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ABSTRACT 

Wireless Sensor Networks (WSNs) create various security threats, such as application variance in different sectors 

along with the model of cryptographic primitivity and necessity. Despite modernistic evolution, the skillful 

utilization of Elliptic Curve Cryptography (ECC) for WSNs is a very progressive investigation topic and 

approaches to reduce the time and intensity cost. Security of ECC commits on the hardness of the Elliptic Curve 

Discrete Logarithm Problem. Many elliptic curve standards are available, such as ANSI X9.62, NIST FIPS 186-2 

…etc. Due to some drawbacks in NIST curves associated with security matters, it is important to investigate for 

secure alternatives.  In our work, we will select  𝐸𝐷25519 (Edwards curve) at the 128-bit security level and contrast 

it with Weierstraß curve (also known as Weierstrass curve). To complete the field-calculation functions, we utilize 

a radix-24 , which illustrates the operands with MoTE-ECC for Memsic’s MICAz motes over Optimal Prime Fields 

(OPFs) of variable size; e.g. 160, 192, 224 and 225 bits. We take ECDH (Elliptic-curve Diffie–Hellman) key 

interchange among two nodes where every node needs two scalar multiplications to execute. The scalar 

multiplication over twisted Edwards curve utilizes a comb technique to establish base point and utilizes extended 

projective coordinates for point summation. Our implementation shows that an ECDH takes 18.20 mJ energy 

consumption over 160-bit OPF, which is performing better than AVR-based sensor node. The advantages of our 

proposed method will grant advance security and power consumption and diminish communication burden 

through key management. 

KEYWORDS 

Domain name system security extension (DNSSEC), Secure real-time transport protocol (SRTP), 

Secure/Multipurpose internet mail extension (S/MIME), Spectrum-aware degree-ranking-based energy-efficient 

clustering (SDEC), Advance virtual RISC (Reduced instruction set computing (AVR)), Twisted Edwards curve 

(TE), Weierstrass curve (WEI).  

1. INTRODUCTION 

Elliptic Curve Cryptography (ECC) was recommended separately by Victor Miller and Neal Koblitz in 

1985 and it started to benefit in cryptographic standards [1]. Cryptographic essential protocols 

(Transport Layer Security (TLS) protocols, key exchange protocols, public key encryption, digital 

signatures) that use ECC became very famous due to their small key sizes, exceptional computational 

performance. Using ECC often yields Perfect Forward Secrecy (PFS), as compared to RSA(Rivest, 

Shamir, Adleman). In this work, we will consider cryptographic primitives with so-called Optimal Prime 

Fields (which grant for capable modular rebate), where security builds on Elliptic Curve Discrete 

Logarithm Problem (ECDLP). To obtain the achievement, we also desire for a lightweight application 

with small amount of RAM and ROM. Different investigators and associations have suggested many 

elliptic curves (ECs), such as Weierstraß and NIST; those are used mainly for key exchange and digital 

signatures. Few prominent examples are Elliptic Curve Diffie-Hellman Key Exchange (ECDHE) and 

Elliptic Curve Digital Signature Algorithm (ECDSA). For different security levels, NIST has suggested 

a few prime and binary elliptic curves [5]. Nonetheless, the research community raised ambiguity on the 

security of Weierstraß or NIST recommended curves for complexity on scalar multiplication within 

Dual Elliptic Curve Deterministic Random Bit Generator [7], [20] and did not replicate the present state-

of-the-art of ECC in terms of efficiency. Due to this reason, we select alternative elliptic curves with 

better performance and greater security level  [31]. Some suggest Brain pool curves developed by 

Teletrust [8]. Bernstein recommended Montgomery curve; Curve25519 [9]. A set of elliptic curves have 

been proposed by J.-W.-Bos et al. of Microsoft Research with performance and security perspectives 

[6]. In this work, we have selected a new elliptic curve 𝐸𝐷25519 at the 128-bit security level and shown  
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field-calculation through a radix-24 that demonstrates the quantities with MoTE-ECC over Optimal 

Prime Fields (OPFs) of variable size; e.g. 160, 192, 224 and 225 bits. We take ECDH (Elliptic-curve 

Diffie–Hellman) key interchange among two nodes. Our implementation shows that an ECDH takes 

much less energy consumption over 160-bit OPF and we compare it to a Weierstraß curve with regard 

to ECDLP, energy consumption and “ECC security” [16]. Based on our experiment and calculation, we 

can say that our selected curve may perform better in wireless networks. Our implementation result takes 

less energy consumption over 160-bit OPF. The remainder of the paper is organized as follows: in 

Section 2, we explain Elliptic Curve including 𝐸𝐷25519 and related work. Section 3 introduces 

motivation, Section 4 shows the methodology and Section 5 provides implementations. Section 6 shows 

fixed-base comb method for point multiplication. Section 7 performs security analysis and Section 8 

exhibits execution time. Section 9 exemplifies energy consumption and performance and Section 10 

represents the conclusion.  

2. ELLIPTIC CURVE AND RELATED WORK 

2.1 Elliptic Curve 

According to Euler and Gauss entirety, Edwards popularized ordinary form of elliptic curve in 2007 [2].  

The curve is explained as: 

𝑦2 + 𝑥2 = 𝑎2(1 + 𝑥2𝑦2)                                                              (1) 

over the field 𝐾, where 𝑎 ∈ 𝐾, such that: 𝑎5 ≠ 𝑎. As Edwards declared in his paper, each curve of the 

form given in (1) is bi-rationally identical to an elliptic curve in Weierstraß [3]. Because of an established 

field 𝐾 of different distinctive and erratic integers 𝑐, 𝑑 ∈ 𝐾 so that 𝑐𝑑(1 − 𝑑𝑐4) ≠ 0, the curves are 

popularized as: 

𝑦2 + 𝑥2 = 𝑐2(1 + 𝑑𝑥2𝑦2)                                                             (2) 

The aforementioned explanation covers higher than 1 = 4 of entire isomorphism classes of elliptic 

curves over a restricted field. It is illustrated that each elliptic curve on a non-binary field is birationally 

equivalent to a curve in Edwards structure over an expansion of the field and in several facts over the 

innovative field  [4]. In  [6], Bernstein et al. established a simplification of Edwards curves called twisted 

Edwards curves. These combine elliptic curve in Montgomery form  [10]. As interpreted in  [6], the set 

of twisted Edwards curves is constant under quadratic flourish, whereby a quadratic twist of an Edwards 

curve is not naturally an Edwards curve. A quadratic flourish of a curve is an isomorphic curve on a 

field expansion of scale two. In a field 𝐾 of different distinctive and non-zero components 𝑎, 𝑑 ∈ 𝐾 , 

the twisted Edwards curve 𝐸𝑇,𝑎,𝑑(𝐾) is described as: 

𝐸𝑇,𝑎,𝑑(𝐾): 𝑎𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2                                                       (3) 

If 𝑎 = 1, then 𝐸𝑇,𝑎,𝑑 is an Edwards curve with 𝑐 = 1. Moreover, 𝐸𝑇,𝑎,𝑑 is a quadratic flourish of the 

Edwards curve 𝐸𝒪,1,𝑑/𝑎 = 𝑎 with the map: (�̅�, �̅�) → (𝑥, 𝑦) = (
�̅�

√𝑎
, 𝑦) over the field expansion 𝐾(√𝑎): 

�̅�2 + �̅�2 = 1 + (𝑑 = 𝑎)�̅�2�̅�2                                                            (4) 

Twisted Edwards curves and Montgomery curves are intently relevant. As explained in  [4], each twisted 

Edwards curve 𝐸𝑇,𝑎,𝑑 on the ground 𝐾 with char(𝐾) ≠ 2 is birationally identical to a Montgomery curve 

𝐸𝑀,𝐴,𝐵 : 𝐵𝑣2 = 𝑢3 + 𝐴𝑢2 + 𝑢 using the map: 

(𝑥, 𝑦) → (𝑢, 𝑣) = (
(1+𝑦)

(1−𝑦)′

(1+𝑦)

(1−𝑦)
)                                                           (5) 

where 𝐴 =
(𝑎+𝑑)

(𝑎−𝑑)′
 and 𝐵 =

4

(𝑎−𝑑)
 

Whether a is a square in 𝐾, therefore such curves are isomorphic through 𝐾 itself. Since the function 

enumerates of the point computation in  [11], it is simple to watch that twisted Edwards curves surpass 

curves in Weierstraß shape in fast condition (although the binary form of Edwards curve is a bit-delay 

from compared with its Weierstraß equivalent [10]). Twisted Edwards curve’s cluster rules are 

standardized and perfect; that carries to secure fulfilments over specific kinds of offensives [4]. The best 

relevant        implementation of twisted Edwards curves is Edwards-curve Digital Signature Algorithm 

(EdDSA). The 𝐸𝐷25519 is a twisted Edwards curve utilized for EdDSA, elsewhere particular parameters 

are determined like [12]: 𝑎 = −1,  𝑑 =
121665

121666′
,  𝑝 = 2255 − 19. 
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The respective Montgomery curve of 𝐸𝐷25519 is Curve25519 that is specified as  [13]: 

𝑦2 = 𝑥3 + 486662𝑥2 + 𝑥                                                             (6) 

Point propagation is speedy and capable upon Montgomery curves. This successfully utilizes unlike 

point supplement and point folding  [11] as well as regular Montgomery ladder computation to execute 

a point addition[14]. The constant Montgomery ladder algorithm [40] is executed in fixed rate, which 

leads to timing attack. Various activities have utilized Curve25519 since its presentation by Bernstein 

in 2006 [9]. Moreover, because of its 128-bit security stage and effective computation [44], it has also 

an optimistic application for Internet of Things (IoT) demand. Currently, an amount of hardware 

fulfilments have been established  [15]-[19] over a concentrate on IoT demand. All these functions use 

FPGA (Field-Programmable Gate Array) DSP (Digital Signal Processing) segments to execute modular 

factors. High-efficiency cryptographic converters that may be initiated on affordable FPGAs or ASICs 

(Application Specific Integrated Circuits) are in order in favour of mobile uses similar to the Internet of 

Things (IoT) and Intelligent Transport Systems (ITSs) [14]. Affordable FPGAs (containing negative-

consolidated-established FPGAs) are specifically limited in several hardware funds. Utilization of 

hardware assets will minimize with movable low energy without wasting achievement [43]. In 

consequence, we propose a zone-competent, low-energy hardware execution of the 𝐸𝐷25519 on FPGA. 

The DSP parts of FPGA assets will not utilize our exploit. We establish a great race interlace modular 

factor adjusted in favour of such implementation. 

2.2 Related Work 

Security: Studies specifically associated to the security of ECDSA P-256 and 𝐸𝐷25519 have been 

performed before. Nystrom  [21] observed through an examination of an initial RFC8080 (Request for 

Comments) design with no citation or confirmation that 𝐸𝐷25519 would provide enhanced security 

assets and enforcement features comparable to RSA and ECDSA algorithims, causing such declaration 

to be eliminated through RFC8080. However, there are motivations to trust that Ed25519 gives better 

security compared with ECDSA P-256; e.g. while monitoring Lange and Bernstein’s security roster in 

favour of elliptic curves in comprehensive called security curves  [16], it is observed that Weierstraß is 

examined to be unreliable, while 𝐸𝐷25519 (which is related to Curve25519 [38]) is considered to be 

safe. An ECDSA P-256 particular assault has been outlined as well. Brumley et al. [22] discovered that 

such ECDSA P-256 in the newest form of OpenSSL 1.0.1 (which is OpenSSL 1.0.1u) is exposed to 

reserve-schedule attacks, permitting themselves to restore the individual for TLS and SSH. That might 

be appropriate in favour of DNSSEC, whereas DNSSEC package may trust OpenSSL, considering that 

enforcements of 𝐸𝐷25519 might be protected against reserve-schedule attacks[23]. The importance of 

these security inconvenience and achievable alleviates is evaluated in this work. 

3. MOTIVATION 

In this study, we choose 𝐸𝐷25519 curve and its extended twisted Edwards coordinates at the 128-bit 

security level. A famous Weierstraß elliptic curve is presently obtained, though it contains a few 

disadvantages due to that we select another curve 𝐸𝐷25519. Additionally, we focus on high-speed 

signature validity, achieving SPA (Simple Power Analysis) attack and high-speed scaler computations. 

Security has become a major concern due to high benefit through IoT equipment which we are using in 

our daily life. Particular types of IoT equipment are source-compelled; in favour of particular cases, 

these contain less storage capacity as well as lengthy battery life. Due to this, encoded algorithms such 

as ECC are appropriate here. 

3.1 Some Drawbacks of Weierstraß Curves 

Weierstraß mathematical expression is 𝑦2 + 𝑎𝑥 + 𝑏 over 𝔽𝑝. The straightforward calculation in 

Weierstraß curve is hard. Magma supplies small methods in favour of calculation on elliptic curves 

shown in small as well as in large (difficult) Weierstraß designs  [15]. The circumstance is much intricate 

in the constant case: the majority of quality algorithms may effectively move into exceptions. Weierstraß 

curve’s quantifiable characteristics place into 3 and twisted Edwards curve’s quantifiable characteristics 

place into −1. Two alternative curves are chosen in a fixed way and provide twist-security; this 

characteristic is benefited from in some works. Clock period of Weierstraß curve’s point supplement as 

well as point multiplication are high over 160-bit OPFs (Optimal Prime Fields). This type of curves is 
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of less value to assist Twisted Edwards curves over prime fields and might be combined with past 

equipment by exchanging the curve’s variables as well as the field computation. 

3.2 Problems in Existing WSN Encryption System 

Our current task is relevant to high-speed ECDH key shares and less energy consumption. Attackers 

may estimate the existing record from encoded media  [24]. The problem that we have recognized is 

that the effective use of PKC(Public-Key Cryptography) is the serious restrict assets of cell-voltage 

sensor nodes. Also, ECDH key exchange energy ingest is high [41]. For illustration, the predominant 

MICAz mote from (the ATmega128  [25]) as well as distinctive attributes are 4 KB of RAM and 128 

KB flash storage area. Tiny ECC [26] is the presently installed ECC software package for WSNs; this 

is a favourable arrangement with several times observations to establish famous curves across 160- and 

192-bit primary grounds. However, we have noticed in  [27] that ECC on compelled equipment is not a 

self-loading occurrence; for this reason, the advanced function currently does not fulfil the majority of  

the software. So, the effective performance of ECC on sensor node is still a demandable research matter 

and new methods are necessary to enhance the performance rate (i.e., energy cost) as well as memory. 

3.3 Suitable Encryption Scheme for WSNs 

Encoding and decoding expressions are normally asset-vigorous security techniques [42], but wireless 

equipment is attribute-restricted. Therefore, thin-security algorithms are considered relatively less 

material- absorbing. In this statement, measured to other non-symmetrical key algorithms, ECC is a 

more desirable act, because the size of key length is very small as well as it needs a smaller amount of 

power absorption. Another important thing is that detector node equipment is generally a fixed 

mechanism which is composed of technique-on-chip, micro devices, memory chips, energy-control ICs 

and additional similar types of chips. In favour of security-specified jobs, varieties of ICs are deployed 

in this scheme. Whether a particular concern security plan is preferred for wireless sensor node 

equipment, for a particular case where ECC arrangement is in favour of key shares, we decide another 

possibility to diminish energy consumption. Whether only ECC is deployed for together key shares and 

encoding functions, then the complete security process might be applied through a restricted amount of 

chips to reduce the quantity of gates over circuits and diminish energy absorption. Through this 

experiment, we have seen high-speed ECDH key shares with less energy consumption. 

4. METHODOLOGY 

We carefully choose 𝐸𝐷25519 curve in relation to EdDSA and extended coordinates aspect. Particularly, 

this curve’s expression is 𝐸: {(𝑥, 𝑦) ∈ 𝐹𝑞 × 𝐹𝑞: −𝑥
2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2}. 𝐸𝐷25519-SHA (Secure Hash 

Algorithm)-512 is EdDSA accompanied by these arguments: 𝑏 = 256; 𝐻 is 𝑆𝐻𝐴 − 512; 𝑞 is the prime 

2255 − 19; the 255-bit encrypting of 𝐹2255−19 is the regular small-endian encoding of {0,1. . . , 2255 −
20}; ℓ is the prime 2252 + 27742317777372353535851937790883648493 from  [28], 𝑑 =
−121665/121666 ∈ 𝐹𝑞; as well as 𝐵 is the special point (𝑥, 4/5) ∈ 𝐸 for which 𝑥 is optimistic. This 

Edwards curve is corresponding to −𝑥2 + 𝑦2 = 1 − (
121665

121666
)𝑥2𝑦2, because −1 is multiplied in 𝐹𝑞. 

Additionally, the security of 𝐸𝐷25519-SHA-512 is not harmed, because 𝑟 is not able to be seen by the 

attacker. The most vital job in favour of elliptic prime curve procreation is to select a prime number. 

Brainpool curves achieve pseudo-random prime digits to produce the prime curves, but due to lack of 

capabilities, such kind of curve is not as good as Edwards curves. Weierstraß curves make progress on 

random prime branches. To enhance performance, TinyECC or MICAz restrain better situations in 

favour of proficiency 128-, 160- and 192-bit fields. We have deployed coordinates-twisted Edwards 

curve and have selected the additional quantifiable characteristics of the curve in a particular way. In 

favour of field-computing process, we deploy a radix-24 model in relation to MoTE-ECC adjacent to 

Optimal Prime Fields (OPFs). In MoTE-ECC, RAM size in favour of 256-bit OPFs is 556 bytes and for 

160-bit OPFs, RAM size is 380 bytes, which is smaller than in AVR-based sensor nodes. Our selected 

curve’s parameters and other details are explained in the next parts.   

4.1 Elliptic Curve Discrete Logarithm Problem (ECDLP) 

Elliptic curve discrete logarithm problem (ECDLP) specifies the security of 𝐸𝐷25519 and Curve25519. 
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Assume 𝐸 is the elliptic curve stated on the prime field 𝔽𝑝 and assume the combination of logical dots 

over curve 𝐸 indicated through 𝐸(𝔽𝑝). At the present time, consider a point 𝑃 ∈ 2𝐸(𝔽𝑝) of order n as 

well as the closed ring subgroup of 𝐸(𝔽𝑝) produced by point 〈𝑃〉 = {𝒪, 𝑃, 2𝑃, . . . , (𝑛 − 1)𝑃}. Acquire a 

random number 𝑘 ∈ [1, 𝑛 − 1] and let 𝑄 = 𝑘 ⋅ 𝑃, where the point 𝑄 is stated through joining spot 𝑃 to 

emphasize 𝑘 − 1 times. 

𝑄 = 𝑘. 𝑃 = {𝑃 + 𝑃. . . +𝑃. }⏟        
 𝑘  𝑡𝑖𝑚𝑒𝑠 

                                                              (7) 

Specifying particular parameters of an area 𝑄, the problem of establishing a particular number 𝑘 is 

specified (ECDLP)  [15]. The dot 𝑄 is able to be quickly calculated in relation to 𝑘 deploying particular 

identical-aspect task 𝑄 = 𝑘 ⋅ 𝑃 (declared elliptic curve point doubling or scalar multiplication). 

However, to determine analytically 𝑘 from recognized points 𝑄 and 𝑃 is absolutely complex. 

4.2 Parameters of Ed25519 

Parameter Value 

p p of 𝐸𝐷25519 in [RFC7748]      (i.e., 2255-19) 

b 256 

encoding  of 

GF(p) 

255-bit little-endian encoding of {0,1, . . . , 𝑝 − 1} 

H(x) SHA-512(dom2(phflag, context)∥ x)   [RFC6234] 

c base 2 logarithm of cofactor of 𝐸𝐷25519 (i.e., 3) 

n 254 

d -121665/121666=3709570593466943934313808350875456518954211389843219016388785533085940283555 

a -1 

b (X(P),Y(P)) of 𝐸𝐷25519 in [RFC7748] (i.e., 

15112221349535400772501151409588531511454012693041857206046113283949847762202, 

46316835694926478169428394003475163141307993866256225615783033603165251855960)) 

L Order of 𝐸𝐷25519 in [RFC7748] i.e., 2∧252+27742317777372353535851937790883648493). 

PH(x) x (i.e., the identity function) 

4.3 Edwards-curve Digital Signature Algorithm (EdDSA) 

EdDSA is a digital authorization arrangement. 𝐸𝐷25519 understands EdDSA authorization. 

Algorithm 1. EdDSA key establishment as well as authorization generation 

Key setup. 

1: Hash 𝑘 such that 𝐻(𝑘) = (ℎ0, ℎ1, … , ℎ2𝑏−1) = (𝑎, 𝑏) 
2: 𝑎 = (ℎ0, . . . , ℎ𝑏−1) perform with integer in little-endian symbols 

3: 𝑏 = (ℎ𝑏 , . . . , ℎ2𝑏−1) 

4: Compute public key: 𝐴 = 𝑎𝐵 

Signature generation. 

5. Compute ephemeral private key: 𝑟 = 𝐻(𝑏,𝑀). 
6. Compute ephemeral public key: 𝑅 = 𝑟𝐵.   

7. Compute ℎ = 𝐻(𝑅, 𝐴,𝑀) and convert to integer. 

8. Compute: 𝑆 = (𝑟 + ℎ𝑎) mod ℓ.   

9. Signature pair: (𝑅, 𝑆).   

 

Establishing the key first four sequences is deployed and implemented through a private key. Element 

(𝑥, . . . , 𝑦) indicates addition of the constituent part. We specified an individual scalar and 𝑏 =
(ℎ0, ℎ1, . . . , ℎ2𝑏−1) the auxiliary key. Particular ephemeral key 𝑟 is established in Step 5 . To justify an 

authorization (𝑅, 𝑆) over a message 𝑀 accompanied by public key 𝐴, a justifier observes the method 

explained in Algorithm  2. ECDSA acts this way: it substitutes 𝐹𝑞
∗ accompanied by an order−ℓ 

subdivision of an elliptic-curve set in contrast with 𝐹𝑞 and describes 𝑥(𝑅) even though 𝑥 − is the element 

of 𝑅. ECDSA in addition to substituting 𝐴 accompanied by −𝐴, exchanges the authorizer’s 

Algorithm 2. EdDSA signature establishment 

1: Compute ℎ = 𝐻(𝑅, 𝐴,𝑀) and convert it into an integer. 

2: Check if the group equation 8𝑆𝐵 = 8𝑅 + 8ℎ𝐴 in 𝐸 holds. 

3: If the group equation holds, the signature is correct. 
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calculation directed to sum and acquires the establishment of equation 𝐻(𝑀)𝐵 + 𝑥(𝑅)𝐴 = 𝑆𝑅. ECDSA 

substitutes specifically three-scalar mathematical expressions accompanied by the function of two-

scalar mathematical expressions 𝑆−1𝐻(𝑀)𝐵 + 𝑆1𝑥(𝑅)𝐴 = 𝑅 at the cost of needing 𝑆 to be altered 

modulo ℓ. 

The 𝑝𝑚𝑢𝑙𝑑𝑞/𝑝𝑚𝑢𝑙𝑢𝑑𝑞 directions accomplish two quantities of 32-bit numbers, manufacturing 64-bit 

output in each sequence. The 𝑝𝑚𝑢𝑙𝑑𝑞 direction is explained in [23]. 

4.4 Elliptic-curve Diffie–Hellman (ECDH) 

A direction by Hisil  [29] of ECDH on an Edwards curve is accompanied by identical security 

characteristics to Curve25519. Lin and Scott  [30] of ECDH conducted an investigation on an Edwards 

curve in addition to an endomorphism. Bernstein’s Curve25519 programme was used in favour of 

Diffie-Hellman key shares. 

Such curve is described by 
𝜀

𝐹𝑝
: 𝑦2 = 𝑥(𝑥2 + 48662𝑥 + 1)𝑤ℎ𝑒𝑟𝑒 𝑝 = 2255 − 19. 

We identify #𝜀(𝐹𝑝) = 8𝑟 and #𝜀′(𝐹𝑝) = 4𝑟′, in which 𝑟 as well as 𝑟′ are 253-bit primes. Recent 

performance of this system uses 𝑥-coordinate on a Montgomery display of the curve, for together 

mathematical reduction, side-channel security and little effort to establish. 

4.5 Extended Twisted Edwards Coordinates 

The important mathematical relationship in favour of point calculation on twisted Edwards curves was 

nominated by Hisil et al  [29], constituting points in the utmost twisted Edwards coordinates: a point 

𝑃 = (𝑥, 𝑦) is appointed through the quadruple (𝑋: 𝑌: 𝑇: 𝑍); for example 𝑥 = 𝑋/𝑍, 𝑦 = 𝑌/𝑍, 𝑥𝑦 = 𝑇/𝑍 

and 𝑍 ≠ 0. The additional coordinate 𝑇 homogeneous coordinates were derived (𝑋: 𝑌: 𝑍) in relation to 

the multiplication of 𝑥 as well as 𝑦, with a characteristic 𝑇 = 𝑋𝑌/𝑍. The group affinity element is 

demonstrated through (0: 1: 0: 1), undesirable of an element (𝑋: 𝑌: 𝑇: 𝑍) which is (−𝑋: 𝑌:−𝑇: 𝑍). A 

point in affine elements (x, y) be able to change into extended twisted Edwards coordinates by 𝑋 = 𝑥, 

𝑌 = 𝑦, 𝑇 = 𝑥𝑦 as well as 𝑍 = 1. To change rear to affine, 𝑇 is disregarded, in addition to an inversion 

and two multiplications are needed: 𝑥 = 𝑋/𝑍 and 𝑦 = 𝑌/𝑍. Likewise, it is possible to convert a point 

into identical projective coordinates (𝑋: 𝑌: 𝑍) merely via dumping 𝑇. Hisil et al projected an extensive 

coordinate scheme to facilitate a supplementary coordinate 𝑡 = 𝑥𝑦  [29]. As a substitute of signifying a 

point over twisted Edwards curve 𝐸𝑇 through association with x and y coordinate solitary, we can utilize 

the extended affine coordinates (𝑥, 𝑦, 𝑡). The consequent developed coordinates of that point are 

(𝑋: 𝑌: 𝑇: 𝑍), by which the supplementary coordinate 𝑇 has the assets 𝑇 = 𝑋𝑌/𝑍 through 𝑍 ≠ 0. In 

appreciation of these coordinates, Hisil et al. invented the proficient point addition method, particularly 

under the constraint 𝑎 = −1. Behind implementation of clear-cut resources  [32], the mathematical 

calculation rate of an assorted point addition over a curve is done through 𝑎 = −1 total to 7𝑀 + 6𝐴, 

whereas a doubling needs 3𝑀 + 4𝑆 + 6𝐴. 

Algorithm 3. Point multiplication in assorted homogeneous and extended twisted Edwards coordinates 

Input: 𝑷𝟏 = (𝑿𝟏; 𝒀𝟏; 𝒁𝟏) in homogeneous projective coordinates. 

Output: 𝑷𝟑 = 𝟐𝑷𝟏 = (𝑿𝟑; 𝒀𝟑; 𝑻𝟑; 𝒁𝟑) in extended twisted Edwards coordinates. 

1: 𝐴 ← 𝑋1
2; 𝐵 ← 𝑌1

2; 𝐶 ← 2𝑍1
2 

2: 𝐷 ← −𝐴; 𝐸 ← (𝑋1 + 𝑌1)
2 − 𝐴 − 𝐵; 𝐺 ← 𝐷 + 𝐵 

3: 𝐹 ← 𝐺 − 𝐶; 𝐻 ← 𝐷 − 𝐵; 𝑋3 ← 𝐸. 𝐹 

4: 𝑌3 ← 𝐺.𝐻; 𝑇3 ← 𝐸.𝐻; 𝑍3 ← 𝐹. 𝐺 

Algorithm 4. Point addition in extended twisted Edwards coordinates 

Input: 𝑷𝟏 = (𝑿𝟏, 𝒀𝟏, 𝑻𝟏, 𝒁𝟏) and 𝑷𝟐 = (𝑿𝟐, 𝒀𝟐, 𝑻𝟐, 𝒁𝟐) in extended twisted Edwards coordinates; constant 

𝒌 = −𝟐𝒅, where 𝒅 = −𝟏𝟐𝟏𝟔𝟔𝟓/𝟏𝟐𝟏𝟔𝟔𝟔. 

Output: 𝑷𝟑 = (𝑿𝟑, 𝒀𝟑, 𝑻𝟑, 𝒁𝟑) in extended twisted Edwards coordinates. 

1: 𝐴 ← (𝑌1 − 𝑋1). (𝑌2 − 𝑋2); 𝐵 ← (𝑌1 + 𝑋1). (𝑌2 + 𝑋2); 𝐶 ← 𝑘. 𝑇1. 𝑇2; 

2: 𝐷 ← 2𝑍1𝑍2; 𝐸 ← 𝐵 − 𝐴; 𝐹 ← 𝐷 − 𝐶; 

3: 𝐺 ← 𝐷 + 𝐶; 𝐻 ← 𝐵 + 𝐴; 𝑋3 ← 𝐸. 𝐹; 

4: 𝑌3 ← 𝐺.𝐻; 𝑇3 ← 𝐸.𝐻; 𝑍3 ← 𝐹. 𝐺;    
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4.6 Projective Coordinate Randomization 

We put the arbitrary projective coordinates countermeasure to the extended twisted Edward coordinates 

(𝑋: 𝑌: 𝑇: 𝑍) in Joye’s Double-Add, Goundar’s Signed-digit and FLS (Fuzzy Logic System) algorithms 

[33].  In Joye’s Double-Add and Goundar’s Signed-digit algorithms, we arbitrarily produce 𝜆 ∈ 𝐹𝑝\0 

and execute 𝑋′ ← 𝜆𝑥, 𝑌′ ← 𝜆𝑦, 𝑇′ ← 𝑥𝑌′ 𝑍 ← 𝜆, where 𝑃 = (𝑥; 𝑦) is the enter position in affine 

organization and particular consequential point 𝑃′ = (𝑋′: 𝑌′, 𝑇′, 𝑍′) is worn in position of P within 

particular rest of algorithms. During FLS algorithm  [31], we indiscriminate the coordinates for initial 

point which is filled from the chart of previous calculated points, 𝑃0 = (𝑋: 𝑌: 𝑇: 𝑍), as pursue: produce 

arbitrary 𝜆 ∈ 𝐹𝑝\0 and do 𝑋′ ← 𝜆𝑥, 𝑌′ ← 𝜆𝑌, 𝑇′ ← 𝜆 T and 𝑍′ ← 𝜆𝑍. Particular consequential point 

𝑃′0 = (𝑋′: 𝑌′: 𝑇′: 𝑍′) is adopted in position of 𝑃0. While this countermeasure is implemented, the ideals 

of the coordinates of the accumulator point 𝑄 are randomized, altering from single implementation of 

the scalar multiplication to the additional. 

Since particular significance of 𝑃′0 is allocated to 𝑄 in the foundation of assessment phase, the extended 

twisted Edwards coordinates of every point 𝑃𝑖𝑗 are governed to accumulate in the table, by means of a 

random 𝜆 produced in favour of every point, similar to how 𝑃0 was governed. The authorization 

generation utilizes the FLS algorithm through (𝑣 = 1;𝑤 = 4) (8 points, 1 chart) with an exclusive table 

search for safeguarded and governed coordinates countermeasures. The accomplishment effect of 

EdDSA- 𝐸𝐷25519-SHA512 progress particular state of the art capabilities  [34] needs 19047706 

sequences for authorizing; an enhancement of 17.9% and 30776942 cycles in favour of authentication; 

an enhancement of 5.7%. The transparency of the table search security (action taken for threat) as well 

as governed projective coordinates to particular FLS algorithm is merely 1.0%. Likewise, while these 

actions are implemented over the signature creation role, transparency is too little (0.9%). To calculate 

shared secret utility, overhead of the coordinate randomization is only 0.04%. Particular point 

replication algorithm (Algorithm 2) stands on the enthusiastic doubling principle, most effective in 

favour of 𝑎 = −1 (the case for 𝐸𝐷25519) and charges 4𝑀 + 4𝑆. We examine stand on Faz-Hernandez 

et al.’s customized LSB (Lower Side Band)-set comb algorithm, called FLS  [33]. 

4.7 Prime Field 𝔽𝟐
𝟐𝟓𝟓−𝟏𝟗 

A constituent of 𝔽𝑝 is an integer modulo 2256−38 through field process. This surplus illustration 

favourably permits additional proficient decline than sinking straight modulo 𝑝. Simply, at the last part 

of scalar multiplication computation, where an integer is not previously existent in 𝔽𝑝, we deduct 𝑝 in 

steady time. 

Table 1. Standard outcome on ATmega328P. 

   Operation Class    Operation/Algorithm    Cycles  

 

 

 

Fixed-base  ECSM   𝐸𝐷25519 

FLS(v=1,w=3) 

FLS(v=2,w=4) 

FLS(v=1,w=3)  lookup prot. 

FLS(v=1,w=4) 

FLS(v=2,w=3) 

FLS(v=1,w=4)lookup prot. 

FLS(v=2,w=3) lookup+rand. coord. 

21 553 188 

26 661 293 

21 658 857 

18 119 234 

19 170 150 

18 264 710 

18298387 

4.8 Field Multiplication and Squaring 

Field squaring is executed as a 3-level subtractive Karatsuba, in which there is no provisional exclusion 

of M. The 32-bit multiplier from the multiplication is reprocessed here, along with a function name, at 

the foundation level. 

4.9 Field Inversion 

We utilize Fermat’s theorem, 𝑥−1 ≡ 𝑥𝑝−2(𝑚𝑜𝑑  𝑝), to calculate inversion in 𝔽𝑝 in steady time. Addition 

sequence is composing of 254 squares at 11 multiplications, although we diminish the amount of 

provisional field variables; those needed are 10 to just 5. 
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4.10 Arithmetic Modulo Ed25519 Group Order 

EdDSA 𝐸𝐷25519 authorization method needs accumulation as well as multiplication modulo 𝐸𝐷25519 
cluster order (𝑁). We execute decline modulo 𝑁 in 𝐶 utilizing a stable rate edition of the Barret 

algorithm achieved through unfolding the ultimate subtraction circle into pair facsimiles of its body (the 

highest digit of computational process) as well as utilizing provisional shifts executed in steady time. 

We computed the mutual of the modulus 𝑅 = ⌊𝑏2𝑛/𝑁⌋ =⌊25664/𝑁⌋, where a constraint of the Barret 

algorithm [15] is accumulated  into program memory. The development identifies the 256-bit multiplier 

and afterword diminishes completely. The addition is also reduced as well as executed in assembly. 

4.11 Optimal Prime Fields 

The prime fields that we utilize in MoTE-ECC fit in a unique class of restricted fields recognized as 

Optimal Prime Fields (OPFs) [39]. The OPF library establishes a great extent of resilience as single and 

an identical role can process to operate every extent. An additional significant characteristic of the 

library is its flexibility over SPA attacks, since entire mathematics functions are applied in a normal 

manner and perform forever the identical series of guidelines, irrespective of the real worth of the 

operands. These grounds are described through primes and mentioned as 𝑝 = 𝑢. 2𝑘 + 𝑣 by which 𝑢 as 

well as 𝑣 are a little contrasted to 2𝑘; henceforth they robust into single or double registers for targeted 

podium. MoTE-ECC sustains OPFs through 215 ≤ 𝑢 < 216 (i.e. 𝑢 is 16 bits lengthy) as well as 𝑣 = 1. 

An actual illustration is 𝑝 = 65356. 2144 + 1 (i.e., 𝑢 = 65356 and 𝑘 = 144), which occurs through a 

160-bit prime and hex notation is as pursued. 𝑝 =
0𝑥𝐹𝐹4𝐶000000000000000000000000000000000001. Low hamming weight characterized these 

prime structures, while only extremely important bytes as well as slightest-importance bytes are non-

zero; while other bytes are zero. The small power of 𝑝 permits favourably precise resources of modular 

calculation, since just non-zero bytes of 𝑝 require to be progressed in the decline function. We apply the 

inversion in OPFs founded on Fermat’s little theorem 𝑎𝑝−2 ≡ 𝑎−1 mod 𝑝, the straight idea of the 

appearance 𝑢. 2𝑘 − 1, needing n squarings as well as n multiplications, by which n indicates the bit-

span of 𝑝. To diminish the bit-span, we choose an algorithm in favour of effective enhancement-

supported inversion with regard to OPFs. 

In appreciation about such an algorithm, it is feasible to reduce the entire number of functions to 𝑛 

squaring addition just 𝐻𝑊(𝑘) + 𝐻𝑊(𝑢 − 1) + 1 multiplications, whereby 𝐻𝑊(𝑥) implies the 

hamming weight for 𝑥. During the initial period, 𝑎2
0.6ex

k−1 is measured through the exponentiation 

technique. During the next stage, a right-to-left square-and-multiply algorithm is conducted.  

Algorithm 5. Optimized exponentiation-based inversion for OPFs 

Input: Element 𝑎 of 𝔽𝑝 with 𝑝 = 𝑢. 2𝑘 + 1.Output: 𝑟 ≡ 𝑎𝑢.2
𝑘−1 ≡ 𝑎−1 mod 𝑝. 

1: 𝑢′ ← 𝑢 − 1                                14: 𝑏 ← 𝑏 ≫ 1 

2: 𝑟 ← 𝑎, 𝑏 ← ⌈𝑙𝑑(𝑘) − 2⌉,      15: end while 

    𝑖 ← 1   16: 𝑡 ← 𝑟. 𝑎   

3: while 𝑏 > 0 do                          17: 𝑏 ← 1  

4: 𝑡 ← 𝑟2                                      18: while 𝑏 < 0𝑥8000 do 

5: for 𝑗 = 1 to 𝑖 − 1 do         19: if 𝑢′&𝑏 > 0 then 

6: 𝑡 ← 𝑡2           20: 𝑟 ← 𝑟. 𝑡   
7: end for         21: end if 

8: 𝑟 ← 𝑟. 𝑡         22: 𝑡 ← 𝑡2   
9: 𝑖 ← 𝑖 ≪ 1         23: 𝑏 ← 𝑏 ≪ 1   

10: if 𝑘&𝑏 > 0 then         24: end while 

11: 𝑟 ← 𝑟2. 𝑎           25: if 𝑢′&𝑏 > 0 then   

12: 𝑖 ← 𝑖 + 1         26: 𝑟 ← 𝑟. 𝑡   
13: end if           27: end if   

 

5. IMPLEMENTATIONS 

A radix-2𝑟 illustration a component 𝑓 within 𝑏-bit prime area like (𝑓0, 𝑓1, . . . , 𝑓⌈𝑏/𝑟⌉−1) is given as: 
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𝑓 = ∑

⌈
𝑏
𝑟
⌉−1

𝑖=0

𝑓𝑖2⌈𝑖𝑟⌉ 

This is termed a radix-2𝑟 illustration. We utilize radix-24, indication in favour of field components. We 

diminish intermediary consequences modulo 2256 − 38 within the complete implementation of the 

scalar propagation and merely diminish the ultimate result modulo 2255 − 19. We completed 𝑛- bit 

quantities, an entire of ⌈𝑛/2⌉ limited results is produced, where the outcome of extreme altitude for 

limited output array is ⌈𝑛/2⌉ + 1 components to be combined. A radix-24 numeral is  ullustrated 

through numbers, since the particular set 𝐷 = {0,1,2. . . ,14,15} within an identical radix-24 illustration 

utilizing a zero-discharge number set in the shape of 𝐷′ = {±1,±3, . . . , ±13,±15}. 𝔽𝑝 implies an OPF 

established through a prime structure 𝑝 = 𝑢 ⋅ 2𝑘 + 1; therefore, 𝑢 is within the order [215, 216 − 1]; 

i.e., 𝑢 contains extent of 16 bits. Despite the aforementioned topic, the bit range 𝑛 for primes is a product 

of 32; e.g. 𝑛 = 160, 192, 224 or 256 bits. Field components are mentioned as 𝑎 ∈ 𝔽𝑝. The proper 

partitioning application is selected to the equilibrium of the digit of odd as well as uniform directions, 

diminishing the entire digits of the needed round. We track investigation: odd 𝑛-bit numeral 𝑘 specified 

by 𝑘 = ∑𝑛−1𝑖=0 𝑘𝑖 ⋅ 2
𝑖 through 𝑘𝑖 ∈ {0,1} for 0 < 𝑖 < 𝑛 − 1 and 𝑘𝑛−1 = 𝑘0 = 1 may be mentioned as 

conventional Binary Signed-Digit(BSD), since 𝑘 = 2𝑛−1 + ∑𝑛−2𝑖=0 (2𝑘𝑖+1 − 1) ⋅ 2
𝑖; i.e., entire numbers 

of BSD illustration of 𝑘 are non-null. For confirmation, we monitor:  

𝑘 = 2𝑛−1 + ∑𝑛−2𝑖=0 (2𝑘𝑖+1 − 1) ⋅ 2
𝑖 = 2𝑛−1 −∑𝑛−2𝑖=0 2

𝑖 + ∑𝑛−2𝑖=0 2𝑘𝑖+1 ⋅ 2
𝑖

= 1 + ∑𝑛−2𝑖=0 𝑘𝑖+1 ⋅ 2
𝑖+1 = 1 + ∑𝑛−1𝑖=0 𝑘𝑖 ⋅ 2

𝑖 = ∑𝑛−1𝑖=0 𝑘𝑖 ⋅ 2
𝑖  𝑤𝑖𝑡ℎ  𝑘0 = 1

                 (8) 

This formula is utilized to change an odd numeral provided in regular binary shape into a BSD 

illustration including merely non-zero numerals; specifically −1 and 1. 

6. FIXED-BASE COMB METHOD FOR POINT MULTIPLICATION 

We transfer the entire binary illustration of 𝑘 single bit as appropriate and introduce 𝑎 "1" within empty 

MSB (Most- Significant Bit) place. Presently, this transferred  bit-series is accurately transferred in the 

structure of BSD of k to clarify all zero bits as −1. Radix-24 illustration may be acquired by splitting 

the bit-series within a cluster of 4-bit numerals, every single one communicating with an odd digit in 

the area [−15, 15]. This way, 𝑤 indicates the digit of bits (i.e., size of bit-series) treated in every 

replication of the curve and 𝑑 = ⌈𝑛/𝑤⌉. Our alternative composes an off-heritage moment (Step 1) as 

well as an online stage. During the beginning stage, 2𝑤−1 items are computed in advance and 

accumulated, including all straight associations of 𝑃. Our execution computes in advance eight points 

as we utilize 𝑤 = 4 to obtain an equalization among implementation times as well as accumulator 

demands. A demonstration of the structure (2𝑎𝑖 − 1) in stage 1 output is one way 1 (while 𝑎𝑖 = 1) or 

the other −1 (if 𝑎𝑖 = 0), therefore implementing the numeral-set alteration explained previously. In 

every recurrence, the online form includes a basic curve that performs duality followed through 

summation. Anyhow, compared to established comb technique, 𝑤 − 1 bits (in place of 𝑤 bits) through 

𝑘 are utilized to establish a certain kind of 2𝑤−1 advance calculated points, which are to be added, when 

an additional bit (specifically 𝐾(𝑤−1)𝑑+𝑖 within stage 5 of Algorithm 6) is specified, since such point is 

truly joined or deducted. To accomplish a normal implementation, we require an operation that is subject 

to the significance of a bit, allocating a spot 𝑅 or the adverse of that spot (i.e., −𝑅) to a target. The 

pessimistic matter of 𝑅 in prolonged refined coordinates is −𝑅 = (−𝑥, 𝑦, −𝑡). MoTE-ECC executes the 

revocation of a component 𝑥 ∈ 𝔽𝑝 confiding on the quality of 𝑎 bit 𝑏 as pursue. We compute 𝑥′ = 𝑝 −

𝑥 through deductions after we carry bit 𝑏 to extract a cover 𝑚, that is likewise an all-1 byte (if 𝑏 = 1), 

otherwise an 𝑎𝑙𝑙 − 0 byte (if 𝑏 = 0). Furthermore, a second mask is required: 𝑚′ is the bit-smart 

supplement of 𝑚; i.e., 𝑚′ is 0 when 𝑚 is an all -1 byte and vice versa. Next, we assess (𝑥′𝑖&𝑚)|(𝑥𝑖&𝑚′) 
for total byte of 𝑥′ as well as 𝑥 (whereby & and | express a bit-smart 𝑎𝑛𝑑 and 𝑜𝑟 function). Particular 

field is whether −𝑥 = 𝑝 − 𝑥 (if 𝑏 = 1; i.e., the negation is truly performed) rather (if 𝑏 = 0; i.e., no 

contradiction). Comb procedure follows 𝑑 − 1 point addition and 𝑑 − 1 multiplication of the real worth 

of scalar bits. 
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Input: 𝒏 − 𝒃𝒊𝒕 𝒔𝒄𝒂𝒍𝒂𝒓 𝒌 = (𝒌𝒏−𝟏, . . . , 𝒌𝟏, 𝒌𝟎)𝟐 𝒘𝒊𝒕𝒉 𝒌𝟎 = 𝟏, 𝒑𝒐𝒊𝒏𝒕 𝑷 ∈ 𝑬(𝔽𝒑). 

Output: 𝑸 = 𝒌 ⋅ 𝑷 

1: Pre-compute 𝑅[𝑗] = 𝑅[𝑎𝑤−2, . . . , 𝑎1, 𝑎0] = 2
𝑑𝑤𝑃 + (2𝑎𝑤−2 − 1)2

(𝑑−1)𝑤𝑃+. . . +(2𝑎1 − 1)2
𝑤𝑃 + (2𝑎0 −

1)𝑃 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏𝑖𝑡 − 𝑠𝑡𝑟𝑖𝑛𝑔𝑠 𝑗 = (𝑎𝑤−2, . . . , 𝑎1, 𝑎0) 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤 − 1 

2: 𝑄 ← 𝑅[𝑘𝑑𝑤 , . . . 𝑘2𝑑, 𝑘𝑑]   
3: 𝑓𝑜𝑟 𝑖 = 𝑑 − 1 𝑑𝑜𝑤𝑛 𝑡𝑜 1 𝑑𝑜 

4: 𝑄 ← 2𝑄   

5: 𝑄 ← 𝑄 + (2𝑘(𝑤−1)𝑑+𝑖 − 1) ⋅ 𝑅[𝑘(𝑤−2)𝑑+𝑖 , . . . , 𝑘𝑑+𝑖 , 𝑘𝑖] 

6: end for 

 

7. SECURITY ANALYSIS 

MoTE-ECC acquires the prolonged coordinate procedure in favour of twisted Edwards curves. It is 

possible to convert each twisted Edwards curve into a Montgomery curve conversely. ECDH procedure 

is to utilize the ridiculous comparison among Montgomery and twisted Edwards curves. Every 𝐿-

detector is pre-installed through a single individual secret key. Next to key setup, every couple of 

connected 𝐿-detectors has various mutual keys. Therefore, yielding 𝐿-detector does not influence the 

security of transmissions within  different 𝐿-detector. The DH private key is merely calculated among 

two transmit stakeholders, After that, it is utilized in favour of its progressive communication. Scalar 

multiplication protocols generally include three instances: established base point (𝑘𝐺), while 𝐺 is a 

determined point (generally subset creator) and 𝑘 is a scalar; varying foundation point (𝑘𝑃), while 𝑃 is 

a point which is not previously known. Suppose two detector nodes 𝐴 and 𝐵 to determine a mutual 

private key, while the group domain arguments (𝑎, 𝑑, 𝐴, 𝐵, 𝐺, 𝑝) are concurred above. This way, 𝑎 and 

𝑑 are the arguments of twisted Edwards curve 𝐸𝑇, when 𝐴 and 𝐵 distinguished to be bi-rationally 

identical to Montgomery curve 𝐸𝑀. 𝐺 exists at a point of prime rule over 𝐸𝑇 and 𝑝 specifies the essential 

OPF. Single turn ECDH key sharing protocol can be split into three phases: 

First; node 𝐴 produces a private key 𝑑𝐴 and produces the respective public key 𝑄 = 𝑑𝐴 ⋅ 𝐺. Such scalar 

multiplication is completed through twisted Edwards curve 𝐸𝑇 utilizing originator 𝐺. Afterwards, node 

𝐴 transforms the point 𝑄 = (𝑥𝑞 , 𝑦𝑞) into spot 𝑀 = (𝑥𝑚, 𝑦𝑚) over the bi-rationally identical 

Montgomery curve 𝐸𝑀 and dispatches 𝑥-coordinate 𝑥𝑚 of 𝑀 to node 𝐵. Node 𝐵 executes the identical 

stairs through private key 𝑑𝐵 and transmits particular 𝑥-coordinate to 𝐴.  

Second; thereafter, 𝑥-coordinate is obtained by node 𝐴 from 𝐵; it starts to measure the scalar 

multiplication 𝑆 = 𝑑𝐴 ⋅ 𝑀(𝑀 includes merely an 𝑥 coordinate) over the Montgomery curve 𝐸𝑀. Node 

𝐵 performs similarly through the 𝑥-coordinate, obtained from node 𝐴. Together node 𝐴 as well as node 

𝐵 need to perform dual scalar multiplication to acquire the mutual private key 𝑆 = 𝑑𝐴 ⋅ 𝑑𝐵 ⋅ 𝐺. 

Considering that the foundation point 𝐺 is steady and previously aware, we utilize quick scalar 

multiplication through fixed-base comb procedure utilizing a window diameter 𝑤 = 4 as well as eight 

points quantified in advance. 

Third; ECDH key interchange is mainly established by the calculated energy 𝑊𝑐 in favour of two scalar 

multiplications; the correspondence energy 𝑊𝑡 is mainly insignificant. 

Table 2. Execution time (clock cycle) of field arithmetic function for operands of a measurement of 

160,192, 224 and 256 bits. 

   Operation    160 bits    192 bits    224 bits    256 bits  

  𝑚𝑜𝑑_𝑎𝑑𝑑     530    631    732    833 

  𝑚𝑜𝑑_𝑠𝑢𝑏    530    631    732    833 

  𝑚𝑜𝑑_𝑚𝑢𝑙    3237    4500    5971    7650 

  𝑚𝑜𝑑_𝑠𝑞𝑟    2901    3909    5058    6347 

  𝑚𝑜𝑑_𝑖𝑛𝑣    571916    830823   1163655   1491839 

Executing a fixed-base scalar multiplication over twisted Edwards curve 𝐸𝑇: −𝑥
2 + 𝑦2 = 1 −

121665/121666𝑥2𝑦2 is in contrast to 𝔽2
255 − 19 and the outcome is reversed compared to the 

Mongomery curve in terms of single inversion. The curve points are represented as 𝐸𝑇(𝐹2
255 − 19). A 

Algorithm 6. Regular w-bit comb method for fixed-base scalar multiplication 
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proficiently quantifiable bi-rational correspondence exists between 𝐸𝑇 and 𝐸𝑀, hence the curves 

exchange similar cluster framework. Twisted Edwards curve is ideal in favour of 𝑎 = −1 (for 𝐸𝐷25519), 
the input point is truly illustrated in twisted Edward complements and point 𝑄 outcomes are based on 

quick scalar multiplication in extended projective coordinates. Alteration of point 𝑄 over a twisted 

Edwards curve 𝐸𝑇 within a point 𝑀 on the birationally-corresponding Montgomery curve 𝐸𝑀 can be 

performed in this method. Initially, we alter the projective point 𝑄 = (𝑋𝑞 , 𝑌𝑞 , 𝑇𝑞 , 𝑍𝑞) on 𝐸𝑇 associated 

with affine illustration 𝑄 = (𝑥𝑞 , 𝑦𝑞) and work out 𝑀 = (𝑥𝑚, 𝑦𝑚) on 𝐸𝑀 by the use of 𝑥𝑚 = (1 +

𝑦𝑞)/(1 − 𝑦𝑞) along with 𝑦𝑚 = (1 + 𝑦𝑞)/((1 − 𝑦𝑞) ⋅ 𝑥𝑞). We scamper an inversion within affine-to-

projective alteration to acquire 1/𝑍𝑞 as well as other reversal for the element of Edwards-to-

Montgomery alteration (𝑡𝑜 𝑜𝑏𝑡𝑎𝑖𝑛 1/[(1 − 𝑦𝑡) ⋅ 𝑥𝑡]). To diminish the computational transparency 

reasoned through two inversions, we straightforwardly alter the point 𝑄 = (𝑋𝑞 , 𝑌𝑞 , 𝑇𝑞, 𝑍𝑞) to the point 

𝑀 = (𝑥𝑚, 𝑦𝑚) as follows: 

𝑥𝑚 = (1 + 𝑦𝑞)/(1 − 𝑦𝑞) = (1 + 𝑌𝑞/𝑍𝑞)/(1 − 𝑌𝑞/𝑍𝑞) = 

(𝑍𝑞 + 𝑌𝑞)/(𝑍𝑞 − 𝑌𝑞)                                                                                  
                         (9) 

                    
𝑦𝑚 = (1 + 𝑦𝑞)/(𝑥𝑞 ⋅ (1 − 𝑦𝑞)) = (𝑍𝑞

2 + 𝑌𝑞𝑍𝑞)/

(𝑋𝑞𝑍𝑞 − 𝑋𝑞𝑌𝑞)
                                   (10) 

Now, we will obtain one inversion to calculate 1/(𝑋𝑞𝑍𝑞 − 𝑥𝑞𝑌𝑞), which is multiplied by 𝑋𝑞 to get 

1/(𝑍𝑞 , −𝑌𝑞). 

8. EXECUTION TIME 

We applied the OPF inversion from scrape and utilized OPF documentation from additional arithmetic 

functions. 

We utilize the role of ANSI C and establish the performance time of point addition and point 

multiplication on twisted Edwards curve. The point addition and point multiplication on twisted 

Edwards curve are quicker than on Weierstraß curve. The supremacy of scalar multiplication through 

the performance period of all cryptographic activities is clear. Regarding signature authentication 

performance on 𝐸𝐷25519, the implementation time rises dramatically while the marvellous characteristic 

is activated since this presents an additional multiplication. Particular arithmetic functions replicate the 

carry transmission sequence even without transmission. Particular regular-time implementation 

characteristic (not obligatory) makes stronger the execution in contrast to the aggressor’s capability to 

utilize side-channels within the structure of executing timing assault. 

Table 3. Implementation time (in clock cycles) of point arithmetic functions over  

160-, 192-, 224- and 256-bit OPFs. 

   Operation    160 bits    192 bits    224 bits    256 bits  

  TE point add    27355    36903     47907    60367 

  TE point dbl    25421    33848    43463    54262 

  WEI Point add    40222    N/A    N/A    N/A 

  WEI Point dbl    31536    N/A    N/A    N/A  

Table 4. Implementation time (in clock series) of scalar multiplication over  

160-, 192-, 224- and 256-bit OPFs. 

Operation 160 bits 192 bits 224 bits 256 bits 

Scalar mul.  TE curve 2767454 4412519 6603888 9420788 

Scalar mul.  WEI curve  (R.Int) 7384579 N/A N/A N/A 

ECDH 9044084 14377068 21460334 30539566 

The ECDH protocol is implemented to 2.76 ⋅ 106 clock series over a 160-bit OPF, which contains 

Edwards-to-Montgomery alteration. MoTE-ECC utilizes Montgomery curve with an execution time of 

6.27 ⋅ 106 cycles over 160-bit OPF. The complete computation cost of an ephemeral ECDH key 

exchange amounts to about 9.04 ⋅ 106 clock cycles while utilizing a 160-bit OPF, with an 

implementation time of 1.22 s at 7.37 MHz.   
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9. ENERGY CONSUMPTION AND PERFORMANCE 

MoTE-ECC, the slightest ECC is executed in favour of Memsic’s MICAz motes as well as other 8-bit 

AVR-established sensor nodes. Energy is the highest valuable source for battery-driven detector nodes. 

Thus, it is essential to maximize the achievement of ECC application due to the reason the energy 

utilization of scalar multiplication increases consecutively over the implementation time. Based on [37], 

the ATmega128 processor of a MICAz mote relies on a medium current of 8 mA (at a delivered voltage 

of 3.0 V) while it is operating. Due to the reason that the clock rate for a mote is familiar to be 7.3728 

MHz, we may obtain the energy utilization of single scalar multiplication through the execution of a 

basic computation like 𝑊 = 𝑈 ⋅ 𝐼 ⋅ 𝑡, thus 𝑈 implies the delivered power (i.e., 3 V while utilizing two 

traditional 1.5 V AA power cells). 𝐼 is the medium current worn through the processor (i.e., 8 mA in our 

case), and 𝑡 is the performance time. In our execution, we get a medium implementation time of 2767454 

clock cycles, substantiating the energy charges of computing an individual scalar multiplication figure 

to 𝑊𝑐 = 𝑈 ⋅ 𝐼 ⋅ 𝑡 = 3𝑣 ⋅ 8𝑚𝐴 ⋅ (2767454/7.3728 ⋅ 10
6) = 9.008𝑚𝐽. ECDH key interchange needs 

every node to calculate two scalar multiplications as well as to transmit a message (including the public 

key) to another node. Based on  the energy pattern explained in  [35], the energy value of sending an 

agreement message is 𝑊𝑡 = 𝑃 ⋅ 𝑡 = 0.185 mJ. Thus, the entire energy expenditure of ECDH key 

interchange is mainly rigid by the computation energy 𝑊𝑐 for two scalar multiplications; the 

correspondence energy 𝑊𝑡 is basically insignificant. Complete energy utilization to achieve an ECDH 

key interchange is 𝑊 = 2 ⋅ 𝑊𝑐 +𝑊𝑡 = 18.20 mJ for each node. Piotrowski et al. declare in  [36] that 

the assessed capability of a 1.5 V AA alkaline power cell is around 2500 mAh and two AA batteries 

may technically release an energy of 21600 Ws. The node energized by two AA alkaline power cells 

utilizes just 31.25 % of the entire ability. ECDH key interchanges can execute prior to the delivered 

voltage of the MICAz mote falling below 2.7 V. 

Table 5. Energy utilization of TE curve, WEI curve and ECDH over 160-, 192-, 224- and 256-bit 

OPFs. 

   Operation    160 bits    192 bits    224 bits    256 bits  

  TE Curve    9.00 mJ    14.36 mJ     21.49 mJ    30.66 mJ 

  WEI Curve    24.03 mJ    N/A    N/A    N/A 

  ECDH    18.20 mJ    28.91 mJ    43.17 mJ    61.51 mJ 

Beyond achievement, execution-time memory utilization is a significant factor for WSN utilization, 

since a standard AVR-supported detector node characterizes merely 4 kB RAM. Our comb technique 

in favour of scalar multiplication on a twisted Edwards curve needs to reserve eight points provided in 

enlarged affine coordinates. Like that, we merely require to shift the point which is needed for the 

present replication of the comb technique from ROM or flash memory to RAM. Our selection of 𝑤 = 4 

with eight previously assessed points illustrates a fair trade-off between performance and code size. The 

total ROM/flash footprint of MoTE-ECC supporting Montgomery as well as twisted Edwards curves is 

14.7 kB, which establishes about 11.5% of 128 kB flash storage which exists on an ordinary AVR- 

deployed sensor node. 

9.1 Signature Verification 

The speed of Edwards-curve summation, particularly through −1 twist, makes such methods especially 

proficient. The prime 𝑞 = 2255 − 19 is identical to 5 modulo 8; therefore, every square 𝛼 ∈ 𝐹𝑞 fulfils 

𝛼2 = 𝛽4, whereby 𝛽 = 𝛼(𝑞+3)/8, i.e.,±𝛼 = 𝛽2. The regular assessment is an individual elaboration to 

measure 𝛽, pursued by a fast propagation of 𝛽 by √−1 if 𝛽2 = −𝛼. In expansion, 𝛼 is a percentage 

𝑢/𝑣, while 𝑢 = 𝑦2 − 1 and 𝑣 = 𝑑𝑦2 + 1. Beginning from 𝑢 and 𝑣 requires only some multiplication 

compared with single exponent. 

9.2 Defeating SPA Attacks 

Within a model, SPA attacks attempt first to identify the energy utilization of a series of commands 

performed on a tool identical to the aimed tool. A determined couple (key, data) is refined and replicates 

for such various pairs oppose a single track acquired from the objective (pattern identical stage). A 

greatly routine execution of the comb technique for permanent-base scalar multiplication is utilized to 

diminish the SPA-leakage. 
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9.3 Fast Scalar Multiplication 

To obtain the finest speed, we presume that (𝑎 = −1). An 𝑛-bit scalar multiplication contains of 

absolutely 𝑑 = ⌈𝑛/𝑤⌉ point doublings as well as effectively 𝑑 point additions. Therefore, 𝑤-bit comb 

technique reduces the amount of point doublings by an element of 𝑤 in contrast to the binary method in 

spite of that the respective 𝑤 bits of 𝑘 are all 0. We can estimate the value of 𝜀𝑒 ← 2𝜀 as 3𝑀 + 4𝑆 by 

pressing an additional multiplication to the function measure of 𝜀 ← 𝜀𝑒 + 𝜀𝑒. 

10. CONCLUSION 

This work suggested a novel ECDH key exchange technique through little energy utilization. First, we  

select ED25519’s extended coordinates through point addition as well as point-doubling algorithm. 

Second, we determine radix-24 in favour of optimal execution through a Fermat-established inversion 

that is powerful over SPA attacks. Third, we represent the achievement of ECDH key interchange by 

combining Montgomery as well as twisted Edwards curves. Fourth, we compute and illustrate energy 

exhaustion of TE Curve, ECDH and contrast it with WEI curve. MoTE-ECC in favour of Memsic’s 

MICAz motes is utilized for quick ECDH key interchange on 160-bit OPF and RAM footmark of OPF 

256 bits is 556 bytes. We obtained the implementation time by joining quick 𝔽𝑝 mathematically (grateful 

to utilizing an OPF) with extremely competent group mathematical twisted Edwards curve. MoTE-ECC 

assists 160-bit OPF with merely 380 bytes in RAM. We applied multiplication as well as other arithmetic 

functions required for ECC in a framework model to obtain great expandability and little code size. In 

favour of additional effective field arithmetics, we utilize quick point addition/doubling equation of 

twisted Edwards curves. An ECDH key interchange needs just one-third of energy of the ECDH 

execution. In the future, we will extend our work through Montgomery and Edwards curves for secure 

monitoring of low-power wireless devices by leveraging the security modules, like ECDH and ECDSA, 

which will support more ECC security features and will perform better than the existing curves.  
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 ملخص البحث:

ققققققال سلعلققققققل ن، تلى ققققققىسلب تطةل ققققققت  ا  ققققققا   سلقققققق   ا قققققق   ققققققى   ةققققققا ،  تخَلققققققت اققققققت ال سلكية 

 ققققققق  وضقققققققووج   كقققققققوعل سلط غقققققققانو  وولققققققق  سلقققققققو    ققققققق   ىس ققققققق،  لوج قققققققا   ققققققق    س لقققققققطاا   

سلط غقققققانو  القققققطخىست سلكيضينقققققال سلتن قققققو ،  وضقققققول  قققققاج  للتضققققق  و قققققيل   لقققققى  سلققققق  ت لنققققق  

و وت قققققق  ل ققققققا  سلط غققققققانو  الققققققطخىست سلكيضينققققققال كلاقققققق، سلوكققققققي وسل اا قققققق،  قققققق  تلقققققق  سلغققققققت ال  

و   سلكوتتطقققققق،  الكيضينققققققال سلتن ققققققو ، سلتن ققققققو ، ولقققققق  اققققققةو ،  غقققققق ل، سلخوسج  نققققققال سلكيقققققق

و نو ققققققا  و ةققققققت   ةقققققق   NIST FIPS 186.2و  ANSI X9.62 سلكةناج قققققق،  اقققققق  

 نكقققققا  طةلقققققت  ا  قققققا    ققققق     ققققق  سل قققققووج  سلط  قققققا   قققققىس    NISTسلةنقققققوم  ققققق   يضينقققققال 

( ولقققققققق  Edwards  و ققققققققو  يضيقققققققق    وسج    25519ED قققققققق   قققققققق س سلتضقققققققق    خطققققققققاج و آ يقققققققق، 

(  Weierstrass ِققققققققققي  و  اج قققققققققق   كيضيقققققققققق  وس ولققققققققققطوس    128 ةققققققققققطو  ل ققققققققققا  كققققققققققىج    

( سلقققققق    كاقققققق  سلةوس قققققق  سلىس لقققققق، radius-42ولإتكققققققات و ققققققا ي سلضةققققققام سلكنققققققىس     ةققققققطخىت  

لالقققققققن، سلكاالنققققققق، [ كيظقققققققات تغقققققققانو ولققققققق  سلكيقققققققا ل س MoTE-ECC ققققققق  سلضةقققققققام  ققققققق   

 OPFs)    ِققققققققي  ككققققققققا  ةققققققققطخىت  ظققققققققات  255و  244و  192و  160 أ يققققققققات  خطلاقققققققق،  اقققققققق 

 ECDH  لطتقققققى   سلكاقققققاتنت  قققققن  و  قققققىتنق    نققققق  تضطقققققال كققققق   و  قققققى  سلققققق  وكلن طققققق  ضقققققوم  قققققن )

نققققققال  نققققققو  طيلقققققق، ل قققققق   ققققققط   تيانقققققق  سلةكلنقققققق، سلكطةل قققققق،  طتققققققى   سلكاققققققاتنت  وتةَققققققطخىت وكلنقققققق،  كك 

ققققققق س  وت ينققققققق، سلكغققققققق  لإ غقققققققا    طققققققق، ضقققققققوم سل كنقققققققال  يضيققققققق    وسج   سلك   نقققققققو سلكطيلققققققق،   

س لقققققا   وتةَقققققط   سلكضقققققاوج عسل سلإلققققق ا  سلككطقققققى  ليكققققق  سلقققققي     و  ظلقققققو تطتن يقققققا ولققققق   ظقققققات 

 ECDH    ق للطاكققققققققق، كقققققققققىج ( ويقققققققققى سلقققققققققطخىست  يقققققققققا ق mJ لققققققققق   قققققققققو    20 18( سلقققققققققطلعكا

ققققققال سلكةققققققطيى  سلقققققق   ظققققققات  ِققققققي  و قققققق س ل  قققققق   قققققق  و  ققققققى سلك 160للالقققققق   اققققققال   ضيقققققق   ية 

 AVR  وتيققققققىج سلإاققققققاج  سلقققققق  ل    يا نققققققال سلط و  قققققق، سلك طو قققققق، تض  ققققققت  ج قققققق،ق  ط ى قققققق،ق  قققققق  )

 س  ا  وسلط اك، سلكةطلل ،     سلط  لن     ووس ت س ت ا  وتو   سج  سلكااتنت 
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