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ABSTRACT 

The ability to interpret spatiotemporal data streams in real time is critical for a range of systems. However, 

processing vast amounts of spatiotemporal data out of several sources, such as online traffic, social platforms, 

sensor networks and other sources, is a considerable challenge. The major goal of this study is to create a 

framework for processing and analyzing spatiotemporal data from multiple sources with irregular shapes, so 

that researchers can focus on data analysis instead of worrying about the data sources' structure. We introduced 

a novel spatiotemporal data paradigm for true-real-time stream processing, which enables high-speed and low-

latency real-time data processing, with these considerations in mind. A comparison of two state-of-the-art real-

time process architectures was offered, as well as a full review of the various open-source technologies for real-

time data stream processing and their system topologies were also presented. Hence, this study proposed a 

brand-new framework that integrates Apache Kafka for spatiotemporal data ingestion, Apache Flink for true- 

real-time processing of spatiotemporal stream data, as well as machine learning for real-time predictions and 

Apache Cassandra at the storage layer for distributed storage in real time. The proposed framework was 

compared with others from the literature using the following features: Scalability (Sc), prediction tools (PT), 

data analytics (DA), multiple event types (MET), data storage (DS), Real-time (Rt) and performance evaluation 

(PE) stream processing (SP) and our proposed framework provided the ability to handle all of these tasks. 

KEYWORDS 

Spatiotemporal big data, Real-time processing, Stream processing, Apache Kafka, Apache Flink, Apache 

Cassandra, Apache Spark.  

1. INTRODUCTION 

One of the new elements for Internet-based applications is spatial-temporal data. Data utilized for real-

time analytics has become a part of production data in new internet application trends [1]. 

Spatiotemporal data is in enormous quantities through a variety of activities, such as clicks on a social-

media platform orders, sales, shipment data in retail and so on. As the internet-connected world grows 

exponentially, a vast volume of data is generated in a continuous stream from a variety of sources. 

Five billion people utilize various varieties of mobile devices, according to [2]. Again, according to an 

IBM big-data study, there will be around 35 zettabytes of data generated yearly from 2020 [3] and data 

growth will be 50 times faster than it is presently [4]. Every day, 2.5 quintillion bytes of information 

are created [3]. The amount of data that can be generated is limitless. This phenomenon is referred to 

as "big data" [1]. In conjunction with this concept, the 3V's of big data (Volume, Velocity and Variety) 

have been coined [5]. The first V stands for the massive amounts of data produced by these 

technologies. The second V represents the rate at which the sources generate these data, while the third 

V represents the data's heterogeneity. There is usually a large amount of spatial-temporal data [6] that 

is being generated. The 3.8 billion individuals and 8.06 billion internet-connected devices are 

responsible for the vast amounts of data produced [7]. According to [8], one zettabyte of data was 

generated in 2010 and seven zettabytes in 2014. As a result of the rapid emergence of massive 

spatiotemporal datasets, volume, variety and velocity are all concerns that must be addressed. The 

phrase "spatiotemporal big-data volume" refers to a large number of data that necessitates a great 

amount of processing and storage [9]. The volume of data is increasing faster than computational 

processing devices can keep up [10]. Spatiotemporal data is a continuous stream of data in terms of 

velocity. As a result, the concerned stakeholders have to spend a lot of money on processing [11]. 

Real-time data stream processing is critical for a variety of applications, but processing a massive 

volume of data coming from several sources, like online traffic, sensor networks and many other 

sources, is a significant issue [3]. The most serious problem has been that the spatiotemporal big-data 
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system is based around "Hadoop"; namely "MapReduce" [12]-[13]. This framework has a high level 

of scalability and fault tolerance. A vast volume of data in batches can be managed by this system and 

it provides observation blow understanding of past data, but it can only analyze a constrained 

collection of data. Although MapReduce [14]–[19] isn't designed for processing real-time stream 

applications, its critical function is to process data as soon as it arrives to get a quick response and 

make effective decisions. As a result, for effective and speedy analysis having very low latency and 

high throughput, a real-time stream processing spatiotemporal data novel framework is required. 

From the literature, it is observed that there is a vast growth of spatiotemporal datasets which are 

coming from different sources, resulting in different structures of spatiotemporal datasets. This leads 

to a serious problem known as heterogeneity of spatiotemporal data [6]. Processing of these 

spatiotemporal datasets is challenging, as they do not have a common data structure presentation for 

modeling, resulting in inaccurate results during data analytics. Also, it was observed that 

spatiotemporal big-data systems are based around “Hadoop”, which is not designed to process data in 

real time; hence, in our study, we proposed a true-real-time stream processing framework for 

spatiotemporal data, that takes care of the heterogeneous data issues and processes big spatiotemporal 

data in real time.  

This paper gives an overview of certain essential concepts in spatiotemporal unbounded data, stream 

processing, big-data storage and other related fields. After that, we present some tools and systems that 

enable real-time data processing. A full comparison of various queueing message systems, stream 

processing platforms and data storage platforms is also made available. In addition, we offer a novel 

framework based on the previous comparison. Finally, we compare and contrast our suggested novel 

framework with others from the literature. The rest of the paper is structured as follows: Section 2 

highlights spatiotemporal big data. Data-processing technologies are presented in Section 3. Section 4 

presents the distributed queuing management technologies with a comparison among them. Section 5 

presents the technologies for big-data storage. The state-of-the-art real-time processing architectures 

are highlighted and compared in Section 6. Section 7 presents the proposed framework and Section 8 

provides the conclusions. 

2. SPATIOTEMPORAL BIG DATA 

In terms of spatial data storage, geographic analysis and spatiotemporal visualization, a lot of big-data 

platforms fared poorly [20]. In industry, research and a range of other fields, the term "big data" is 

now commonly used. "Spatiotemporal big data" describes the creation of huge datasets, which are 

unable to be analyzed and managed due to the vast amount and complexity of data collected at a 

certain given time. As information technology has progressed, the demand for processing, 

understanding and displaying spatiotemporal large data has increased significantly. A vast volume of 

geographical and spatiotemporal data, as well as its application sectors, necessitate a distributed and 

highly scalable data-processing system [21]. This demand is being met by researchers from both 

academia and industry. The MapReduce framework, Hadoop [22], NoSQL databases [23] and Spark 

[24] are all used in modern large-scale geographic data processing systems. The majority of these 

systems improved previous systems by adding spatial or spatiotemporal support as a layer on top of 

them or by extending the core of them. A high number of these systems were built from the ground up 

or run on platforms other than Hadoop, NoSQL and Spark. A true-real-time stream processing 

spatiotemporal data framework having these properties; namely, scalability (Sc), prediction tools (PT), 

data analytics (DA), multiple event types (MET), data storage (DS), Real-time (Rt) and performance 

evaluation (PE) stream processing (SP), is rare in the literature. 

 Stream Processing (SP): To process data that just comes in, the system should use stream 

processing. Stream-processing technologies enable us to transform and analyze data as it is 

being received. As a result, stream processing is critical for delivering real-time functionality 

[25]. 

 Data Storage (DS): To save essential data, the system needs to include a data-storage layer. 

This data can be used in other operations as well as for historical analyses. Furthermore, 

storage systems should be able to store a vast amount of data as a result of the size of 

spatiotemporal data [26]. 
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 Performance Evaluation (PE): To demonstrate the proposed system's correctness and 

effectiveness, an assessment should be available. In many cases, performance is critical; as a 

result, it should've been evaluated to present enterprises with adequate knowledge to measure 

the success of the suggested solution and its suitability for the current circumstances [25].  

 Multiple Event Types (MET): The technology should support a wide range of kinds of events 

as input sources, including various forms, such as XML, Java Map and JSON and also as 

unstructured forms, such as text, CSV and actual data. This characteristic will enable the 

framework to manage and incorporate a diverse set of spatiotemporal data sources, allowing it 

to be used in real-world settings [25].  

 Scalability (Sc): Modern large-data stream processing engines stress scalability as a 

fundamental quality attribute [27]. The system must be scalable; this is to aid a high volume of 

data control. In most cases, more data sources can be incorporated into the same infrastructure 

and this should be able to handle the influx of new spatiotemporal data [25]. 

 Prediction Technologies (PT): The technology could also provide developers with prediction 

tools to help them enhance the level of service and the outcomes [25]. 

 Data Analytics (DA): This spatiotemporal (heterogeneous) data must be analyzed by at least 

one mechanism in the system. The capacity to evaluate the data we collect to uncover and 

report circumstances of interest to interested agents is one of the most significant benefits of 

the internet of things [26]. 

 Real-time Processing (RP): Spatiotemporal data should be processed in real time or close to 

real time. This kind of system will be able to respond to situations of interest as early as 

possible and as effectively as possible if we can conduct all of the supplied functionality 

immediately [25]-[26].  

3. DATA PROCESSING TECHNOLOGIES 

3.1 Data Stream Processing  

Real-time data analytics with low latency and high throughput needs became increasingly important in 

many sectors, such as healthcare, transportation and smart homes [28]. In the industry, stream 

processing is getting a lot of popularity as a new programming paradigm for implementing real-time 

data-driven applications [29]. “A stream is an infinite series of tuples in a distributed data stream 

processing system (DSPS). A data source reads data from an external source (or sources) and feeds it 

into the system as streams of data. A processing unit (PU) takes tuples from data sources or other PUs 

and processes them with user-supplied code. It can then transfer the data to other PUs for further 

processing [30]. To express parallelism, a DSPS typically uses two levels of abstraction (logical and 

physical). An application is typically depicted as a directed graph in the logical layer, with each vertex 

corresponding to a data source or a PU and direct edges indicating how data tuples are transmitted 

between data sources/PUs. Each data source or PU can run as many parallel jobs as possible on a 

cluster of machines and each task is an instance of that data source or PU. A DSPS's physical layer 

typically consists of a group of virtual or physical machines that process data received and a master 

that acts as the cluster's central control unit, distributing user code, scheduling jobs and monitoring 

them for problems. An application graph is run on numerous worker processes on multiple (physical 

or virtual) machines at runtime. In most cases, each machine is set up with many slots. The number of 

slots specifies how many worker processes can execute on this machine and can be pre-configured by 

the cluster operator based on hardware constraints (such as the number of CPU cores)”. Each worker 

process has its slot, which is used to process data tuples using user code utilizing one or more threads. 
Normally, at runtime, a job is assigned to a thread (even if it does not have to be this way). A 

scheduling mechanism in a DSPS outlines how threads are assigned to processes and machines. A 

default scheduler is included with many DSPS; however, it can be modified with a custom scheduler. 

The default scheduler often employs a straightforward scheduling approach that distributes threads to 

pre-configured processes, which are subsequently assigned to machines in a round-robin fashion. This 

technique results in a nearly even workload distribution throughout the cluster's available machines. In 

addition, a DSPS usually provides multiple grouping options, which specify how tuples are distributed 

among tasks [30]. 



259 

"A Novel True-Real-Time Spatiotemporal Data Stream Processing Framework", A. Angbera and H. Y. Chan. 

    

3.2 Stream Processing Platforms 

In this part, we explore and present the differences between data stream processing tools, such as 

Apache Spark, Apache Hadoop, Apache Storm and Apache Flink. To organize and analyze data, 

classic relational database management systems, as well as many current batch processing tools, like 

Hadoop and Spark, have been deployed. Although these technologies have progressed and are 

beneficial for several products, they are not the greatest choice for creating real-time applications [31]. 

As a result, emerging innovations, like Apache Storm, Apache Flink and others, have been developed 

to manage vast quantities of data streams, process them and analyze them as they move to accomplish 

the demands of real-time applications. These technologies strive to capture the importance of time in 

real-time analytics, streaming analytics and sophisticated-event processing. We are inspired to provide 

a truly real-time stream processing framework for spatiotemporal data because of the necessity of such 

emerging technologies. We will show that earlier techniques, such as MapReduce, do not provide real-

time processing despite their capacity to process a vast volume of data, not minding the rate at which 

the data comes in. 

Apache Spark: Spark is a unified large-data analytics engine with built-in streaming, SQL, machine 

learning and graph-processing modules. It was created at the University of California in 2009, released 

as an open source in 2010 and given to the Apache Software Foundation in 2013, which has been in 

charge of the project since then. Spark is the successor to Hadoop, which was the original big-data 

analytics platform and was used for batch processing [32]. The MapReduce paradigm typically 

employs a linear data flow to take data out of the disc, map a function across the data, reduce the 

results to that map and ultimately save this reduced result on the disc-inspired Spark. Furthermore, 

Spark's “Resilient Distributed Dataset” (RDD) enables multiple readings of datasets as well as 

interactive data analysis [33]. The Spark adds in-memory processing, which allows for up to 100 times 

quicker processing, albeit it has the drawback of requiring smaller datasets than Hadoop due to 

resource constraints. Spark's architecture is made up of Spark Core, which is the project's foundation 

and the modules or frameworks listed above, which are built on top of it: MLlib for machine learning, 

Spark Streaming, Spark SQL and GraphX for graph processing. Through an API based on the RDD 

abstraction, Spark Core provides basic I/O functionality as well as distributed task dispatching and 

scheduling. This construction is depicted in detail in Figure 1. 

Apache Hadoop: It's a platform with open access for data processing that makes use of commodity 

technology to store and analyze enormous volumes of data. The Hadoop ecosystem is seen in Figure 2 

along with the framework's major components. The “Hadoop Distributed File System” (HDFS) and 

the “MapReduce programming” style are the two most significant components of the Hadoop 

architecture. The data is stored in HDFS and processed in a distributed way using MapReduce. 

Despite its many benefits, Hadoop lacks storage and network encryption, has limited flexibility, is 

unsuitable for tiny-data collections and has a large I/O overhead. Hadoop, particularly the Map-

Reduce framework, which is never the better technology for processing the most recent set of data, is 

constrained to batch processing. This is one of its major disadvantages [3]. 

Figure 1. Apache Spark architecture.                         Figure 2. Hadoop ecosystem [3]. 

Apache Storm: It's an open-source distributed framework that makes it easier to create fault-tolerant 

programs that run in parallel on computing clusters [34]. The Storm was developed by BackType, a 

business that was acquired by Twitter in 2011. It is an Eclipse Public License-compliant open-source 

project. In Storm, a topology is a computing network (Figure 3) that defines how data (such as tuples) 

travels between processing units [35]. A topology can continue to run indefinitely or until it is 

interrupted by a user. Similar to earlier application designs, a topology gathers information and 
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separates it into portions that are handled by assignments to cluster nodes. Data that nodes share 

is tuples, which are sorted collections of values. The Storm is built on a master-slave paradigm, with a 

master node running the Nimbus daemon and keeping a membership list to ensure data-processing 

reliability. According to Nimbus, it connects to Apache Zookeeper [35]. 

A Storm cluster is comprised of 3 nodes, as illustrated in Figure 4: "Nimbus," (when the original 

Nimbus instance fails, the secondary Nimbus instance takes over [36]). That is the same as Hadoop's 

job tracker, "Supervisor," which is in charge of starting and halting the process and "Zookeeper," a 

common coordination server that governs the cluster of the Storm [3].  

 

 

 

 

 

 

 

                  Figure 3. Topology of a storm.                                Figure 4. Storm Architecture [36]. 

Apache Flink: It’s a platform for stream and batch data processing with open access, that arose from a 

fork of the "Stratosphere" project, which was founded in 2010 and developed by a team of researchers 

from Humboldt-Universität zu Berlin, Technical University Berlin and Hasso-Plattner-Institut 

Postdam with funding from the German Research Foundation. The project's goal was to develop a new 

big-data analytics platform to aid research in Berlin-area universities. It was elevated to a high-stage 

project at the “Apache Software Foundation” at the end of 2014 [32]. The master-slave model is the 

base design for Flink, which is made up of three primary components. Job Manager: It is the 

distributed execution's coordination node (master node) that manages the data flow between the slave 

nodes' task managers. The Task Manager is in charge of executing the operators that receive and 

produce streams, notifying the Job Manager of their status and exchanging data streams amongst the 

operators (task managers). Client: It converts computer code into a data-flow graph, which is then sent 

to the Job Manager to be executed. Flink is a native (true) stream-processing framework that can also 

handle batch processing, considering each batch as a stream of bounded data. Apache Flink combines 

stream processing with CEP (Complex-event Processing) [37] technology to provide real-time data 

analysis and response. Flink allows us to apply transformations to data streams and then analyze the 

results [38]. Figure 6 shows the ecosystem of flink. 

             Figure 5. Structure of streams [32].                               Figure 6. An ecosystem of Flink. 

Streams that are unbounded and bounded are depicted in detail in Figure 5. Unbounded streams have a 

beginning, but no finish; and to achieve a complete result, the sequence in which the events are 

generated frequently matters. Bounded streams have a beginning and an end, but they may be sorted; 

thus, the order of events isn't important. Batch processing is the term for this method.  

Table 1 lists the characteristics of the data-processing tools mentioned in this paper. For stream 

processing, Flink is a better technology for true real-time processing, Hadoop handles batch 
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processing and Spark can manage micro-batching, according to the comparison of several streaming 

data processing platforms offered in Table 1. To minimize the latency overhead that batching and 

micro-batching impose, Storm uses the spouts and bolts to execute one-at-a-time processing. Flink 

supports batch and true stream processing. It's highly optimized, with features such as light-weighted 

snapshots and it appears to be the data stream management system, the market leader. As we can see, 

the majority of the desired features (low latency, high throughput, guarantee of exactly-once execution 

and state management) are available. As a result, we adopt Flink as our computational framework for 

processing streaming data in our study. 

Table 1. Data-processing technologies. 

Features  Apache Spark Apache Flink Apache Hadoop Apache Storm 

Open access Yes Yes Yes Yes 

Coordination tool Zookeeper Zookeeper Zookeeper Zookeeper 

Language Python, R, C#, 

Scala, Java 

Scala, Python, 

SQL, Java 

Scala, Python, 

Java 

Any PL 

In-memory processing Yes Yes No Yes 

Data processing Batch/Stream 

(micro-batch) 

Batch/Stream 

(Native) 

Batch Streaming 

Execution model Micro-batch Real-time (Ture 

streaming), micro-

batch and batch. 

Batch Real-time (one 

at a time) 

Fault tolerance Yes Yes Yes Yes 

Achievable latency Low latency Lowest latency as 

compared with 

Spark and Storm 

High Very low 

latency 

Data-processing 

guarantee 

Exactly-once 

processing 

Exactly-once 

processing 

Exactly-once 

processing 

At least once 

processing 

Data storage  Yes Yes Yes No 

Optimization Manual Automatic Manual Manual 

Operating system Windows, 

macOS, Linux 

Linux, macOS, 

Windows 

UNIX, Windows  Windows, 

Linux, macOS 

Throughput High Very high Very low Low 

Flink has similar features to Spark, but it operates as a native stream engine, posing numerous 

obstacles to Spark in stream processing (e.g. in the case of latency and recovery). Flink also appears to 

be stronger than Storm [39]. 

4. DISTRIBUTED QUEUING MANAGEMENT TECHNOLOGIES 

Data is transferred from one program to another using a messaging system. Applications can 

concentrate just on data rather than on how it is exchanged. Traditional messaging systems exist, but 

the majority of them are incapable of working with a huge volume of data in a real-time setting. 

Message queuing reliability is a key feature of distributed messaging systems. The P to P (point to 

point) pattern and the publish-subscribe pattern are the two types of message patterns. In a messaging 

system, the publish-subscribe, commonly known as pub-sub, is used [1]. Publish/subscribe messaging 

has been supported by distributed queue management solutions, like RabbitMQ, Amazon Kinesis, 

Kafka and Google Pub/Sub in recent years [31]. When it comes to transferring massive amounts of 

data around for real-time applications, these technologies have provided some beneficial new 

solutions. While distributed queue management systems may appear to be identical to traditional 

message queuing technologies, their architecture is vastly different and as a result, their performance 

and behavioral properties are vastly different. Traditional queuing schemes, for example, eliminate 

handled responses out from the queue and are unable to spread out when multiple consumers perform 

different activities at the same time. Distributed queuing systems, on the other hand, are well-suited 

for both online and offline content ingestion, because they can accommodate numerous clients and 

prevent data loss by distributing resilient discs across replicated clusters. The responses are committed 

to the dispersed queues as soon as feasible, ensuring message delivery for a set amount of time. Each 

distributed queue management solution splits its topics (i.e., where a producer publishes data 
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(messages) and a consumer retrieves it). The messages are absorbed by every consumer segment 

(partitions) of a specific subject, with just a single consumer from the same consumer segment 

consuming the same partition. The consumer group's function is quite beneficial for re-balancing when 

partitions and/or customers change [31]. Table 2 lists aspects to consider when selecting a distributed 

queuing system, involving messaging guarantees, disaster recovery, replication, federated queues 

(which disperse a single queue's load across nodes or clusters), supported languages and many others. 

Table 2. Distributed message queuing technologies. 

Features  Kinesis Ms. Azure Event 

Hub 

Apache Kafka RabbitMQ Google pub/sub 

Supported 

language 

Java, Python, 

.NET, C++, Go, 

PHP,  Ruby, 

Node.js 

 

Java, C++, Ruby, 

PHP, Node.js,  

Python, .NET 

PHP, Ruby, 

Java, Python, 

.NET,  Node.js, 

Go, C++ 

Go, C++/C, 

Java, Python, 

.NET, PHP,  

Ruby, Node.js 

PHP, Ruby, Java, 

C++, Node.js, 

Python, .NET 

Messaging 

guarantees 

Yes / At least 

once 

Yes / At least once Yes / At least 

once 

Yes / At least 

once 

Yes / At least 

once 

Configurable 

persistence 

period 

from one to 

seven days 

(default is 24 

hours) 

24 hours as default 

(from one to seven 

days) 

No maximum N/A Seven days (non-

configurable) or 

only when it is 

recognized by all 

subscribers 
Latency 200 ms to 5 

seconds 

There are no values 

cited. 

Some set-ups 

are measured in 

ms. 

Benchmarking 

revealed a 

median delay of 

~2 ms.  

There are no 

values cited. 

There are no 

values cited. 

Recovery of 

disaster 

Yes Yes Yes Yes Yes 

Replication Hidden (across 

three zones) 

Configurable replicas Configurable 

replicas 

Configurable 

replicas 

Hidden  

Consumer 

groups 

Yes Yes Yes Yes Yes 

Guarantees 

ordering 

Guaranteed 

within the 

confines of a 

partition 

Guaranteed within the 

confines of a partition 

Guaranteed 

within the 

confines of a 

partition 

Guaranteed 

using AMQP 

channel 

No order 

guarantees 

Throughput 1 MB/s input, 2 

MB/s output or 

1000 records per 

second can all be 

supported by a 

single shard. 

20,000 messages 

per second 

throughput 

Throughput units have 

been scaled. Each one 

can handle 1 MB/s 

entrance, 2 MB/s 

egresses and 84 GB of 

storage. The standard 

tier allows for a total 

of 20 throughput 

units. 

30,000 

messages per 

second 

throughput 

There are no 

figures for 

throughput that 

have been 

mentioned. 

The standard is 

100 MB/s in and 

200 MB/s out; 

however, the 

maximum speed 

is stated to be 

infinite. 

Apache Kafka is a real-time communication system that uses a distributed publish-subscribe model. 

Kafka can handle a large volume of data, allowing you to send messages at the end-point. We also 

choose Kafka over other popular messaging systems in this study for three reasons: To begin with, 

other similar message broker technologies, such as RabbitMQ, Amazon Kinesis, ActiveMQ and other 

enterprise messaging systems, are ephemeral, meaning that they keep data in memory or other light 

storage. Kafka, on the other hand, provides durability by persisting data on storage, which expands 

and broadens its application scenarios. Second, Kafka is a data-transit technology rather than a data-

processing system. This distinguishes it from the competition in stream processing. The third reason is 

that Kafka is frequently used in conjunction with other systems for streaming-data processing. 

For ingestion, Apache Kafka is currently state-of-the-art. To consume Kafka, two sets of actors are 
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required, as shown in Figure 7. Producers distribute messages on one or more Kafka topics. Data is 

sent to Kafka brokers by the producers. When a producer sends a message to a broker, it is considered 

published. Producers have the option of sending messages to a certain partition. Consumers are in 

charge of pulling data from Kafka brokers and sending it to processing nodes (e.g. Spark or Flink). 

Kafka brokers are managed and coordinated by a Zookeeper. When the latest broker is deployed to the 

Kafka system or when a broker in the Kafka system fails, the Zookeeper service is used to notify 

producers and consumers. 

 
Figure 7. Apache Kafka framework. 

5. TECHNOLOGIES FOR BIG DATA STORAGE 

The difficulty of huge spatiotemporal data quantities that are growing at an exponential rate has lately 

been addressed by upgrading big-data analysis tools. The big-data analysis solutions often handle 

several issues, by giving the distributed environment the chance to scale out by adding more nodes to 

supply processing units and storage. Cassandra, HBase, HDFS and MongoDB are examples of large-

data storage platforms that leverage shared-nothing designs to address storage limits by horizontally 

expanding out to new nodes, allowing for huge data expansion. The following are some of the 

characterized criteria used to compare the aforementioned big-data storage systems: server operating 

systems, methods of partitioning, data scheme, concurrency, programming languages and others, as 

seen in Table 3. The following are the 3 kinds of data models for storage that can be broadly grouped: 

(I) A file system such as HDFS. Data is saved schemaless in HDFS and taken logically at processing 

time based on the processing application's requirements, a technique refers to as “Schema-on-

Reading”. (II) Document-based, example, MongoDB; and (III) Column-based schema, example, 

Cassandra and Hbase [31].  

Table 3. Storage technologies for big data. 

Features  Cassandra Hadoop Hive MongoDB HBase 

OS server FreeBSD, Linux, 

OS X, Windows 

All operating 

systems that have 

a “Java virtual 

machine” 

Linux, OS X, 

Windows, Solaris,  

Windows, Unix, 

Linux,   

Model for storing data Column-based File-system Document-based Column based 

key-value for MapReduce  Yes Yes Yes Yes 

Concurrency Yes Yes Yes Yes 

Capabilities for in-memory  Yes N/A Yes Yes 

Theorem of CAP  Consistency 

Partition tolerance 

Consistency 

Partition tolerance 

Availability 

Partition tolerance 

Consistency 

Availability 

Programming languages 

supported  

“C#, C++, Clojure, 

Erlang, Go, 

Haskell, Java, 

Node.js, Perl, PHP, 

Python, Ruby, 

Scala” 

C++ 

Java 

PHP 

Python 

“C#, C++, 

Clojure, Erlang, 

Go, Haskell, Java, 

Node.js, Perl, 

PHP, Python, 

Ruby, Scala” 

“C, C#, C++, 

Groovy, Java, 

PHP, Python, 

Scala” 

Concept consistency  Eventual 

Consistency 

Immediate 

Consistency 

Eventual 

Consistency 

Eventual 

Consistency 

Immediate 

Consistency 

Immediate 

Consistency 
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Methods of APIs and other 

access 

 

ODBC and JDBC JDBC, ODBC, 

Thrift 

Proprietary 

protocol using 

JSON 

ODBC and JDBC 

Description Large volumes of 

structured data can 

be managed with a 

distributed 

database. 

Data warehouse 

software for 

querying and 

managing large 

distributed 

datasets, based on 

Hadoop 

One of the most 

popular document 

storage options 

Open-source, 

networked, 

versioned and 

column-oriented 

database 

Partitioning methods  

 

 Key partitioning Shading Shading Key partitioning 

Data scheme Relational DBMS 

uses Amazon 

DynamoDB 

Relational DBMS 

Schema-on-

Reading 

Schema-free Relational DBMS 

uses Google 

Bigtable 

Replication Masterless-ring Selectable 

replication factor 

Master/slave 

Replication 

Master/slave 

Replication 

Base code Java Java C++ Java 

In-memory data processing has recently gained popularity in developing technologies, with RAM and 

flash memory replacing slower drives. As a result, we may differentiate large-data storage solutions 

based on their ability to handle data in memory, which is especially important for essential real-time 

applications. Representatives of this mechanism include MongoDB, Cassandra and HBase. As a result, 

in our research, we adopted Cassandra because of its superior query performance and always-on 

features, as well as its distributed capability for real-time applications. Cassandra has a masterless 

"ring" architecture, which has several advantages over traditional master-slave topologies. As a result, 

each node in a cluster is regarded evenly, so quorum can be achieved by using a majority of nodes. 

6. REAL-TIME PROCESSING OF STATE-OF-THE-ART ARCHITECTURE 

Lambda and Kappa are two real-time processing architectures that are presented in this study. We 

evaluated them using their specifications and came up with a stronger solution that meets the real-time 

requirements specified previously. 

Batch processing, as shown in the literature, performs processing on huge datasets with great 

throughput and efficiency, but it usually takes a long time. It could take several hours, which is far too 

much latency for almost any current application to provide live results. Stream processing, on the 

other hand, works with the most recent records that enter the system, allowing for quick processing 

and near-real-time results, but at the cost of being less precise than batch processing. Nathan Marz 

proposed the Lambda architecture [40], which combines both types of processing to gain their benefits 

in one architecture, providing real-time results and correct perspectives with low latency and high 

throughput with fault tolerance. This architecture is made up of 3 levels; namely, the batch layer, the 

speed layer and the serving layer (depicted in figure 8). 

The batch layer generates batch views and keeps track of the master copy of the dataset. The serving 

layer incorporates the findings from the batch and speed layers. To compensate for the significant 

latency of the service layer updates, the speed layer only processes the most current data. The batch 

and speed processing layers are on the same level in the architecture. This means that the fresh raw 

data is provided to both of them at the same time. In the meantime, the serving layer is located above 

as seen in Figure 8. However, due to its intricacy, this architecture has significant drawbacks as well as 

some criticism. This architecture necessitates the integration of numerous systems and technologies, 

which adds to the process's complexity. In addition, because there are two processing levels, distinct 

processing codes must be maintained and kept in sync to provide views to the serving layer. This also 

highlights the fact that such routines might be written in a variety of programming languages. Finally, 

the serving layer is fed by two separate layers whose data, aside from the batch layer's pre-stored data, 

will be identical, implying that data, information and logic will be duplicated.  

Kappa architecture is a lambda architecture simplification. It is a software architectural pattern 

designed by Jay Kreps in 2014 based on his LinkedIn experience [3]. With the exception that all data 

travels over a single conduit, the stream layer, the Kappa design delivers the same benefits as the 

Lambda architecture. Data is appended to a unified, distributed and fault-tolerant log and its status is 
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only updated when such appends occur. This allows for view recalculations or recomputations. To do 

so, the data is streamed back in from the beginning. To avoid losing the prior computation, a parallel 

task is started, allowing two computations to be done at the same time. Following the completion of 

the second computation, the developer must decide whether to keep both, combine them or remove the 

prior one and keep the last one if it exceeds expectations. The Kappa architecture, which is made up of 

two levels, is depicted in Figure 9. The results are queried using the serving layer and the stream 

processing jobs are executed using the stream processing layer. 

              Figure 8. Lambda architecture.                                    Figure 9. Kappa architecture. 

Table 4 shows a brief comparison of the two architectures, Lambda and Kappa, as previously 

mentioned, using certain criteria. 

Table 4. Comparison between lambda and kappa architecture. 

Features  Lambda Kappa 

Real-time Isn't accurate Correct (accurate) 

Fault tolerance Yes Yes 

Architecture Immutable Immutable 

Scalability Yes Yes 

Permanent storage Yes No 

Guarantees processing  Yes, in batch approximate in streaming Exactly-once with consistency 

Re-processing paradigm During each batch cycle Only when there is a code update 

Data processing  Real-time and batch  Real-time 

Layers Batch, serving and real-time layers Stream processing and serving layers 

The lambda architecture is one of two architectures used in big-data systems and it allows for 

simultaneous processing of enormous datasets as well as continuous real-time access to them. The 

goal behind this architecture is to build two independent processes, one for batch data processing and 

the other for real-time data access. The batch layer performs calculations on the whole data collection. 

It takes time, but the data returned is complete and of good quality. The dataset in the batch layer is 

believed to be intact [41]. You can maintain data consistency and access to past data in this way. 

Incoming data is processed in real time by the real-time layer. The speed with which this layer's data 

may be accessed correlates to the prospect of speedier information retrieval. Unfortunately, due to a 

lack of historical data, not all computations can be performed [41]; hence, as seen in Table 4, real time 

“isn't accurate” in the lambda architecture; however, the kappa architecture can overcome this setback, 

providing accurate real time processing. Both architectures are fault-tolerant, immutable, scalable and 

have guaranteed processing ability, as can be seen in Table 4. The requirement to sustain two distinct 

applications: one for supporting the batch layer and the other for supporting the real-time layer, is the 

biggest and most frequently noted downside of the lambda architecture. Because the tools used in each 

layer differ, it's difficult to pick one that can serve two objectives. Unfortunately, maintaining this 

design is more difficult and costly [41]-[42]. The kappa architecture maintains a single pipeline; 

hence, it is easier to manage. Therefore, in our study, we adopted the kappa architecture as a result of 

its numerous advantages over the lambda architecture. However, the kappa architecture had no 

permanent storage, as seen in Table 4, but in our proposed framework, we introduced the permanent-

storage layer. 



266 

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022. 

 

7. PROPOSED FRAMEWORK 

Taking into consideration the unique peculiarities of spatiotemporal big data, as well as overviews of 

stream-processing platforms, distributed message queuing systems and big-data storage technologies, 

the two state-of-the-art real-time architectures presented in this study have numerous advantages and 

disadvantages. Based on the findings of the literature, we suggested the open-source framework 

depicted in Figure 10, which has a unique set of properties, the most notable of which is its capacity to 

analyze massive amounts of spatiotemporal data in real time at high speed. It also allows an unlimited 

number of users to create new and unique features as well as make various reforms. The proposed 

framework closely resembles the kappa architecture, which provides more benefits than the lambda 

design. However, because the kappa architecture lacks a storage layer, we included one in our 

proposed framework. 

In our proposed framework, there is the data source, from which is where the spatiotemporal datasets 

are obtained. Sensor networks, online traffic, social media, video streams and other sources could all 

yield distinct dataset structures, resulting in a large problem known as heterogeneous data [38]. This 

brings in the data ingestion layer which streams data from various upstream applications and fed to 

real-time downstream applications using distributed queueing management technologies. In our 

proposed framework we adopted Kafka as a result of its numerous advantages over other message-

queueing systems. Kafka is highly scalable and most importantly can handle the challenge of 

heterogeneous data which is also a major problem with spatiotemporal datasets. Kafka is a data-transit 

technology rather than a data processing system. This distinguishes it from the competition in stream 

processing with high throughputs. The spatiotemporal dataset which is produced from the various data 

sources is transformed and filtered by Kafka and a common format is produced for either storage or 

immediate computations as proposed by our framework. We must first install the Kafka cluster, then 

launch Zookeeper and the Kafka server to get Kafka up and running. Zookeeper monitors the state of 

Kafka cluster nodes and keeps track of Kafka topics, partitions and other data. Kafka provides an 

inbuilt KafkaProducer<k, v> class that uses the serialization process to store streaming data in a user-

defined format (e.g. CustomObject). It is the conversion of a specified data type into byte format [42]. 

The configuration properties file is used to create the Kafka producer. The topic name and 

CustomObject are the key-value pair. The syntax is: “Producer<String, CustomObject> producer 

=new KafkaProducer<String, CustomObject> (configProperties);”. The KafkaConsumer<k, v> class 

reads and deserializes the streaming data from the Kafka producer. The process of transforming a byte 

format to the desired format is known as derealization [42]. The ingestion layer is very important in 

real-time spatiotemporal data analysis, as the cleansing and preprocessing of data is carried out here. 

The next layer is the real-time processing spatiotemporal data layer, which is focused on real time data 

processing with low latency. In our proposed framework, Flink was adopted as a result of its true real-

time processing ability. Hence, our major goal is to propose a true real-time processing framework as 

the spatiotemporal datasets are fed into the system for prompt and immediate results. Flink has a very 

strong unique feature that makes it tall among other stream-processing engines or computational 

engines, which is CEP [37]. CEP systems assess queries against uninterrupted streams of events to 

find trends [29]. CEP's goal is to analyze data as it enters our system, so we don't have to keep it 

somewhere unless it's necessary. Also, the goal of CEP is to analyze and react to streams of events. 

Machine learning which is also part of our proposed framework at the processing layer is responsible 

for real-time prediction. Our framework has been designed to incorporate all these functionalities. At 

the end of the real-time processing layer, the output is sent to the storage layer, where we adopted the 

Cassandra as a result of its distributed ability. Cassandra has many benefits, such as a completely 

decentralized design with no single point of failure, promising linear scalability, great write 

performance and configurable data consistency levels within queries. A ring of nodes organizes the 

Cassandra cluster. Each of these nodes is in charge of storing a portion of the data. The hash keyspace 

is divided by the total number of tokens selected for the database to provide an equal data distribution 

inside the ring. A random subset of potential primary hash key values is connected with a node based 

on the number of tokens issued to it. This subset of data becomes the responsibility of the node for the 

entire database. Each node in the ring usually has the same quantity of tokens. Cassandra replicates 

data on other nodes in the ring to ensure high availability. The Replication Factor (RF) determines the 

number of replicas. This means that each node in a cluster of N nodes will store a piece of the 

keyspace equal to RF=N [43]. The visualization layer's primary responsibility is to transmit the final 
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data and outcomes in streaming mode to the user. If all processes are completed correctly, this layer 

can respond quickly. 

7.1 Comparison of the Proposed Framework 

The proposed framework has been designed to tackle various issues with both lambda and kappa 

systems. Lambda enables clients to have the most up-to-date vision. However, business logic is 

performed at both layer levels, two distinct sources of the same data are required to feed the next layer 

and this design requires many frameworks to set up. Kappa architecture was established as a result of 

the complexities of lambda architecture. Unlike lambda, kappa evolves to be more focused on data 

processing, even though it does not support permanent data storage. This architecture is less 

complicated than lambda and allows the user to select which implementation composers to use. 

However, kappa is not a magical formula that can solve all of the big spatiotemporal-data problems. 

Furthermore, instead of addressing data-quality issues or data-analysis outcomes, these two 

architectures focus on balancing throughput and latency to handle performance challenges. The kappa 

architectural principle underpins our proposed framework. It's a streaming data-processing approach 

that allows for long-term data storage by treating all incoming data as streaming data. The suggested 

framework can deliver actual real-time processing using Flink and machine learning. Flink is a fault-

tolerant distributed real-time computing system with many other advantages, as detailed in the 

previous sections. By efficiently combining and expanding sophisticated real-time computations in a 

computer cluster, Flink enables the reliable processing of infinite streams of data. In another 

comparison, the proposed framework was also created to address specific aspects that are strongly 

linked to spatiotemporal big data in stream processing. Some of these characteristics are scalability 

(Sc), data analytics (DA), multiple event types (MET), prediction tools (PT), data storage (DS), real-

time (Rt), performance evaluation (PE) and stream processing (SP). Table 5 compares our novel 

framework with others and our framework has all the capabilities, which are challenging to stream 

processing for big spatiotemporal data; hence, our proposed framework can handle all these 

characteristics. 

From Table 5, the check-marks (√) indicated that the existing framework from previous works can 

perform the important functions (Sc, SP, DA, MET, PT, Rt and PE) as regards big spatiotemporal data 

in stream-processing frameworks, while the check-marks (-) indicate that the framework cannot 

perform the earlier listed functions, since the authors did not incorporate them in their frameworks. As 

discussed earlier in Section 2, these characteristics or parameters are very important for real-time 

stream processing with big spatiotemporal data, making the system more robust and relevant, since it 

has all the required characteristics; hence, in our proposed framework, we made the provisions to 

accommodate all these characteristics.   

Table 5. Comparison of our proposed framework with others. 

 Sc SP DA DS MET PT Rt PE 

Corral-Plaza et al., [38]  √ √ √ √ √ - √ √ 

Carcillo et al., [33] √ √ √ √ - √ - - 

Amini et al., [44] √ √ √ √ - √ √ - 

D’silva et al., [45] √ √ √ √ √ - √ √ 

Jung et al., [46] √ - √ - - - - √ 

Montori et al., [47] - - √ √ - - - - 

Santos et al., [48] - - √ √ - √ √ - 

Our proposal √ √ √ √ √ √ √ √ 

 
 

Figure 10. Proposed framework. 

8. CONCLUSIONS 

We have developed a novel framework in this study that may be used in a variety of spatiotemporal 

big-data scenarios. Its key innovative advantage is the capacity to automatically handle and analyze 

spatiotemporal data regardless of structure. The inclusion and utilization of (1) Kafka as process 
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streams of spatiotemporal data sources as they occur; (2) Apache Flink as the computational layer and 

(3) Apache Cassandra as the storage layer for real-time distributed storage have benefited this 

framework. The study's major purpose is to present a true real-time processing paradigm using Flink 

and machine learning. In our proposed design, we suggested emphasizing the real-time processing 

layer and we did our best to optimize it with Flink and machine learning. The advantages of the 

technologies employed, as well as the advantages of kappa design after it was compared with the 

lambda architecture, where the key inspirations for this innovative building were obtained, are 

presented. The study highlighted stream-processing technologies, queueing-messaging systems and 

big-data storage technologies and presented their comparison for a better choice. Looking at the best 

tools and their advantages over others, the study proposed a novel true real time spatiotemporal data 

stream-processing framework. Hence, an important framework for processing and analysing 

spatiotemporal data from multiple sources with irregular shapes has been proposed, so that researchers 

can focus on data analysis instead of worrying about the data sources' structure. The following stage is 

to validate and assess its performance. The vast majority of research, including this one, has certain 

limitations. However, until the validation process is completed, we won't be able to examine its 

shortcomings. 
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 ملخص البحث:

تعُدددددقدرة عدددددقيررسيدددددبرتنادددددؤقرتدددددؤيّرة أؤرادددددرارة الندبددددددردؤدن ددددددر ر  دددددقة ردرتدددددار ر ر  ادددددأدر يعق دددددقر ددددد ر

ؤدددددرار ر يددددددر ددددد رة أؤرادددددرارة ا ر عر لددددددرااد لندبددددددردؤدن ددددددر ر ددددد ر  دددددر يرةلأاظادددددد رل دددددّرم دددددكمريدددددئلد

دددددددرارة بدية،ددددددد رة  بادددددددرس مرل دددددددأ رار  ب يسددددددددمر وددددددد رة بدية،ددددددد رسأدددددددقرةتابقادددددددتمرل   د

دددددرارل،ؤق دددددرمرتاددددد د رت دددددقد ر ر ي ي دددددر  ر رة الاد ة هدددددفارةلأترتددددد ر ددددد ر دددددفةرة أ ددددد ر دددددف كمريدددددئلد

ر لّ ر اعر لددددددرلت يؤددددد رة أؤرادددددرارة الندبددددددردؤدن ددددددر ر ددددد ر  دددددر ير بعدددددقد ررل   ددددد ر  دددددير  لدددددر ر جدددددريل

ؤددددددقر  بظادددددددمر  ؤدددددد ر ددددددبا د رة أددددددردويلر دددددد رة بدقاؤددددددنرسيددددددبرت يؤدددددد رة أؤراددددددرار ددددددق  ر دددددد ر،

رة  بارمر أ ؤدر  ر يرة أؤرارا 

ددددد ر ددددد ر اعبدددددقهريددددد ر دددددفةرة أ ددددد راايم دددددر ر ق دددددقة ر اعر لددددددرتدددددؤيّرة أؤرادددددرارة الندبددددددردؤدن ددددددر مر ا د

رسددددد رة دددددند  رة  عؤعددددد مر دددددّر قدددددف قرجنؤددددد ل رسر ؤددددددرل بددددد قي ة سبأدددددريةارر عر لددددددرة أؤرادددددرار ادددددقسدل

ر دددد رة  داددددرم ر آاندددددرة ددددفداقر عددددؤ رة سبأددددري راددددف كرالددددقلر عرياددددد ر ددددؤ رة  دادددديم رة اعبددددقهرلسددددق ل

ددددد ادريددددد رة دددددند  رة  عؤعددددد  ر دددددفةر ة ابأ ددددددررريددددد ر يةتدددددرارتدددددر عدرتبعيددددددةر اعر لددددددرة أؤرادددددرارة  د

ة دددددبر رادددددلراظدددددقرر دددددر يدرسيدددددبرتع ؤدددددرارة ا دددددر يرة انبيدددددددرة اادددددب ق دريددددد ر عر لددددددرتدددددؤيّر

رراري رة ند  رة  عؤع  ة أؤرا

 باؤددددددددنرة  اددددددديم رة اعبدددددددقهر  اددددددددتر دددددددق ار دددددددؤ ر   رتاددددددد راري دددددددر ر تدددددددبعأرّرة أؤرادددددددرار ددددددد ر

 ر  دددددر ي رمرلر   رتاددددد رييؤ دددددك ر اعر لددددددرتدددددؤيّرة أؤرادددددرامرلتعييددددد رة  ددددددر يبديندعدددددراريددددد رة دددددند 

ة  عؤعددددد مرلر   رتاددددد رارتدددددراقتية ريددددد رجأعددددددرة بد دددددن  ر ددددد ر  ددددد رة بد دددددن  رة ادددددي د ريددددد رة دددددند  ر

ر ددددد رة  دادددددرم رةلأقدددددق رة اادددددب ق در دددددتر عرياددددددرة  داددددديم رة اعبدددددقهر دددددّرسدددددق ل ة  عؤعددددد  رلندددددقرتاد

رسيدددددبر لايسددددددر ددددد رة   دددددر  مر  اعر لددددددرتدددددؤيّرة أؤرادددددراريددددد رة دددددند  رة  عؤعددددد مرلم دددددكر  دددددر  

ؤّمرل  لةارة بدينيدددددددّمرلت يؤددددددد رة أؤرادددددددرامرل ادددددددية رةلأددددددددقة رة ابعدددددددقد رمر وددددددد رة   راؤددددددددرة بديتددددددد

لت ددددددن  رة أؤراددددددرامرلة ددددددند  رة  عؤعدددددد مرلتعؤددددددؤ رةلأ ة ريدددددد ر عر لدددددددرتددددددؤيّرة أؤراددددددرا  رلنددددددقر

نددددر رسيددددبرة  داددددرم رةلأقددددق رل ددددق  رسيددددبريعر ؤبددددتريدددد رة بدعر دددد ر ددددّر  ثأددددترة  دادددديم رة اعبددددقهرتنيي

ر اؤّرة اار  رمةارة علاند 
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