
256
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

1. A. Angbera is with School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia. And with Department of

Computer Science Joseph Sarwuan Tarka University, Makurdi, Nigeria. Email: angberaature@student.usm.my

2. H. Y. Chan is with School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia. Email: hychan@usm.my

A NOVEL TRUE-REAL-TIME SPATIOTEMPORAL DATA

STREAM PROCESSING FRAMEWORK

Ature Angbera1 and Huah Yong Chan2

(Received: 9-Mar.-2022, Revised: 2-May-2022, Accepted: 23-May-2022)

ABSTRACT

The ability to interpret spatiotemporal data streams in real time is critical for a range of systems. However,

processing vast amounts of spatiotemporal data out of several sources, such as online traffic, social platforms,

sensor networks and other sources, is a considerable challenge. The major goal of this study is to create a

framework for processing and analyzing spatiotemporal data from multiple sources with irregular shapes, so

that researchers can focus on data analysis instead of worrying about the data sources' structure. We introduced

a novel spatiotemporal data paradigm for true-real-time stream processing, which enables high-speed and low-

latency real-time data processing, with these considerations in mind. A comparison of two state-of-the-art real-

time process architectures was offered, as well as a full review of the various open-source technologies for real-

time data stream processing and their system topologies were also presented. Hence, this study proposed a

brand-new framework that integrates Apache Kafka for spatiotemporal data ingestion, Apache Flink for true-

real-time processing of spatiotemporal stream data, as well as machine learning for real-time predictions and

Apache Cassandra at the storage layer for distributed storage in real time. The proposed framework was

compared with others from the literature using the following features: Scalability (Sc), prediction tools (PT),

data analytics (DA), multiple event types (MET), data storage (DS), Real-time (Rt) and performance evaluation

(PE) stream processing (SP) and our proposed framework provided the ability to handle all of these tasks.

KEYWORDS

Spatiotemporal big data, Real-time processing, Stream processing, Apache Kafka, Apache Flink, Apache

Cassandra, Apache Spark.

1. INTRODUCTION

One of the new elements for Internet-based applications is spatial-temporal data. Data utilized for real-

time analytics has become a part of production data in new internet application trends [1].

Spatiotemporal data is in enormous quantities through a variety of activities, such as clicks on a social-

media platform orders, sales, shipment data in retail and so on. As the internet-connected world grows

exponentially, a vast volume of data is generated in a continuous stream from a variety of sources.

Five billion people utilize various varieties of mobile devices, according to [2]. Again, according to an

IBM big-data study, there will be around 35 zettabytes of data generated yearly from 2020 [3] and data

growth will be 50 times faster than it is presently [4]. Every day, 2.5 quintillion bytes of information

are created [3]. The amount of data that can be generated is limitless. This phenomenon is referred to

as "big data" [1]. In conjunction with this concept, the 3V's of big data (Volume, Velocity and Variety)

have been coined [5]. The first V stands for the massive amounts of data produced by these

technologies. The second V represents the rate at which the sources generate these data, while the third

V represents the data's heterogeneity. There is usually a large amount of spatial-temporal data [6] that

is being generated. The 3.8 billion individuals and 8.06 billion internet-connected devices are

responsible for the vast amounts of data produced [7]. According to [8], one zettabyte of data was

generated in 2010 and seven zettabytes in 2014. As a result of the rapid emergence of massive

spatiotemporal datasets, volume, variety and velocity are all concerns that must be addressed. The

phrase "spatiotemporal big-data volume" refers to a large number of data that necessitates a great

amount of processing and storage [9]. The volume of data is increasing faster than computational

processing devices can keep up [10]. Spatiotemporal data is a continuous stream of data in terms of

velocity. As a result, the concerned stakeholders have to spend a lot of money on processing [11].

Real-time data stream processing is critical for a variety of applications, but processing a massive

volume of data coming from several sources, like online traffic, sensor networks and many other

sources, is a significant issue [3]. The most serious problem has been that the spatiotemporal big-data

257

"A Novel True-Real-Time Spatiotemporal Data Stream Processing Framework", A. Angbera and H. Y. Chan.

system is based around "Hadoop"; namely "MapReduce" [12]-[13]. This framework has a high level

of scalability and fault tolerance. A vast volume of data in batches can be managed by this system and

it provides observation blow understanding of past data, but it can only analyze a constrained

collection of data. Although MapReduce [14]–[19] isn't designed for processing real-time stream

applications, its critical function is to process data as soon as it arrives to get a quick response and

make effective decisions. As a result, for effective and speedy analysis having very low latency and

high throughput, a real-time stream processing spatiotemporal data novel framework is required.

From the literature, it is observed that there is a vast growth of spatiotemporal datasets which are

coming from different sources, resulting in different structures of spatiotemporal datasets. This leads

to a serious problem known as heterogeneity of spatiotemporal data [6]. Processing of these

spatiotemporal datasets is challenging, as they do not have a common data structure presentation for

modeling, resulting in inaccurate results during data analytics. Also, it was observed that

spatiotemporal big-data systems are based around “Hadoop”, which is not designed to process data in

real time; hence, in our study, we proposed a true-real-time stream processing framework for

spatiotemporal data, that takes care of the heterogeneous data issues and processes big spatiotemporal

data in real time.

This paper gives an overview of certain essential concepts in spatiotemporal unbounded data, stream

processing, big-data storage and other related fields. After that, we present some tools and systems that

enable real-time data processing. A full comparison of various queueing message systems, stream

processing platforms and data storage platforms is also made available. In addition, we offer a novel

framework based on the previous comparison. Finally, we compare and contrast our suggested novel

framework with others from the literature. The rest of the paper is structured as follows: Section 2

highlights spatiotemporal big data. Data-processing technologies are presented in Section 3. Section 4

presents the distributed queuing management technologies with a comparison among them. Section 5

presents the technologies for big-data storage. The state-of-the-art real-time processing architectures

are highlighted and compared in Section 6. Section 7 presents the proposed framework and Section 8

provides the conclusions.

2. SPATIOTEMPORAL BIG DATA

In terms of spatial data storage, geographic analysis and spatiotemporal visualization, a lot of big-data

platforms fared poorly [20]. In industry, research and a range of other fields, the term "big data" is

now commonly used. "Spatiotemporal big data" describes the creation of huge datasets, which are

unable to be analyzed and managed due to the vast amount and complexity of data collected at a

certain given time. As information technology has progressed, the demand for processing,

understanding and displaying spatiotemporal large data has increased significantly. A vast volume of

geographical and spatiotemporal data, as well as its application sectors, necessitate a distributed and

highly scalable data-processing system [21]. This demand is being met by researchers from both

academia and industry. The MapReduce framework, Hadoop [22], NoSQL databases [23] and Spark

[24] are all used in modern large-scale geographic data processing systems. The majority of these

systems improved previous systems by adding spatial or spatiotemporal support as a layer on top of

them or by extending the core of them. A high number of these systems were built from the ground up

or run on platforms other than Hadoop, NoSQL and Spark. A true-real-time stream processing

spatiotemporal data framework having these properties; namely, scalability (Sc), prediction tools (PT),

data analytics (DA), multiple event types (MET), data storage (DS), Real-time (Rt) and performance

evaluation (PE) stream processing (SP), is rare in the literature.

 Stream Processing (SP): To process data that just comes in, the system should use stream

processing. Stream-processing technologies enable us to transform and analyze data as it is

being received. As a result, stream processing is critical for delivering real-time functionality

[25].

 Data Storage (DS): To save essential data, the system needs to include a data-storage layer.

This data can be used in other operations as well as for historical analyses. Furthermore,

storage systems should be able to store a vast amount of data as a result of the size of

spatiotemporal data [26].

258

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

 Performance Evaluation (PE): To demonstrate the proposed system's correctness and

effectiveness, an assessment should be available. In many cases, performance is critical; as a

result, it should've been evaluated to present enterprises with adequate knowledge to measure

the success of the suggested solution and its suitability for the current circumstances [25].

 Multiple Event Types (MET): The technology should support a wide range of kinds of events

as input sources, including various forms, such as XML, Java Map and JSON and also as

unstructured forms, such as text, CSV and actual data. This characteristic will enable the

framework to manage and incorporate a diverse set of spatiotemporal data sources, allowing it

to be used in real-world settings [25].

 Scalability (Sc): Modern large-data stream processing engines stress scalability as a

fundamental quality attribute [27]. The system must be scalable; this is to aid a high volume of

data control. In most cases, more data sources can be incorporated into the same infrastructure

and this should be able to handle the influx of new spatiotemporal data [25].

 Prediction Technologies (PT): The technology could also provide developers with prediction

tools to help them enhance the level of service and the outcomes [25].

 Data Analytics (DA): This spatiotemporal (heterogeneous) data must be analyzed by at least

one mechanism in the system. The capacity to evaluate the data we collect to uncover and

report circumstances of interest to interested agents is one of the most significant benefits of

the internet of things [26].

 Real-time Processing (RP): Spatiotemporal data should be processed in real time or close to

real time. This kind of system will be able to respond to situations of interest as early as

possible and as effectively as possible if we can conduct all of the supplied functionality

immediately [25]-[26].

3. DATA PROCESSING TECHNOLOGIES

3.1 Data Stream Processing

Real-time data analytics with low latency and high throughput needs became increasingly important in

many sectors, such as healthcare, transportation and smart homes [28]. In the industry, stream

processing is getting a lot of popularity as a new programming paradigm for implementing real-time

data-driven applications [29]. “A stream is an infinite series of tuples in a distributed data stream

processing system (DSPS). A data source reads data from an external source (or sources) and feeds it

into the system as streams of data. A processing unit (PU) takes tuples from data sources or other PUs

and processes them with user-supplied code. It can then transfer the data to other PUs for further

processing [30]. To express parallelism, a DSPS typically uses two levels of abstraction (logical and

physical). An application is typically depicted as a directed graph in the logical layer, with each vertex

corresponding to a data source or a PU and direct edges indicating how data tuples are transmitted

between data sources/PUs. Each data source or PU can run as many parallel jobs as possible on a

cluster of machines and each task is an instance of that data source or PU. A DSPS's physical layer

typically consists of a group of virtual or physical machines that process data received and a master

that acts as the cluster's central control unit, distributing user code, scheduling jobs and monitoring

them for problems. An application graph is run on numerous worker processes on multiple (physical

or virtual) machines at runtime. In most cases, each machine is set up with many slots. The number of

slots specifies how many worker processes can execute on this machine and can be pre-configured by

the cluster operator based on hardware constraints (such as the number of CPU cores)”. Each worker

process has its slot, which is used to process data tuples using user code utilizing one or more threads.
Normally, at runtime, a job is assigned to a thread (even if it does not have to be this way). A

scheduling mechanism in a DSPS outlines how threads are assigned to processes and machines. A

default scheduler is included with many DSPS; however, it can be modified with a custom scheduler.

The default scheduler often employs a straightforward scheduling approach that distributes threads to

pre-configured processes, which are subsequently assigned to machines in a round-robin fashion. This

technique results in a nearly even workload distribution throughout the cluster's available machines. In

addition, a DSPS usually provides multiple grouping options, which specify how tuples are distributed

among tasks [30].

259

"A Novel True-Real-Time Spatiotemporal Data Stream Processing Framework", A. Angbera and H. Y. Chan.

3.2 Stream Processing Platforms

In this part, we explore and present the differences between data stream processing tools, such as

Apache Spark, Apache Hadoop, Apache Storm and Apache Flink. To organize and analyze data,

classic relational database management systems, as well as many current batch processing tools, like

Hadoop and Spark, have been deployed. Although these technologies have progressed and are

beneficial for several products, they are not the greatest choice for creating real-time applications [31].

As a result, emerging innovations, like Apache Storm, Apache Flink and others, have been developed

to manage vast quantities of data streams, process them and analyze them as they move to accomplish

the demands of real-time applications. These technologies strive to capture the importance of time in

real-time analytics, streaming analytics and sophisticated-event processing. We are inspired to provide

a truly real-time stream processing framework for spatiotemporal data because of the necessity of such

emerging technologies. We will show that earlier techniques, such as MapReduce, do not provide real-

time processing despite their capacity to process a vast volume of data, not minding the rate at which

the data comes in.

Apache Spark: Spark is a unified large-data analytics engine with built-in streaming, SQL, machine

learning and graph-processing modules. It was created at the University of California in 2009, released

as an open source in 2010 and given to the Apache Software Foundation in 2013, which has been in

charge of the project since then. Spark is the successor to Hadoop, which was the original big-data

analytics platform and was used for batch processing [32]. The MapReduce paradigm typically

employs a linear data flow to take data out of the disc, map a function across the data, reduce the

results to that map and ultimately save this reduced result on the disc-inspired Spark. Furthermore,

Spark's “Resilient Distributed Dataset” (RDD) enables multiple readings of datasets as well as

interactive data analysis [33]. The Spark adds in-memory processing, which allows for up to 100 times

quicker processing, albeit it has the drawback of requiring smaller datasets than Hadoop due to

resource constraints. Spark's architecture is made up of Spark Core, which is the project's foundation

and the modules or frameworks listed above, which are built on top of it: MLlib for machine learning,

Spark Streaming, Spark SQL and GraphX for graph processing. Through an API based on the RDD

abstraction, Spark Core provides basic I/O functionality as well as distributed task dispatching and

scheduling. This construction is depicted in detail in Figure 1.

Apache Hadoop: It's a platform with open access for data processing that makes use of commodity

technology to store and analyze enormous volumes of data. The Hadoop ecosystem is seen in Figure 2

along with the framework's major components. The “Hadoop Distributed File System” (HDFS) and

the “MapReduce programming” style are the two most significant components of the Hadoop

architecture. The data is stored in HDFS and processed in a distributed way using MapReduce.

Despite its many benefits, Hadoop lacks storage and network encryption, has limited flexibility, is

unsuitable for tiny-data collections and has a large I/O overhead. Hadoop, particularly the Map-

Reduce framework, which is never the better technology for processing the most recent set of data, is

constrained to batch processing. This is one of its major disadvantages [3].

Figure 1. Apache Spark architecture. Figure 2. Hadoop ecosystem [3].

Apache Storm: It's an open-source distributed framework that makes it easier to create fault-tolerant

programs that run in parallel on computing clusters [34]. The Storm was developed by BackType, a

business that was acquired by Twitter in 2011. It is an Eclipse Public License-compliant open-source

project. In Storm, a topology is a computing network (Figure 3) that defines how data (such as tuples)

travels between processing units [35]. A topology can continue to run indefinitely or until it is

interrupted by a user. Similar to earlier application designs, a topology gathers information and

260

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

separates it into portions that are handled by assignments to cluster nodes. Data that nodes share

is tuples, which are sorted collections of values. The Storm is built on a master-slave paradigm, with a

master node running the Nimbus daemon and keeping a membership list to ensure data-processing

reliability. According to Nimbus, it connects to Apache Zookeeper [35].

A Storm cluster is comprised of 3 nodes, as illustrated in Figure 4: "Nimbus," (when the original

Nimbus instance fails, the secondary Nimbus instance takes over [36]). That is the same as Hadoop's

job tracker, "Supervisor," which is in charge of starting and halting the process and "Zookeeper," a

common coordination server that governs the cluster of the Storm [3].

 Figure 3. Topology of a storm. Figure 4. Storm Architecture [36].

Apache Flink: It’s a platform for stream and batch data processing with open access, that arose from a

fork of the "Stratosphere" project, which was founded in 2010 and developed by a team of researchers

from Humboldt-Universität zu Berlin, Technical University Berlin and Hasso-Plattner-Institut

Postdam with funding from the German Research Foundation. The project's goal was to develop a new

big-data analytics platform to aid research in Berlin-area universities. It was elevated to a high-stage

project at the “Apache Software Foundation” at the end of 2014 [32]. The master-slave model is the

base design for Flink, which is made up of three primary components. Job Manager: It is the

distributed execution's coordination node (master node) that manages the data flow between the slave

nodes' task managers. The Task Manager is in charge of executing the operators that receive and

produce streams, notifying the Job Manager of their status and exchanging data streams amongst the

operators (task managers). Client: It converts computer code into a data-flow graph, which is then sent

to the Job Manager to be executed. Flink is a native (true) stream-processing framework that can also

handle batch processing, considering each batch as a stream of bounded data. Apache Flink combines

stream processing with CEP (Complex-event Processing) [37] technology to provide real-time data

analysis and response. Flink allows us to apply transformations to data streams and then analyze the

results [38]. Figure 6 shows the ecosystem of flink.

 Figure 5. Structure of streams [32]. Figure 6. An ecosystem of Flink.

Streams that are unbounded and bounded are depicted in detail in Figure 5. Unbounded streams have a

beginning, but no finish; and to achieve a complete result, the sequence in which the events are

generated frequently matters. Bounded streams have a beginning and an end, but they may be sorted;

thus, the order of events isn't important. Batch processing is the term for this method.

Table 1 lists the characteristics of the data-processing tools mentioned in this paper. For stream

processing, Flink is a better technology for true real-time processing, Hadoop handles batch

261

"A Novel True-Real-Time Spatiotemporal Data Stream Processing Framework", A. Angbera and H. Y. Chan.

processing and Spark can manage micro-batching, according to the comparison of several streaming

data processing platforms offered in Table 1. To minimize the latency overhead that batching and

micro-batching impose, Storm uses the spouts and bolts to execute one-at-a-time processing. Flink

supports batch and true stream processing. It's highly optimized, with features such as light-weighted

snapshots and it appears to be the data stream management system, the market leader. As we can see,

the majority of the desired features (low latency, high throughput, guarantee of exactly-once execution

and state management) are available. As a result, we adopt Flink as our computational framework for

processing streaming data in our study.

Table 1. Data-processing technologies.

Features Apache Spark Apache Flink Apache Hadoop Apache Storm

Open access Yes Yes Yes Yes

Coordination tool Zookeeper Zookeeper Zookeeper Zookeeper

Language Python, R, C#,

Scala, Java

Scala, Python,

SQL, Java

Scala, Python,

Java

Any PL

In-memory processing Yes Yes No Yes

Data processing Batch/Stream

(micro-batch)

Batch/Stream

(Native)

Batch Streaming

Execution model Micro-batch Real-time (Ture

streaming), micro-

batch and batch.

Batch Real-time (one

at a time)

Fault tolerance Yes Yes Yes Yes

Achievable latency Low latency Lowest latency as

compared with

Spark and Storm

High Very low

latency

Data-processing

guarantee

Exactly-once

processing

Exactly-once

processing

Exactly-once

processing

At least once

processing

Data storage Yes Yes Yes No

Optimization Manual Automatic Manual Manual

Operating system Windows,

macOS, Linux

Linux, macOS,

Windows

UNIX, Windows Windows,

Linux, macOS

Throughput High Very high Very low Low

Flink has similar features to Spark, but it operates as a native stream engine, posing numerous

obstacles to Spark in stream processing (e.g. in the case of latency and recovery). Flink also appears to

be stronger than Storm [39].

4. DISTRIBUTED QUEUING MANAGEMENT TECHNOLOGIES

Data is transferred from one program to another using a messaging system. Applications can

concentrate just on data rather than on how it is exchanged. Traditional messaging systems exist, but

the majority of them are incapable of working with a huge volume of data in a real-time setting.

Message queuing reliability is a key feature of distributed messaging systems. The P to P (point to

point) pattern and the publish-subscribe pattern are the two types of message patterns. In a messaging

system, the publish-subscribe, commonly known as pub-sub, is used [1]. Publish/subscribe messaging

has been supported by distributed queue management solutions, like RabbitMQ, Amazon Kinesis,

Kafka and Google Pub/Sub in recent years [31]. When it comes to transferring massive amounts of

data around for real-time applications, these technologies have provided some beneficial new

solutions. While distributed queue management systems may appear to be identical to traditional

message queuing technologies, their architecture is vastly different and as a result, their performance

and behavioral properties are vastly different. Traditional queuing schemes, for example, eliminate

handled responses out from the queue and are unable to spread out when multiple consumers perform

different activities at the same time. Distributed queuing systems, on the other hand, are well-suited

for both online and offline content ingestion, because they can accommodate numerous clients and

prevent data loss by distributing resilient discs across replicated clusters. The responses are committed

to the dispersed queues as soon as feasible, ensuring message delivery for a set amount of time. Each

distributed queue management solution splits its topics (i.e., where a producer publishes data

262

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

(messages) and a consumer retrieves it). The messages are absorbed by every consumer segment

(partitions) of a specific subject, with just a single consumer from the same consumer segment

consuming the same partition. The consumer group's function is quite beneficial for re-balancing when

partitions and/or customers change [31]. Table 2 lists aspects to consider when selecting a distributed

queuing system, involving messaging guarantees, disaster recovery, replication, federated queues

(which disperse a single queue's load across nodes or clusters), supported languages and many others.

Table 2. Distributed message queuing technologies.

Features Kinesis Ms. Azure Event

Hub

Apache Kafka RabbitMQ Google pub/sub

Supported

language

Java, Python,

.NET, C++, Go,

PHP, Ruby,

Node.js

Java, C++, Ruby,

PHP, Node.js,

Python, .NET

PHP, Ruby,

Java, Python,

.NET, Node.js,

Go, C++

Go, C++/C,

Java, Python,

.NET, PHP,

Ruby, Node.js

PHP, Ruby, Java,

C++, Node.js,

Python, .NET

Messaging

guarantees

Yes / At least

once

Yes / At least once Yes / At least

once

Yes / At least

once

Yes / At least

once

Configurable

persistence

period

from one to

seven days

(default is 24

hours)

24 hours as default

(from one to seven

days)

No maximum N/A Seven days (non-

configurable) or

only when it is

recognized by all

subscribers
Latency 200 ms to 5

seconds

There are no values

cited.

Some set-ups

are measured in

ms.

Benchmarking

revealed a

median delay of

~2 ms.

There are no

values cited.

There are no

values cited.

Recovery of

disaster

Yes Yes Yes Yes Yes

Replication Hidden (across

three zones)

Configurable replicas Configurable

replicas

Configurable

replicas

Hidden

Consumer

groups

Yes Yes Yes Yes Yes

Guarantees

ordering

Guaranteed

within the

confines of a

partition

Guaranteed within the

confines of a partition

Guaranteed

within the

confines of a

partition

Guaranteed

using AMQP

channel

No order

guarantees

Throughput 1 MB/s input, 2

MB/s output or

1000 records per

second can all be

supported by a

single shard.

20,000 messages

per second

throughput

Throughput units have

been scaled. Each one

can handle 1 MB/s

entrance, 2 MB/s

egresses and 84 GB of

storage. The standard

tier allows for a total

of 20 throughput

units.

30,000

messages per

second

throughput

There are no

figures for

throughput that

have been

mentioned.

The standard is

100 MB/s in and

200 MB/s out;

however, the

maximum speed

is stated to be

infinite.

Apache Kafka is a real-time communication system that uses a distributed publish-subscribe model.

Kafka can handle a large volume of data, allowing you to send messages at the end-point. We also

choose Kafka over other popular messaging systems in this study for three reasons: To begin with,

other similar message broker technologies, such as RabbitMQ, Amazon Kinesis, ActiveMQ and other

enterprise messaging systems, are ephemeral, meaning that they keep data in memory or other light

storage. Kafka, on the other hand, provides durability by persisting data on storage, which expands

and broadens its application scenarios. Second, Kafka is a data-transit technology rather than a data-

processing system. This distinguishes it from the competition in stream processing. The third reason is

that Kafka is frequently used in conjunction with other systems for streaming-data processing.

For ingestion, Apache Kafka is currently state-of-the-art. To consume Kafka, two sets of actors are

263

"A Novel True-Real-Time Spatiotemporal Data Stream Processing Framework", A. Angbera and H. Y. Chan.

required, as shown in Figure 7. Producers distribute messages on one or more Kafka topics. Data is

sent to Kafka brokers by the producers. When a producer sends a message to a broker, it is considered

published. Producers have the option of sending messages to a certain partition. Consumers are in

charge of pulling data from Kafka brokers and sending it to processing nodes (e.g. Spark or Flink).

Kafka brokers are managed and coordinated by a Zookeeper. When the latest broker is deployed to the

Kafka system or when a broker in the Kafka system fails, the Zookeeper service is used to notify

producers and consumers.

Figure 7. Apache Kafka framework.

5. TECHNOLOGIES FOR BIG DATA STORAGE

The difficulty of huge spatiotemporal data quantities that are growing at an exponential rate has lately

been addressed by upgrading big-data analysis tools. The big-data analysis solutions often handle

several issues, by giving the distributed environment the chance to scale out by adding more nodes to

supply processing units and storage. Cassandra, HBase, HDFS and MongoDB are examples of large-

data storage platforms that leverage shared-nothing designs to address storage limits by horizontally

expanding out to new nodes, allowing for huge data expansion. The following are some of the

characterized criteria used to compare the aforementioned big-data storage systems: server operating

systems, methods of partitioning, data scheme, concurrency, programming languages and others, as

seen in Table 3. The following are the 3 kinds of data models for storage that can be broadly grouped:

(I) A file system such as HDFS. Data is saved schemaless in HDFS and taken logically at processing

time based on the processing application's requirements, a technique refers to as “Schema-on-

Reading”. (II) Document-based, example, MongoDB; and (III) Column-based schema, example,

Cassandra and Hbase [31].

Table 3. Storage technologies for big data.

Features Cassandra Hadoop Hive MongoDB HBase

OS server FreeBSD, Linux,

OS X, Windows

All operating

systems that have

a “Java virtual

machine”

Linux, OS X,

Windows, Solaris,

Windows, Unix,

Linux,

Model for storing data Column-based File-system Document-based Column based

key-value for MapReduce Yes Yes Yes Yes

Concurrency Yes Yes Yes Yes

Capabilities for in-memory Yes N/A Yes Yes

Theorem of CAP Consistency

Partition tolerance

Consistency

Partition tolerance

Availability

Partition tolerance

Consistency

Availability

Programming languages

supported

“C#, C++, Clojure,

Erlang, Go,

Haskell, Java,

Node.js, Perl, PHP,

Python, Ruby,

Scala”

C++

Java

PHP

Python

“C#, C++,

Clojure, Erlang,

Go, Haskell, Java,

Node.js, Perl,

PHP, Python,

Ruby, Scala”

“C, C#, C++,

Groovy, Java,

PHP, Python,

Scala”

Concept consistency Eventual

Consistency

Immediate

Consistency

Eventual

Consistency

Eventual

Consistency

Immediate

Consistency

Immediate

Consistency

264

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

Methods of APIs and other

access

ODBC and JDBC JDBC, ODBC,

Thrift

Proprietary

protocol using

JSON

ODBC and JDBC

Description Large volumes of

structured data can

be managed with a

distributed

database.

Data warehouse

software for

querying and

managing large

distributed

datasets, based on

Hadoop

One of the most

popular document

storage options

Open-source,

networked,

versioned and

column-oriented

database

Partitioning methods

 Key partitioning Shading Shading Key partitioning

Data scheme Relational DBMS

uses Amazon

DynamoDB

Relational DBMS

Schema-on-

Reading

Schema-free Relational DBMS

uses Google

Bigtable

Replication Masterless-ring Selectable

replication factor

Master/slave

Replication

Master/slave

Replication

Base code Java Java C++ Java

In-memory data processing has recently gained popularity in developing technologies, with RAM and

flash memory replacing slower drives. As a result, we may differentiate large-data storage solutions

based on their ability to handle data in memory, which is especially important for essential real-time

applications. Representatives of this mechanism include MongoDB, Cassandra and HBase. As a result,

in our research, we adopted Cassandra because of its superior query performance and always-on

features, as well as its distributed capability for real-time applications. Cassandra has a masterless

"ring" architecture, which has several advantages over traditional master-slave topologies. As a result,

each node in a cluster is regarded evenly, so quorum can be achieved by using a majority of nodes.

6. REAL-TIME PROCESSING OF STATE-OF-THE-ART ARCHITECTURE

Lambda and Kappa are two real-time processing architectures that are presented in this study. We

evaluated them using their specifications and came up with a stronger solution that meets the real-time

requirements specified previously.

Batch processing, as shown in the literature, performs processing on huge datasets with great

throughput and efficiency, but it usually takes a long time. It could take several hours, which is far too

much latency for almost any current application to provide live results. Stream processing, on the

other hand, works with the most recent records that enter the system, allowing for quick processing

and near-real-time results, but at the cost of being less precise than batch processing. Nathan Marz

proposed the Lambda architecture [40], which combines both types of processing to gain their benefits

in one architecture, providing real-time results and correct perspectives with low latency and high

throughput with fault tolerance. This architecture is made up of 3 levels; namely, the batch layer, the

speed layer and the serving layer (depicted in figure 8).

The batch layer generates batch views and keeps track of the master copy of the dataset. The serving

layer incorporates the findings from the batch and speed layers. To compensate for the significant

latency of the service layer updates, the speed layer only processes the most current data. The batch

and speed processing layers are on the same level in the architecture. This means that the fresh raw

data is provided to both of them at the same time. In the meantime, the serving layer is located above

as seen in Figure 8. However, due to its intricacy, this architecture has significant drawbacks as well as

some criticism. This architecture necessitates the integration of numerous systems and technologies,

which adds to the process's complexity. In addition, because there are two processing levels, distinct

processing codes must be maintained and kept in sync to provide views to the serving layer. This also

highlights the fact that such routines might be written in a variety of programming languages. Finally,

the serving layer is fed by two separate layers whose data, aside from the batch layer's pre-stored data,

will be identical, implying that data, information and logic will be duplicated.

Kappa architecture is a lambda architecture simplification. It is a software architectural pattern

designed by Jay Kreps in 2014 based on his LinkedIn experience [3]. With the exception that all data

travels over a single conduit, the stream layer, the Kappa design delivers the same benefits as the

Lambda architecture. Data is appended to a unified, distributed and fault-tolerant log and its status is

265

"A Novel True-Real-Time Spatiotemporal Data Stream Processing Framework", A. Angbera and H. Y. Chan.

only updated when such appends occur. This allows for view recalculations or recomputations. To do

so, the data is streamed back in from the beginning. To avoid losing the prior computation, a parallel

task is started, allowing two computations to be done at the same time. Following the completion of

the second computation, the developer must decide whether to keep both, combine them or remove the

prior one and keep the last one if it exceeds expectations. The Kappa architecture, which is made up of

two levels, is depicted in Figure 9. The results are queried using the serving layer and the stream

processing jobs are executed using the stream processing layer.

 Figure 8. Lambda architecture. Figure 9. Kappa architecture.

Table 4 shows a brief comparison of the two architectures, Lambda and Kappa, as previously

mentioned, using certain criteria.

Table 4. Comparison between lambda and kappa architecture.

Features Lambda Kappa

Real-time Isn't accurate Correct (accurate)

Fault tolerance Yes Yes

Architecture Immutable Immutable

Scalability Yes Yes

Permanent storage Yes No

Guarantees processing Yes, in batch approximate in streaming Exactly-once with consistency

Re-processing paradigm During each batch cycle Only when there is a code update

Data processing Real-time and batch Real-time

Layers Batch, serving and real-time layers Stream processing and serving layers

The lambda architecture is one of two architectures used in big-data systems and it allows for

simultaneous processing of enormous datasets as well as continuous real-time access to them. The

goal behind this architecture is to build two independent processes, one for batch data processing and

the other for real-time data access. The batch layer performs calculations on the whole data collection.

It takes time, but the data returned is complete and of good quality. The dataset in the batch layer is

believed to be intact [41]. You can maintain data consistency and access to past data in this way.

Incoming data is processed in real time by the real-time layer. The speed with which this layer's data

may be accessed correlates to the prospect of speedier information retrieval. Unfortunately, due to a

lack of historical data, not all computations can be performed [41]; hence, as seen in Table 4, real time

“isn't accurate” in the lambda architecture; however, the kappa architecture can overcome this setback,

providing accurate real time processing. Both architectures are fault-tolerant, immutable, scalable and

have guaranteed processing ability, as can be seen in Table 4. The requirement to sustain two distinct

applications: one for supporting the batch layer and the other for supporting the real-time layer, is the

biggest and most frequently noted downside of the lambda architecture. Because the tools used in each

layer differ, it's difficult to pick one that can serve two objectives. Unfortunately, maintaining this

design is more difficult and costly [41]-[42]. The kappa architecture maintains a single pipeline;

hence, it is easier to manage. Therefore, in our study, we adopted the kappa architecture as a result of

its numerous advantages over the lambda architecture. However, the kappa architecture had no

permanent storage, as seen in Table 4, but in our proposed framework, we introduced the permanent-

storage layer.

266

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

7. PROPOSED FRAMEWORK

Taking into consideration the unique peculiarities of spatiotemporal big data, as well as overviews of

stream-processing platforms, distributed message queuing systems and big-data storage technologies,

the two state-of-the-art real-time architectures presented in this study have numerous advantages and

disadvantages. Based on the findings of the literature, we suggested the open-source framework

depicted in Figure 10, which has a unique set of properties, the most notable of which is its capacity to

analyze massive amounts of spatiotemporal data in real time at high speed. It also allows an unlimited

number of users to create new and unique features as well as make various reforms. The proposed

framework closely resembles the kappa architecture, which provides more benefits than the lambda

design. However, because the kappa architecture lacks a storage layer, we included one in our

proposed framework.

In our proposed framework, there is the data source, from which is where the spatiotemporal datasets

are obtained. Sensor networks, online traffic, social media, video streams and other sources could all

yield distinct dataset structures, resulting in a large problem known as heterogeneous data [38]. This

brings in the data ingestion layer which streams data from various upstream applications and fed to

real-time downstream applications using distributed queueing management technologies. In our

proposed framework we adopted Kafka as a result of its numerous advantages over other message-

queueing systems. Kafka is highly scalable and most importantly can handle the challenge of

heterogeneous data which is also a major problem with spatiotemporal datasets. Kafka is a data-transit

technology rather than a data processing system. This distinguishes it from the competition in stream

processing with high throughputs. The spatiotemporal dataset which is produced from the various data

sources is transformed and filtered by Kafka and a common format is produced for either storage or

immediate computations as proposed by our framework. We must first install the Kafka cluster, then

launch Zookeeper and the Kafka server to get Kafka up and running. Zookeeper monitors the state of

Kafka cluster nodes and keeps track of Kafka topics, partitions and other data. Kafka provides an

inbuilt KafkaProducer<k, v> class that uses the serialization process to store streaming data in a user-

defined format (e.g. CustomObject). It is the conversion of a specified data type into byte format [42].

The configuration properties file is used to create the Kafka producer. The topic name and

CustomObject are the key-value pair. The syntax is: “Producer<String, CustomObject> producer

=new KafkaProducer<String, CustomObject> (configProperties);”. The KafkaConsumer<k, v> class

reads and deserializes the streaming data from the Kafka producer. The process of transforming a byte

format to the desired format is known as derealization [42]. The ingestion layer is very important in

real-time spatiotemporal data analysis, as the cleansing and preprocessing of data is carried out here.

The next layer is the real-time processing spatiotemporal data layer, which is focused on real time data

processing with low latency. In our proposed framework, Flink was adopted as a result of its true real-

time processing ability. Hence, our major goal is to propose a true real-time processing framework as

the spatiotemporal datasets are fed into the system for prompt and immediate results. Flink has a very

strong unique feature that makes it tall among other stream-processing engines or computational

engines, which is CEP [37]. CEP systems assess queries against uninterrupted streams of events to

find trends [29]. CEP's goal is to analyze data as it enters our system, so we don't have to keep it

somewhere unless it's necessary. Also, the goal of CEP is to analyze and react to streams of events.

Machine learning which is also part of our proposed framework at the processing layer is responsible

for real-time prediction. Our framework has been designed to incorporate all these functionalities. At

the end of the real-time processing layer, the output is sent to the storage layer, where we adopted the

Cassandra as a result of its distributed ability. Cassandra has many benefits, such as a completely

decentralized design with no single point of failure, promising linear scalability, great write

performance and configurable data consistency levels within queries. A ring of nodes organizes the

Cassandra cluster. Each of these nodes is in charge of storing a portion of the data. The hash keyspace

is divided by the total number of tokens selected for the database to provide an equal data distribution

inside the ring. A random subset of potential primary hash key values is connected with a node based

on the number of tokens issued to it. This subset of data becomes the responsibility of the node for the

entire database. Each node in the ring usually has the same quantity of tokens. Cassandra replicates

data on other nodes in the ring to ensure high availability. The Replication Factor (RF) determines the

number of replicas. This means that each node in a cluster of N nodes will store a piece of the

keyspace equal to RF=N [43]. The visualization layer's primary responsibility is to transmit the final

267

"A Novel True-Real-Time Spatiotemporal Data Stream Processing Framework", A. Angbera and H. Y. Chan.

data and outcomes in streaming mode to the user. If all processes are completed correctly, this layer

can respond quickly.

7.1 Comparison of the Proposed Framework

The proposed framework has been designed to tackle various issues with both lambda and kappa

systems. Lambda enables clients to have the most up-to-date vision. However, business logic is

performed at both layer levels, two distinct sources of the same data are required to feed the next layer

and this design requires many frameworks to set up. Kappa architecture was established as a result of

the complexities of lambda architecture. Unlike lambda, kappa evolves to be more focused on data

processing, even though it does not support permanent data storage. This architecture is less

complicated than lambda and allows the user to select which implementation composers to use.

However, kappa is not a magical formula that can solve all of the big spatiotemporal-data problems.

Furthermore, instead of addressing data-quality issues or data-analysis outcomes, these two

architectures focus on balancing throughput and latency to handle performance challenges. The kappa

architectural principle underpins our proposed framework. It's a streaming data-processing approach

that allows for long-term data storage by treating all incoming data as streaming data. The suggested

framework can deliver actual real-time processing using Flink and machine learning. Flink is a fault-

tolerant distributed real-time computing system with many other advantages, as detailed in the

previous sections. By efficiently combining and expanding sophisticated real-time computations in a

computer cluster, Flink enables the reliable processing of infinite streams of data. In another

comparison, the proposed framework was also created to address specific aspects that are strongly

linked to spatiotemporal big data in stream processing. Some of these characteristics are scalability

(Sc), data analytics (DA), multiple event types (MET), prediction tools (PT), data storage (DS), real-

time (Rt), performance evaluation (PE) and stream processing (SP). Table 5 compares our novel

framework with others and our framework has all the capabilities, which are challenging to stream

processing for big spatiotemporal data; hence, our proposed framework can handle all these

characteristics.

From Table 5, the check-marks (√) indicated that the existing framework from previous works can

perform the important functions (Sc, SP, DA, MET, PT, Rt and PE) as regards big spatiotemporal data

in stream-processing frameworks, while the check-marks (-) indicate that the framework cannot

perform the earlier listed functions, since the authors did not incorporate them in their frameworks. As

discussed earlier in Section 2, these characteristics or parameters are very important for real-time

stream processing with big spatiotemporal data, making the system more robust and relevant, since it

has all the required characteristics; hence, in our proposed framework, we made the provisions to

accommodate all these characteristics.

Table 5. Comparison of our proposed framework with others.

 Sc SP DA DS MET PT Rt PE

Corral-Plaza et al., [38] √ √ √ √ √ - √ √

Carcillo et al., [33] √ √ √ √ - √ - -

Amini et al., [44] √ √ √ √ - √ √ -

D’silva et al., [45] √ √ √ √ √ - √ √

Jung et al., [46] √ - √ - - - - √

Montori et al., [47] - - √ √ - - - -

Santos et al., [48] - - √ √ - √ √ -

Our proposal √ √ √ √ √ √ √ √

Figure 10. Proposed framework.

8. CONCLUSIONS

We have developed a novel framework in this study that may be used in a variety of spatiotemporal

big-data scenarios. Its key innovative advantage is the capacity to automatically handle and analyze

spatiotemporal data regardless of structure. The inclusion and utilization of (1) Kafka as process

268

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

streams of spatiotemporal data sources as they occur; (2) Apache Flink as the computational layer and

(3) Apache Cassandra as the storage layer for real-time distributed storage have benefited this

framework. The study's major purpose is to present a true real-time processing paradigm using Flink

and machine learning. In our proposed design, we suggested emphasizing the real-time processing

layer and we did our best to optimize it with Flink and machine learning. The advantages of the

technologies employed, as well as the advantages of kappa design after it was compared with the

lambda architecture, where the key inspirations for this innovative building were obtained, are

presented. The study highlighted stream-processing technologies, queueing-messaging systems and

big-data storage technologies and presented their comparison for a better choice. Looking at the best

tools and their advantages over others, the study proposed a novel true real time spatiotemporal data

stream-processing framework. Hence, an important framework for processing and analysing

spatiotemporal data from multiple sources with irregular shapes has been proposed, so that researchers

can focus on data analysis instead of worrying about the data sources' structure. The following stage is

to validate and assess its performance. The vast majority of research, including this one, has certain

limitations. However, until the validation process is completed, we won't be able to examine its

shortcomings.

ACKNOWLEDGEMENTS

The authors would like to thank everyone, just everyone!

REFERENCES

[1] B. R. Hiraman, M. C. Viresh and C. K. Abhijeet, "A Study of Apache Kafka in Big Data Stream

Processing," Proc. of the Int. Conf. on Information, Communication, Engineering and Technology

(ICICET 2018), pp. 1–3, DOI: 10.1109/ICICET.2018.8533771, 2018.

[2] J. Manyika, M. Chui Brown, B. B. J., R. Dobbs, C. Roxburgh and A. Hung Byers, "Big Data: The Next

Frontier for Innovation, Competition and Productivity," McKinsey Global Institute, no. June, p. 156,

[Online], Available: https://bigdatawg.nist.gov/pdf/MGI_big_data_full_report.pdf, 2011.

[3] S. Ounacer, M. Amine, S. Ardchir, A. Daif and M. Azouazi, "A New Architecture for Real Time Data

Stream Processing," International Journal of Advanced Computer Science and Applications, vol. 8, no.

11, pp. 44–51, DOI: 10.14569/ijacsa.2017.081106, 2017.

[4] F. Pivec, "The Global Information Technology Report 2003–2004," Organizacija Znanja, vol. 8, no. 4,

pp. 203-206, DOI:10.3359/oz0304203, 2003.

[5] S. Nadal et al., "A Software Reference Architecture for Semantic-aware Big Data Systems," Information

and Software Technology, vol. 90, pp. 75–92, DOI: 10.1016/j.infsof.2017.06.001, 2017.

[6] A. Hamdi, K. Shaban, A. Erradi et al., "Spatiotemporal Data Mining: A Survey on Challenges and Open

Problems," Artificial Intelligence Review, no. 0123456789, DOI: 10.48550/arXiv.2103.17128, 2021.

[7] N. Khan, et al., "The 10 Vs, Issues and Challenges of Big Data," Proc. of the ACM Int. Conf., no.

March, pp. 52–56, DOI: 10.1145/3206157.3206166, 2018.

[8] R. L. Villars, C. W. Olofson and M. Eastwood, "Big Data: What It is and Why You Should Care," IDC

White Paper, pp. 7–8, 2011, [Online], Available: http://www.tracemyflows.com/ uploads/big_data/IDC_

AMD_Big_Data_Whitepaper.pdf, 2011.

[9] N. Elgendy and A. Elragal, "Big Data Analytics: A Literature Review," Journal of Management

Analytics, vol. 2, no. 3, pp. 214–227, 2014.

[10] C. L. Philip Chen and C. Y. Zhang, "Data-intensive Applications, Challenges, Techniques and

Technologies: A Survey on Big Data," Information Sciences, vol. 275, pp. 314–347, 2014.

[11] S. Salehian and Y. Yan, "Comparison of Spark Resource Managers and Distributed File Systems," Proc.

of the IEEE Int. Conf. on Big Data and Cloud Computing (BDCloud), Social Computing and

Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-

SocialCom-SustainCom), pp. 567–572, DOI: 10.1109/BDCloud-SocialCom-SustainCom.2016.88, 2016.

[12] J. Jo and K. W. Lee, "MapReduce-based D-ELT Framework to Address the Challenges of Geospatial

Big Data," ISPRS Int. Journal of Geo-information, vol. 8, no. 11, DOI: 10.3390/ijgi8110475, 2019.

[13] J. Kang, L. Fang, S. Li and X. Wang, "Parallel Cellular Automata Markov Model for Land Use Change

Prediction over MapReduce Framework," ISPRS Int. Journal of Geo-Information, vol. 8, no. 10, DOI:

10.3390/ijgi8100454, 2019.

[14] D. Glushkova, P. Jovanovic and A. Abelló, "MapReduce Performance Model for Hadoop 2.x,"

Information Systems, vol. 79, pp. 32–43, DOI: 10.1016/j.is.2017.11.006, 2019.

[15] I. A. T. Hashem et al., "MapReduce Scheduling Algorithms: A Review," The Journal of

Supercomputing, vol. 76, pp. 4915–4945, 2020.

[16] F. Li, J. Chen and Z. Wang, "Wireless MapReduce Distributed Computing, " IEEE Transactions on

http://dx.doi.org/10.3359/oz0304203

269

"A Novel True-Real-Time Spatiotemporal Data Stream Processing Framework", A. Angbera and H. Y. Chan.

Information Theory, vol. 65, no. 10, pp. 6101–6114, DOI: 10.1109/TIT.2019.2924621, 2019.

[17] M. Bendre and R. Manthalkar, "Time Series Decomposition and Predictive Analytics Using MapReduce

Framework," Expert Systems with Applications, vol. 116, pp. 108–120, 2019.

[18] S. Heidari, M. Alborzi, R. Radfar et al., "Big Data Clustering with Varied Density Based on

MapReduce," Journal of Big Data, vol. 6, no. 1, DOI: 10.1186/s40537-019-0236-x, 2019.

[19] N. Maleki, A. M. Rahmani and M. Conti, "MapReduce: An Infrastructure Review and Research

Insights," The Journal of Supercomputing, vol. 75, pp. 6934–7002, 2019.

[20] S. Wang, Y. Zhong and E. Wang, "An Integrated GIS Platform Architecture for Spatiotemporal Big

Data," Future Generation Comp. Sys., vol. 94, pp. 160–172, DOI: 10.1016/j.future.2018.10.034, 2019.

[21] M. M. Alam, L. Torgo and A. Bifet, "A Survey on Spatio-temporal Data Analytics Systems," ACM

Computing Surveys, pp. 1–37, DOI: 10.1145/3507904, 2022.

[22] Apache, "Apache Hadoop: An Open-source Distributed Processing Framework," [Online], Available:

https://hadoop.apache.org/, 2020.

[23] A. Davoudian, L. Chen and M. Liu, "A Survey on NoSQL Stores," ACM Computing Surveys, vol. 51,

no. 2, DOI: 10.1145/3158661, 2018.

[24] M. Zaharia et al., "Apache Spark: A Unified Engine for Big Data Processing," Communications of the

ACM, vol. 59, no. 11, pp. 56–65, DOI: 10.1145/2934664, 2016.

[25] I. Yaqoob, I. A. T. Hashem, A. Ahmed, S. M. A. Kazmi and C. S. Hong, "Internet of Things Forensics:

Recent Advances, Taxonomy, Requirements and Open Challenges," Future Generation Computer

Systems, vol. 92, no. May 2018, pp. 265–275, DOI: 10.1016/j.future.2018.09.058, 2019.

[26] E. Ahmed et al., "The Role of Big Data Analytics in Internet of Things," Computer Networks, vol. 129,

pp. 459–471, DOI: 10.1016/j.comnet.2017.06.013, 2017.

[27] S. Henning and W. Hasselbring, "How to Measure Scalability of Distributed Stream Processing

Engines?" Proc. of Companion of the ACM/SPEC Int. Conf. on Performance Engineering (ICPE 2021),

pp. 85–88, DOI: 10.1145/3447545.3451190, 2021.

[28] K. Kallas, F. Niksic, C. Stanford and R. Alur, "Stream Processing with Dependency-guided

Synchronization," Proc. of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP ’22), pp. 1-16, DOI: 10.1145/3503221.3508413, Seoul, Republic of Korea, 2022.

[29] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis and M. Garofalakis, "Complex Event

Recognition in the Big Data Era: A Survey," VLDB Journal, vol. 29, no. 1, pp. 313–352, 2020.

[30] T. Li, Z. Xu, J. Tang and Y. Wang, "Model-free Control for Distributed Stream Data Processing Using

Deep Reinforcement Learning," Proc. of the VLDB Endowment, vol. 11, no. 6, pp. 705–718, 2018.

[31] R. Sahal, J. G. Breslin and M. I. Ali, "Big Data and Stream Processing Platforms for Industry 4.0

Requirements Mapping for a Predictive Maintenance Use Case," Journal of Manufacturing Systems, vol.

54, no. November 2019, pp. 138–151, DOI: 10.1016/j.jmsy.2019.11.004, 2020,

[32] D. P. Carazo, Evaluation and Deployment of Big Data Technologies on a NIDS Evaluación y

Despliegue de Tecnologías Big Data Sobre un NIDS, M.Sc. Thesis, Master in Data Science, Universidad

Internacional Menendez Pelayo, 2019.

[33] F. Carcillo, A. Dal Pozzolo, Y. A. Le Borgne, O. Caelen, Y. Mazzer and G. Bontempi, "SCARFF: A

Scalable Framework for Streaming Credit Card Fraud Detection with Spark," Information Fusion, vol.

41, pp. 182–194, DOI: 10.1016/j.inffus.2017.09.005, 2018.

[34] H. Herodotou, Y. Chen and J. Lu, "A Survey on Automatic Parameter Tuning for Big Data Processing

Systems," ACM Computing Surveys, vol. 53, no. 2, DOI: 10.1145/3381027, 2020.

[35] M. Dias de Assunção, A. da Silva Veith and R. Buyya, "Distributed Data Stream Processing and Edge

Computing: A Survey on Resource Elasticity and Future Directions," Journal of Network and Computer

Applications, vol. 103, no. July 2017, pp. 1–17, DOI: 10.1016/j.jnca.2017.12.001, 2018.

[36] A. Batyuk and V. Voityshyn, "Apache Storm Based on Topology for Real-time Processing of Streaming

Data from Social Networks," Proc. of the 1st IEEE Int. Conf. on Data Stream Mining and Processing

(DSMP 2016), no. August, pp. 345–349, DOI: 10.1109/DSMP.2016.7583573, 2016.

[37] B. Zhao, H. Van Der Aa, T. T. Nguyen, Q. V. H. Nguyen and M. Weidlich, "EIRES: Efficient

Integration of Remote Data in Event Stream Processing," Proc. of the ACM SIGMOD Int. Conf. on

Management of Data, no. i, pp. 2128–2141, DOI: 10.1145/3448016.3457304, 2021.

[38] D. Corral-Plaza, I. Medina-Bulo, G. Ortiz and J. Boubeta-Puig, "A Stream Processing Architecture for

Heterogeneous Data Sources in the Internet of Things," Computer Standards and Interfaces, vol. 70, no.

June 2019, p. 103426, DOI: 10.1016/j.csi.2020.103426, , 2020.

[39] N. Tantalaki, S. Souravlas and M. Roumeliotis, "A Review on Big Data Real-time Stream Processing

and Its Scheduling Techniques," International Journal of Parallel, Emergent and Distributed Systems,

vol. 35, no. 5, pp. 571–601, DOI: 10.1080/17445760.2019.1585848, 2020.

[40] N. Marz, Big Data: Principles and Best Practices of Scalable Realtime Data Systems, ISBN:978-1-

61729-034-3, [S.l.]: O’Reilly Media, 2013.

[41] J. Bobulski and M. Kubanek, "Data Model for Bigdata System for Multimedia," Proc. of the ACM Int.

Conf. Proceeding Series, vol. PartF16898, pp. 12–17, DOI: 10.1145/3449365.3449368, 2021.

270

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 08, No. 03, September 2022.

[42] A. Bandi and J. A. Hurtado, "Big Data Streaming Architecture for Edge Computing Using Kafka and

Rockset," Proc. of the 5th Int. Conf. on Computing Methodologies and Communication (ICCMC 2021),

no. Iccmc, pp. 323–329, DOI: 10.1109/ICCMC51019.2021.9418466, 2021.

[43] S. Dipietro, G. Casale and G. Serazzi, "A Queueing Network Model for Performance Prediction of

Apache Cassandra," Proc. of the 10th EAI Int. Conf. on Performance Evaluation Methodologies and

Tools (ValueTools 2016), pp. 186–193, DOI: 10.4108/eai.25-10-2016.2266606, 2017.

[44] S. Amini, I. Gerostathopoulos and C. Prehofer, "Big Data Analytics Architecture for Real-time Traffic

Control," Proc. of the 5th IEEE Int. Conf. on Models and Technologies for Intelligent Transportation

Systems (MT-ITS), pp. 710–715, DOI: 10.1109/MTITS.2017.8005605, 2017.

[45] G. M. D’silva, A. Khan, Gaurav and S. Bari, "Real-time Processing of IoT Events with Historic Data

Using Apache Kafka and Apache Spark with Dashing Framework," Proc. of the 2nd IEEE Int. Conf. on

Recent Trends in Electronics, Information Communication Technology (RTEICT), pp. 1804–1809, DOI:

10.1109/RTEICT.2017.8256910, 2017.

[46] H. S. Jung, C. S. Yoon, Y. W. Lee, J. W. Park and C. H. Yun, "Cloud Computing Platform Based Real-

time Processing for Stream Reasoning," Proc. of the 6th Int. Conf. on Future Generation Communication

Technologies (FGCT 2017), pp. 37–41, DOI: 10.1109/FGCT.2017.8103400, 2017.

[47] F. Montori, L. Bedogni and L. Bononi, "A Collaborative Internet of Things Architecture for Smart Cities

and Environmental Monitoring," IEEE Internet of Things Journal, vol. 5, no. 2, pp. 592–605, DOI:

10.1109/JIOT.2017.2720855, 2018.

[48] P. M. Santos et al., "PortoLivingLab: An IoT-based Sensing Platform for Smart Cities," IEEE Internet of

Things Journal, vol. 5, no. 2, pp. 523–532, DOI: 10.1109/JIOT.2018.2791522, 2018.

 ملخص البحث:

تعُدددددقدرة عدددددقيررسيدددددبرتنادددددؤقرتدددددؤيّرة أؤرادددددرارة الندبددددددردؤدن ددددددر ر دددددقة ردرتدددددار ر ر ادددددأدر يعق دددددقر ددددد ر

ؤدددددرار ر يددددددر ددددد رة أؤرادددددرارة ا ر عر لددددددرااد لندبددددددردؤدن ددددددر ر ددددد ر دددددر يرةلأاظادددددد رل دددددّرم دددددكمريدددددئلد

دددددددرارة بدية،ددددددد رة بادددددددرس مرل دددددددأ رار ب يسددددددددمر وددددددد رة بدية،ددددددد رسأدددددددقرةتابقادددددددتمرل د

دددددرارل،ؤق دددددرمرتاددددد د رت دددددقد ر ر ي ي دددددر ر رة الاد ة هدددددفارةلأترتددددد ر ددددد ر دددددفةرة أ ددددد ر دددددف كمريدددددئلد

ر لّ ر اعر لددددددرلت يؤددددد رة أؤرادددددرارة الندبددددددردؤدن ددددددر ر ددددد ر دددددر ير بعدددددقد ررل ددددد ر دددددير لدددددر ر جدددددريل

ؤددددددقر بظادددددددمر ؤدددددد ر ددددددبا د رة أددددددردويلر دددددد رة بدقاؤددددددنرسيددددددبرت يؤدددددد رة أؤراددددددرار ددددددق ر دددددد ر،

رة بارمر أ ؤدر ر يرة أؤرارا

ددددد ر ددددد ر اعبدددددقهريددددد ر دددددفةرة أ ددددد راايم دددددر ر ق دددددقة ر اعر لددددددرتدددددؤيّرة أؤرادددددرارة الندبددددددردؤدن ددددددر مر ا د

رسددددد رة دددددند رة عؤعددددد مر دددددّر قدددددف قرجنؤددددد ل رسر ؤددددددرل بددددد قي ة سبأدددددريةارر عر لددددددرة أؤرادددددرار ادددددقسدل

ر دددد رة داددددرم ر آاندددددرة ددددفداقر عددددؤ رة سبأددددري راددددف كرالددددقلر عرياددددد ر ددددؤ رة دادددديم رة اعبددددقهرلسددددق ل

ددددد ادريددددد رة دددددند رة عؤعددددد ر دددددفةر ة ابأ ددددددررريددددد ر يةتدددددرارتدددددر عدرتبعيددددددةر اعر لددددددرة أؤرادددددرارة د

ة دددددبر رادددددلراظدددددقرر دددددر يدرسيدددددبرتع ؤدددددرارة ا دددددر يرة انبيدددددددرة اادددددب ق دريددددد ر عر لددددددرتدددددؤيّر

رراري رة ند رة عؤع ة أؤرا

 باؤددددددددنرة اددددددديم رة اعبدددددددقهر اددددددددتر دددددددق ار دددددددؤ ر رتاددددددد راري دددددددر ر تدددددددبعأرّرة أؤرادددددددرار ددددددد ر

 ر دددددر ي رمرلر رتاددددد رييؤ دددددك ر اعر لددددددرتدددددؤيّرة أؤرادددددرامرلتعييددددد رة ددددددر يبديندعدددددراريددددد رة دددددند

ة عؤعددددد مرلر رتاددددد رارتدددددراقتية ريددددد رجأعددددددرة بد دددددن ر ددددد ر ددددد رة بد دددددن رة ادددددي د ريددددد رة دددددند ر

ر ددددد رة دادددددرم رةلأقدددددق رة اادددددب ق در دددددتر عرياددددددرة داددددديم رة اعبدددددقهر دددددّرسدددددق ل ة عؤعددددد رلندددددقرتاد

رسيدددددبر لايسددددددر ددددد رة دددددر مر اعر لددددددرتدددددؤيّرة أؤرادددددراريددددد رة دددددند رة عؤعددددد مرلم دددددكر دددددر

ؤّمرل لةارة بدينيدددددددّمرلت يؤددددددد رة أؤرادددددددرامرل ادددددددية رةلأددددددددقة رة ابعدددددددقد رمر وددددددد رة راؤددددددددرة بديتددددددد

لت ددددددن رة أؤراددددددرامرلة ددددددند رة عؤعدددددد مرلتعؤددددددؤ رةلأ ة ريدددددد ر عر لدددددددرتددددددؤيّرة أؤراددددددرا رلنددددددقر

نددددر رسيددددبرة داددددرم رةلأقددددق رل ددددق رسيددددبريعر ؤبددددتريدددد رة بدعر دددد ر ددددّر ثأددددترة دادددديم رة اعبددددقهرتنيي

ر اؤّرة اار رمةارة علاند

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).رر

