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ABSTRACT 

Cloud computing plays an essential role in the development of the Internet of Things, which provides-data 

processing and storage services. Fog computing, the evolution of cloud computing helps provide solutions to 

cloud-computing challenges, such as latency, location awareness and real-time mobility support. Fog computing 

fills the gap between the cloud and IoT devices within the close vicinity of IoT devices. So, computation, 

networking, storage, data management and decision-making occur along the path between the cloud and the IoT 

devices. The automatic and intelligent management of fog node resources and achieving an effective scheduling 

policy in the computing model are necessary requirements and will lead to the improvement of the overall 

performance of fog computing. Some optimization problems are modeled by mixed-integer nonlinear 

programming (MINLP). In this paper, a model; i.e., an MINLP optimization problem on fog computing, is 

designed. Our model has two goals: to increase cost performance as well as to reduce energy consumption. Cost 

performance is the price that users are charged as benefit/revenue. In other words, cost performance is defined as 

the ratio of the average data rate of each user to its cost. Then, the exact mathematical method with the GAMS 

program was used to prove its logical process. In the next step, we solved the model with genetic algorithm (GA), 

particle swarm optimization (PSO), simulated annealing+GA (SA+GA), teaching–learning-based optimization 

(TLBO), grey wolf optimizer (GWO), grasshopper optimization algorithm (GOA) and random method. According 

to the TOPSIS comparison, the SA+GA method with a value of 0.23 is the best one compared to other methods. 

Then come GWO, GA, TLBO, PSO and GOA methods, respectively.   

KEYWORDS 

Fog computing, Optimization, Mixed-integer nonlinear programming, MINLP, Energy consumption, Cost 

performance. 

1. INTRODUCTION

According to the analysis carried out by Cisco by 2023, Internet of Things devices will make up about 

50% of the devices in networks around the world. The Internet of Things (IoT) is one of the most 

influential technologies in the world. IoT deals with large amounts of data that are not easy to process 

and store. Cloud computing plays a significant role in the development of the Internet of Things, which 

provides data-processing and storage services. However, many of its applications encounter with cloud 

computing challenges, including latency, location awareness and real-time mobility support. Fog 

computing, that almost looks like the evolution of cloud computing, contributes to providing solutions 

to these challenges [1]. The growth of devices and subsequently the data of the Internet of Things is 

such that it is possible to exceed the capacity of information and this shows the necessity of using the 

models in the fog-computing technology infrastructure to process the data and as a complement to the 

cloud-computing model. On the other hand, fog nodes are the main entities of the fog-computing model 

and for this reason, the effective management of the resources of these nodes is of particular importance. 

Automation of operations in computer networks through the use of innovations can lead to increased 

productivity, reduced operational cost and better quality of service delivery. Therefore, the automatic 

and intelligent management of fog-node resources and achieving an effective scheduling policy in the 

computing model are necessary requirements and will lead to the improvement of the overall 

performance of fog computing. Fog computing fills the gap between the cloud and the IoT devices 

within the close vicinity of the IoT devices. So, computation, networking, storage, data management 

and decision-making occur along the path between the cloud and the IoT devices [2]. 

There is a topic called "optimization", which is related to maximization and minimization. The goal of 
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optimization is finding the assignment of variables, maximizing or minimizing the value of a given 

function [3]. When the quantity to be optimized is expressed by just one objective function, it is deemed 

a uni-objective or single-objective problem. Otherwise, it is a multi-objective problem that must be 

optimized simultaneously [4]. 

It is a common misconception that most design or problem-solving activities should optimize a single 

goal; for example, maximizing profit or creating the lowest cost, even if there are several conflicting 

goals for optimization. However, the relationship between goals is usually complex and depends on 

available options. In addition, different goals are usually incomparable; therefore, combining them into 

one combined goal is challenging. Many decision-making and planning problems involve several 

conflicting goals that have to be studied simultaneously. Such problems are generally known as multi-

criteria decision-making (MCDM) problems. Depending on the characteristics of the problem [5], 

MCDM can classify problems in many ways. Two main classes of MCDM are generally introduced: 

multiple-objective decision making (MODM) and multiple-attribute decision making (MADM) [6]. 

Many engineering and scientific optimization problems involve combinatorial and nonlinear relations. 

Some optimization problems are modeled by mixed-integer nonlinear programming (MINLP) that 

combines the capabilities of linear programming (LP) and nonlinear programming (NLP) [7]. 

Initially, the driving agent behind the development of the general algebraic modeling system (GAMS) 

was that mathematical-programming users are believing in optimization as a strong and subtle 

framework to solve real-life problems in science and engineering [8]. GAMS is a high-level modeling 

language for formulating models. Being composed of short algebraic statements, it is easily read by 

modelers and it formally looks like the generally-used programming languages [9].  

Particle swarm optimization (PSO) is a population-based algorithm in which the movement of a flock 

of birds are simulated to find the optimum solution [10]. Genetic algorithm (GA) is one of the 

population-based optimization methods [11]. Simulated annealing (SA) is an algorithm to solve large 

combinatorial optimization problems [12]. Teaching–learning-based optimization (TLBO) is an 

algorithm for optimizing mechanical design problems. This method deals with the teacher's effect on 

learners. TLBO is a population-based method too [13]. A model, in order to perform optimization, is 

grey wolf optimizer (GWO) which models the hunting technique and the social hierarchy of grey wolves 

mathematically [14]. Another optimization algorithm is called the grasshopper optimization algorithm 

(GOA) [15]. 

In this paper, the single-objective model is proposed for minimizing the total energy of all mobile 

devices and maximizing the cost performance due to their service-latency limitations. Our problem is a 

mixed-integer nonlinear programming (MINLP) problem. Then, the proposed model with the exact 

mathematical method of GAMS is solved. Also, the problem with PSO, GA, SA+GA, TLBO, GWO, 

GOA and random, is solved in order to find the best solution. The research hypotheses in this paper 

include the solvability of the problem model using the exact mathematical method (GAMS) and meta-

heuristic methods, examining our problem model that has an answer at an acceptable time with a high 

number of iterations, examining the existence of an optimal solution that optimizes the objective 

function (sum of energy-consumption values being minimum and cost performance values being 

maximum) and finally examining the environment in which resources should be allocated. In this paper, 

it is assumed that the number of fog nodes and users was limited. All users in the model, request for 

resource and resource allocation are applied as first-in, first-out (FIFO). 

User satisfaction or user experience is one of the important criteria for SPs. Service latency is a measure 

of user satisfaction. Also, we must first ensure that the transmission quality between users and FNs is 

satisfied. To measure system performance, we consider mandatory revenue and price offers from users 

as the benefit/revenue of the SPs. The price offered by each user is related not only to the latency 

requirement, but also to data size. Each SP serves more than one user and therefore receives more than 

one offer. Two performance measures, user satisfaction and SP revenue, are essential for good resource 

allocation in fog computing. CP is defined as the ratio between each user’s average data rate and its 

price cost, in unit of Mbps/sec/dollar. Because the actual amount of delay is strongly related to the 

amount of user data to transmit and process, the data rate is considered, rather than the pure delay. It 

also makes sense to use the users’ monetary payment/offer for the respective fog computing service that 

they obtain for the cost factor. The cost-performance function for each user represents the quality of 

service for which the user pays [16]. Due to the increasing importance of energy consumption, fog-
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computing architecture is an effective solution to enable energy-efficient and low-latency mobile 

applications due to its low-latency and high-bandwidth connections with mobile devices as well as cloud 

servers, agile mobility and location-awareness support [17].  

The contributions of our article are as follows: 

 A computational framework (single-objective model) which considers both vertical and 

horizontal cooperation between fog nodes and mobile devices is proposed. Due to service-

latency limitations, the total energy of all mobile devices is minimized and the cost 

performance is maximized at the same time. Then, the proposed model is solved with the 

exact mathematical method of GAMS and Baron Solver. 

 A task can be offloaded by a mobile device to one of the fog nodes, the cloud, through a fog 

node or to the cloud server directly. The main problem among thirty problems (according to 

the central limit theorem (CLT)) is considered with three sizes (small, medium and large). 

By changing the number of mobile devices and fog nodes, problems are obtained with some 

different variables, which can be used to check the scalability of the problem. The purpose 

of this scenario is to measure the behavior of algorithms by considering the values of two 

objective functions and their execution times. 

 Then, the problem is solved with eight methods (PSO, GA, SA+GA, TLBO, GWO, GOA, 

random and exact mathematical method) to find the best solution. Also, twelve other issues 

are considered with different numbers of mobile devices and fog nodes, in two main stages: 

the number of fixed fog nodes and the number of variable mobile devices and conversely 

(the number of fixed mobile devices and the number of variable fog nodes). Therefore, a 

more accurate analysis of the values of objective function is obtained with two indices of 

execution time and the value of the objective function. 

 Extensive simulations are performed to evaluate cost performance and energy consumption 

and finally, the best algorithm is selected by using the technique for order of preference by 

similarity to ideal solution (TOPSIS) method. 

The rest of this paper is arranged as follows. Related work is presented in Section 2. In Section 3, the 

network model is discussed. Problem solving is presented in Section 4. Evolution is presented in Section 

5. Finally, in Section 6, the conclusion is presented. 

2. RELATED WORKS  

The related papers are presented as follows. Authors in [18] proposed a joint offloading decision and a 

framework for resource allocation optimization for MEC with algorithms of relaxing-optimization 

policy (ROP) and index branch-and-bound algorithm (IBBA). Their paper has disregarded the optimal 

transmission power assignment. The model only included communications. In [19], an IoT-based remote 

health-monitoring system implementation was presented, that included a demonstration of a smart e-

health gateway called UT-GATE. Applications were user-centric, whereas services were developer-

centric. Authors in [20] have studied an MCC system with multiple users, one CAP and one remote 

cloud server. The weighted total cost of energy, computation and maximum delay were minimized 

among all users. Also, a new approach to the joint task offloading and computation and communication 

resource allocation with share CAP, an efficient heuristic algorithm using semi-definite relaxation 

(SDR) and a new approach to randomization mapping were proposed by them. They assumed that there 

were several mobile-phone users, each with only one task. In [21], the authors have proposed min-max 

fairness in a mixed fog/cloud computing system by joint optimization of offloading decision-making 

and resource allocation using computation offloading and resource allocation (CORA) algorithms, as 

well as the bisection method for computation-resource allocation (BCRA) algorithm. They only 

considered orthogonal multiple access (OMA). Researchers in [22] have investigated a framework for 

optimization of computation offloading, computation resource allocation, resource block (RB) pattern 

assignment, transmit power allocation and a low-complexity general algorithm framework known as 

fireworks algorithm based on joint computation offloading and resource allocation algorithm (FAJORA) 

to decompose the problem into several sub-problems. If the original LTE standard were to be considered, 

support for these processes would be costly. The joint task assignment, communication rate and 

computation frequency allocation for a device-to-device (D2D)-enabled multi-helper MEC system was 

proposed by the authors in [23]. Also, to create a sub-optimal task assignment solution for the MINLP 
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formulation and a benchmark scheme with fixed computation frequency and a greedy task assignment-

based heuristic algorithm, they proposed a special convex-relaxation-based algorithm. This work only 

considered the users’ cooperative computation under fixed energy supplies (e.g., batteries). In [24], a 

novel low-latency and trustworthy communication-computing system design was proposed to enable 

mission-critical applications by which the ultra-reliable low latency communications (URLLC) 

requirement has been formulated. In particular, relying solely on the average queue length did not meet 

the strict delay requirement for vehicle applications. In [25], a holistic strategy for a joint task offloading 

and resource allocation in a multi-cell MEC network was investigated by the researchers. To optimize 

the MINLP problem, the original problem was formulated into a resource-allocation problem with a 

fixed task offloading decision and a task offloading problem. This work did not consider the ultra-dense 

network and it was difficult to gain insight into the design of critical parameters. Authors in [26] 

decomposed the drone placement problem into two sub-problems and improved the latency ratio of the 

network. They placed drone base stations to the locations with higher user densities. In a dynamic 

network, each server had to process dynamically changing the amount of data load gathered in different 

clusters, which made the load on cluster servers unbalanced. In [27], by leveraging the vertical 

cooperation among devices, edge nodes and cloud servers with alternating-direction method of 

multipliers (ADMM) method and difference of convex functions (D.C.) programming, a three-tier 

cooperative computing network was inspected. The ADMM and D.C. programming-based methods 

were only sub-optimal. Authors in [28], using fog computing with low latency, performed the electric 

energy control in a microgrid. Their scheme proposed some services, including the proportional integral 

derivative (PID) controller and algorithm scheduling, to decrease consumers’ bills and algorithms (FIFO 

and GA) using the PID calculations. In this work, just downlink was used. In [29], general joint 

computation offloading and resource allocation for the multiple-input multiple-output (MIMO)-based 

mobile cloud computing system considering perfect- channel state information (P-CSI) and imperfect-

CSI (IP-CSI) were tackled by the researchers. In order to solve the underlying MINLP, the optimal and 

low-complexity algorithms were proposed. This work has discussed the network and communication 

resources individually, typically focusing independently on each of them. Authors in [30] inspected the 

optimization of offloading decision, local computation capability and computing resource allocation of 

fog node. The problem was decomposed into two independent sub-problems by them and an HGSA-

based latency-minimum offloading decision algorithm was designed to tackle this MINLP problem with 

low complexity. Using traditional greedy search methods was challenging. In [31], the offline placement 

problem of IoT services supporting horizontal and vertical scaling in an edge computing environment 

was investigated. The authors formulated an MINLP problem and proposed linearization and genetic-

based method to solve it. This article only minimized deadline violations due to limited resources at the 

edge. In [32], radio resource allocation between two network slices with heterogeneous performance 

metrics in fog radio access networks was investigated by the researchers and the problem as a 

Stackelberg game was modelled, where the global radio resource manager (GRRM) with a strong 

position acted as the leader and the local radio resource managers (LRRMs) of slices acted as followers. 

This work was inefficient in long-term resource allocation performance. Researchers in [33] proposed 

an advanced caching technique through which the energy efficiency and delays can be improved and an 

algorithm for load balancing in the advanced cached fog layer. It has become more challenging to 

connect and monitor many devices, the most critical feature of which is content security. In [34], the 

joint optimization of computation offloading decisions, service caching placement and system resource 

allocation was studied by the authors. The complicated MINLP problem was transformed to a pure 0-1 

integer linear programming (ILP) problem and reduced-complexity algorithms were proposed. It may 

not work properly for multi-user systems. In [35], a declarative methodology, SecFog, was proposed, 

which may be used for quantitative assessment of the security level of multi-service application 
deployment to cloud-edge infrastructures. Also, an MINLP problem of placing application services for 

the purpose of assuring end-to-end delay constraints was formulated. The underlying model was limited 

to the security controls provided by the infrastructure. In [36], the authors studied the service-placement 

problem in fog computing using meta-heuristic approaches and proposed an improved parallel genetic 

algorithm. But, it seems to be costly to implement. In [37], researchers have proposed a multi-objective 

strategy including execution time, energy consumption and cost, based on a biogeography-based 

optimization algorithm, for MEC offloading to satisfied users’ multiple requirements. Objective(s), 

network and environment of related works are shown in Table 1.  
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 *      *   Energy and delay Vu et al., 

2018 [18] 

*       * *  
Energy efficiency, security, overall system 

intelligence, reliability performance, mobility and  

interoperability 

Rahmani et 

al., 2018 [19] 

 *        * Cost of energy, computation and delay Chen et al., 

2018 [20] 

 *     *    Cost, energy and delay Du et al., 

2017 [21] 

 *     *    
Computation-resource allocation, optimizing 

computation offloading, transmitting power 

allocation, resource block pattern assignment 

Du et al., 

2018 [22] 

 *      *   Energy and delay Xing et al., 

2019 [23] 

 *      *   Power consumption and latency Liu et al., 

2019 [24] 

 *      *   Energy consumption 
Tran and 

Pompili, 2018 

[25] 

 *     *    Latency 
Fan and 

Ansari, 2018 

[26] 

 *      *   Average task-duration subject Wang et al., 

2019 [27] 

 *     *    Power demand and managing power production 

and response time 

Barros et al., 

2019 [28] 

 *   *      Energy and delay Nguyen et al., 

2019 [29] 

 *  *       
Resource-allocation scheme, completion time and 

latency 

Wang and 

Chen, 2020 

[30] 

*     *     Potential violation of QoS requirements Maia et al., 

2019 [31] 

 *  *       Resource allocation Sun et al., 

2019 [32] 

 *  *       Energy and latency Shahid et al., 

2020 [33] 

 *      *   Energy and delay Bi et al., 2020 

[34] 

 * *        Security Forti et al., 

2020 [35] 

 *  *       latency, cost and trust Wu et al., 

2022 [36] 

 *      *   time-energy consumption and cost  Li et al., 2022 

[37] 
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3. NETWORK MODEL 

Figure 1 shows a three-layer fog computing system with N mobile devices and M cooperative fog nodes. 

A cloud server V accesses directly by mobile devices. A task can be offloaded by a mobile device to one 

of the fog nodes, the cloud, through a fog node or directly to the cloud server. The model used in our 

study is similar to that used in paper [17]. The explanation of the parameters is given in Table 2. At each 

time slot, mobile device i can request to offload a computing task. The mobile devices, 

fog. 𝐼𝑖(𝐷𝑖
𝑖, 𝐷𝑖

0, 𝐶𝑖, 𝑡𝑖
𝑟) nodes, as well as the cloud server meet the delay requirements and are eligible for 

work processing. So, there are three modes for processing tasks, including mobile devices or local mode, 

fog nodes mode and cloud server mode. 

 

Figure 1.  The architecture of fog-computing network. 

Table 2.  Explanation of parameters. 

Explanation Parameters 

Input (including execution code and input data) i
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The lengths of output (result) data o
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The energy consumption for transmitting a unit of data 
 

The energy consumption for receiving a unit of data 
 

The delay of mobile devices f
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The energy consumed in the mobile devices in fog-node processing f
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3.1 Local Processing 

The time to perform the task iI  when it is processed locally is: 

/l l

i i iT C f           (1) 

where, iC  is the number of CPU cycles (required to execute the task) and l

if  is the processing rate of 

mobile device 𝑖 (cycles per second). 

The energy consumed in the mobile device ( l

iE ), adequate to the CPU cycles required for task iI , is: 

l

i i iE v C     (2) 

and iv  denotes the consumed energy per CPU cycle. 

3.2 Fog-node Processing 

Fog node j has capabilities defined by a tuple ( , , )u d f

j j jR R R . , ,u d f

j j jR R R  are the total uplink rate, the total 

downlink rate and CPU cycle rate, respectively. If task iI  is processed at fog node j , this node will 

allocate spectrum and computation resources for mobile device i  ( ( , , )u d f

ij ij ij ijr r r r ), where u

ijr  is the 

uplink rate for output transmissions, d

ijr  is the downlink rate for input transmissions for task execution 

and f

ijr  is the CPU cycle. Hereon, the energy consumption of the mobile device is to transfer input to 

and receive output from the fog node j . The delay includes the time of task processing, transmitting 

input and receiving output at the fog node, so that they are / f

i ijC r , /i u

i ijD r  and /o d

i ijD r , respectively. i

iD

is input data and o

iD  is output data. 

The delay f

ijT  and the consumed energy f

ijE  of the mobile device are: 

/ / /f i u o d f

ij i ij i ij i ijT D r D r C r   (3) 

and 
f u d

ij ij ijE E E          (4) 

where u u i

ij ij iE e D  and d d o

ij ij iE e D . The energy consumption for transmitting a unit of data and the 

energy consumption for receiving a unit of data are denoted by u

ije  and d

ije . 

3.3 Cloud-server Processing 

Assume that all fog nodes are connected to a public cloud server. If fog node j  forwards task iI  to the 

cloud server, it will allocate resources for mobile device i , ( ( , , )u d f

ij ij ij ijr r r r ) and 0f

ijr  . Fog node j

sends the input data to the cloud server for processing after receiving the task. It then receives the result 

and sends it to the mobile device. Hereon, the consumed energy c

ijE  at the mobile device and the delay 
c

ijT  are: 

/ / ( ) / /c i u o d i o c c

ij i ij i ij i i iT D r D r D D w C f      (5) 

and 
c f u d

ij ij ij ijE E E E      (6) 

where cw  is the data rate between a fog node and the cloud server and cf  is the processing rate on the 

cloud server assigned to each task. 

Because the cloud is in the top tier, it cannot move its task to the top tier. This is accomplished by setting 

the corresponding latency to infinite:  1

c

i M
T


  . The total energy consumption  1

c

i M
E

 is set as a 

constant. The binary offloading decision variable for task iI  is 1 ( 1) 1 ( 1)( , , , , , , ) ...  ... l f f c c

i i i i M i i Mx x x x x x  , 

in which 1l

ix  , 1f

ijx   and 1c

ijx   indicate that task iI  is processed at the mobile device, fog node j  or 

the cloud server, respectively. Suppose that 1 ( 1) 1 ( 1)( , , , , , , ) ...  ... l f f c c

i i i i M i i Mh T T T T T  . From (1), (3) and 

(5), the delay iT  when task iI  is processed is equal to: 
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i i iT h x (7) 

Suppose that 1 ( 1) 1 ( 1)( , , , , , , ) ...  ... l f f c c

i i i i M i i Me E E E E E  . From (2), (4) and (6), the consumed energy iE

of the mobile device when task iI  is processed is: 
T

i i iE e x (8) 

Assuming that 1( ,..., )Ne e e  and 1( ,..., )Nx x x , the consumed energy iE  of the mobile device is as 

follows: 

  TE e x   (9) 

The purpose of our paper is to minimize the total energy consumption of all mobile devices in the delay 

requirement, which is a joint offloading decision ( x ) and resource allocation (      ijr r ) problem:

,Min T

x re x (10) 

the restrictions of which are equal to: 
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1

*

C5     1,     ,

,  ,   0,1  ,  ,      
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i ijj
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i i

c r
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f r

ij i

x x x i N

x x x i j N

T t
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T t





     

    

 



 


M

       (12) 

where (C1) is the delay requirement of tasks. Resource constraints at fog nodes are (C2), (C3) and (C4). 

Offloading decision constraints are (C5) and (C6) to (C8), indicating that the task delay for each mobile 

device should not exceed the maximum value ( r

it ). 

According to the equations presented in [16], the revenue of the service provider (cloud) leads to better 

services for member users. Another factor in measuring cost performance is the price that users are 

charged as benefit/revenue. The price offered by each user depends on the delay requirement ijT  and 

data size i

iD  and o

iD , where we assume a linear relationship between the price and the data size and an 

inversely linear relationship between the price and the delay requirement. Therefore, the offer from each 

user is equal to:  

 ,  , i o

ij i i ijO f D D T    (13) 

where the function ()f  must be a monotonic increasing function for i

iD  and o

iD  must be a monotonic 

increasing function for ijT . For simplicity, the following function is used to define    ,  , i o

i i ijf D D T : 

 
i o

i i

ij

ij

D D
O a

T




      (14) 

where a  is a parameter with the unit of dollar/Mbps and ijO  is the price that the user of the mobile 

device i  pays if it is compatible with V . Because V  serves more than one user, it receives more than 

one offer. Revenue V  is the sum of offers defined by all users. For simplicity, it is assumed that the cost 

of V is related to the power consumption of the transmission and its maintenance; in this work, it is 

fixed. In revenue V , the impact of fixed-service costs is ignored.  The system objective in our article is 

named cost performance. Cost performance is defined as the ratio of the average data rate of each user 

to its cost in Mbps/sec/dollar.  
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The actual delay value is related to the size of the data i

iD  and o

iD  that must be transmitted and 

processed. Then, for the cost factor, use the user's payment/offer for the relevant fog calculation service 

that it acquires. As a result, the cost performance function is defined for combining two factors in one 

criterion for each user, which indicates the quality of services for which the user pays. The cost 

performance system (
sysCP ) is equal to: 

  i
iju U

sys

CP
CP

N





  (15) 

where 
ijCP  is the cost performance value for each mobile device i  and is shown as follows: 

   /i o f

i i ijf

ij ij

ij

D D T
CP x

O




(16) 

The optimization problem of our article is shown below: 

𝑀𝑎𝑥   𝐶𝑃 =  ∑  𝑥𝑖𝑗
𝑓

𝑖𝑗

(𝐷𝑖
𝑖+𝐷𝑖

𝑜) 𝑇𝑖𝑗
𝑓

⁄

𝑂𝑖𝑗

         (17) 

the restrictions of which are equal to: 
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where (17) is the system objective and shows the overall system cost performance for users. (C9) 

indicates that each user who has been served has a task delay less than the maximum delay requirement 

of the task ( r

it ). In (C10), (C11) and (C12), for each user who has been served, the CPU cycle, downlink 

and uplink rates for task execution and output and input transmissions of all users must be less than the 

CPU cycle rate (  

f

jR ), the total uplink rate and the total downlink rate. 

4. PROBLEM SOLVING

The Experimental parameters are shown in Table 3 and are similar to the experimental parameters in 

[17]. GAMZ solves the problem as a single-objective. The weighted-sum method is used to turn our 

two-objective problem into a single-objective problem. Eq. (19) has two goals: to increase cost 

performance and reduce energy consumption. Since one of the goals of the problem is maximization, to 

achieve the ultimate goal of the problem, which is a minimization of the objective function, must be 

multiplied by -1. First, through the weighted sum method, two weights with a value of 0.5 are assigned 

to the objective function and are added up to become a minimized objective function. The choice of 

weight for the objective function depends on the priority and importance of the selected objective 

function. Because both cost performance and energy consumption are equally important in this paper, a 

factor of 0.5 is considered for both. 

𝑀𝑖𝑛   (−0.5) × ∑ 𝑥𝑖𝑗
𝑓

𝑖𝑗

(𝐷𝑖
𝑖+𝐷𝑖

𝑜) 𝑇𝑖𝑗
𝑓

⁄

𝑂𝑖𝑗
+ 0.5 × 𝑒𝑇𝑥       (19) 

In the next step, inside the GAMS, for a small model with five mobile devices, four fog nodes and a 

cloud, the model is entered into the program. Indices are displayed in GAMS with sets, which in this 

article include  for mobile devices at 5,  for fog nodes at 3,  for cloud server at 1 and  is an 

auxiliary index at 4. After entering the parameters, decision variables and sets, it is time to choose the 

appropriate solver. Both Eq. (10) and Eq. (17) are nonlinear and MINLP. Because the sum of Eq. (10) 

and (17) is nonlinear and MINLP, Eq. (19) is also nonlinear and MINLP. In this case, because our 

problem is MINLP, which is generally NP-hard to solve [38], the best solver is Baron, which solves 

these kinds of problems with a good track record. After execution, the results are as follows: the decision 

i j k m
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variables are quantified, the optimal answer is obtained and resources are allocated to the devices. The 

decision variable  determines which mobile is served by which device. The lower bound is set , 

 and from 0.01, because in equations where ,  and  are at the denominator of the fraction, 

they cannot have a value of zero. As described, the weighting method is used to balance the objects. 

Considering w1, w2 with values of 0.5 and 0.5, the lowest amount obtained for the objective function 

was -1624.439.  

Table 3.  Experimental parameters. 

Value Parameters 

10 Number of mobile devices N 

4 Number of fog nodes M 

1 Number of cloud servers V 

0.5 Giga cycles/s CPU rate (in mobile devices) 

1000/730 J/Giga cycles Processing energy consumption rate 
iv

U(a, b) MB Input data size 
i

iD

U(c, d) MB Output data size 
o

iD

 
Required CPU cycles 

0.142 J/Mb Unit transmission energy consumption to fog nodes  ( ) 

0.142 J/Mb Unit receiving energy consumption from fog nodes  ( ) 

0.658 J/Mb Unit transmission energy consumption to cloud server V ( ) 

0.278 J/Mb Unit receiving energy consumption from cloud server V ( ) 

[1, 10]s Delay requirement 

10 Giga cycles/s Processing rate (each fog node) 
f

jR

72 Mbps Uplink data rate (each fog node) 
u

jR

72 Mbps Downlink data rate (each fog node) 
d

jR

10 Giga cycles/s CPU rate (the cloud server) 

5 Mbps Data rate between FNs and the cloud 

1 A parameter with the unit dollar/Mbps a

[6, 7]s Delay requirement 
ijT

5. EVALUATION

In this section, the implementation of meta-heuristic algorithms including evaluation setup, 

experimental results and results’ analysis, is presented. 

5.1 Evaluation Setup 

The proposed model was implemented by use of PSO [10], GA [11], SA+GA [12], TLBO [13], GWO 

[14], GOA [15] and random search method for thirty problems of different sizes to solve our single-

objective problem (19). The proposed models are solved using meta-heuristic algorithms to solve 

problems in small, medium and large sizes. Because the problem is of the MINLP type, meta-heuristic 

algorithms have a good track record of solving this type of problem. Also, the model is based on 

population and the algorithms used in this paper are the same. Meta-heuristic algorithms have acceptable 

speed and accuracy in finding the optimal solution in resource-allocation models. These algorithms are 

scalable for resource-allocation optimization problems (for more iterations and larger populations) [39]-

[40]. Programming and execution of algorithms are also carried out using MATLAB version (R2016a). 

The algorithms run on a 64-bit system with a 2.5 GHz processor and a 2 GB memory. 

To investigate the performance of the proposed model, PSO [10], GA [11], SA+GA [12], TLBO [13], 

GWO [14], GOA [15] and random method have been used. Then, a comparison of the results obtained 

from each of these methods is performed. To do this, different instances of different sizes must first be 

designed. The parameters of each algorithm are given in Table 4. 
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Table 4. The parameters of the algorithms. 

Algorithm Parameters Values 

PSO 

maximum number of iterations 100 

population size (swarm size) 50 

inertia weight 1 

inertia weight damping ratio 0.99 

personal rating coefficient 2 

global rating coefficient 2 

GA 

maximum number of iterations 100 

population size 50 

Cross-over percentage 0.8 

number of off-springs 2×round (cross-over percentage × 

population size/2) 

mutation percentage 0.3 

number of mutants round (mutation percentage × population 

size) 

gamma 0.05 

mutation rate 0.02 

beta 0.5 

SA+GA 

maximum number of iterations 100 

maximum number of sub-iterations 10 

initial temp. 10 

temp reduction rate 0.99 

population size 50 

Cross-over percentage 2 

number of parents (off-springs) 2×round (cross-over percentage × 

population size/2) 

mutation percentage 0.3 

number of mutants round (mutation percentage × population 

size) 

Cross-over inflation rate 0.05 

mutation rate 0.02 

mutation mode “rand” 

eta 0.1 

TLBO 
maximum number of iterations 100 

population size 50 

GWO 
maximum number of iterations 100 

population size 50 

GAO 
maximum number of iterations 100 

population size 50 

The computational complexities of PSO [10], GA [11], SA+GA [12], TLBO [13], GWO [14], GOA 

[15] are O(nlogn),O(nm),O(nm),O(ldg),O(nm) and O(m3), respectively, where n is the number of 

population, m is the size of individuals, d is the number of subjects, g is the number of iterations and l 

is the number of learners. 

In this research, instances in small, medium and large sizes are designed and the size of each parameter 

for each type of example is classified as follows (i for the number of mobile devices and j for the number 

of fog nodes):  

- For small instances, the set i  = 5 and j  = 3 with 60 variables, 

- For medium instances, the set i  = 15 and j  = 5 with 300 variables, 

- For large instances, the set i  = 100 and j  = 15 with 6000 variables. 
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5.2 Experimental Results and Results’ Analysis 

The results related to the values of the objective function and the solution times for these algorithms are 

given in Table 5 and Table 6. 

Table 5.  The values of the objective function. 

Problem type No. GA PSO SA+GA 

S
m

al
l 

p
ro

b
le

m
 

1 -3,624 -3,239 -7537250.18 

2 -5,137 -4,633 -26513.6 

3 -5,582 -4,840 -1128 

4 -3,045 -2,912 -15617.6 

5 -5,239 -4,782 -11922.9 

6 -3,488 -2,846 -608.9 

7 -4,823 -3,925 -579.9 

8 -3,256 -2,885 -69918.4 

9 -7,144 -6,547 -21484.3 

10 -6,739 -5,168 -11940.5 

11 -4,958 -4,151 -17363.5 

12 -5,786 -5,004 -5701.3 

m
ed

iu
m

 p
ro

b
le

m
 

13 -493,059 -435,452 -412371.2 

14 -626,800 -591,089 -446073.1 

15 -829,385 -781,866 -511573.6 

16 -743,971 -694,826 -648282.3 

17 -720,405 -685,978 -2437.3 

18 -534,126 -493,097 -397386.3 

19 -694,271 -562,966 -439611.8 

20 -495,543 -402,779 -211423.9 

21 -413,253 -354,656 -2813.9 

22 -748,903 -687,841 -315033.7 

la
rg

e 
p

ro
b

le
m

 

23 -3,433,470 -3,028,605 -49497370.4 

24 -3,737,970 -3,478,755 -19938346.9 

25 -3,891,427 -3,606,192 -31052647 

26 -3,759,422 -3,313,783 -14822865 

27 -3,027,824 -2,831,833 -32319789.1 

28 -3,487,582 -3,117,100 -29267467.9 

29 -2,517,827 -2,390,396 -27467320.4 

30 -4,728,847 -4,310,443 -32405902.4 

Problem type TLBO GOA GOW Random 

S
m

al
l 

p
ro

b
le

m
 

-26848.6 -9506.1 -1436 -110.35 

-33697.5 -21977.9 -65731.6 -74.49 

-943.8 -1062.6 -1216.7 -221.76 

-2744.9 -5338.4 -13687.9 -11.25 

-4662.5 -8130.7 -984 -119.24 

-22366.2 -13209.1 -775.6 -67.47 

-1084.6 -7559.5 -3531.5 -32.69 

-78935 -4933.3 -33810.1 -84.93 

-1659.9 -17399.8 -12122.8 -210.67 

-7981.7 -14711.6 -24042.3 -203.19 

-8174.7 -759.4 -83975.9 -118.37 

-3080.8 -12755.8 -1591.3 -19.67 

m
ed

iu
m

 p
ro

b
le

m
 -14450.6 -25405.9 -2501.9 309.11 

-501673.5 -35910 -71205.4 397.31 

-133464.3 -2098.5 -134118.1 100.33 

-136988.4 -165627.6 -93339.8 115.60 

-63350.8 -86799 -270145 220.36 

-199839.4 -82712.8 -75138.9 79.14 
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-192184.3 -216008.7 -82738.5 19.35 

-148564.8 -206550.1 -138484.9 10.46 

-147154.4 -148449.6 -190762.6 24.89 

-166501.5 -70551.7 -65520.3 114.49 

la
rg

e 
p

ro
b

le
m

 

-3620749.4 -881734 -4128805 9.17 

-4048094.4 -858796.8 -504324.6 14.11 

-5092522.9 -830234.3 -776526 -25.21 

-4557760.8 -656639 -4638037 -7.82 

-2747554 -794339.2 -3261333.7 10.35 

-3628517.4 -361017.3 -3628227.1 -2.56 

-4323419 -946594.2 -4020436.5 -18.59 

-4323411 -1013361.6 -4952766.4 -4.90 

In Table 5, the values of the objective function are shown. As can be seen in Table 5, the problem is 

investigated in small, medium and large dimensions. Cost is obtained at each stage and the larger the 

problem, the lower and more convergent the cost function becomes. Because the presence of all meta-

heuristic algorithms at every stage, these algorithms try to get a more optimal answer. The solution times 

are indicated in Table 6 and Figure 2. 

Table 6.  The values of the solution time. 

Problem 

type 

No. CPU-GA(s) CPU-

PSO(s) 

CPU-

SA+GA(s) 

CPU-

TLBO(s) 

CPU-

GOA(s) 

CPU-

GOW(s) 

S
m

al
l 

p
ro

b
le

m
 

1 51.11 24.77 185.5 7.3 5.3 2.9 

2 50.64 24.53 219.4 7.1 5.6 2.5 

3 50.37 25.25 94.2 7.4 3.5 2.6 

4 50.96 25.27 97.3 7 3.7 2.5 

5 50.44 24.48 96.3 7 3.9 2.5 

6 49.82 25.46 96.5 6.9 3.4 2.6 

7 49.88 23.69 98.1 7.5 3.6 2.5 

8 51.03 24.55 97.3 7.3 3.4 2.5 

9 50.81 25.29 93.9 7.4 3.4 2.8 

10 51.07 24.01 103.2 7 3.4 2.5 

11 51.24 23.34 99.8 7.1 4.8 2.5 

12 50.15 23.35 97.9 12.7 3.4 2.5 

m
ed

iu
m

 p
ro

b
le

m
 

13 184.12 99.56 251.5 18.7 7.1 6.4 

14 185.44 103.23 251.2 18.2 7.1 6.3 

15 183.34 103.83 255.2 17.6 6.9 7 

16 183.02 103.03 248.4 29.4 7.1 6.3 

17 186.32 100.16 248.6 29.8 7.1 6.4 

18 184.28 102.43 241.6 17.7 6.9 6.4 

19 184.06 102.99 244 17.8 7.1 6.3 

20 182.29 99.46 243 17.8 6.9 6.3 

21 180.19 100.85 244.7 25 6.9 6.3 

22 179.27 99.04 237.4 17.8 7 6.3 

la
rg

e 
p

ro
b

le
m

 

23 1068.48 693.68 1566.1 118.5 67.8 46.6 

24 1045.26 681.12 1651.1 193.1 67.5 58 

25 1049.38 687.39 1621.5 120.7 61.2 52.4 

26 1053.51 689.14 1617.7 294.2 60.1 44.2 

27 1054.37 694.76 1705.1 141.2 102.5 47.1 

28 1038.45 681.16 1577.4 237.2 83.7 50.3 

29 1062.94 686.94 1606.5 255.8 65.1 45.7 

30 1078.55 694.17 1616.1 238.2 99.6 46.4 
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In Table 6, due to the fact that small problems have fewer variables and parameters and the number of 

fogs and users is less, the execution time of the algorithm is shorter and they are executed faster than 

the next steps when the number of fogs and users increases. Finally, in larger problems, the number of 

variables reaches 6,000, which will certainly be solved in more time. It should be noted that to eliminate 

the uncertainty in the obtained outputs, each problem was performed three times and the average of 

these three problems was reported as the final answer variable.  

a                                                         b                                                     c 

Figure 2.  The values of the solution time for a) small problems, b) medium problems and c) large 

problems. 

The plot of a problem with fifty mobile users, ten fog nodes and a cloud sever is shown in Figure 3, 

while the plot of a problem with one hundred mobile users, ten fog nodes and a cloud sever is shown in 

Figure 4. As you can see in Figure 3, in a number of iterations below 10, the SA+GA [12] graph 

fluctuates upwards, which can be due to the lower stability of this algorithm in such number of iterations. 

In Figure 3 and Figure 4 in each step, the meta-heuristic algorithms perform the optimization process 

and try to reduce the total cost in each step and obtain a more optimal value. In fact, this leads to the 

most accurate answer, allocating resources of a certain size with the minimum delay to users through 

fog nodes or directly to the cloud server. 

Figure 3.  The value of the objective function in           Figure 4.  The value of the objective function in 

the number of iterations for fifty mobile users,  the number of iterations for one hundred mobile 

ten fog nodes and a cloud sever.           users, ten fog nodes and a cloud sever. 

To study and compare the proposed algorithms accurately, decision-making with multiple criteria has 

been used. Multiple-attribute decision making (MADM) method is a multi-criteria decision-making 

method; by which TOPSIS method is used for comparing algorithms with various indicators. Since this 

method has been used in a variety of articles and ended in excellent and accurate results, it is also used 

here for comparison. In this model, two indicators of execution time (CPU time) and the value of the 

objective function are considered for comparison. Since not all the amounts can be taken into account 

due to their large number, the average of each column is obtained and then the values are entered into 

TOPSIS. On the other hand, because an algorithm is better in terms of each indicator, there is no such 

decision-making ability to choose a better algorithm. The result of TOPSIS method is shown in Table 

7. According to Table 7 of the TOPSIS comparison, compared to other methods, the SA+GA method

with a value of 0.23 is deemed the best. Then come GWO [14], GA [11], TLBO [13], PSO [10] and 

GOA [15] methods, respectively. 
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Table 7.  The result of TOPSIS method. 

Ranking Algorithms 

0.23 SA+GA 

0.197 GWO 

0.167 GA 

0.146 TLBO 

0.117 PSO 

0.104 GOA 

In Figure 5 (with ten fog nodes), as the number of mobile devices increases, the cost performance 

increases too. The highest cost performance is for the GWO [14], GOA [15], TLBO [13], SA+GA [12], 

PSO [10] and GA [11], respectively. GA has the lowest gradient, because it has a slower convergence. 

GWO has the highest cost performance increase because of its high convergence and iterability. With 

the increase in the number of users, the cost performance has increased as well, because more users try 

to get services and the size of input-output data ( i

iD and o

iD ) increases too and as the goal is to increase 

cost performance, the latency decreases at each stage. 

In Figure 6 (with ten fog nodes), as the number of mobile devices increases, the energy consumption 

increases too. The highest energy consumption is for the GWO [14], GOA [15], TLBO [13], SA+GA 

[12], PSO [10] and GA [11], respectively. In Figure 6, because of the power of convergence and 

iterability, GWO has the highest and GA the lowest power consumption. Given the increase in the 

number of users, the increase in the need for services and the allocation of more resources, the number 

of users connecting to fog nodes has increased, while the delay may increase with regard to the constant 

number of fog nodes. So, energy consumption increases. 

In Figure 7 (with forty mobile devices), as the number of fog nodes increases, the cost performance 

increases too. The highest cost performance is for the GWO [14], GOA [15], TLBO [13], SA+GA [12], 

PSO [10] and GA [11], respectively. With the number of fog 5, GOA has the highest cost performance, 

because the algorithm has lower convergence and TLBO performs better due to greater stability. 

Figure 5.  The cost performance with ten   Figure 6.  The energy consumption with ten fog 

fog nodes.        nodes. 

Figure 7.  The cost performance with forty  Figure 8.  The energy consumption with forty 

mobile devices.               mobile devices. 
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With the number of fog nodes of 9, the GOA again has the highest performance decline, which indicates 

the instability of this pattern compared to the rest. Figure 7 shows a slight upward slope of cost 

performance with increasing number of fog nodes. When the number of users is considered constant, 

with an increase of one fog node, the cost performance is slightly increased due to the fact that the size 

of input-output data ( and ) is slightly increased. As the number of available fog nodes increases, 

work is done faster and better load balancing occurs on the network, so better cost performance occurs 

at each step. 

In Figure 8 (with forty mobile devices), as the number of fog nodes increases, the energy consumption 

increases too. The highest energy consumption is for the GWO [14], GOA [15], TLBO [13], SA+GA 

[12], PSO [10] and GA [11], respectively. All algorithms with the number of fog nodes of 6 have a 

reduction in consumed energy, which can be related to the number of users that have been set in the 

parameters and the initial amount of resources ( , , )u d f

j j jR R R . With increasing the number of fog nodes, 

the changes in energy consumption remain constant, because the number of users has not changed, so 

the number of requests remains almost constant. When sending a request to fog nodes, the fog node that 

is closer to the user has a higher priority to communicate with the intended user, so changes in energy 

consumption remain almost constant. 

6. CONCLUSIONS

Cloud computing plays an essential role in developing the Internet of Things, which provides data-

processing and storage services. However, many of its applications suffer from cloud-computing 

challenges, such as latency, location awareness and real-time mobility support. Fog computing, which 

almost looks like the evolution of cloud computing, helps provide solutions to these challenges. In this 

paper, due to their service latency limitations, the total energy of all mobile devices is minimized and 

the cost performance is maximized at the same time. This generally leads to the increase in the quality 

of service (QoS) and in the quality of experience (QoE). A model is designed and the exact mathematical 

method with the GAMS program is used to prove its logical process. In the next step, the model is solved 

with GA, PSO, SA+GA, TLBO, GOA, GWO and random methods. To do this, sproblems are considered 

with three sizes: small, medium and large. The six main algorithms (GA, PSO, SA+GA, TLBO, GOA 

and GWO) are compared with two indicators; the value of the objective function and the execution time. 

According to the TOPSIS comparison, the SA+GA method with a value of 0.23 is the best one compared 

to other methods. Then come GWO, GA, TLBO, PSO and GOA methods, respectively. In this paper, 

the customer affairs is one of the practical applications of this modeling, in terms of meeting the needs 

of customers, improving the level of loyalty and establishing mutual, transparent, respectful 

relationships and satisfying them, which are among the priorities of the customer relationship center. 

Communication with customers and the method of responding to their needs and requests should be well 

managed. Also, the cost performance and energy consumption should be optimized. In project 

management, resource allocation means the distribution of available resources in the company 

(equipment, labor, budget, facilities, …etc.). In order to perform the tasks related to project management, 

two objectives of the problem and its solutions are implemented. Organizational resource management, 

in fact, seeks effective planning and control by modeling and providing solutions. All affairs related to 

receiving, producing and delivering to customers should be done for production, distribution and service 

companies with the highest cost performance and the lowest energy consumption. In fact, one of the 

concerns of this modeling is to provide the customer’s desired service with the least delay and in a 

reasonable time. For future work, more goals can be added to the model to bring the system closer to 

reality. More attributes for comparison should be added. Also, the architecture of the fog computing 

network can be changed and newer technologies can be used in it. Customer service can be prioritized, 

too. New methods including machine learning and deep learning can be used to assign tasks intelligently 

and analyze data by fog computing. Also, neural networks can be used for the problems of load 

balancing and task scheduling. 
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البحث:ملخص   

ف ت    بببببب  ا  ببببببسس   ال ببببببل تببببببوش    بببببب  س  تلعبببببب    ببببببحساسح ً فا  طسسسببببببسس  شببببببل ت ببببببود الحوسببببببّح الة 

بببببببّساسح ال   بببببببوف سع ةبببببببتحسببببببب   عسلجببببببح الّسس بببببببس   ت     بببببببس   ة  بببببببب الحوسبببببببّح الحوسببببببّح الة 

لبببببببو   لل  حببببببب   س   بببببببحساسح شبببببببل ت جبببببببسً ح  بببببببحساسح    ببببببب  ال  بببببببالة   أ س ال بببببببل تواسبببببببح الحوسبببببببّح الة 

يسبببببح الببببب   ب الح س بببببل  بببببَ  ًعبببببن حل ل بببببّساسح علببببب   ببببب   تع ببببب    البببببوعل اسل ودع الحوسبببببّح الة 

ببببببحساح  شبببببب   هكبببببب ا    ببببببسس  اببببببسل  ه  ببببببب تلبببببب  ا س بببببب ة  طس بببببب ة ت    بببببب  ا الفجببببببوة اببببببسب الة 

الحوسبببببببّح   ال  تبببببببّس    ت ببببببب  ب الّسس بببببببس    تًافت بببببببس   ات  بببببببس  ال ببببببب اف تببببببب ن  س سع بببببببس علببببببب  

بببببببببحساح  طس ببببببببب ة ت    ببببببببب  ا  بببببببببسس     طبببببببببو  ال ةبببببببببسف الإًافة ا  تو ستسكسبببببببببح  ت   ابببببببببسب الة 

بببببّساسح  تح سببببب  سسسسبببببح س الحوسبببببّح ه بببببس شبببببل   بببببو   سلبببببح  شع  ْ  لبببببح   ال  يسبببببح ل ابببببسًف الع  ببببب  الة 

ّساسح ّس     ل   د  ف س     وًا  ال  ت و   ا ًا  الإس سلل للحوسّح الة 

 سن   بببببو    لبببببح هببببب شس  ه بببببسّ تحةبببببسب ا ًا  ال  عل ببببب  اسل  كلفبببببح  بببببب هببببب ر الوفمبببببح  تبببببن  تابببببشبببببل 

ا ًا  ال ببببببسّ اسل  كلفببببببح اأ  ببببببح    عبببببب    س ببببببح    تببببببوشس  اسبببببب   ث ال  سمببببببح  ببببببب س ببببببح   س سببببببح  

ةْبببببب   ع  تببببببن  مبببببب     اببببببسب ال  كلفببببببح ال  عل  ببببببح ا لبببببب  الّسس ببببببس   مال  ةببببببّح اببببببسب  عبببببب    الّسس ببببببس  لل  

( لإ ّببببببببس  الع لسببببببببح ال    سببببببببح GAMSاسبببببببب   ام ط   ببببببببح  ف سدببببببببسح  ًمس ببببببببح   ببببببببَ ا  ببببببببس   

ببببب   شبببببل   لل   بببببو      بببببس    اس ببببب   ال  بببببوة ال  سلسبببببح  م   بببببس احببببب   ال   بببببو   اسسببببب   ام عببببب  ة ط 

بببببببببSA+GAال  سف بببببببببح ط      سف بببببببببح   (23 0   الحببببببببب   ا س بببببببببح  ال ببببببببب   ( يس ببببببببب  طشةببببببببب  ط 

ببببببببببببببب    ؛ PSO؛ TLBO؛ GA؛ GWOابببببببببببببببسل د   ا  ببببببببببببببب     سبببببببببببببببس   اعببببببببببببببب هس ال د

GOA   ال   ببببببو   ال   بببببب   البببببب  الحاببببببو  علبببببب  طعلبببببب  طً   اسبببببب   ام مبببببب  (  علبببببب  ال  تسبببببب

طًا   لل  كلفح اأم   اس   ث  لل  سمح 
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