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ABSTRACT 

Drones are among the devices that are used in many different activities. There is a time when drones have accidents 

and authorities need to find the cause. Drone forensics is used to determine the cause of an accident. The analysis 

phase of drone forensics is one of the most important steps in determining accident causes. In this paper, we applied 

a deep-learning technique to classify drone collisions. We investigate the use of Inception V.9 as the deep-learning 

framework. Additionally, this study compares the performance of the proposed method with other techniques, such 

as MobileNet, VGG and ResNet, in classifying drone collisions. In this experiment, we also implement transfer 

learning as well as its fine tuning to speed up the training process and to improve the accuracy value. Additionally, 

our investigation shows that Inception V.9 outperforms other frameworks in terms of accuracy, precision and F1 

score. 
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1. INTRODUCTION

Drones are devices that have been developed and used in both academia and industry over the past few 

years. This type of device can assist humans working in many sectors to complete a particular task [1]. 

When an accident occurs, for example when a drone breaks or crashes, users need to find the cause of 

the incident. Drone forensics is a sub-discipline of digital forensics dedicated to drone investigations. 

Drone forensics can be used to discover evidence from various types of media collected by a drone to 

determine the cause of an accident [2]. 

As an example, when a drone has an accident while taking a picture in a hilly area, the owner can find 

out what caused the accident. To find out the cause of the accident, one can look at the media installed 

on the drone. This includes the camera on the drone and the sensor data log on the drone. Therefore, the 

causes of drone accidents can be known. In drone grand prix, drone-collision classification is used as 

evidence. To determine whether there is a foul in a race where drones collide, the referee needs to know 

the cause of the collision. Furthermore, drone-collision classification can be used in military 

applications. It is possible for a drone to collide with an enemy or to be attacked by an enemy if it flies 

into enemy territory. In order to conclude that a drone collision occurred, the pilot or the authority needs 

evidence. Alternatively, when drones are used in the entertainment industry, the director or the industry 

may need to know how the drone was involved to determine whether the worker WBB is negligent. 

In drone forensics, there are three types of evidence that can be examined: antemortem, live and post-

mortem data [3]. Several previous studies used post-mortem data to analyze the cause of a drone crash, 

such as a collision. Pedro et al. [4] used post-mortem data to build a model that could detect a collision 

with a moving object. In their study, MobileNetV2 was applied to extract features from acquired video 

and an agglomerative algorithm was then applied to determine object positions. However, this approach 

has certain weaknesses. For example, it took a long time to train the model and its accuracy could still 

be improved. 

Furthermore, Jain et al. [5] examined basic drone architecture to gain evidence that can be applied to 

forensic analysis. In their study, they also proposed a generic drone forensic model to improve the digital 

investigation process. The approach has helped another study begin investigating drone forensics and 

further improvements can be made with an analysis method based on deep learning. 

A study on improving drone forensics was also conducted by Ashraf et al. [6]. In their study, Ashraf et 

al. [6] applied ResNet50 to detect drones from drone camera data. In their study, they used six datasets 
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and achieved an average Fl score of 0.92. However, using a different deep-learning architecture may 

give a better result. 

Contribution. In this paper, we investigate drone collision using InceptionV3 [7] to classify collision 

events from frames extracted from drone videos. To reduce the computational process and speed up the 

training process, we implement a transfer-learning technique. The transfer-learning weights are taken 

from ImageNet [4]. We perform fine-tuning based on the weights used in InceptionV3 to obtain the most 

appropriate weights for the case of a drone collision. 

This paper is organized as follows. Section 2 discusses related work in drone-collision detection and 

drone forensic framework. We describe how we analyze the collected data, validated our approach and 

implemented our scheme in Section 3. This paper presents proposed solutions and describes the 

experimental results from our transfer-learning method in Section 4. Finally, we present the conclusion 

and possible avenues for future research in Section 5. 

2. RELATED WORK 

2.1 Drone Collision Detection 

Several drone research projects are focusing on collision detection. Pedro et al. [4] used post-mortem 

data to analyze drone collisions. They used MobileNetV2 and a convolutional neural network (CNN) to 

extract features from post-mortem data and detect collisions. An agglomerative algorithm was then used 

to detect the positions of the objects. The accuracy of the developed model increased the mean Average 

Precision (mAP) from 54.4% to 91.4%. 

Furthermore, Anwar et al. [8] used training data from a drone computer simulation and transferred the 

results to the real operation of a drone. Their method was able to reduce both energy consumption and 

the detection error for collisions. As the research used computer simulation at the training stage, the 

weights of the model could not represent actual conditions. In a real situation, the model is strongly 

influenced by the drone camera. 

In addition, Ouahouah et al. [9] used deep reinforcement learning to make a drone fly without colliding 

with any obstacles. This takes a lot of time to produce the model, because the method that they used is 

different from deep learning. Deep reinforcement learning involves training an agent to make a series of 

decisions in an environment with the goal of maximizing accuracy. 

A study that implemented deep learning into the drone was also conducted by Obaid et al. [10]. The 

researchers used artificial neural networks (ANNs) to train a drone using simulation software. The 

accuracy obtained was 85.3% and this value can be optimized using a different architecture with a good 

dataset. 

Rehmatullah and Kelly [11] used parallel tracking and mapping (PTAM) and dense tracking and 

mapping (DTAM) to detect an object that may have been hit by a drone in real time. This technique had 

an accuracy of 34.53% in detecting all objects from images captured by the drone. The drawbacks of 

this approach are that accuracy is relatively low and many GPU resources are needed to train the model. 

Furthermore, Lima et al. [12] conducted research about collision detection and obstacle classification 

based on the physical interaction between a drone and the environment. The experiment used three 

classes of classification, including no collisions, collisions with soft objects and collisions with hard 

objects. The experiment used three different methods: FNN (Fully Convolutional Network), ResNet and 

Inception. The most accurate result of the experiment was from Inception with an accuracy of 98.7%. 

Furthermore, Park and Kim [13] conducted research about an algorithm to detect fast drone movement. 

The algorithm needs the location and time of the drone. It makes the collision of the drone categorized 

as a hard collision or a soft collision. 

Drone-collision research includes not only digital imaging data, but also drone sensor value. Weinert et 

al. [14] initiated research on drone-collision calculation. In their work, they performed simulations of 

drone collision impact based on dimension and maximum gross take of weight (MGTOW). Based on 

the results of this experiment, collisions with dimensions and MGTOWs have an effect on damage. 

Moreover, Xiaohua et al. [15] concluded in their research that aircraft-nose shapes reduce drone-

collision damage. The degree of aircraft nose damage is determined by the shape of the nose, especially 
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when the nose is collided with a drone. The research used ten simulations with a variety of parameters. 

The same problem was studied by Zhang et al. [16]. To minimize drone-collision risk, they calculated 

the aircraft's position when starting flying. Additionally, this research determined the equation that is 

used to optimize the calculation of the risk of aircraft collisions with drones. 

In addition, the drone may perform a show when deployed at several events, which results in a swarm 

formation of drones. The drones need to calculate to avoid colliding with each other when they form a 

swarm. This problem was also studied by Naveed et al. [17]. Their research proposed an algorithm to 

optimize drone positioning in a swarm formation. In the research, they used the distance between drones 

as well as the value of standard deviation to make drones not collide with each other. 

A similar research was conducted by Sabetghadam et al. [18] aiming to ensure that drones did not collide 

when flying together. The drones may assemble in a formation while flying in the air. In this case, drones 

may collide if the algorithm is incorrect. The research adopted Voronoi-based space partitioning to 

derive local constraints that guarantee collision avoidance with neighboring vehicles. 

2.2 Drone Forensic Framework 

Drone forensics is a method that collects all artifacts stored in the internal or external memory of the 

drone system. Such data includes flight records, flight control, sensor data and internal monitoring data. 

Al-Dhaqm et al. [3] proposed a forensic framework that could be used for most types of drones and 

comprised of three phases, specifically the preparatory, data-acquisition and data-analysis phases. The 

phases of this framework are described below. 

1) Preparatory phase: This phase determines what components are installed on the drone. In 

addition, forensic evidence is identified, a pilot interview is conducted and the tools used for 

drone forensics are prepared. 

2) Data-acquisition phase: All data artifacts are collected from media using live and post-incident 

acquisition and a report on the information collected from the drone is created. 

3) Data-analysis phase: In this phase, the data is analyzed and conclusions are drawn regarding the 

reasons for damage to the drone. 

We take this framework as the starting point for this paper and focus on the data-analysis phase. The 

goal of this work is to detect drone-collision cases accurately. 

3. PROPOSED METHOD 

As shown in Figure 1, the proposed method uses a video dataset from ColaNet [4]. This method begins 

with observations of datasets. In this phase, we observe the dataset and record the timestamp value at 

which the drones collide. Following that, we use Algorithm 1 to convert the video dataset into frames. 

By inserting the timestamp value into Algorithm 1, the system automatically converts the video into 

labeled frames. There are two labels, one for "normal" and one for "collision". Following that, all labeled 

frames are divided into three folders: training, validation and testing. Moreover, we train the whole 

dataset in the training folder with InceptionV3. We used the transfer-learning technique to speed up the 

training process. After we have trained the model using pre-trained data, we obtain initial results. In the 

subsequent step, the accuracy value is improved by fine-tuning the model. 

3.1 Data Pre-processing 

In this step, we convert 100 videos of drone collisions into labeled frames. It starts by inputting a 

timestamp value that we have gathered from drone-collision datasets. Algorithm 1 labels a frame as 

"normal" or "collision" after we enter a timestamp. In this step, we gathered 18,872 frames. Specifically, 

the collision class contain 1,380 frames, while the normal class contains 17,492 frames. 

Labeled frames are placed into three folders; namely, training, validation and testing. Figure 2 shows 

sample frames that are labeled with normal and collision. The composition of folders is as follows. The 

training folder contains 11,380 frames, where 9,712 frames are labeled normal and 1,668 are labeled as 

collision. The validation folder contains 3,292 frames, where 2,856 frames are labeled as normal and 

436 are labeled as collision. The test folder contains 4,200 frames, where 3,012 frames are labeled as 
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normal and 1,188 frames are labeled as collision. Overall, the training data represents 60.3% of the 

dataset, the validation data 17.44% and the testing data 22.26%. There are two classes of normal and 

collision in each dataset. Due to the unbalanced dataset, we divided the dataset using these percentages 

so that the model can run well. 

Figure 1. Research flow diagram. 

Algorithm 1. Algorithm to convert video into labeled frames 

1: for iteration =1, 2, ... do 

2: if time˃time_collision then 

3: frame = collision 

4: else 

5: frame = normal 

6: end if 

7: end for 

3.2 Transfer Learning 

Transfer learning is a technique to speed up the training process in deep learning. The idea behind 

transfer learning is to apply an existing model that has trained on massive datasets to a new task in order 

to classify another case. Figure 3 shows the diagram of transfer learning, where it uses the domain, task 

and marginal probabilities framework to explain transfer learning [19]. The domain of transfer learning 

can be formalized as in Equation (1) below: 

D= {x, P(X)}      (1) 

where D is defined as a domain built by two elements of a tuple containing a feature space that is 

represented by x, while P(X) is a marginal probability of sample data points. In each specific domain, 

there is a task to determine the probabilistic view point that is shown in Equation (2) below: 

T={γ, η}  (2) 

where T is a task running on each transfer learning domain, γ is defined as a label of a frame and η is a 

predictive function obtained from the learning process. It can also be demonstrated that using P(Y│X) 

represents the prediction of the corresponding label. 

In this paper, we employ the models from lmageNet and apply them to the drone-collision case. Transfer 
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learning involves several components, specifically a deep-learning architecture and pre- trained model 

templates from ImageNet. We use InceptionV3 for deep-learning architecture in this work. 

Figure 2. Frame label from the ColaNet dataset.         Figure 3. Block diagram of transfer learning. 

3.3 Transfer Learning with InceptionV3 

InceptionV3 is a deep-learning method that uses the CNN architecture. It combines several convolutions 

and its results are combined into one to improve the performance of the model. InceptionV3 is 

commonly used in a classifying task [7]. It performs the procedure using convolution on the input with 

different filter sizes, such as 1×1, 3×3 or 5×5. In the last part of the architecture, there is a max pooling 

layer and each result is sent to the subsequent inception module [7]. 

The previous inception methods, InceptionV1 and InceptionV2, use a lot of convolutional processes, 

which makes the CPU work harder. To tackle this issue, InceptionV3 limits the total number of input 

channels by adding an extra 1×1 convolution before 3×3 and 5×5 convolutions. By adding 1×1 

convolution, the CPU does not have a heavy computation, because 1×1 convolution is lighter than other 

ones. This process can reduce the number of input channels. However, adding 1×1 convolution after the 

maximal pooling layer has been introduced in another work [20]. In addition, lnceptionV3 has the label 

smoothing regularization (LSR) which makes InceptionV3 more adaptable and performs well when 

handling low-resolution images. LSR can be described using the mathematical formula shown in 

Equation (3) below: 

𝐻(𝑞′, 𝑝) = − ∑ log 𝑝(𝑘)𝑞′(𝑘) = (1 − 𝜀)𝐻(𝑞, 𝑝) + 𝜖𝐻(𝑢, 𝑝)𝐾
𝑘=1 (3) 

LSR is equivalent to replacing single cross-entropy loss defined by 𝐻(𝑞, 𝑝). q is the ground truth 

distribution, u represents the uniform distribution and p is the predicted distribution. In the equation, 

epsilon is the value for label smoothing. Label smoothing can help improve the generalizability of a 

model by reducing the confidence of the model in its predictions. This can be especially useful when 

training on a. dataset with a large number of classes or when the model is overfitting. It can provide 

regularization and a more adaptable model. The main procedure of this operation is depicted in Figure 

4. 

3.4 Model Fine-tuning 

In deep learning, fine-tuning is the process of updating the weights to increase accuracy. In this study, 

fine-tuning is applied in transfer learning. This is because we apply a pre-trained model to learn novel 

cases in transfer learning [21]-[22]. As a result of using the accuracy value in a new case, we may get a 

bad result. To be applied to new cases, the pre-trained model needs to be fine-tuned. 
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Table 1. Layers of deep-learning architectures used for 

experiments.

 Figure 4. The workflow of InceptionV3. 

A fine-tuning process takes less time than a training process, since we unfreeze a few nodes and update 

their weights based on the training process. The benefit of this method is that we do not have to spend 

a lot of time creating a customized model [23]. Figure 5 shows how the fine-tuning progress begins to 

convert data from datasets into convolutional layers. The process continues until all of the data enters 

the fully connected (FC) layer. The FC layer is used to detect specific global configurations of the 

features detected by the lower layers of the network. They usually sit at the top of the network hierarchy, 

at a point when the input has been reduced (by the previous, usually convolutional layers) to a compact 

representation of features. Each node in the FC layer learns its own set of weights from all of the nodes 

in the convolution layer. 

The FC layer may have the same level as the softmax layer. The softmax is a function that turns a vector 

of K real values into a vector of K real values that sum to 1. The input values can be positive, negative, 

zero or greater than one, but the softmax transforms them into values between 0 and 1, so that they can 

be interpreted as probabilities. The fine-tuned process concentrates on the weight in the FC layer, which 

can make the output from the softmax layer appear high. It increases accuracy and minimizes loss. 

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Environment Setup 

In this sub-section, we describe the environment used in this experiment. First, we implement the 

InceptionV3 model using TensorFlow version 2.10.0. In this experiment, we also compared InceptionV3 

[7] with other deep-learning architectures, such as MobileNetV2 [24], ResNetV2 [25], VGG16 [26] and 

VGG19 [26]. The specifications of ea.ch deep learning architecture are shown in Table 1. 

Based on Table 1, we can see that InceptionV3 has the most number of layers. In this experiment, we 

used the transfer-learning technique to make the training process faster. The weights were obtained from 

lmageNet [4], [27][28][29] and then transferred to the discussed deep-learning architecture. 

4.2 Training Results with Pre-trained Model 

We run a pre-trained model based on the weights from the ImageNet dataset and evaluate our model 

based on the accuracy value. The experiment uses 32 batches and 10 epochs for each model. The results 

are presented in Figure 6. 

Five deep-learning architectures have been tested, as shown in Figure 6.Each deep-learning architecture 

produces different reeults.lnoeptionV3 has a high accuracy value, with values ranging from 87% to 98%. 

This is because lnceptionV3 architecture has several layers that execute in parallel. In addition, there is 

a pool that accommodates each layer process that works in parallel, which increases the accuracy value. 

This is shown in Figure 6, where it can be seen that the results of the first test are similar to the training 

accuracy at the tenth epoch. The most significant advantage of Inception V3 is that this method can be 

applied to complex images. This is because the architecture allows several blocks to run in parallel, 

making it possible to obtain many features. The main weakness of this method is that there are many 

blocks that run in parallel. The computational needs are also more intense, meaning that this approach 

requires a very large number of resources [30]. 

No. Deep learning architecture Number of layers 

1 InceptionV3 311 

2 MobileNetV2 154 

3 ResNetV2 190 

4 VGG16 19 

5 VGG19 22 
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Figure 6. Accuracy of deep-learning architectures using pre-

trained model. Figure 5. Block diagram of fine-tuning. 

For MobileNetV2, the resulting graph shows an unstable behavior, as depicted in Figure 6. The accuracy 

is between 85% and 95%. This is because the MobileNet V2 architecture uses a residual connection, 

which aims to keep the image constantly having the same color channel [11], [31]. This approach has 

certain advantages and disadvantages. The main advantage is that the frames have lower information 

loss, since MobileNetV2 stores the information contained in each frame using the residual connection. 

If we have two frames with a high degree of similarity, this can increase accuracy [4]. The primary 

disadvantage is that the classification results will be inaccurate if the original data contains significant 

noise or inappropriate features [5]. 

ResNetV2 provides lower accuracy values. Its results are between 81% and 92%. This is because 

ResNetV2 uses the value of each node obtained from the results of calculations based on the previous 

value. This architecture also uses a skip connection to skip nodes with the poorest accuracy value [6], 

[32]. 

For VGG16, the resulting accuracy is unstable, with values ranging between 81% and 91%, as shown 

in Figure 6. This is because in the VGG16 architecture, the frame is convoluted. Each process block in 

the architecture has a filter, which is classified at the end of the process using a fully connected neural 

network or a softmax layer [32]. The accuracy value obtained in the first test is unstable due to the loss 

of many features during the convolution process. In detecting a drone collision from image frames, it 

will be difficult to find features [33]. The VGG16 method is very effective in terms of recognizing 

objects. This is because the architecture finds the key features of the image data and when these are 

found, the classification accuracy is very high. The most significant drawback of this method is that if 

the image data does not have many features, the result will be out of focus or blurry [34]. The image 

frames of a drone in a collision scene have a lot of noise, for instance. 

For the VGG19 method, the accuracy values range from 65% to 94%. This is because, according to the 

VGG19 architecture, each process block has a convolution process. Subsequently, it is classified at the 

end of the process using a fully connected neural network [27]. The first layer of VGG 19 applies a 

convolution process that is not too focused so that it can find numerous features in the image data. The 

data is then forwarded to the classification process in the fully connected block. VGG19 performs well 

if the image has many features or if the intended feature has a somewhat vague value. This method can 

find those features that will later be used in the classification process, meaning that accuracy is much 

more stable and relatively high. This method has a primary weakness in that if the processed image data 

is similar, the accuracy value will stack at a high level of accuracy. 

Based on the graphs in Figure 6, it can be concluded that InceptionV3 has the highest accuracy. This is 

because the weight values in each node are drawn from ImageNet, a model that was trained on large 

amounts of image data and this allows the architecture to reach an accuracy value of above 60% on the 
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training process [35]. 

4.3 Fine-tuning Results 

After testing the pre-trained model using weights from ImageNet, we modified and updated some node 

weights using the process described as follows. In this phase, we unfroze some nodes to update their 

weights. The updated numbers of nodes are shown in Table 2. After updating the node weights, we re­ 

tested the model on the dataset and the results are shown as a graph of the accuracy values in Figure 7. 

The accuracy of InceptionV3 improves significantly after model fine-tuning, as shown in Figure 7. This 

is because InceptionV3 uses a parallel process in which each process calculates a node weight value. In 

the final step, it combines all the node weight values, which has an impact on the current accuracy value, 

as shown in Figure 7. The accuracy reaches a peak value of 98%, because in the fine-tuning process, we 

modified all of the nodes in the softmax layer and InceptionV3 has more convolutional blocks. This is 

the reason why InceptionV3 achieves such high accuracy values. In addition, InceptionV3 combines 

residual blocks with numerous convolutional blocks and this procedure can increase the accuracy. 

Table 2. Table of updated weight nodes. 

No. Deep-learning architecture Number of updated weight nodes 

1 MobileNetV2 56 

2 ResNetV2 84 

3 VGG16 2 

4 VGG19 2 

5 InceptionV3 130 

For MobileNetV2, we can see that the accuracy value is more stable than before. This is because the 

value of each node in the fully connected layer or softmax layer has been modified. This makes it more 

accurate in terms of detecting whether the frame contains a collision or not. The weakness of this 

approach is that the accuracy plateaus at 97%, since in MobileNetV2, less computer memory is used to 

process image frames [36]. 

For ResNetV2, we can see that the accuracy value reaches a steady value after fine-tuning. This is 

because ResNetV2 uses a skip connection in each epoch to skip blocks that give poor performance, 

which affects accuracy. The accuracy reaches 96%, since in the convolutional block process, the frame 

may have lost much information, since ResNetv2 skips blocks with poor performance and frames 

containing collision may have even greater noise or blurriness [37]. 

For VGG16, we can see the accuracy value becoming more stable than before. This is because VGG16 

uses 16 block convolution layers to extract features from the image frame. In addition, it uses one fully 

connected neural network or a softmax layer to classify image frames. Figure 7 shows that the maximum 

accuracy value is around 94%. This is because in VGG16, the image quality is affected by the collision 

frame, which has more noise and is blurry. If noise and blurry frame images are processed by a 

convolutional block, many of the information in those frames will be lost. In addition, VGG16 does not 

use a residual block that causes a vanishing gradient. This means that this method failed to find a specific 

feature m several frames [38]. 

For VGG19, the accuracy value is lees accurate when we fine-tune the VGG19 model. The reason is 

that VGG19 uses more filters before it processes a fully connected CNN. The accuracy value is around 

91%. VGG19 has more filters that give the frame a feature. This causes an explosive gradient in the 

output. This means that in several frames, VGG19 fails to find features, especially in collision frames, 

since these contain a great deal of noise and ate blurred. 

4.4 Discussion 

We compare the performance of InceptionV3 with other deep-learning architectures, specifically 

MobileNetV2, ResNet, VGG16 and VGG19. To begin with, we use the same configuration, including 

batch, epoch, optimizer and hardware. To compare deep-learning architecture performance, we calculate 

recall, precision and F1 score values. These three parameters are used to assess the performance of the 
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architecture in the image data-classification process [39]. Precision is obtained using Equation (4), recall 

is calculated with Equation (5) and F1 score is obtained by Equation (6). 

Figure 7. Accuracy values of deep-learning architectures after fine-tuning. 

Table 3. Summary of model evaluation. 

Deep-learning architecture Accuracy (%) Loss (%) Recall (%) Precision (%) F1 score (%) 

InceptionV3 99.35 3.95 98.23 99.54 99.56 

MobileNetV2 98.18 7.48 68.56 64.56 66.56 

ResNetV2 97.79 9.74 99.53 97.21 98.35 

VGG16 94.27 14.09 99.48 87.34 93.45 

VGG19 93.49 19.41 99.65 93.32 96.45 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (5) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
(6) 

A summary of the results obtained using Equation (4) to Equation (6) is shown in Table 3. From Table 3, 

we can see that InceptionV3 has the best evaluation values with an accuracy of 99.35%, a precision of 

99.54% and F1 score of 99.56%. This means that InceptionV3 has a stable model to classify drone 

collisions. When we use MobileNetV2, the opposite occurs. The method has a high accuracy of 98.18%, 

but a low precision of 66.56%. MobileNetV2 employs depth-wise block convolution, with each block 

consisting of a 3×3 convolution layer filtering the input, followed by 1×1 pointwise convolution 

combining the filtered values to create a new feature. 

MobileNetV2 uses the depth-wise block convolution, where each block consists of a 3×3 convolution 

layer to filter the input, followed by a 1×1 pointwise convolution which combines the filtered values to 

create a new feature. In MobileNetV2, there are inputs and outputs between the models, while the inner 

layer encapsulates the model's ability to change the input from the pixel level concept to the image 

classification [40]. The total memory is constructed from all inputs and outputs in whole operations. 

Meanwhile, when we use the bottleneck residual block and make it a single operation, the memory will 

be filled by the bottleneck tensor instead of the internal tensors that can be larger. This means that this 

method cannot be used to classify drone collision although it has a good accuracy value. Also, 

MobileNetV2 has a lack of value in recall, precision and F1 score parameters. The lack of values of 

MobileNetV2 in those parameters is due to unbalanced datasets. We have a high recall value of 99.65% 

in VGG16, which could be because we rely on image quality in VGG16 and the collision frame has 

more noise and blur. If noisy and blurry frame images are processed by a convolutional block, they will 

lose much of the information that is contained in a frame. In addition, VGG16 does not use a residual 

block that causes a vanishing gradient. This means that this method failed to find a specific feature in 

several frames [38]. 

The VGG 19 result has the highest value in recall, because in VGG 19, there are more filters to reduce 
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noise in collision frames. In a collision frame, a blurred frame can affect the accuracy value. According 

to Equation (5), recall is proportional to the number of true positives (TP) and false negatives (FN), 

implying that VGG19 can accurately detect whether the result is positive or negative. Furthermore, 

ResNetV2 has the second highest recall after VGG19, because ResNetV2 used the residual weight to 

improve the ability of the model to classify the drone-collision frame. Since the collision frame is the 

blurred frame, it has an advantage for ResNetV2. Also, ResNetV2 uses a skip connection in each epoch 

to skip blocks that give poor performance, which affects accuracy. 

5. CONCLUSION AND FUTURE WORK

In this research, we present a forensic analysis of drone collisions using a transfer-learning technique; 

namely, InceptionV3. After model fine-tuning, it was discovered that InceptionV3 was the best model, 

with a peak accuracy value of 99.35%. We also compared InceptionV3 with other architectures, such as 

MobileNetV2, ResNetV2, VGG16 and VGG19. 

The model generated from experiments can be applied to drone forensic investigation based on videos 

found in the drone's storage. Although only collision videos from the ColaNet dataset were used in this 

paper, we believe that the results of this experiment can be applied to achieve faster classification of 

drone collisions for drone forensics. 

The contribution of this paper is a methodology to classify drone-collision events based on frames 

extracted from drone videos using InceptionV3. By implementing a transfer-learning technique, we 

reduce the computational load and speed up the training process. Weights for transfer learning are taken 

from lmageNet. By fine-tuning the weights used in lnceptionV3, we are able to determine the most 

appropriate weights for drone collisions. 

Future work will involve further updating the modules presented in this article. Data pre-processing will 

be improved through the use of neural network pipelines to classify frames containing collisions. We 

can improve the proposed method by minimizing the amount of human labor needed to classify the 

frames from the video datasets. In addition, this work can be extended by modifying our deep-learning 

framework to maximize accuracy and minimize loss. Finally, we intend to develop a detection system 

for attackers and collisions with objects, which may be useful in terms of gaining information to assist 

in forensic investigations. 
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 ملخص البحث:

ددددددرة رنئران دددددد ا تئ ددددددمئفدددددد مئروّعدددددديتئرا دددددد ئتُ دددددد  ّ ئ دددددد ئ   ددددددت ئ   ا دددددد  ئ    ر ددددددر ئ تعُددددددّائراتا

ئ ددددددّترنئ دددددد ئ رّدددددد   ددددددرئ  عدددددد ئرا ا ددددددرة رنئالدددددد ري حئ نا ائتّددددددلئراتا راددددددوئرا ىدددددد  ئ ّددددددوئت عدددددد ا

دددددد ر ئ تئ  ع  دددددد ئ سدددددد رفعرئ  ددددددر  ئ    ددددددرة رنئران دددددد  ا  سدددددد رفعر ئ ىددددددّئ ادددددد ائتلّ دددددد ئ دددددد ري ئراتا

ئاّ لث 

ت ظ دددددىئت دددددّلئتع  دددددرنئراددددد اعّي ئراعن ددددد ئ دددددمئ ّددددد ئت ددددد  ىئر ادددددتّر رنئ ددددد ئلددددد تئرا  ىددددد حئتددددد ائ

تحئ ىدددددّئتددددد ائرسددددد  ّر ئ  دددددرة رنئران ددددد  ا ئInception V9را ددددد ئت عددددد ائاعدددددرئراتا (ئكإطدددددر ئ نددددد  

ئ  دددد لئّدددد لئ اّ لددددث ئ ددددمئّر دددد ئذ دددد حئتعددددر ّئلدددد تئرا  ىدددد ئفدددد مئراتا  عدددد ئرانع   دددد ئ تع  ددددرن 

ت ئ دددددددرة رنئران ددددددد  ا رسددددددد  ّر عرئ ددددددد ئ يف دددددددرنئران اددددددد ائ دددددددمئ ّددددددد ئت ددددددد  ىئرادددددددتّر رنئراتا

دددددد   ئراددددددّاى  ئا  دددددد   ئ دددددد ئ را ا   دددددد ئرا ا ددددددر بئران عّاعدددددد ئفعدددددد رئرا لددددددثحئتدددددد ئرسدددددد  ّر ئتعّيدددددد ئرا اع 

 مئى نددددددد ئراّاىددددددد ئرا ددددددد ئ ددددددد  ائرال ددددددد  ئ ّ عدددددددرئ دددددددمئراتا  عددددددد ئ نّ ددددددد ئتدددددددّ   ئرا ا دددددددر ئ تل ددددددد

ىددددددد ئ ّدددددددوئ ئراتا  عددددددد ئرانع   ددددددد ئت  ا اّ ئرا ا دددددددر بئ ل  ددددددد ئ  اّ رانع   ددددددد  ئ ُ دددددددر ئرادددددددوئتادددددددلئ 

ئراتا قئر   لئرا  ئتنا ئ عر   عرئفعرئ مئ  ثئ ؤشا رنئرويرء 
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