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ABSTRACT 

Detecting and controlling propagation of hate speech over social-media platforms is a challenge. This problem is 

exacerbated by extremely fast flow, readily available audience and relative permanence of information on social 

media. The objective of this research is to propose a model that could be used to detect political hate speech that 

is propagated through social-media platforms in Kenya. Using Twitter textual data and Keras TensorFlow 

Decision Forests (TF-DF), three models were developed; i.e., Gradient Boosted Trees with Universal Sentence 

Embedding (USE), Gradient Boosted Trees and Random Forest, respectively. The Gradient Boosted Trees with 

USE model exhibited a superior performance with an accuracy of 98.86%, a recall of 0.9587, a precision of 0.9831 

and an AUC of 0.9984. Therefore, this model can be utilized for detecting hate speech on social media platforms. 
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1. INTRODUCTION

Social media has permeated our lives such that a majority of unstructured communications happen 

through these platforms. Social media provides a ready audience anytime. As a result, a large fraction 

of discourses that were initially verbally articulated have shifted to social-media platforms. Control of 

communication over social media is difficult to achieve or enforce, considering that the operators of 

social-media platforms are foreign companies operating from different legislative environments 

compared to those of their users. This problem is exacerbated by the extremely fast flow and dynamism 

of information on social media. Therefore, sensitive and potentially harmful content can propagate 

through social-media platforms quickly without being detected. Hate speech is an example of such 

communication that can be difficult to deal with particularly when it is propagated through social-media 

platforms. Actually, Mr. António Guterres –the United Nations (UN) Secretary-General– describes 

Social media as a global megaphone for hate [1]. 

According to the UN’s Strategy and Plan of Action on Hate Speech, hate speech is any kind of 

communication in speech, writing or behaviour that attacks or uses a pejorative or discriminatory 

language with reference to a person or a group on the basis of who they are. In other words, this happens 

based on their religion, ethnicity, nationality, race, colour, descent, gender or any other identity factor 

[1]. Hate speech has been identified as a trigger of violence and suffering in several parts of the world, 

including the Tigray region of Ethiopia, Guinea, Sri Lanka, …etc. [2]. In Kenya, political hate speech 

was blamed for the 2007/2008 post-election violence [3]. During the COVID-19 pandemic, social-media 

platforms contributed immensely to Sino-phobic hate sentiments, where an Asian community was 

blamed for the pandemic [34]. Khan et al. add that social-media platforms accelerated propaganda 

related to the Shaheen Bagh protests in New Delhi against the National Register of Citizens, Citizenship 

Amendment Act and National Population Register [34]. 

Propagation of hate speech over social-media platform is relatively a new phenomenon, considering that 

social-media platforms are recent disruptive technologies. Hate speech can be propagated on social 

media through: text messages, pictures, videos, emoji or emoticons. Sometimes, hate speech could be 

obfuscated in online content that seems ordinary. Various approaches, including intentional misspelling 

by swapping characters, elongating words using many repeated letters or putting spaces between letters, 

have been used to obfuscate hate speech in social-media discourses [35]. Hiding of hate-text messages 

in images and hate sarcasm using images or videos are other techniques of hiding hate speech over 

social-media platforms [6]. 
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Poletto et al. [4] argue that explicitly defining hate speech is challenging because of widespread 

vagueness in the use of related terms, such as abusive, toxic, dangerous, offensive or aggressive 

language, that often overlap and are prone to strongly subjective interpretations. However, they go ahead 

and conclusively define hate speech as a content defined by its action; i.e., generally spreading hatred 

or inciting violence or threatening people’s freedom, dignity and safety by any means and by its target 

– which must be a protected group or an individual targeted for belonging to such a group and not for 

his/her individual characteristics. Figure 1 depicts this definition. 

 

 

 

 

 

Figure 1. Relationships between hate speech and related concepts [4]. 

It is challenging to deal with hate speech that is propagated over social-media platforms as compared to 

that which is propagated over traditional media, like newspapers, magazines, TV, radio or billboards. 

Unlike in traditional media, online hate speech can be produced and distributed easily, at low cost and 

anonymously while having the potential to reach a global and diverse audience in real time [1]. The 

relative permanence of online content is also problematic when hateful discourse can resurface and 

regain popularity over time [1]. The UN concludes that efforts of understanding and monitoring the 

dynamics of hate speech across diverse online communities and platforms often stall given the sheer 

scale and diversity of the phenomenon, current technological limitations of automated monitoring 

systems and the opacity of online companies [5]. Therefore, online hate speech detection and control 

represent a phenomenon that deserves research attention. 

The purpose of this research is to propose a model that could be used to detect political hate speech that 

is propagated through social-media platforms in Kenya. Such a model could be used as a tool of decision 

support for monitoring future social-media discourses. The study described in this work treats only the 

textual form of hate speech. The remaining parts of the article are organized as follows: Section two is 

a discussion of previous work that is related to this study, where various natural-language processing 

(NLP) techniques for hate speech detection are assessed; Section three describes the approach proposed 

by this research; Section four outlines the method of research experiments; Section five presents results 

from the experiments; Section six is a discussion of the results, while section seven concludes the study. 

This study has made three main contributions to knowledge. The first contribution is methodological, 

where a new method of hate speech detection has been described by the study. Proposing a new model 

for hate speech detection is the second contribution. Lastly, the study has introduced the Kenyan culture 

in the area of hate speech detection.  

2. RELATED WORK 

Hate speech detection has attracted the attention of researchers in the recent few years. Gomez et al. [6] 

studied hate speech detection in multi-modal publications formed by text and image data from Twitter. 

They found out that multi-modal models cannot outperform text models in detecting hate speech. Based 

on this finding, this study developed a hate-speech detection model using the text component of tweets 

from Kenyan political discourses. 

Mullah et al. [7] reviewed machine-learning algorithms and techniques for hate speech detection in 

social media. They found out that the majority of existing research work on hate speech detection used 

classical machine-learning techniques as compared to ensemble and deep-learning techniques. They also 

identified some open challenges in hate speech detection which include: cultural variations, pandemic 

or natural disasters, data sparsity, imbalanced datasets and dataset availability concerns. They 

emphasized the need to take the campaign of hate speech prevention to other non-western parts of the 

world, since culture and tradition play a significant role in hate speech detection efforts [7]. Mullah et 
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al.’s [7] emphasis is agreeable, since contextual meanings of words in discourses vary from one cultural 

region to another. Thus, models trained on text datasets in one culture may have some degree of bias if 

used to test data from a different culture. Therefore, by experimenting with data from the Kenyan 

culture, models in this field are enriched.  

Ombui et al. [3] studied the identification of hate speech in code-switched text messages by exploring 

the performance of different features across various machine-learning algorithms. They established that 

character level Term Frequency-Inverse Document Frequency performed best given a code-switched 

dataset of 25k annotated tweets using support vector machine algorithm as compared to six other 

conventional and two deep-learning algorithms. 

Khan et al. [34] presented HcovBi-Caps –a Convolutional, BiGRU and Capsule network-based deep-

learning model– to classify hate speech and evaluated it over two Twitter-based benchmark datasets; 

i.e., DS1 which was balanced and DS2 which was unbalanced. They found out that HCovBi-Caps 

showed comparatively better performance over the unbalanced dataset with precision, recall and f-score 

values of 0.90, 0.80 and 0.84, respectively. In another study, Khan et al. [36] introduced BiCHAT, a 

BiLSTM deep-learning model for hate speech detection. The model was trained and evaluated over three 

benchmark datasets; i.e., HD1, HD2 and HD3 extracted from Twitter. They found out that their BiCHAT 

model outperformed three state-of-the-art models used in studies with an improvement of 8%, 7% and 

8% in terms of precision, recall and f-score, respectively. They acknowledge that the performance of 

their models in the two studies were based on evaluations done on non-diverse datasets in a non-

multilingual set-up. Like Gomez et al. [6], Koutlis et al. [37] presented MemeTector, a multi-modal 

model for classifying images as memes or regular images. They proposed that their model could be 

utilized in online social environments to detect hate speech and disinformation. Aggarwal et al. [38] too 

proposed an approach to solve the problem of identifying hate memes. However, the two studies did not 

compare how their multi-modal models performed relative to text-only models in detecting hate speech 

[37]-[38]. 

Poletto et al. [4] systematically analyzed resources made available for hate speech detection models 

from the perspective of: their development methodology, topical focus, language coverage, among other 

factors. Their survey found out that datasets are available in several languages for hate speech detection, 

but focus on different topics. Like Mullah et al. [7], Poletto et al. [4] added that there is a challenge of 

developing hate speech detection architectures which are stable and well performing across different 

languages and abusive domains. They also noted that biases in the design and annotation of the training 

dataset, as well as topic biases in the training datasets as compared to the test and volatile nature of 

topics are factors to keenly consider when developing resources for hate speech detection. 

Badjatiya et al. [8] investigated the application of deep neural network architectures for the task of hate 

speech detection and found out that embeddings learned from deep neural-network models when 

combined with gradient-boosted decision trees led to the best accuracy values. Dorris et al. [9] 

introduced the HateDefender –a hate speech and offensive language defence system– which consists of 

a detection model based on deep Long Short-term Memory (LSTM) neural networks that according to 

them can effectively detect hate speech with an average accuracy of 90.82%. Like Badjatiya et al. [8] 

and Dorris et al. [9], deep-learning techniques have also been used to develop models for detecting hate 

speech in this research. However, the approach in this study differs from those of the discussed studies, 

since it utilizes different embeddings used as discussed in Section 3. 

Other works use the more recent and well-known type of DNN; namely, transformers, in particular the 

BERT model proposed by Google [22]. These techniques of language modeling are presented as a 

general model used for a variety of NLP tasks; for example, translation, question and response tasks. 

However, when used in transfer learning based on a pre-trained model, the model is fine-tuned using a 

special dataset more suitable for the task. For instance, Mozafari et al. [23] proposed a novel transfer 

learning approach based on BERT – an existing pre-trained language model – in order to overcome the 

problem of lack of sufficient amount of labelled hate speech data. Velankar et al. [24] presented baseline 

classification results using deep-learning models based on CNN, LSTM and Transformers. Using a 

multi-lingual BERT version fine-tuned with an annotated Marathi language dataset, Velankar et al. [24] 

showed that transformers outperformed other methods. Most recent works tackle hate speech detection 

using neural networks to train models of detection. This means that they usually need huge datasets so 

that their models can converge therefore making them not suitable with a relatively small dataset. It is 
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believed that models based on decision forests as applied in this study could overcome this limitation. 

2.1 Techniques for Hate Speech Detection 

Hate speech is a classification problem. Classical, ensemble and deep-learning classification techniques 

have previously been used to achieve hate speech detection with varying degrees of success [7]. 

Classical machine-learning algorithms require more structured data and are more dependent on human 

intervention to learn, whereby human experts determine the hierarchy of features through data labelling 

for the machine to understand differences between data inputs [39]. Examples of such algorithms include 

support vector machines (SVMs), Naive Bayes (NB), Logistic Regress (LR), Decision Trees (DTs) and 

K-Nearest Neighbour (KNN) [7]. Unlike classical machine learning, deep-learning algorithms automate 

much of the feature-extraction process, thus eliminating some of the manual human intervention 

required [39]. Deep-learning algorithms differ from machine-learning algorithms, since they require 

large datasets to learn reasonably, while machine learning requires less to learn [7]. On the other hand, 

ensemble learning schemes combine multiple base machine learning algorithms of any type – e.g. 

decision tree, neural network, linear regression model, …etc. – to make a decision, typically in 

supervised machine-learning tasks [40]. Classical machine-learning techniques are unable to effectively 

analyze some text datasets that are very large and not linearly separable; however, deep-learning 

algorithms have capabilities of effectively analyzing such datasets [7]. Since this study is dealing with 

unstructured text dataset, it was found prudent to apply deep-learning techniques to analyze the data. 

Variants of deep learning that have been used for hate speech detection are mostly Deep Neural Network 

techniques, which include Convolution Neural Network, Recurrent Neural Networks, i.e., Long Short 

Term Memory (LSTM) and Gated Recurrent Units (GRUs) [7]. Deep neural networks have multiple 

hidden layers [41]. Long Short Term Memory (LSTM) networks [10] and their variants have been used 

by Gomez et al. [6], Dorris et al. [9], Ong [11] and Badjatiya et al. [8] for the classification of hate 

speech texts from social media. Long Short Term Memory networks are a special kind of Recurrent 

Neural Networks (RNNs) capable of learning long-term dependencies in a sequence (sentence) [12]. An 

RNN is a network with loops allowing information to persist and can be thought of as multiple copies 

of the same network, each passing a message to a successor [12]. Gomez et al. [6] used LSTM, because 

they believed that these algorithms provide a strong representation of tweet text data. Their LSTM 

models gave an f-score of 0.703, an area under the ROC of 0.732 and a mean accuracy of 68.4 for tweet 

text input. Ong [11] found out that Bidirectional LSTM (BiLSTM) convolutional neural network model 

was optimal with the highest f1-score.  

Badjatiya et al. [8] performed experiments on a benchmark dataset of 16K annotated tweets and showed 

that three deep learning architectures i.e., FastText, Convolutional Neural Networks (CNNs) and Long 

Short Term Memory Networks (LSTMs) deep-learning methods, outperformed char/word n-gram 

methods by approximately 18 f1 points. On the other hand, Ombui et al. [3] explored both conventional 

and deep-learning classifiers and found out that Support Vector Machine algorithm yielded the best 

classification accuracy when classifying code-switched text messages. Unlike the previously discussed 

techniques, Keras and TensorFlow Decision Forests (TF-DF) were used to develop three models for this 

study; i.e., the Gradient Boosted Trees with Universal Sentence Embedding model, the Gradient Boosted 

Trees model and the Random Forest model. 

3. PROPOSED APPROACH 

For model development, Keras TensorFlow Decision Forests (TF-DF) were used to train neural network 

models for classifying tweeter text data. Keras is a deep-learning framework that makes it easier to run 

new experiments [13]. It ships deep learning-powered features in real products [14]. Keras is a high-

level neural network library that runs on top of TensorFlow [41]. TensorFlow Decision Forests are a 

collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest 

models which support classification, regression and ranking [15]. A decision forest is an ensemble of 

randomly trained decision trees whose prediction is the aggregation of predictions of its decision trees 

[16], [17]. A decision tree is a hierarchical structure of connected nodes, such that during training, all 

training data {v} is sent into the tree followed by optimizing parameters of split nodes, so as to optimize 

a chosen energy function, as shown in Figure 2. 

During testing, a split (internal) node applies a test to the input data v and sends it to the appropriate 
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child iterating the process until a leaf (terminal) node is reached (beige path), as depicted in Figure 3 

[16].  

Figure 2. Training of a decision tree [16].          Figure 3. Testing of input data v in a decision tree [16]. 

Criminisi et al. [16] argue that decision forests compare favourably with respect to other techniques and 

have led to one of the biggest success stories of computer vision in recent years. They attribute the recent 

revival of decision forests to the discovery that ensembles of slightly different trees tend to produce 

much higher accuracy on previously unseen data, a phenomenon known as generalization. According to 

Rokach [18], decision trees have a high predictive performance for a relatively small computational 

effort, are able to handle a variety of input data including textual data and scale well to big data as 

compared to other methods. For experiments in this work, the Gradient-boosted trees and Random Forest 

algorithms were used. 

Boosting is a method for converting a weak learning algorithm into one that achieves arbitrarily high 

accuracy by sequentially applying weak learners to repeatedly re-weighted versions of the training data 

[19]. In gradient boosting, the learning procedure consecutively fits new models to provide a more 

accurate estimate of the response variable with an objective of constructing new base-learners that 

maximally correlate with the negative gradient of the loss function associated with the whole ensemble 

[33]. Random forests are a combination of tree predictors, such that each tree depends on the values of 

a random vector sampled independently and with the same distribution for all trees in the forest [20]. 

Krauss et al. [19] explain that boosting works by sequentially applying weak learners to repeatedly 

reweighted versions of the training data whereby after each boosting iteration, misclassified examples 

have their weights increased and correctly classified examples have their weights decreased. They 

conclude that each successive classifier focuses on examples that have been hard to classify in the 

previous steps [19]. Mathematically, an ensemble of trees can be written as: 

�̂�𝑖 = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹𝐾
𝑘=1 (1) 

where K is the number of trees, fk is a function in the functional space F and F is the set of all possible 

classification and regression trees (CARTs) [21]. The objective function to be optimized is given by: 

𝑜𝑏𝑗(𝜃) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖) + ∑ 𝜔(𝑓𝑘)
𝐾
𝑘=1

𝑛
𝑖 (2) 

where ω(fk) is the complexity of the tree fk [21]. 

GloVe embedding –an unsupervised learning algorithm for obtaining vector representations for words– 

has been extensively used in hate speech detection (e.g. by Gomez et al. [6], Dorris et al. [9], Ong [11] 

and Badjatiya et al. [8]). Pre-trained embeddings are useful when available training data is limited for 

data-hungry deep-learning methods [25]. The Universal Sentence Encoder (USE) embedding [26] was 

used to encode text into high-dimensional vectors for text classification. USE is a model for producing 

sentence embeddings that demonstrate superior transfer to a number of other NLP tasks as compared to 

pre-trained word embeddings, such as those produced by Word2vec or GloVe [25]. Word embeddings 

give a way to use an efficient, dense representation of vectors in which similar words have similar 

encodings [26]. The USE is trained and optimized for greater-than-word length text, such as sentences, 

phrases or short paragraphs the input of which is a variable-length English text and the output is a 512 

dimensional vector [26]. This encoder differs from word-level embedding models, since it is trained on 

a number of natural-language prediction tasks that require modeling the meaning of word sequences 

rather than just individual words [26]. The USE was partially trained with custom text-classification 

tasks in mind, as shown by Figure 4. 
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Figure 4. Classification task of the Universal Sentence Encoder (USE) [26]. 

4. EXPERIMENTAL METHOD

Data whose scope was of political conversations in Kenya was collected from Twitter using Twitter API 

V2 [27]. For training the models, data was collected from 1st January 2017 to 31st May 2022 whereas 

for testing on real data, data was collected from 1st August 2022 to 10th August 2022. This period was 

significant, since it corresponded to the week of the 2022 general elections in Kenya which were held 

on 9th August 2022. It was believed that during this period, political hate speech could hit a peak. To 

ensure that relevant data was collected from Twitter, a query was developed whose search criteria 

included words that had been identified by the National Cohesion and Integration Commission (NCIC) 

as words that had been used to propagate political hate against specific groups of people in Kenya [28]. 

This ensured that tweets that were mined were potentially of political hate speech. While tweet data with 

many attributes including text, images and videos were downloaded, focus was mainly on the text 

attribute since most hate speech messages on social media are constructed through texts [7] and that text 

models tend to outperform multi-modal models in detecting hate speech [6]. A total of 46957 records 

were used for training the model, while 17873 records were used to test it. 

Although the context of tweets that were mined focused on hate speech words as defined by the NCIC, 

it is good to note that not all tweets with these words are necessarily of hate nature. To annotate hate 

tweets from non-hate tweets, sentiment analysis was performed on the text for each tweet to determine 

its speech score using the NLTK’s Valence Aware Dictionary and Sentiment Reasoner (VADER) [29]. 

The current version of VADER has the capability of properly handling sentences with punctuation, 

word-shape, sentiment-laden slang words as modifiers, sentiment-laden emoticons, sentiment-laden 

initialism and acronyms and utf-8 encoded emoji [30]. Therefore, pre-processing the text data through 

tokenization or lemmatization was not done before performing sentiment analysis on it with VADER. 

For each statement, VADER gives probability scores for positive, neutral and negative sentiments all of 

which must sum to 1. It also gives a compound (average) score for all the scores. A compound score 

was used to determine sentiments for each tweet text. VADER recommends positive sentiments for 

compound scores greater than 0.05, neutral for compound scores greater than -0.05, but less than 0.05 

and negative sentiments for compound scores of less than -0.05. For the case of this study, all neutral 

and positive sentiments were considered as not constituting hate speech, while all negative sentiments 

were considered as potentially constituting hate speech. Thus all tweets with a sentiment compound 

score of greater than -0.05 were labelled as 0; i.e., “Not_Hate”, while those less than or equal to -0.05 

were labelled as 1; i.e., “Hate”. Figure 5 shows a schema of the method applied in this study. 

Figure 5. Schema for the method applied in this study. 

USE embeddings [26] and Keras TensorFlow Decision Forests (TF-DF) [15] were used to encode text 

into high-dimensional vectors and train models for text classification, respectively. Default Keras hyper-

parameters were applied. Three neural-network models were developed using Keras. In the first model, 

raw text was first encoded via pre-trained embeddings and then passed to a gradient boosted tree model 

for classification. In the second and third models, raw text was directly passed to the gradient boosted 
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trees model and RandomForestModel, respectively. The models were compiled with Google Colab [31] 

TPU by passing Accuracy, Recall, Precision and AUC metrics. TF-DF automatically detects the best 

loss for the task; i.e., either classification or regression. 

5. RESULTS

Table 1 shows a summary of the results from the experiments. 

Table 1. Performance of the three models measured against Accuracy, Recall, Precision and AUC. 

Model Algorithm Accuracy Recall Precision AUC 

Model_1 GradientBoostedTrees 

with USE embeddings 

0.9886 0.9587 0.9831 0.9984 

Model_2 GradientBoostedTrees 0.9272 0.6302 1.0000 0.9240 

Model_3 RandomForestModel 0.9272 0.6302 1.0000 0.8085 

The following graphs show accuracy and loss against number of trees for the models. 

Figure 6. Graph showing accuracy (left) against number of trees and loss against number for model 1. 

Figure 7.  Graph showing accuracy against number of trees (left) and loss against number for model 2. 

Figure 8.  Graph showing accuracy against number of trees (left) and loss against number for model 3. 

6. DISCUSSION

From Table 1, it can be observed that model_1; i.e., the GradientBoostedTrees with USE embeddings 

model has generally performed well according to most metrics. The training logs of accuracy against 

number of trees and the loss against number of trees also indicate that this model has a superior 

performance. Training logs show the quality of the model according to the number of trees in the model 

[32]. When compared with previous studies on detection of hate speech on social-media platforms, the 

approach of GradientBoostedTrees with USE embeddings still exhibits a superior performance as 
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demonstrated by Table 2. While experiments for these studies were done in different contexts with 

different datasets, comparing them may give us an idea on the performance of individual models. An 

accurate comparison would require replication of the experiments while keeping the dataset constant, 

but varying the modelling algorithms. 

Table 2. Performance comparison of hate speech detection models. 

Author Best performing technique Metrics for measuring model performance 

Gomez et al. [6] LSTM + Glove embeddings F-Score = 0.703, AUC = 0.732 

Accuracy = 68.4% 

Ong (2019) [11] BiLSTM-CNN F1-Score = 0.75 

Badjatiya et al. [8] LSTM, LSTM + Random Embedding 

+ Gradient, Boosted Decision Trees 

Precision = 0.930 

Recall = 0.930  

F1 = 0.930 

Dorris et al. [9] LSTM Accuracy 90.82% 

This research GradientBoostedTrees with USE 

Embeddings 

Accuracy = 98.86% 

Recall = 0.9587  

Precision = 0.9831  

AUC = 0.9984 

The graphs in Figures 6–8 also show that the GradientBoostedTrees with USE embeddings model 

suffers less loss in comparison to the GradientBoostedTrees model and the RandomForestModel. The 

purpose of this research was to propose a model for detecting political hate speech propagated through 

social-media platforms. Considering the performance of the GradientBoostedTrees with USE 

embeddings model, this model is proposed for detecting hate speech on social-media platforms. 

However, we should remember that this model works only on textual data from social-media discourses. 

We are aware of other methods through which hate speech is transmitted over social-media platforms. 

As discussed earlier, these methods include obfuscation of hate messages by distorting spelling of 

words, hiding hate messages in images and using sarcasm through text or audio-visual methods. There 

is a need to continue searching for models that can help the society detect hate speech propagated 

through these methods. Although Gomez et al. [6] found out that text models outperform multi-modal 

models, we should not stop research on multi-modal methods. If we do so, multi-modal hate speech will 

become a key conduit of hate speech propagation on social media. Finally, there is a need for the research 

community to invest in replication of already proposed models, so as to test their viability and 

applicability. 

6. CONCLUSION

Although propagation of hate-speech over social-media platform is relatively a recent phenomenon, 

several researchers have proposed various approaches for tackling this problem with varying success. 

The purpose of this research was to propose a model for detecting political hate speech in Kenya 

propagated through social-media platforms. Experimenting with data from Twitter, it was found out that 

the GradientBoostedTrees with USE embeddings model exhibited a superior performance as compared 

to other models previously proposed in literature. However, actualizing this model at production level 

may pose some challenge, since it may be difficult to apply it in real-time detection of hate speech, 

considering that it requires massive computational resources for training, compiling and testing the 

model. For this research, Colab’s TPU was used to train and test the model. Currently, such a resource 

may not be available around the clock for industrial deployment of such a model. Secondly, the model 

depends heavily on hate-speech words as defined by the NCIC. These words have their original 

meanings which are not necessarily of hate-speech nature. Similarly, as language evolves, the meaning 

of the NCIC’s hate speech words is bound to evolve too. Therefore, it is not guaranteed that those words 

will always imply hate speech. This challenge can easily generate false positive results.  

FUTURE WORK 

A replication of experiments in this research with an objective of achieving results that can be 

generalized is necessary. 
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 ملخص البحث:

كككككك يا فر كككككك ف   شككككككى  فر ككككككاف  ككككككلفرككككككافسّيككككككى ف عكا ه كككككك ف  ع ش نشصككككككىوف ع ش   ككككككْفيشكككككككشْف عكشخ

ك  ككككككا  اف   ذككككككىلةفهككككككت ف عمشككككككك  فةذ ككككككْف ع شكككككك  ش ف ككككككى  ف ع ككككككار  ف  كككككك   افف لاج مككككككىريف  كككككك شيى ف

ككككككككىوف ع ش   ككككككككْف لاج مككككككككىرياف يهكككككككك  فهككككككككت ف  عجمهكككككككك   ف ليم  كككككككك ف عم    ككككككككىوفر كككككككك ف نصش

كككككلفركككككافسّيكككككى ف عكا ه ككككك ف ع ش ىلكككككيف عكككككت ف  ع  ككككك ف عككككك ف ل كككككا تف مككككك شْفيمككككككاف لككككك     ّفع كشخ

ىوف ع ش   ْف لاج مىريف يفك ن ىاف فين شافر  ف نصش

ف كككككك س ش ف ككككككاف كككككك ي ااف لكككككك ف  ككككككةشف يكككككك يافهذهكككككك ف مككككككىشْفعهككككككت ف عتككككككا فةىلكككككك     ف  صكككككك   

ف مككككككك شْف  (ف كككككككمف ع ش كككككككم افGBT ةمقى  ككككككك ف  كككككككى لاف عنشمكككككككىشْف عأذهككككككك ف عميككككككك ش   ف  ش ككككككك ف  ش

مككككككْف  فة تكككككك ف USE ع ككككككى شفع ج  %( ف  لكككككك  ىل  فة تكككككك ف86ا99(فلكككككك ففقشكككككك ف   ككككككْف عنش ككككككى لافة لشكككككك  

ف قكككككككككك    ف 9587ا0  نمككككككككككىفكى كككككككككك ف عم ككككككككككىف ف عم صكككككككككك   ف  كككككككككك ف( فة 9831ا0( ف ضكككككككككك ) 

ككككككلف9984ا0 عمن نكككككك فعهككككككت ف عنشمكككككك شْف  فهككككككت ف عنشمكككككك شْفيمكككككككاف لكككككك     ّفع كشخ (اف ر  ككككككّ ف ككككككم ش

ىوف ع ش   ْف لاج مىرياف فرافسّيى ف عكا ه  ف عت فين شافر  ف نصش
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