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ABSTRACT 

A motor imagery (MI)-based brain-computer interface (BCI) has performed successfully as a control mechanism 

with multiple electroencephalogram (EEG) channels. For practicality, fewer EEG channels are preferable. This 

paper investigates a single-channel EEG signal for MI. However, there are insufficient features that can be 

extracted due to a single-channel EEG signal being used in one region of the brain. An effective feature extraction 

technique plays a critical role in overcoming this limitation. Therefore, this study proposes a fusion of discrete 

wavelet transform (DWT)-based and time-domain feature extraction to provide more relevant information for 

classification. The highest accuracy obtained on the BCI Competition III (IVa) dataset is 87.5% with logistic 

regression (LR) while the OpenBMI dataset attained the highest accuracy of 93% with support vector machine 

(SVM) as the classifier. Addressing the potential of enhancing the performance of a single EEG channel located 

on the forehead, the achieved result is relatively promising. 
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1. INTRODUCTION

There are two techniques for measuring brain activity: invasive measurement and non-invasive 

measurement. The non-invasive design was ranked as a high-priority design. It is risk-free and does not 

require surgery as an invasive necessity, even though the invasive technique is more accurate [1]. An 

electroencephalogram (EEG) is widely used for non-invasive measurement that records the brain’s 

electrical fields through metal electrodes placed on the scalp with the standard international 10–20 

electrode site placement [2]. Besides that, it is relatively inexpensive, has a good temporal resolution, 

enabling it to accurately capture fluctuations in brain activity throughout time and requires little setup 

[3]. Additionally, it is highly portable, making it suitable for usage in diverse locations, such as hospital 

environments, research laboratories and even mobile applications. The EEG is a useful diagnostic tool 

that is particularly effective in identifying and monitoring neurological illnesses, like Alzheimer's and 

epilepsy, involving analysis of the EEG recordings to detect abnormal brain activity linked with seizures 

[4][5][6]. Besides that, it is being used in various non-clinical settings, such as education, emotion 

detection and control mechanisms, to explore new potentials and applications [7]-[8]. The EEG is 

utilized in education to investigate and improve cognitive processes, providing valuable information 

about attention, focus and learning patterns. Furthermore, the EEG plays a crucial role in the 

advancement of brain-computer interfaces (BCIs) which function as control mechanisms. 

BCI links the human brain’s electrical activity to an external device, such as a wheelchair or computer 

system. Neuronal electrical signals in the human brain are detected, interpreted and converted into 

machine language that corresponds to the user's desires [1]. This technology has significant potential to 

offer alternative communication channels for those with physical limitations. In BCI, users’ comfort is 
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not only sitting on a comfortable chair, but also allowing them to have mobility [9]. The portability and 

adaptability of the EEG make it well-suited for investigating diverse elements of brain activity and 

connectivity in BCI, including motor imagery (MI). BCI can be classified into active, passive and 

reactive. MI is an active BCI, whereby the user intentionally generates specific brain signals to interact 

with an external device by executing imaginary movements without physically performing them [10]. 

MI-BCI is a beneficial technique that has been applied successfully for rehabilitation, gaming and device 

control. The most typical movements or commands used in MI tasks as control mechanisms for 

wheelchairs and cursors are left, right, forward, up and down [11]. MI-BCI activity is generated in two 

different rhythms (8–13 Hz and 13–30 Hz) [12]-[13]. When developing a BCI system, it is important to 

consider the number of sensors that can accurately record and resolve the signal's reliability [14]. It is 

also associated with user comfort. Multi-channel EEG data could achieve high classification accuracy 

(CA). However, it has increased the complexity and setup time of the experimental procedure [5]. For 

daily-time usage, a smaller number of EEG channels is more practical, but there are still limitations with 

reliability and low accuracy [15]. Gaur et al. [16] employed two public datasets to investigate the 

performance of reducing the number of channels. They discovered that by reducing the number of 

channels from 118 to 13, they were able to reach an accuracy of 80.56% in the BCI implementation. 

The person, as well as the well-designed experimental settings and classification algorithm, have a 

significant impact on the number of channels required for a high accuracy rate [17]. Thus, if high-

accuracy classification can be obtained with only one EEG channel, it will be easier and more 

comfortable to use BCIs on a regular basis [18]. Extracting meaningful and relevant features from a 

single-channel EEG signal could be more challenging than from a multi-channel system. Due to limited 

dimensionality and information content across various brain regions, this may result in low accuracy 

and interpretability. Therefore, the feature extraction method is very important for getting sufficient CA 

for the EEG signals that come from one channel. 

Therefore, this study proposes the fusion of a discrete wavelet transform (DWT)-based and time-domain 

feature extraction to improve the interpretation of movement tasks in single-channel EEG signals. The 

DWT decomposes the signal into different frequency components, enabling the analysis of a wide range 

of temporal and frequency characteristics within the same signal. Selected specific frequency 

components are used for relevant features extraction. Fusion of features integrates different sets of 

features captured from a single-channel EEG signal, providing a more comprehensive representation of 

the signal with useful data. The study investigates the impact of this feature-extraction approach on the 

performance of specific EEG channels.  

The EEG signal from the following channels: Fp1, Fp2 and AF3 presented sufficient CA in the previous 

studies [18][19][20]. Besides that, it was reported that AF3 and AF4 are among the most informative 

channels found in two benchmark datasets [21]. According to previous research, it was found that there 

was significant activation in the prefrontal region in implementing MI tasks, making it plays an 

important role in MI tasks, including those related to gait and lower limb movement [22]-[23]. The 

region is involved in various cognitive and executive functions. Based on the findings of [24], it was 

suggested that MI depends greatly on executive resources, because tasks involving executive processes, 

such as calculations, have a significant impact on MI, but have a lesser effect on overt actions. Therefore, 

the study explores the potential of four channels located at the frontal right and left hemispheres of the 

forehead (Fp1, Fp2, AF3 and AF4) for implementing the MI. The position of the channels was 

considered to have the potential to enhance the practicality of the MI-BCI system [18]. Furthermore, the 

most employed channels for MI involving the hands and feet, specifically C3, C4 and Cz, are examined 

as well for the purpose of comparison. Foot movements should be observed around the Cz channel [25].  

To achieve the aim of the study, three feature-extraction approaches are applied to two benchmark 

datasets, resulting in three feature sets: time-frequency features (DWT-based), time-domain features and 

fusion of DWT-based and time-domain features. Three classifiers are utilized to classify the selected 

features. They are Support Vector Machine (SVM), Logistic Regression (LR) and Naïve Bayes (NB).  

2. RELATED WORKS 

For multichannel feature extraction, Common Spatial Pattern (CSP) is commonly used [26]. Among all 

feature extraction techniques studied by Selim et al. [27], CSP produced excellent results when 

measuring accuracy and execution time. It is frequency-domain feature extraction that requires more 
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channels for MI signal processing. Therefore, the time-frequency domain decomposition method is 

introduced for single-channel EEG signal execution. Short-time Fourier transforms (STFTs) are one of 

the time-frequency domain methods that were used in previous studies [21], [28][29][30]. However, 

STFT is not suitable for non-stationary applications because of the fixed window size [31]-[32]. Tiwari 

[21] introduced a novel Logistic S-shaped Binary Jaya Optimization Algorithm (LS-BJOA) for MI 

classification in BCI, while the Regularized Common Spatial Pattern (RCSP) was applied for feature 

extraction. The study validated its method on three public EEG datasets, achieving the CA of 83.59%, 

82.09% and 89.02% on these datasets, respectively, with a reduced number of channels compared to 

baseline methods. In the single EEG channel research conducted by Chen et al. [30], it was reported that 

the FitzHugh-Nagumo (FHN)-PSD system achieved an average CA of 67.06% ± 8.73%, specifically on 

the C4 channel. The FHN-PSD system exhibited a 2.29% improvement over the FHN-STFTCSP 

approach, indicating its greater effectiveness in classifying EEG signals. 

Through most of the datasets utilized for the comparison study, Wavelet Transform (WT) showed more 

robustness than CSP and power spectral density (PSD), as reported by Moumgiakmas and Papakostas 

[26]. This could be seen from the previous works implementing decomposition method in their studies. 

Three different signal-decomposition algorithms for MI-BCI systems were tested and compared. It was 

found that wavelet packet decomposition (WPD) was the most accurate method (92.8%). It was followed 

by the discrete wavelet transform (DWT) and empirical mode decomposition (EMD) [33]. The research 

indicates that the efficacy of their methodology can be improved by carefully choosing a suitable 

decomposition method and features, even with the small number of EEG channels (C3, C4 and Cz). 

WPD was used for decomposing the EEG signal to apply a hybrid feature set that combined it with the 

time-domain feature set [34]. However, results showed that the smallest number of channels (C3, Cz 

and C4) obtained the lowest CA, while using eighteen channels resulted in the highest mean CA of 

91.1% for the BCI Competition III dataset IVa. The hybrid feature selection played an important role in 

the research to select the relevant features to be classified by SVM. In the studies of Ji et al. [35], two 

stages of the decomposition approach were applied. The EEG signal was decomposed using DWT to 

generate a narrow-band signal. The second decomposition method, EMD, was used to obtain a more 

concentrated signal for frequency-band signals. In order to improve the classification, an approximate 

entropy was determined. Rather than using DWT alone, this approach provides an additional method 

for extracting movement imagining signal features from two EEG channels (C3 and C4). The accuracy 

was 95.1% using SVM. However, the statistics of the approximate entropy were inconsistent. The 

tunable Q wavelet transform (TQWT) is a discrete-time WT that has been parametrized and has a tunable 

quality factor. The quality factor (Q), the redundancy rate (r) and the level of decomposition (L) are 

required as the basis functions for the decomposition. It was employed in the research conducted by 

Khare et al. [20]. The highest accuracy of 99.78% was achieved with the least squares support vector 

machine (LS-SVM) model. The selection of the most informative channels from a total of 118 was a 

critical aspect of the study, aimed at reducing computational load. However, despite the optimization, 

the multichannel setup is still required, which is too time-consuming to feasibly be deployed on the scalp 

every day. 

In different applications, DWT was employed to extract the features, since it is an effective approach in 

terms of accuracy compared to other methods for categorizing epileptic cases based on the EEG. The 

combination of DWT with differential evaluation (DE) enhanced the classification result [36]. A 

promising result was achieved in the seizure identification by the concatenation of a feature matrix 

derived from DWT and EMD across multi and single-channel EEG recordings [37]. Instead of 

employing only DWT, the concatenation increased the accuracy of the single-channel EEG signals from 

85% to 100%. Some EEG channels in the MI-BCI system worked better when DWT was combined with 

other feature extraction methods, as in the earlier research. This approach also enhanced the performance 

of single-channel EEG signals across different applications, which may benefit MI application. 

3. METHODOLOGY

The methodology is divided into four phases: dataset acquisition, data preprocessing, feature extraction 

and selection and classification. The block diagram of the proposed approach is shown in Figure 1.  
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Figure 1.  A block diagram of the proposed approach. 

In the feature extraction phase, let the features in the first experiment be F1= {𝑓1,………., 𝑓𝑛}, while the

features in the second experiment is F2= {𝑓1,………., 𝑓𝑚}. The features for the third experiment are

therefore formally represented by: 

      F3= {𝑓1,………., 𝑓𝑛, 𝑓𝑛+1,………., 𝑓𝑚}  (1) 

where 𝑓𝑛 represents different features in F1, 𝑓𝑚 represents different features in F2 and F3 is the fusion

features of F1 and F2. All phases are described in detail in the following sub-sections. 

3.1 Motor Imagery (MI) Dataset Acquisition 

Dataset 1 is the BCI Competition III (IVa) dataset  [38]. It is the cued MI data with two tasks that was 

recorded using the extended 10-20 international system’s 118 EEG channels. It was from five healthy 

participants (aa, al, av, aw and ay) who comfortably sat during the experiment. The MI tasks were 

completed by conducting 140 trials of MI tasks with the right-hand (rh) movement and 140 trials with 

the right-foot (rf) movement. The total number of trials for each participant was 280. They were each 

provided with a 3.5-second visual stimulus. The dataset was collected at a sampling rate of 1000 Hz. 

However, they were down-sampled to 100 Hz for analysis purposes. 

Dataset 2 is the OpenBMI dataset which comprises data collected from 54 healthy individuals [39]. The 

experiment recorded binary MI tasks of the right (rh) and left (lh) hands. Each trial started with a 

preparation phase, followed by MI tasks for a duration of 4 seconds once a visual cue was displayed. 

The experiment had four different stages with 100 trials each, equally split between right- and left-hand 

imagery. For this study, 19 participants (S1, S2, S3, S9, S18, S19, S21, S22, S28, S29, S30, S32, S33, 

S36, S37, S43, S44, S45 and S52) with proven MI-BCI literacy were selected. The data was analyzed 

using offline EEG data from the first session [39].  EEG signals were recorded at 1000 Hz over 62 

channels, but down-sampled to 100 Hz for analysis. 

C3, Cz and C4 channels are extensively employed for analysis in MI studies, regardless of whether they 

are multi-EEG channel or single-EEG channel analysis. The channels’ location is over the primary 

motor cortex areas of the brain for controlling voluntary movements. C3 and C4 are located over the left 

and right hemispheres, respectively, and are known to capture important MI properties [30], [40]. The 

Fp2 channel, which is located on the forehead, was reported to have equivalent high CA to C4 by Ge et 

al. [18]. Furthermore, in the previous study, the AF3 and AF4 channels, located near the forehead, were 

identified as the channels providing the most relevant information [19], [21]. The Laplacian score for 

channel selection demonstrated that Fp1 was also identified as the most informative channel [20].  Thus, 

among the 118 channels in Dataset 1 and the 62 channels in Dataset 2, only the EEG signals from the 

following channels are selected for subsequent processing and analysis: C3, Cz, C4, Fp1, Fp2, AF3 and 

AF4. 

3.2 Data Preprocessing 

The preprocessing phase is essential for obtaining reliable data that is ready for meaningful interpretation 

about brain activity. It filters out any artifacts and noise in the signal, allowing useful features to be 

extracted from the raw data. Two EEG frequency sub-bands,  (8-13 Hz) and  (13-30 Hz), needed to 
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be isolated from other ranges of the raw EEG signal. The frequency bands are associated with the motor 

activation, preparation and planning of imagery movement [41]. Therefore, the 5th-order Butterworth 

filter with a pass band of 8- 30 Hz was employed in the first step, as implemented in previous works 

[19], [39]. After that, the signals were segmented to extract the dataset’s epochs with a window length 

of 3 seconds (0.5 s to 3.5 s) for Dataset 1 and 2.5 seconds (1s to 3.5s) for Dataset 2. They were prepared 

to extract relevant features that can distinguish between two MI tasks. 

3.3 Feature Extraction 

In the feature-extraction phase, three experiments were conducted. F1 involved the DWT decomposition 

technique to process single-channel EEG. The technique enables the separation of a single-component 

signal into multiple sub-signals. Each component corresponds to a different part in a specific frequency 

band of the signal that is essential for feature extraction. It is possible to efficiently extract relevant 

information or features from a complex signal that are beneficial for task classification. Down samplers 

and consecutive high- pass (𝑔𝑛) and low-pass (ℎ𝑛) filtering of the time series are used in the DWT

decomposition of the input signal (𝑥𝑛), as shown in Figure 2. It split the signal into high-frequency and

low-frequency content in the form of detail and an approximate coefficient [42]. For a further level of 

decomposition, only the approximations are passed again through the low-pass and high-pass filters. In 

this study, signals were decomposed using three levels of DWT with the Daubechies 4 wavelet (db4) 

[35], resulting in three detailed components (D1, D2 and D3) and one approximation component (A3), 

as shown in Figure 2. The frequency range for each selected band is shown in Table 1.  

Figure 2.  DWT decomposition of the input signal. 

Table 1.  Decomposition levels, coefficient vectors and their frequency ranges. 

Level Coefficient Vector Frequency Range (Hz) 

1 D1 25-50 

2 D2 12.5-25 

3 D3 6.25-12.5 

As A3's frequency range (0- 6.25 Hz) is outside the required frequency band, it was excluded for feature 

extraction. Moreover, the frequency of a signal that is less than 5 Hz may have artifacts [35]. D1 was 

included in the analysis, because it might still offer a useful filtered signal that is relevant to the specific 

frequency of interest, which is 25 to 30 Hz.  As a result, five features were extracted from each detail 

component, yielding a total of fifteen (15) features in F1. The feature in each sub-band is represented 

by F1D1 = {𝜇1, 𝜎1,  𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠1, 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠1, 𝑃𝑎𝑣 1
} for D1. 

D2 is represented by F1D2 = {𝜇2, 𝜎2,  𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠2, 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠2, 𝑃𝑎𝑣 2}, while D3 is represented by 

F1D3 = {𝜇3, 𝜎3,  𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠3, 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠3, 𝑃𝑎𝑣 3
}. The equations of the features in F1 are as follows: 

The absolute mean ()is defined as  [33]: 

 =
1

𝑁
∑ |𝑦𝑛 |

𝑁
𝑛=1  (2) 

The standard deviation (𝜎 ) is defined as [37]: 

𝜎 = √
1

𝑁
∑ (𝑦𝑛 − 𝑦̅)2𝑁

𝑛=1 (3) 

𝑔𝑛

ℎ𝑛

𝑥𝑛

2 

2 𝑔𝑛 

ℎ𝑛 



 𝑔𝑛 

ℎ𝑛 





D1 

D2 

D3

A3
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The skewness is defined as [37]: 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑁

∑ (𝑦𝑛 −𝑦̅)3𝑁
𝑛=1

𝜎3   (4) 

The kurtosis is defined as [37]: 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑁

∑ (𝑦𝑛 −𝑦̅)4𝑁
𝑛=1

𝜎4   (5) 

The average power (𝑃𝑎𝑣 ) is defined as [33]:

𝑃𝑎𝑣 = √
1

𝑁
∑ 𝑦𝑛

2𝑁
𝑛=1   (6) 

where 𝑁 is the number of samples,  𝑦𝑛 is the signal in each sub-band, 𝑦̅ is the mean of the signal in each

sub-band and 𝑛 is an integer that belongs to 1 to 𝑁. 

Eight time-domain features were directly extracted from the processed signal in F2. These include the 

mean absolute value, Root Mean Square (RMS), Hjorth parameters (activity, mobility and complexity), 

waveform duration, skewness and kurtosis represented by F2 

= {, 𝑅𝑀𝑆, 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦, 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦, 𝑊𝐿, 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠, 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠}. The equations for the 

parameters are as follows: 

The mean absolute ( ) value is written as [33] : 

 =
1

𝑇
∑ |𝑥𝑡 |

𝑇
𝑡=1  (7) 

RMS is the square root of the average of the signal's squared value in the time domain. The RMS is 

written as [43]: 

𝑅𝑀𝑆 = √
1

𝑇
∑ 𝑥𝑡

2𝑇
𝑡=1                        (8)

The amplitude variance of signal samples is used to calculate the Hjorth activity that is written as [44]-

[45]: 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑣𝑎𝑟 (𝑥𝑡)    (9) 

The frequency's mean approximation is determined by the Hjorth mobility that is written as [44]-[45]: 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 =  √
𝑣𝑎𝑟(𝑥𝑡

′)

𝑣𝑎𝑟 (𝑥𝑡)
  (10) 

The power spectrum's standard deviation is determined by Hjorth complexity that is written as [44], 

[45]: 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥𝑡

′)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥𝑡)
 (11) 

Waveform length (𝑊𝐿) represents the cumulative absolute difference between adjacent samples and 

provides a measure of the signal's overall variation. It can be written as follows [46]: 

𝑊𝐿 = ∑ |𝑥𝑡 − 𝑥𝑡−1|𝑇
𝑡                                  (12)

The skewness is written as [37]: 

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑇

∑ (𝑥𝑡−𝑥̅)3𝑁
𝑛=1

𝜎3 (13) 

The kurtosis is written as [37]: 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑇

∑ (𝑥𝑡−𝑥̅)4𝑁
𝑛=1

𝜎4  (14) 

where 𝑇 is the number of samples, 𝑥𝑡is the processed signal, 𝑥𝑡
′ is the first derivative of the signal sample

𝑥𝑡, 𝑣𝑎𝑟 (𝑥𝑡) is the variance of the signal sample 𝑥𝑡, 𝑥̅ is the mean of the signal and 𝑡 is an integer that

belongs to 1 to  𝑇. 

In F3, all features in F1 and F2 were combined and represented as F3 = F1D1 ∪ F1D2 ∪ F1D3 ∪ F2 with 

twenty-three (23) features in total. The Kruskal-Wallis test was applied to select the features of F3 that 

have a p-value of less than 0.05. F3 in combination with the feature selection is represented as FS. The 

approach enables us to consider the unique features of both sets, providing a more comprehensive 

analysis. The features were evaluated and analyzed to investigate the enhancement to the classification 

performance.  
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3.4 Classification 

The SVM classifier is one of the most frequently used methods for MI task classification. The SVM 

aims to accomplish both accurate classification and robust generalization by maximizing machine 

performance while minimizing the complexity of the learned model [47]. The SVM identifies the 

hyperplane that maximizes the margin between different classes of data points. The margin is the 

distance between the hyperplane and the nearest data points from each class. This is also known as 

support vectors. SVMs sometimes give a better fit and are computationally more efficient [48]. 

The LR has a low risk of overfitting, because the model complexity is minimal [49]. It determines a 

relationship between a single or a set of independent variables (features) and the likelihood that the 

dependent variable will fall into a specific class. In the LR, the result always falls between 0 and 1 by 

using the logistic function representing the estimated probability of the positive class. Based on the 

probability, the LR model creates a decision boundary that separates the two classes. During training, 

the method changes the model's parameters to reduce the difference between the predicted probability 

and the actual binary labels in the training data. The data points near the margin have significantly less 

influence due to the logit transform [48].  

Naïve Bayes (NB) is useful when most or all the predictor variables are also binary or categorical. Given 

the class label, the assumption in the NB is that all features are conditionally independent and this 

simplifies the modeling process [50]. The NB can also be applied in situations where there are three or 

more possible outcomes. The strategy in this case is to determine the probabilities of each possible 

outcome before selecting the one with the highest probability. However, rather than being highly precise 

values, the estimated probabilities should be considered approximation figures when the assumption of 

conditional independence is violated [48]. The NB classification algorithm has demonstrated high CA 

when applied to a limited sample dataset utilizing the Poisson distribution model [50].  

Performance was evaluated by the CA and F1-score. The accuracy is defined as the ratio of correctly 

identified samples or observations to the total number of input samples in the same class. It describes 

the classifier's effectiveness in performing its tasks successfully. The F1-score is a metric that balances 

both precision and recall. The equations are written as [51]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
× 100%        (15) 

𝐹1𝑠𝑐𝑜𝑟𝑒   =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
  (16) 

where true positive (TP) refers to the trials in the experiment that are correctly labelled as positive. The 

term "TN" refers to true negatives, which represent the number of trials correctly classified as negative, 

while “FP” is false positive representing the trials incorrectly classified as positive and “FN” is false 

negative when the trials are incorrectly classified as negative.  

By preventing over-fitting, the cross-validation approach enhances model efficiency. The performance 

parameters were evaluated using a ten-fold cross-validation approach. A ten-fold cross-validation of 

results divides features into ten segments or folds of a similar scale. It consists of nine training sets and 

one testing set, whereby the model is trained in each round with the training sets and evaluated using 

one testing set. The average accuracy is computed with ten rounds of the process. The classification is 

implemented using MATLAB R2022a. 

4. RESULTS

This section consists of two sub-sections. The first sub-section discusses the classification-performance 

result obtained by combining the feature vectors of all participants. The second sub-section focuses on 

the classification performance of the FS across all the participants and channels. 

4.1 Performance Evaluation of All Participants 

Figure 3 shows the CA of MI tasks when the features vectors of all participants in the Dataset 1 were 

combined. The accuracy of all channels is less than 70%, possibly due to significant inter-individual 

variability in brain signals, including cognitive ability and activity patterns, that has an impact on overall 

performance [16]. Employing F3 without FS along with Support Vector Machines (SVMs) has been 

shown to improve the CA of EEG signals, specifically from AF4, C3 and Cz, as shown in Figure 3(a). 
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On the other hand, the implementation of FS led to a decrease in the CA for AF4 and C3, while Cz, Fp1, 

AF3 and C4 showed an improvement in the CA. This implies that FS had a different impact on the 

various channels, potentially due to the specific features that were chosen and their significance 

according to the classification task. Figure 3(b) shows that F3 with LR also resulted in positive results 

for enhancing the CA of Cz. Furthermore, FS resulted in further improvement in the CA of Cz. It 

indicates that applying FS, along with LR, can be a beneficial approach for getting a higher CA of Cz. 

Furthermore, FS led to higher CA, not only for Cz, but also for other channels, such as Fp1, AF3 and 

C4, as shown in Figure 3(c). The figure also illustrates the lack of CA improvement when combining 

F3 with the NB classifier. This indicates that the interaction between F3 and NB, as well as FS and NB, 

did not enhance the CA. It emphasizes the incompatibility of using F3 and FS together with NB. In 

overall, C3 has higher CA across all classifiers.   

Figure 3.  Dataset 1 classification accuracy (%) comparison across experiments and channels using 

a) SVM, b) LR and c) NB.

A statistical analysis was applied to determine whether there are statistically significant differences in 

the CA between three different classifiers in separate experiments using Dataset 1. Due to the small 

sample size, the Friedman test was conducted. The findings demonstrated a statistically significant 

difference in the accuracy of the classifiers when assessed using feature sets F1, F2 and F3. This was 

shown by the p-value of 0.004, 0.008 and 0.018, respectively. This suggests that the selection of a 
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classifier, when used in conjunction with the features from F1, F2 or F3, significantly affects the CA. In 

contrast, the use of classifiers based on the feature set of FS did not have a significant effect on the CA. 

This is supported by a p-value of 0.104, which is higher than 0.05. 

Figure 4 shows the CA of MI tasks when the feature vectors of nineteen participants in Dataset 2 were 

combined. The accuracy of all channels is also less than 70%, possibly due to significant inter-individual 

variability in brain signals that have an impact on the overall performance [16]. Figure 4(a) depicts that 

employing F3 in the absence of FS in conjunction with Support Vector Machines (SVM) has 

demonstrated its effectiveness in improving the CA of EEG signals, specifically from Fp2, C4 and Cz. 

On the other hand, the implementation of FS led to an increase in the CA for C3. Figure 4(b) shows that 

F3 with LR also resulted in positive results for enhancing the CA of C4, Cz and AF4. Furthermore, FS 

resulted in higher CA, not only for Fp2, but also for other channels; AF4 and C3. FS resulted in further 

improvement in the CA of AF4.  Figure 4(c) illustrates the positive results in terms of CA improvement 

of Fp1, C3, C4 and Cz resulting from the combination of F3 and NB. The interaction between F3 and 

NB, as well as FS and NB, did not result in an improvement of AF3. It shows that F2 resulted in higher 

CA for AF3 compared to F3 and FS. 

Figure 4.  Dataset 2 classification accuracy (%) comparison across experiments and channels using 

a) SVM, b) LR and c) NB.

A statistical analysis was applied to determine whether there are statistically significant differences in 

the CA between three different classifiers in separate experiments using Dataset 2. The Friedman test 
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revealed no significant difference in the accuracy of the classifiers across feature sets F1, F3 and FS. 

This was shown by a p-value exceeding 0.05. This suggests that the selection of a classifier, when 

applied with F1, F3 and FS, does not significantly affect the CA. In contrast, classifiers using the F2 

feature set significantly impact the CA as indicated by a p-value of 0.05. 

Table 2 presents F1-scores for rh and rf in Dataset 1 and rh and lh in Dataset 2 across the channels and 

classifiers. The results show that rh generally has higher scores than rf and lh, indicating better classifier 

performance for rh tasks. This suggests that the features are more distinct and easier to identify. It is 

important to note that the F1-score obtained from the combination of feature vectors for all participants 

can vary due to the variation in participants' abilities in the MI tasks. There are challenges in classifying 

either rf or lh tasks, as seen in varied F1-scores except for C4 and Cz in Dataset 2. It can be associated 

with features and data patterns of lh that are more dominant and easier to recognize. This highlights the 

importance optimizing the feature extraction or selection approach for improving the CA. In the previous 

study utilizing the same dataset as Dataset 1, it was also observed that rh exhibited a higher accuracy 

compared to rf when employing the WPD- k-NN method [33]. 

Table 2.  F1score (%) of FS for Dataset 1 and Dataset 2. 

CHN 

Dataset 1 Dataset 2 

SVM LR NB SVM LR NB 

rh rf rh rf rh rf rh lh rh lh rh lh 

Fp1 59.1 51.6 57.5 54.17 60.6 40.9 63.1 24.3 57.8 38.6 63.4 32.8 

Fp2 57.9 47.3 55.2 50.33 60.8 41.5 64.7 12.5 58.8 41.7 62.3 28.1 

AF3 58.9 57.5 59.1 57.70 55.6 56.5 62.3 27.7 56.9 44.6 61.8 62.4 

AF4 58.3 52.8 56.5 53.23 58.6 51.1 55.2 46.4 54.0 50.5 57.4 44.4 

C3 68.2 68.5 67.9 68.49 67.4 63.3 61.6 58.1 60.6 59.6 64.2 48.9 

C4 64.8 63.9 65.6 64.43 63.4 59.9 62.3 65.3 62.9 64.6 53.2 66.4 

Cz 67.8 66.4 68.2 67.08 63.1 60.5 58.8 65.7 59.8 64.5 52.7 66.1 

4.2 Performance Evaluation of Individual Participants 

The CA for each participant was determined by classifying features that were selected through the 

feature-selection process (FS). They were analyzed to get a more in-depth study of the proposed 

technique, as shown in Table 3. The CA exceeding 70% is presented in boldface. 

In Dataset 1, noteworthy results were achieved with different classifiers. When employing the SVM, aw 

achieved the highest CA at 81.4% by utilizing commonly employed channels, demonstrating the 

robustness of the SVM in capturing neural patterns related to MI. In addition, the channel on the 

forehead had the highest CA at 63.6%. It was performed by aw with AF4. Switching to the LR as the 

classifier, al achieved the CA of 87.5% via C3 which represents the highest CA obtained for the dataset. 

al also demonstrated the CA of 62.1%, specifically from AF4. The NB achieves a maximum CA of 

79.3% when using the C3 channel. The highest achievable accuracy for the forehead channel is 60%, 

specifically from the AF3 channel. The results are in line with the finding in [21], where AF4 was 

identified as one of the most informative channels for aw and both AF3 and AF4 for al. 

In Dataset 2, S36 gets the maximum CA of 93% by classifying the features of C4 using the SVM. S36 

outperformed other participants with features from both C4 and Cz channels across all classifiers. When 

examining the channels on the forehead (Fp1 and AF3), S29 demonstrated great performance compared 

to other participants. The CA for S29 exceeded 70% and reached up to 86% across all classifiers, which 

is sufficient for BCI. There are participants getting higher CA on the channels that are located on the 

forehead compared to the channels that are commonly used for MI. This is demonstrated by S28 and 

S29 with SVM. For example, the CA of AF4 (64%) is higher than that of C3 (51%) and C4 (58%), while 

S29 has a higher CA of Fp1 (86%) and AF3 (77%) compared to the CA of C3 (70%), C4 (60%) and Cz 

(59%). 
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Table 3.  The minimum and maximum values of CA across classifiers and channels. 

Dataset Classifier 

Level Channels 

Fp1 Fp2 AF3 AF4 C3 C4 Cz 

Dataset 1 

SVM 
Min 

50.7 

(av) 

52.1 

(aa) 

48.2 

(aa) 

56.1 

(aw) 

52.1 

(ay) 

52.1 

(ay) 

53.7 

(ay) 

Max 

61.8 

(al) 

58.6 

(al) 

60.7 

(al) 

63.6 

(aw) 
81.4 

(aw) 

81.4 

(aw) 

79.3 

(aw) 

LR 
Min 

51.1 

(av) 

50.4 

(av) 

52.1 

(av) 

53.2 

(aw) 

55.4 

(av) 

54.3 

(ay) 

55.7 

(ay) 

Max 

57.5 

(al) 

58.2 

(aw) 

59.6 

(aw) 

62.1 

(al) 
87.5 

(al) 

80.7 

(aw) 

79.3 

(aw) 

NB 
Min 

52.1 

(ay) 

50.4 

(aa) 

53.2 

(aa) 

55.4 

(aa) 

55.7 

(aw) 

57.9 

(ay) 

55 

(ay) 

Max 

56.1 

(al) 

56.1 

(ay) 

60.0 

 (al) 

58.9 

(al) 
79.3 

(al) 

73.2 

(aw) 

74.3 

(aw) 

Dataset 2 

SVM Min 

45.00 

(S32,S33 

&S44) 

38.00 

(S32) 

42.00 

(S9) 

33 

(S32) 

40.00 

(S1) 

40.00 

(S2) 

41.00 

(S2) 

Max 
86 

(S29) 

63.00 

(S3&S22) 
77 

(S29) 

64 

(S28) 
75 

(S44) 

93 

(S36) 

91.00 

(S36) 

LR 
Min 

41 

(S44) 

37 

(S5) 

37 

(S2) 

42 

(S1&S32) 

45 

(S19) 

45 

(S5) 

40 

(S1) 

Max 
78 

(S29) 

66 

(S3) 
73 

(S29) 

67 

(S29) 
73 

(S37) 

86 

(S36) 

85 

(S36) 

NB 
Min 

44 

(S36) 

39 

(S5) 

38 

(S2) 

36 

(S52) 

43 

(S1) 

44 

(S2) 

38 

(S2) 

Max 
81 

(S29) 

64 

(S18) 
72 

(S29) 63 (S18) 
75 

(S44) 

88 

(S36) 

85 

(S36) 

5. DISCUSSION

Based on the result of combining the feature vectors of all participants, C3 and C4 exhibit the highest 

CA across all classifiers for Dataset 1 and Dataset 2, respectively. C3 and C4 were used a lot in past 

studies, because they are placed over the motor cortex of the brain and can record unique patterns during 

MI activities [30], [35], [40]. The SVM and LR produce comparable results, because each model uses 

all data points, with points closer to the margin having considerably less impact [48]. The F3 features, 

extracted from EEG signals across both datasets, could provide relevant information for classification. 

Further improvement in the CA is also possible with feature selection. This suggests that by selecting 

relevant features with an appropriate classifier, the CA could be greatly improved. Further exploration 

might also expand the potential of Fp1, AF3 and AF4 channels for a single-channel execution in MI. 

Moreover, the positioning of the AF3 and AF4 channels on the forehead, away from the eyes, could 

offer practical advantages by minimizing the direct impact of eye blinks compared to Fp1 and Fp2.  

Regarding the performance of individual participants, the study demonstrated that the commonly 

employed channels consistently achieved accuracy levels exceeding 70% across different classifiers 

using the proposed approach in both datasets. The threshold of 70% is generally recognized as meeting 

the requirements needed for effective BCI implementation. This indicates the practicality and reliability 

of the proposed approach for BCI applications [39].  AF3 and AF4 showed the potential for use in the 

single-channel BCI execution, as they frequently exhibited accuracies higher than 60% with the 

proposed approach. This is also considered as BCI literacy threshold determined in the previous MI 

study  [52]. Further exploration could strengthen the practicality and reliability of a single-channel BCI 

systems for broader implementation in real-world applications. Moreover, S29 offers the CA that is 

comparable to the common channels. Despite the recognition of C3 and C4 as the channels that offer 

superior MI features [40], there are participants achieving higher CA using channels other than C3 or 

C4 [18][19][20]. The example is shown by S28 and S29 by using SVM as the classifier. It is strongly 

affected by the involvement of participant, as well as the well-designed experimental conditions and the 

implementation of an effective classification algorithm [17], [21].  

Table 4 presents several existing techniques employed on the Dataset 1. For any of the five subjects, the 

proposed approach does not provide the best CA. Most of the past research used more than two channels 

to get more relevant information or features, resulting in high CA. The study conducted by Khare and 
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Bajaj [19] successfully obtained very high CA. However, they have different approaches to select the 

best single channel for further processing. They were using multi-cluster unsupervised learning channel 

selection (MCCS) to rank or find the best single channel from the 118 channels in the BCI system. Even 

though they are using the same dataset, the most informative channel was different when they used 

different methods for channel selection [20]. For Dataset 2, the CA is compared with the CA from the 

first session of the previous study [39] with the same participants. The technique compared include the 

10-fold cross validation with the CSP (CSP-cv) and Linear Discriminant Analysis (LDA) as the 

classifier. They employed 20 channels that are in the motor cortex region for the analysis. The average 

of the CA for 19 participants is 87.14±9.14 which is 33.85% greater than the average of the CA in AF4 

(53.29±9.12) and 22.43% higher than the average of the CA in C4 (64.71±11.49). S33 achieves the 

highest CA of 98.1%. For this study, the highest CA is 93% which is 4.9% lower than S33. Even though 

the overall performance is not comparable to the previous work, the CA for certain participants is 

relatively promising when consider the number of channels. 

Table 4.  A comparison of the CA for Dataset 1 across different participants. 

Author(s) Approach No. of 

channels 

aa al av aw ay Average ± 

std. 

Selim et al. 

[27] 

CSP\AM-BA-

SVM 

18 86.10 100 66.84 90.63 80.95 85.00± 12.29 

Khare and 

Bajaj [19] 

F-VMD\ F-

ELM 

1 (AF3) 100 100 100 100 100 100 

Roy et al. 

[53] 

HWE/ 

Decision Tree 

16 100 87.50 100 71.87 100 91.87± 12.42 

Tiwari  [21] LS-BJOA/ 

RCSP 

In the bracket 

below the CA 

89.34 

 (29) 

94.08 

(18) 

80.54 

(37) 

93.5 

(31) 

87.68 

(23) 

89.02± 4.88 

(27.6) 

Gao et al. 

[54] 

SR-TT/ SVM-

RBF 

118 84.64 91.07 82.50 87.50 81.07 85.36 

Proposed 

approach 

DWT and time 

domain 

features/ LR 

1(C3) 60 87.5 55.4 60.4 76.4 67.94±13.52 

1 (AF4) 59.3 62.1 57.5 53.2 54.3 57.28±3.64 

There are a few limitations to the proposed approach. Each participant’s brain activity during MI might 

exhibit a unique pattern and variation. The approach might not be able to capture specific patterns from 

certain participants, including those who might be BCI illiterate. The applicability of Kruskal-Wallis for 

feature selection may be restricted for some individual participants. There is a possibility that the 

accuracy of the findings could decrease after selecting specific features, indicating the inconsistency of 

the selector in improving the performance of the classification. The selection could lead to the 

elimination of valuable information for certain participants, hence making the MI tasks difficult to 

interpret. The study is limited to the datasets of healthy participants. The results may differ when applied 

to a specific group of individuals with relevant health conditions. 

6. CONCLUSION

In this study, the proposed approach was applied to Dataset 1 (BCI Competition III (IVa)) and Dataset 

2 (OpenBMI) to evaluate the classification performance. The approach slightly increased the CA on 

certain channels with F3 and FS, compared to relying only on the DWT decomposition. While not all 

channels showed an increase in the CA for all participants, the CA of individual performance improved 

notably. Particularly, al reached up to 87.5% of CA on C3 by using LR and S36 achieved 93% of CA 

on the C4 channel. Additionally, participant S29 achieved sufficient CA on Fp1 and AF3 channels that 

is comparable to those of commonly used channels for MI.  This suggests that the proposed approach, 

when combined with relevant features and appropriate classifiers, has the potential to improve overall 

classification performance. This extends its applicability to the forehead channels, necessitating further 

investigation of the channels in the context of our study. Although the proposed approach encounters 

difficulties in achieving high CA across participants, there is a room for improvement through 

comprehensive evaluation. Evaluating the effectiveness of the approach in different MI tasks and 

participant groups can aid in determining its strengths and limitations in various contexts. To optimize 

the classification performance, other feature-selection techniques, such as hybrid or wrapper methods, 
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could be explored. Besides that, it would be valuable to conduct a comprehensive comparison between 

the proposed approach and the standard methods, such as the CSP technique, to identify their respective 

strengths and weaknesses. 
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 ملخص البحث:

ن دددددد   ن لددددد  ن  ّلحّتدددددنينما   ددددد نيردددددكن لل  دددددن  ن لح  دددددد ننمّغلقددددد نجادددددخنامدددددّةن تدددددلد   ن     ددددد  

ددددد ن نمددددد ن ل     ني ر ددددد   ن ددددد    ددددد نمددددد نت دددددن ّنمل.ددددد ٍ  نلل دددددن  ن لددددد  مّغ ن   ددددد      آل ددددد ن حع 

ن قر  ني ٍنت ن ّنصنرن دط  ن ل  مّغ 

تددددد ّّن لل  دددددن  ن لح  ددددد  ننهدددددورن لنرتددددد ن احدددددةن ددددد نت دددددّ  نم ددددد ٍ  نل دددددنرن دطددددد  ن لددددد  مّغن ددددد 

نع نت دددددّ  ن   ددددد  ن ددددد ّّن ل لددددد ن  عددددد ن تلدلصددددد ّنمددددد نا دددددّ   نيددددد ٍن لا م يدددددل  نيردددددكنعلددددد  ن ددددد   

ددددد ّّن ر.ددددد نٍ ر  ن ّتددددد ّ ن لددددد  ن تدددددلدل ن لا م ن .ّ  ن تدددددلد   ن ق  ددددد    عدددددن ن  ددددد ن دددددّت  نلدددددو ن ددددد   

ٍ ن ن  ن لل غرُّ نيركنهو ن ل ح  م

ددددددد ٍنمددددددد نه دددددددّ ن قلددددددد ةنهدددددددورن لنرتددددددد نٍمددددددد ن تدددددددلدل ن لا م  ّّن ن تدددددددط ن  القدددددددّ ن ل مددددددد  

ّ ن ن ٍ  ّ م ددددددددد نمددددددددد ن  ددددددددد ن دددددددددن   نم.رنمدددددددددّ   ددددددددد   ننلر ن مدددددددددّّن  ن تدددددددددط ن ل مدددددددددّ ن ل  

ّ  ن عن دددددد  ن لح ددددددن ن  لل  دددددد    ن تدددددد ن دددددد  ن م  دددددد ن لل ق  دددددد ن ل قل  دددددد نيرددددددكنمم ددددددنيل ن  ّاددددددّ

%ن93%ن ّتددددددلد   ن  احدددددد  رن لر ن اددددددل  ن    ددددددّن رغددددددخن ل  ت دددددد ن5 87يرددددددكنٍت دددددد  ن صددددددرخن لددددددكن

(نلرل  دددددد    ن ي ددددددد ن  ددددددّ  ن  ل ّل دددددد ن حاددددددد  ن  ٍ  نSVM   نآلدددددد نمل م دددددددّّن لدددددد  ي ن  ّتددددددلد

ن   لق ّ  نم  ٍ ن نض نيركن ا  ن لش دصن ل  حن  ن  ّاخن ل لّئ ن  يمن
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