 

Expanding User and Item Features via the Latent Factor Space of Auxiliary Domains," Pattern 

Recognition, vol. 94, pp. 96-109, October 2019. 

[53] V. V. Kolisetty and D. S. Rajput, "A Review on the Significance of Machine Learning for Data 

Analysis in Big Data," Jordanian Journal of Computers and Information Technology (JJCIT), vol. 06, 

no. 01, pp. 155- 171, DOI: 10.5455/jjcit.71-1564729835, March 2020. 

[54] M. A. Ottom, "Big Data in Healthcare: Review and Open Research Issues," Jordanian Journal of 

Computers and Information Technology (JJCIT), vol. 03, no. 01, pp. 38-51, DOI: 10.5455/jjcit.71-

1476816159, April 2017. 

[55] S.-H. Liew, Y.-H. Choo and Y. F. Low, "Fuzzy-rough Classification for Brainprint Authentication," 

Jordanian Journal of Computers and Information Technology (JJCIT), vol. 05, no. 02, pp. 52-71, DOI: 

10.5455/jjcit.71-1556703387, August 2019. 

[56] K. M.O. Nahar, A. Jaradat, M. S. Atoum and F. Ibrahim, "Sentiment Analysis and Classification of 

Arab Jordanian Facebook Comments for Jordanian Telecom Companies Using Lexicon-based 

Approach and Machine Learning," Jordanian Journal of Computers and Information Technology 

(JJCIT), vol. 06, no. 03, pp. 52-71, DOI: 10.5455/jjcit.71-1586289399, Sep. 2020. 

[57] R. Z. Al-Abdallah, A. S. Jaradat, I. Abu Doush and Y. A. Jaradat, "A Binary Classifier Based on Firefly 

Algorithm," Jordanian Journal of Computers and Information Technology (JJCIT), vol. 03, no. 03, pp. 

32- 46, DOI: 10.5455/jjcit.71-1501152301, December 2017. 

[58] M. Alweshah, L. Rababa, M. H. Ryalat, A. Al Momani and M. F. Ababneh, "African Buffalo 

Algorithm: Training the Probabilistic Neural Network to Solve Classification Problems," Journal of 

King Saud University - Computer and Information Sciences, DOI: 10.1016/j.jksuci.2020.07.004, 2020. 

[59] M. Alweshah, E. Ramadan, M. H. Ryalat, M. Almi'ani and A. I. Hammouri, "Water Evaporation 

Algorithm with Probabilistic Neural Network for Solving Classification Problems," Jordanian Journal 

of Computers and Information Technology (JJCIT), vol. 6, no. 1, pp. 1-14, March 2020. 

[60] S. Tang, M. Li, F. Wang, Y. He and W. Tao, "Fouling Potential Prediction and Multi-objective 

Optimization of a Flue Gas Heat Exchanger Using Neural Networks and Genetic Algorithms," 

International Journal of Heat and Mass Transfer, vol. 152, Article ID: 119488, May 2020. 

[61] M. F. Ab Aziz, S. A. Mostafa, C. F. M. Foozy, M. A. Mohammed, M. Elhoseny and A. Z. Abualkishik, 

"Integrating Elman Recurrent Neural Network with Particle Swarm Optimization Algorithms for an 

Improved Hybrid Training of Multidisciplinary Datasets," Expert Systems with Applications, vol. 183, 

p. 115441, June 2021. 

[62] F. E. Fernandes Jr and G. G. Yen, "Pruning of Generative Adversarial Neural Networks for Medical 

Imaging Diagnostics with Evolution Strategy," Information Sciences, vol. 558, pp. 91-102, May 2021. 

[63] A. Zannou and A. Boulaalam, "Relevant Node Discovery and Selection Approach for the Internet of 

Things Based on Neural Networks and Ant Colony Optimization," Pervasive and Mobile Computing, 

vol. 70, Article ID: 101311, January 2021. 

[64] H. Zhang, H. Nguyen, X. Bui et al., "Developing a Novel Artificial Intelligence Model to Estimate the 

Capital Cost of Mining Projects Using Deep Neural Network-based Ant Colony Optimization 

Algorithm," Resources Policy, vol. 66, Article ID: 101604, June 2020. 



312 

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 07, No. 03, September 2021. 

 
[65] S. Mirjalili, "How Effective Is the Grey Wolf Optimizer in Training Multi-layer Perceptrons?" Applied 

Intelligence, vol. 43, no. 1, pp. 150-161, July 2015. 

[66] H. Faris, S. Mirjalili and I. Aljarah, "Automatic Selection of Hidden Neurons and Weights in Neural 

Networks Using Ggrey Wolf Optimizer Based on a Hybrid Encoding Scheme," International Journal of 

Machine Learning and Cybernetics, vol. 10, no. 10, pp. 2901-2920, October 2019. 

[67] E. Uzlu, M. Kankal, A. Akpınar and T. Dede, "Estimates of Energy Consumption in Turkey Using 

Neural Networks with the Teaching–learning-based Optimization Algorithm," Energy, vol. 75, pp. 295-

303, October 2014. 

[68] W. Yamany, M. Fawzy, A. Tharwat and A. Hassanien, "Moth-flame Optimization for Training Multi-

layer Perceptrons," Proc. of the 11th IEEE International Computer Engineering Conference (ICENCO), 

pp. 267-272, Cairo, Egypt, December 2015. 

[69] R. Singh, S. Gangwar, D. Singh and V. Pathak, "A Novel Hybridization of Artificial Neural Network 

and Moth-flame Optimization (ANN–MFO) for Multi-objective Optimization in Magnetic Abrasive 

Finishing of Aluminium 6060," Journal of the Brazilian Society of Mechanical Sciences and 

Engineering, vol. 41, no. 6, pp. 1-19, June 2019. 

[70] R. Vasco-Carofilis, M. Gutiérrez-Naranjo and M. Cárdenas-Montes, "PBIL for Optimizing 

Hyperparameters of Convolutional Neural Networks and STL Decomposition," Proc. of the 

International Conference on Hybrid Artificial Intelligence Systems, Springer, Cham, pp. 147-159, DOI: 

10.1007/978-3-030-61705-9_13, November 2020. 

[71] A. Goli, H. K. Zare, R. T. Moghaddam and A. Sadeghieh, "An Improved Artificial Intelligence Based 

on Gray Wolf Optimization and Cultural Algorithm to Predict Demand for Dairy Products: A Case 

Study," International Journal of Interactive Multimedia and Artificial Intelligence, vol. 5, no. 6, pp. 15-

22, March 2019. 

:البحثملخص   

جللللل  تعللللل ا   عع  لللللن ة معىللللل  أوة هجلللللع   للللل    لللللن ة  للللل   آهلللللور ة علىلللللن   للللل  ت  للللل   تعمللللل  

ة لللللل   ى للللللرةز يعةلب  للللللن     للللللر  ت ملللللل   -ة  رت لللللل   لللللل  –ثللللللن و عع  للللللن ة     للللللع  ة م    

  ة   لللللع  ة معبونلللللن  للللل   عللللل     ع الللللنئعب ة ر  ث للللل  دع للللل   ة   را لللللن ة لللللو  جلللللع  ة   لللللع  ة م  اإنظلللللع  "

لللللل  وظ فللللللن (33)ة    للللللع   ع   للللللن ة  عةلب  للللللن ة م  ر للللللن دعي  علهللللللع   لللللل   تلللللل   وىلللللل  . "     

ن  للللللل  ةي  لللللللرل ت لللللللج ة عظلللللللعئ  ة مرجع  لللللللوىللللللل   لللللللع.  ن     فلللللللن للللللللعئعن ة للللللل   للللللل    رجع  للللللل

ز ق د   للللل  ة  عةلب  لللللن ة م  ر لللللن و  عن هلللللع   ملللللع ا ع  للللل    ف للللل       للللل   ىلللللع   ي د عنلللللعل   جملللللع  

 ة   ث غ ر ة معرو    م   ن.

تمللللللن   علنللللللن ن للللللعئر ة  عةلب  للللللن ة م  ر للللللن  لللللل  ن للللللعئر يعةلب  للللللعل  ، ة ت   لللللل  ةأودهلللللل   

اجللللللع  ة   للللللع  إ ثلللللل  يعةلب  للللللعل  ، د للللللعل ة مع للللللع أ  هللللللع  للللللي إ قطللللللر  يللللللرا جللللللرا ة    أ

 ،وة    لللللللع  ،علن ة ن لللللللو ث للللللل ،ىعئق لللللللرةب ة للللللل   أ للللللل   ث للللللل  ة  عئملللللللن   للللللل  ة للللللل رةت ج ن  للللللل   ة م  

  ع الللللللن.ئعب ة ر   للللللل ر ة  عةلب  لللللللعل ة م للللللل ن   ة للللللل  ة للللللل رةت ج ن ة لللللللو  أو ، ع الللللللنئعب ة ر  وة لللللللو  

دغ رهلللللع  للللل   لنلللللن    ع   لللللنع   دللللل     ن    لللللد  أة  عةلب  لللللن ة م  ر لللللن     أن لللللعئر ة م علنلللللن تع للللل  و

وظلللللعئ    هلللللع  لللللي  للللل  ة عظلللللعئ  و عنلللللن  نع  لللللن   ىلللللن    هلللللع  لللللي  للللل      للللل  تفع   ؛ة  عةلب  لللللعل

  يرا.أ

  للللللعل    ة ط    علللللل   ن تلللللل  تهجلللللل   ة  عةلب  للللللن ة م  ر للللللن د لللللل  ن   لللللل     ،يللللللراأنع  للللللن    لللللل

 عةلب  لللللللللن ة  "ب للللللللل ل  "ذ الللللللللع ر إ ؛ لللللللللن  ق دم للللللللل  ل ة    ىلللللللللن   ملللللللللع ا ع  للللللللل    للللللللل   ة    

 تللللللل    لللللللو ج   لللللللعل.    ة ط    عللللللل    ن    ث للللللل    لللللللعب  وة ن  عب   للللللل  ن ة ع لللللللة م  ر لللللللن ة  للللللل   ة م  

وت  للللل    ،للللللعئعن  لللللن   دع للللل   ة  يملللللت  جمع لللللعل د عنلللللعل  ن ة     ة   للللل    لللللث  ى للللل  للللل  ةأ

ة ن لللللعئر للللللعلل أويلللللرا   لللللعدهن. أ نظملللللن  أة م  لللللرز دع م علنلللللن  للللل   ظلللللع ة ن   "ب للللل ل  "ن  ع    للللل

    لللللل    للللللث ة لللللل غ   وة    للللللع  ن ج  للللللة  عةلب  للللللن ة م  ر للللللن  عنللللللن ذةل تنع  لللللل       أة لللللل  

 ن   دفع   ن. ة ع ا         ل ة     ز ة   ث و        
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