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ABSTRACT 

Beyond the immediate content of speech, the voice can provide rich information about a speaker's demographics, 

including age and gender. Estimating a speaker's age and gender offers a wide range of applications, spanning 

from voice forensic analysis to personalized advertising, healthcare monitoring and human-computer interaction. 

However, pinpointing precise age remains intricate due to age ambiguity. Specifically, utterances from individuals 

at adjacent ages are frequently indistinguishable. Addressing this, we propose a novel, end-to-end approach that 

deploys Mozilla's Common Voice dataset to transform raw audio into high-quality feature representations using 

Wav2Vec2.0 embeddings. These are then channeled into our self-attention-based convolutional neural network 

(CNN) model.  To address age ambiguity, we evaluate the effects of different loss functions such as focal loss and 

Kullback-Leibler (KL) divergence loss. Additionally, we evaluate the estimation accuracy at different speech 

durations. Experimental results from the Common Voice dataset underscore the efficacy of our approach, 

showcasing an accuracy of 87% for male speakers, 91% for female speakers and 89% overall accuracy, as well 

as an accuracy of 99.1% for gender prediction. 
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1. INTRODUCTION 

Beyond mere verbal content, the sound of a person's speech offers profound insights into the speaker's 

identity, revealing hints about age, gender, ethnicity and emotional state [1]. The capability to infer 

demographic information from speech plays a pivotal role in numerous applications, from forensics [2] 

to personalized advertising [3]-[4], healthcare systems and human-robot interactions [4]. 

However, the accurate estimation of demographics from speech is a challenging task. The multifaceted 

nature of human speech, influenced by factors like emotions, health status, weight and context not only 

enriches the vocal expressions, but also makes them complex. A particular challenge lies in segregating 

the textual content from a speaker's physical attributes [5]. 

Traditionally, the process of speaker profiling has been structured in three stages: data accumulation and 

preprocessing, feature extraction and selection and finally, the estimation of physical attributes. 

Historically, voice-pattern analysis has largely relied on time-frequency representations, such as mel-

frequency cepstral coefficients (MFCCs) [6], linear predictive coding (LPC) [7] and formant frequencies 

[8]. However, some studies have leaned towards statistical methods or Gaussian mixture models for 

speech modeling [9]-[11].  

Recent developments in deep-learning (DL) techniques have emerged as powerful tools for identifying 

complex patterns in data. The multilayered architecture of DL models has demonstrated superior 

performance in speech processing and speaker-profiling tasks [12]. For instance, long short-term 

memory (LSTM) networks combined with features like MFCC have been employed for age estimation 

[13]. Additionally, research by Kalluri et al. [14] and Kaushik et al. [15] delved into the potential of 

deep neural networks (DNNs) for the estimation of various speaker attributes. 

Traditional approaches have relied heavily on handcrafted feature-extraction techniques, such as MFCC 

and LPC, with classical machine-learning models, resulting in significant limitations in terms of 

accuracy, generalizability and efficiency. Other studies employed handcrafted features with DL models. 
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These approaches, while being effective, introduce limitations in capturing the nuanced patterns within 

speech indicative of age and gender. Handcrafted features play a crucial role in the performance and 

accuracy of the recognition system; however, their implementation is challenging due to the complexity 

of feature engineering, as well as the significant time investment needed. Additionally, handcrafted 

feature extraction can underperform when the manually selected features aren't aligned with the task 

requirements. 

To utilize the rich source of information available in the signal, including spatial cues, several studies 

adopted the utilization of raw input signal to DL models. Researches used raw signal directly as input 

to the DL model [16]-[17] or employed hybrid architectures to utilize both the spatial domain of the 

speech signal with handcrafted features [18]. Several researchers utilized pre-trained models, such as 

wave2vec and Titanet, to extract features from raw-speech signals directly [19]-[20]. 

The challenges of age-group prediction are further compounded by the intrinsic diversity of human 

speech, influenced by factors, such as emotion, health and accent, which can obscure critical 

demographic indicators. One major limitation to age-group prediction from speech is the ambiguity of 

the age, where speakers from adjacent age groups are often indistinguishable, due to the gradual change 

in speech characteristics with age. This problem is further emphasized with data imbalance with more 

samples in certain age groups than others. One approach to address this problem is the use of distribution 

learning, emphasizing the model's capability to output probability distributions that reflect the likelihood 

of each possible outcome, incorporating uncertainty into the predictions [21]. 

 KL-divergence loss naturally accommodates this by comparing the predicted probability distribution 

against a target distribution that can represent soft labels, improving the model's ability to learn from 

nuanced differences in speech related to age. Instead of making hard predictions for a specific age group, 

using KL-divergence encourages the model to output a probability distribution over all possible age 

groups. This probabilistic approach is beneficial for capturing the uncertainty in age-group prediction, 

where speech features might not clearly distinguish between adjacent age groups.   

Building on the strengths of using raw-speech signals with DL models and the strengths of KL-

divergence loss, our proposed model addresses the aforementioned limitations and challenges, by 

introducing an end-to-end model that integrates Wav2Vec 2.0 embeddings with a self-attention-based 

CNN, utilizing Mozilla's Common Voice dataset. This methodology not only simplifies the feature 

extraction process, but also introduces a robust framework capable of discerning subtle age-related 

variations and gender characteristics in speech. By incorporating the principles of KL-divergence loss 

within a more comprehensive and advanced modeling approach, we address critical gaps in speaker 

profiling, including the challenges of age ambiguity and the need for robust, data-driven feature 

extraction. 

In addition to employing KL-divergence loss and raw-speech signal with pre-trained feature extractors, 

the proposed model employs a self-attention mechanism. Attention mechanisms have recently 

revolutionized several fields, such as emotion recognition [22], natural-language processing [23] and 

speech recognition [24], enabling models to focus selectively on parts of the speech signal that are most 

relevant to the task at hand, by weighting different parts of the input differently, allowing the model to 

consider the context of the entire speech sequence when making predictions. A specific type of attention, 

self-attention allows models to capture dependencies and relationships between different parts of the 

speech signal, regardless of their distance within the sequence. This is particularly beneficial for 

understanding long-range dependencies in speech, where context from earlier parts of a sequence may 

influence the interpretation of later parts. This is particularly advantageous for age and gender 

prediction, where temporal dynamics across the entire speech sequence are analyzed, identifying 

patterns that are characteristic of different age groups and genders, allowing the model to dynamically 

focus on segments that are more informative for these predictions. 

Additionally, this work provides an insight into the role that loss-function choice plays in the 

performance of the model, as we compare the performance of the model with several loss functions, 

such as regular corss-entropy loss, KL-divergence loss that is designed to handle age ambiguity and 

focal loss that is designed to handle age-group imbalance. A hybrid loss function is introduced in this 

work, focal-KL to introduce a balance between age-group imbalance and age ambiguity.  Further, 

analyzing the relation between age-group sample size and the accuracy obtained for that age group, 
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showcases the effectiveness of the loss function in addressing the problem of data imbalance and age-

group ambiguity. 

The paper also demonstrates the robustness of the proposed model by conducting a thorough 

investigation into the impact of speech-segment duration on prediction accuracy with varying durations 

of speech ranging from 1 to 5 seconds of speech. This analysis informs our understanding of the balance 

between computational efficiency and the quality of our model's predictions. 

Our proposed system outperforms existing DNN methods reliant on time-consuming, handcrafted 

feature extraction. Our work contributes to multi-task age group and gender detection from raw speech 

and introduces a novel combination of the self-attention mechanism with distributional learning. 

Subsequent sections will explore our methodology in detail, present experiment results, compare our 

findings with existing literature, highlight potential applications and suggest future research directions 

in speaker profiling. 

2. DATASET 

To achieve our research objectives, it was crucial to select a dataset that is diverse and comprehensive. 

In light of this, we chose the Common Voice dataset by Mozilla [25]. This dataset is a crowdsourced, 

multi-language resource of spoken sentences. The dataset is rich in its demographic diversity, with data 

collected from speakers of various ages, genders and accents, making it an ideal resource for our research 

goal. 

Each data entry consists of short spoken sentences, textual transcription and the demographic 

information of the speaker, including age group and gender. The age groups are categorized as 'Teens', 

'Twenties', 'Thirties', 'Forties', 'Fifties', 'Sixties', 'Seventies' and 'Eighties and older'. Gender information 

as self-reported by the contributors is categorized as 'Male', 'Female' and 'Other'.  The dataset is 

continually updated with new contributions; thus, the version used in this work is common_voice_11. 

To maintain consistency and avoid ambiguity in the training data, only records marked as ‘Male’ and 

‘Female’ were incorporated. Following the completion of data cleaning and removal of empty records, 

the dataset included 35,846 English-speaking samples from an array of global accents. This diverse 

collection includes accents from the USA, England, Australia, India, Canada, Malaysia, Scotland, 

Philippines, Singapore, Hong Kong and several other countries. 

The dataset was divided as follows: 33,794 samples for training, 1,511 for validation and 577 for testing. 

From a gender-distribution perspective, it comprises 25,355 male samples and 8,439 female samples. 

A detailed breakdown of the data distribution across various age and gender groups is provided in Table 

1. 

In the pre-processing phase, the audio data in the dataset originally stored in MP3 format, was converted 

into waveform samples for compatibility with the Wav2Vec model. For reasons of efficiency and 

memory management, longer utterances were cropped to 3 seconds, resulting in a maximum length of 

48000 at a 16 kHz sampling rate. 

Table 1.  Description of the common voice dataset used in this work. 
 

 

 

 

 

  

 

 

 

Age group Training Validation Testing 
Total 

Male Female Male Female Male Female 

Teens 1,960 503 48 28 34 13 2,586 

Twenties 8,601 1,830 389 87 149 39 11,095 

Thirties 6,274 2,155 256 88 107 26 8,906 

Forties 4,093 1,033 180 60 67 16 5,449 

Fifties 2,307 2,055 116 87 42 32 4,639 

Sixties 1,328 795 55 40 18 18 2,254 

Seventies 691 58 36 1 14 - 800 

Eighties 101 10 4 - 2 - 117 

Total 25,355 8,439 1,084 391 433 144 35,846 
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3. PROPOSED METHOD 

In this study, we propose an end-to-end methodology for speaker age and gender detection, leveraging 

the advanced capabilities of Wav2Vec2.0 for feature extraction from raw-audio signals. This approach 

eliminates the need for manual feature engineering, allowing the model to automatically learn the most 

informative aspects of the audio for our tasks. 

The proposed methodology is comprised of three key aspects: 

 Feature Extraction: The pre-trained Wav2Vec2.0 model is utilized to transform raw audio into 

high-quality feature representations. This unsupervised-learning technique captures complex 

speech characteristics essential for distinguishing speaker demographics. 

 Self-attention-based CNN: The extracted features are processed through a self-attention-based 

convolutional neural network. This combination allows our model to dynamically focus on the 

most relevant parts of the audio signal for age and gender prediction. 

 Loss Function Evaluation: To tackle the challenges of age ambiguity and class imbalance, 

various loss functions are explored, including focal loss and KL-divergence loss. 

A hybrid loss function combining focal loss and KL loss is introduced to offer a mixture for 

handling class imbalance and age ambiguity. This comparative analysis is crucial for optimizing 

our model's performance across diverse speech samples. 

3.1 Network Architecture 

In this study, we propose a novel architecture for audio-based gender and age classification. Our model 

employs the Wav2vec2.0 transformer-based architecture as an upstream model for feature extraction. 

Wav2Vec is an unsupervised-learning approach that transforms raw audio into rich, dense vector 

representations. These embeddings, also known as latent representations, capture significant information 

from the audio, such as speech content and speaker characteristics. Wav2vec2.0, pre-trained on a large 

corpus of unlabeled audio data, has demonstrated robustness in extracting meaningful representations 

from audio signals [26]. 

The extracted features are then passed through a series of three 1-dimensional convolutional layers, each 

followed by batch normalization. Each convolutional layer consists of filters of size 3, with the number 

of filters changing from 512 to 256 to 128 across the layers. The stride of 1 and padding of 1 are 

maintained in all convolutional layers. 

Following feature extraction and convolutional processing, we employ adaptive average pooling with 

output size 64 to capture global temporal information. The output of the adaptive-pooling layer is then 

flattened before being passed to a self-attention mechanism. The self-attention mechanism assigns 

weights to features in the sequence based on their importance, thereby focusing the model's attention on 

the most informative parts of the audio signal. The attention mechanism consists of a linear 

transformation followed by a softmax activation function to generate attention scores. 

 

 

 

 

 

 

 

 

Figure 1. Overview of the proposed architecture. 
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Post the self-attention mechanism, a dropout layer is applied with a dropout rate of 0.5 to prevent 

overfitting. Subsequently, the processed features are passed to two separate fully-connected layers for 

the task of gender and age classification. The gender classifier consists of a linear layer with a single-

output unit followed by a sigmoid activation function, classifying the audio clip into either of the two 

gender categories. 

The age classifier, on the other hand, consists of a linear layer with an output size equal to the number 

of age categories. The proposed model effectively combines the strengths of transformer-based audio 

representation learning, convolutional processing, adaptive average pooling, self-attention mechanism 

and task-specific classification layers to perform the dual task of age and gender classification from raw-

audio signals. 

3.2 Loss Function 

In our approach, the model is designed to simultaneously predict both age and gender. Thus, the 

composite loss function, as shown in Equation (1), merges the individual losses corresponding to age 

and gender predictions: 

𝐿𝑜𝑠𝑠 = 𝑎𝑔𝑒𝑙𝑜𝑠𝑠 + 𝑔𝑒𝑛𝑑𝑒𝑟𝑙𝑜𝑠𝑠     (1) 

For gender prediction, the loss is computed using the Mean Squared Error (MSE): 

𝑀𝑆𝐸𝑔𝑒𝑛𝑑𝑒𝑟 =  
1

𝑁
∑ (𝑦𝑖 − 𝑦 𝑝𝑟𝑒𝑑𝑖)2𝑁

𝑖=1     (2) 

where N is the total number of predictions, yi is the actual value of the ith prediction and  𝑦 𝑝𝑟𝑒𝑑𝑖 is the 

predicted value of the ith prediction. 

 Regarding age prediction, we explore various loss functions including cross-entropy, focal loss and KL 

divergence. These will be detailed in the subsequent sub-sections. 

3.2.1 Cross Entropy  

Cross Entropy Loss is one of the most widely used loss functions for classification tasks. It measures 

the dissimilarity between the true label distribution and the predicted probabilities from the model. 

Given a classification task with C classes, where each instance is assigned a label in the range [1, C], 

for a single data point, the predicted probabilities for each class can be determined using the softmax 

normalization function applied to the model's outputs. The predicted probability pc of class c is computed 

as: 

𝑝𝑐 =
𝑒𝑥𝑐

∑ 𝑒
𝑥𝑗𝐶

𝑗=1

                                                                      (3) 

where xc is the output of the model corresponding to class c. 

Given 𝑝𝑐 as the probability of the predicted class and yc as the true label, the cross entropy loss for that 

data point is defined as: 

𝐶𝐸(𝑝𝑐) = −𝑦𝑐 log(𝑝𝑐)                                                               (4) 

3.2.2 Focal Loss 

While Cross Entropy is effective for many classification tasks, it may not perform as well in scenarios 

with significant class imbalance. In such cases, the model might become biased towards the majority 

class, often misclassifying the minority class. 

To address this, Focal Loss was introduced as an enhancement over the standard Cross Entropy Loss 

[27]. It is specifically designed to give more importance to misclassified examples and is especially 

helpful for imbalanced datasets. 

After obtaining the probability of each age class with softmax normalization as in (3), the Focal Loss 

for a true class c is defined as: 

𝐹𝐿(𝑝𝑐) =  −𝛼(1 − 𝑝𝑐)𝛾 log(𝑝𝑐)                                                       (5) 

where 𝑝𝑐  is the probability of the true class, α is a scaling factor for the loss and γ is a focusing parameter 

used to weigh down easy examples. 
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3.2.3 KL Loss 

The proposed model leverages KL divergence (often referred to as the Kullback-Leibler divergence or 

relative entropy) as the loss function. KL divergence is a measure of how one probability distribution 

differs from a second, reference probability distribution. It's especially fitting for our problem since our 

model predicts a distribution over labels, rather than a singular label for each input. 

For age-group detection, the KL divergence gauges the dissimilarity between the predicted label 

distribution and the true label distribution for each instance in the training set.  

Given Q as the predicted probabilities for each instance, after softmax normalization, the true label for 

an instance with label c is represented as a one-hot encoded vector, P, defined as: 

𝑃 = {
1                 𝑖𝑓 𝑖 = 𝑐

  0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The KL divergence is then computed as: 

𝐾𝐿 (𝑃||𝑄) =  ∑ 𝑝𝑖 log(𝑝𝑖 𝑞𝑖⁄ )

𝐶

𝑖=1

 

 where 𝑝𝑖 and 𝑞𝑖 are the true and predicted probabilities, respectively, for the ith age group. 

3.2.4 Focal-KL 

The Focal-KL Loss is a hybrid loss that is a combination of the focal loss and the KL divergence loss, 

which attempts to leverage the benefits of both losses, where Focal Loss addresses the class-imbalance 

problem by giving more weight to the misclassified examples, while KL Divergence measures the 

divergence between two probability distributions, making it especially suitable when the model's 

predictions are distributions over labels. 

To create a hybrid loss, we take a linear combination of the Focal Loss and KL Divergence: 

Focal − KL =   𝛌 × Focal_Loss +  (1 −  𝛌) × KL 

where λ is a weighting coefficient in the range [0, 1] determining the contribution of each loss. A higher 

λ gives more weight to the Focal Loss, while a lower λ emphasizes the KL Divergence Loss.  

4. EXPERIMENTS AND RESULTS 

In this section, we evaluate our model's performance against various benchmarks, different loss 

functions and input durations to understand its strengths and potential areas of improvement. 

To demonstrate the effectiveness of the proposed model, several experiments are performed. The first 

set of experiments compares the performance of a baseline model with 3 convolutional layers and no 

attention mechanism and the proposed model in age-group and gender detection. Next, we compare the 

performance of different loss functions on the proposed model. Finally, duration analysis is performed 

by performing tests on different durations of the model ranging from one to five seconds. The 

experiments are performed with a learning rate (1×10−6) and a batch size of 32. 

4.1 Self-attention Mechanism 

The primary objective here is to discern the impact of incorporating a self-attention mechanism into our 

model as compared to a baseline model that lacks this feature. To investigate the efficacy of integrating 

a self-attention mechanism, we compare our proposed model against a baseline architecture. This 

baseline encompasses three convolutional layers, employs wav2vec for feature extraction and 

incorporates adaptive pooling. Notably, it lacks the self-attention mechanism characteristic of our 

proposed design. Both models were trained under identical settings using cross-entropy loss. As 

presented in Table 2, the inclusion of the self-attention mechanism manifests in marked improvements 

in age-prediction accuracies for both male and female categories. Conversely, the gender-recognition 

capability remains consistent across the two models, underscoring the specific advantages of self-

attention in age-prediction tasks. 
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Table 2. Age and gender accuracy of the proposed and baseline models. 

 Age Accuracy Gender 

Male Female All 

Baseline 0.72 0.76 0.734 0.98 

Proposed 0.76 0.83 0.78 0.98 

4.2 Effect of Different Loss Functions 

This sub-section aims to evaluate and compare how the model performs when trained with various loss 

functions, emphasizing the model's adaptability and optimization potential. To demonstrate the effects 

of the loss function on the model's performance, we evaluate the model with different loss functions; 

namely, CE, CE with focal loss, Kl divergence loss and a hybrid Kl with focal loss. As seen in Table 3, 

across the board, it's evident that the model is highly adept at gender classification, achieving an 

accuracy range of 0.98 to 0.99 regardless of the loss function used. This underscores the robustness of 

the architecture in distinguishing gender-based audio features. 

For age-group detection, using the plain CE, we observed that the model had a higher accuracy for 

female speakers at 0.841 compared to male speakers at 0.796, yielding an overall average accuracy of 

0.807. However, incorporating the focal loss, which is especially effective in addressing class 

imbalance, shows a marked improvement in performance for both genders. The gap between male and 

female accuracy narrows, with females achieving a commendable 89.5% accuracy. Switching to the KL 

divergence loss sees further improvements, especially for female speakers who achieve a 91.5% 

accuracy. The overall accuracy, taking into account both genders, reaches 86.7%, marking a substantial 

enhancement over the traditional CE loss. 

Combining KL with focal loss produces results that are marginally better than using CE alone, but 

slightly lag when compared to using either the focal loss or KL divergence loss separately. This could 

indicate that while both focal and KL loss individually address certain nuances of the dataset, their 

combination may not necessarily be synergistic for this specific task. 

Table 3. Age and gender accuracy of the proposed model using different loss functions.  

Loss Function 
Age Accuracy 

Gender 
Male Female All 

CE 76 83 78 98 

Focal 84.5 89.5 85.8 98.9 

KL 85 91.5 86.7 98.9 

Focal_KL 85.4 88.5 86.2 99 

4.3 Duration Analysis 

In this experiment, we explore how speech input duration influences age-prediction accuracy across 

different loss functions, aiming to identify the optimal speech duration for accurate predictions. 

Comparing the age-prediction accuracy of different loss functions at various durations of speech input, 

it can be seen in Figures 2, 3 and 4 that as the duration of speech input increases, the accuracy tends to 

increase for all loss functions. This suggests that having more speech data generally results in better age 

prediction. However, The KL loss seems to consistently provide the highest or one of the highest 

accuracies across different speech durations. It's especially dominant in the 1-second and 2-second 

durations. Similarly, Focal-KL shows an interesting trend, where it jumps to 89% at 2 seconds, leading 

all other methods, but it then aligns more closely with the rest at longer durations. 

At 1 second, the KL loss seems to be the most effective with an accuracy of 40%, while other losses are 

somewhat close, between accuracies of 35% and 38%. However, starting at 2 seconds, there is a 

significant improvement with KL loss and Focal-KL loss providing the best performance with 

accuracies of 79.9% and 89%, respectively. At 3 seconds, all loss functions are in the mid-80s range 

with KL loss leading at 86.7%. The highest accuracy is achieved at the duration of 4 seconds, with KL 

loss slightly ahead at 88.6%. The performance plateaus at 5 seconds with KL still leading at 88.2% with 

other losses performing very closely.  

In general, between 1 and 2 seconds, there is a large accuracy improvement, jumping from 38% to 89%. 
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However, between 3 and 5 seconds, there's very minimal improvement across all methods, suggesting 

a diminishing return of increased speech duration beyond 3 seconds for age prediction with the given 

model and dataset. Table 4 summarizes the accuracies achieved at 4 seconds. 

 
Figure 2. Comparison of male accuracies for different durations. 

 
Figure 3. Comparison of female accuracies for different durations. 

 
Figure 4. Comparison of gender detection for different durations. 

Table 4. Age and gender accuracy of the proposed model at 4-second duration.  

Loss Function 
Age Accuracy 

Gender 
Male Female All 

CE 76.7 83.6 78.5 98.3 

Focal 86 91 87.3 99.2 

KL 87.6 91.3 89 99.1 

Focal_KL 87 90 87.7 99.1 
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4.4 Discussion 

In this sub-section, we delve deeper into the results obtained from the experiments, aiming to extract 

insights and understand patterns in the model's performance. The series of experiments performed in 

this work not only establishes the effectiveness of our proposed model, but also uncovers intriguing 

insights regarding age and gender prediction from audio data. 

Integrating the self-attention mechanism led to a discernible improvement in age-prediction accuracies 

for both genders. This enhancement particularly highlights the capacity of the self-attention mechanism 

to discern age-related attributes in audio data. Contrastingly, the gender-recognition performance 

remained consistent across the models, implying that the impact of the self-attention mechanism on 

gender prediction, given the current architectural choices, is relatively limited. 

Notably, there's a distinct gender disparity in age accuracy when using the CE loss, pointing to potential 

inherent biases or differentiating features in the dataset. The introduction of alternative loss functions 

not only boosts the overall performance, but significantly narrows this gender discrepancy. This is 

indicative of the effectiveness of these losses in managing potential class imbalances. Combining KL 

loss and focal loss offered a slight improvement over the individual focal loss; however, it didn't 

outperform KL loss, suggesting that the performance improvement might be attributed to the KL part of 

the hybrid loss. 

Duration analysis offered an understanding of the relationship between the amount of speech data and 

prediction accuracy. An evident rapid surge in accuracy with increased duration emphasizes the 

additional informative value extracted from longer speech samples. Yet, the performance plateau 

beyond 3 seconds hints at a saturation point, suggesting an optimal duration window that offers the 

maximum informational value without redundancy. 

To provide a comparative perspective on the effectiveness of various methodologies in the field, Table 

5 summarizes the classification accuracies achieved by different studies. 

Table 5. Comparison of classification accuracies across different studies and numbers of classes. 

Study No. of Classes Accuracy (All) Accuracy (Gender) 

H. Abdulmohsin et al. [28] 2 87.97% - 

Sánchez-Hevia et al. [29] 6 83.23% 98.24% 

D. Kwasny et al.  [30] 8 - 99.6% 

A. Tursunov et al. [31] 6 73% 96% 

Sánchez-Hevia et al. [32] 8 80% 98.14% 

Proposed Method 8 89% 99.1% 

Our experimental results showcase not only a high degree of accuracy in age and gender detection, but 

also a significant improvement over existing state-of-the-art methods. Compared to the latest reported 

accuracies in speaker age-group detection, as reported in Table 5, our model demonstrates a marked 

increase in precision, especially in distinguishing between closely adjacent age groups—a longstanding 

challenge in the field. The proposed model achieved an overall accuracy of 89% in age detection and 

99.1% in gender detection. Differently from similar studies presented in Table 6 [28]-[29], [31], the age 

detection accuracy is achieved over eight age groups while similar studies divided the dataset into 2 or 

6 classes. These results are notably superior to those of existing models, indicating the effectiveness of 

our approach in capturing and analyzing the nuanced features of speech that correlate with age and 

gender. 

Figures 5 and 6 show the confusion matrix of the best-performing model with a 4-second duration of 

the speech and KL loss for age-group and gender prediction respectively. The confusion matrix analysis 

for age-group classification reveals a detailed performance of the model across various age brackets. 

For the "teens" group, the model correctly classified 81% of the samples, suggesting a reasonable 

accuracy, but leaving room for improvement. The model's performance peaks for individuals in their 

twenties, forties, fifties and sixties with accuracy rates of 89%, 89%, 93% and 94%, respectively. The 

"thirties" group witnesses a slightly lower accuracy at 87%. Remarkably, the model's efficacy ascends 

as it approaches the "seventies" age group, achieving a 97% accuracy. However, this trend takes a 

downturn for the oldest age bracket in the dataset. The "eighties and more" group observes a significant 
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decline in accuracy of 60%; however, 20% of the misclassified instances were misclassified as the 

adjacent age group seventies. 

 
Figure 5. Confusion matrix of age-group prediction of the proposed model. 

 
Figure 6. Confusion matrix of gender prediction of the proposed model. 

Comparing the number of training and testing instances with the acquired accuracies (Figures 7 and 8) 

shows that there doesn't appear to be a direct linear relationship between dataset size and accuracy. 

Larger datasets (like "twenties") don't necessarily have the highest accuracy and smaller datasets (like 

"seventies") don't necessarily have the lowest accuracy. However, the sharp drop in accuracy for the 

"eighties and more" group suggests that a minimum threshold of data might be essential for achieving 

reasonable performance. 

 

Figure 7. Correlation between obtained accuracies and number of instances in the training dataset. 
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Figure 8. Correlation between obtained accuracies and number of instances in the testing dataset. 

Unlike traditional approaches that rely on handcrafted features, our model facilitates an end-to-end 

learning process by utilizing the Wav2Vec2.0 for feature extraction, benefiting from rich, pre-trained 

representations of audio data. This unsupervized learning approach allows the model to leverage large 

amounts of unlabeled audio data, providing a robust foundation for understanding complex speech 

characteristics without the need for extensive manual feature engineering. 

The integration of a self-attention mechanism within the CNN architecture enables the model to 

dynamically focus on the most informative parts of the audio signal. This aspect is particularly beneficial 

for age detection, where subtle variations in speech patterns can significantly impact accuracy. Our 

findings indicate that the self-attention mechanism contributes to a marked improvement in age-

prediction accuracies for both male and female speakers. 

The proposed model also demonstrates consistent performance across a range of speech durations, from 

short clips to longer utterances. This versatility suggests that the model can effectively extract and utilize 

relevant information from audio signals of varying lengths, enhancing its applicability in real-world 

scenarios where speech samples may not be uniformly sized. 

While our proposed method demonstrates promising results in speaker age and gender detection, it is 

not without limitations. One of the main difficulties lies in the reliance on high-quality, diverse training 

data. The performance of our model, especially its ability to generalize across different accents, dialects 

and speech patterns, is heavily dependent on the breadth and depth of the dataset used for training. The 

Common Voice dataset, while being extensive, may not fully represent the global diversity of speech, 

potentially limiting our model's applicability in real-world scenarios across various languages and socio-

linguistic backgrounds. 

Additionally, the computational complexity of our model, driven by the sophisticated feature extraction 

with Wav2Vec2.0 and the self-attention mechanism, presents a challenge for deployment in low-

resource environments or in real-time applications. The balance between model complexity and practical 

usability is a critical consideration, especially for applications requiring rapid processing or deployment 

on devices with limited computational capabilities. 

Moreover, while our approach addresses age ambiguity to some extent, distinguishing between speakers 

of closely adjacent age groups remains a challenge. The subtle vocal variations that differentiate age 

groups may not always be captured or deemed significant by the model, particularly in cases where the 

training data lacks sufficient examples of such subtle differences. 

5. CONCLUSIONS 

Our study introduces a novel, end-to-end 1D CNN model for detecting speaker age and gender from 

speech signals, achieving an overall accuracy of 89% for age groups and a 99.1% accuracy in gender 

detection, thereby demonstrating significant improvements over traditional methods. This network 

architecture, built upon three convolutional layers, integrates a self-attention mechanism and leverages 

direct-speech representations from the advanced pre-trained wav2vec2.0 model, eliminating the need 

for manual feature extraction. Our evaluation, conducted on the Common Voice dataset comprised of 

35,845 speech samples, not only yields promising results in age-group classification and gender 

0

20

40

60

80

100

120

-50 0 50 100 150 200 250

teens thirties fifties seventies twenties fourties sixties eighties



180 
"Beyond Words: Harnessing Speech Sound for Speaker Age and Gender Detection Using 1D CNN Architecture with Self-attention 
Mechanism", U. H. Jaid and A. K. Abdulhassan. 

 
detection, but also showcases the model's versatility by accommodating variable audio lengths. This 

paves the way for its application in real-world scenarios, particularly enhancing user experiences in 

mobile devices and human-computer interaction domains where adaptability to varying speech inputs is 

crucial. The distinct influence of the loss function on model efficacy, with a marked preference for KL 

and the innovative focal-KL loss functions, underscores the nuanced approach required for optimal 

performance. Despite the robust performance of our model, the challenge of differentiating between 

adjacent age groups underscores the complexity of vocal age markers and highlights an avenue for future 

exploration. Delving deeper into neural-network architectures or innovative feature representations 

could unveil more granular age-related vocal characteristics. Moreover, expanding our dataset to 

encompass a broader spectrum of languages, dialects and recording conditions will be imperative for 

enhancing the model's generalizability and mitigating potential biases.  
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حث:ملخص الب  

و   نننننن و ننننننزوبضنننننن وما ،ومختننننننلخصومالختنننننن  وا منننننن ك ٍويمكننننننزودنويالصّننننننلوماتٍننننننعنوبمض علننننننلن 

ولم نننننضل ولنننننزولإنٍوتقننننن ي و بمنننننلوكننننن وجاننننن و مننننن  ول   ننننن  و مننننن مام ك مٍول   ننننن وينننننعك وا نننننلولننننن   

 ض نٍنننن وما طٍب قنننننلنويم ننننن وٍلنننننزوما صٍ  ننننن ومالٍننننن   وا تٍنننننعنوإاننننن وم  ننننن نوماملنننننخٍصولماٍ  ننننن ومام

ننننن وللننننن وبلاٍ  ليننننن وماتٍنننننص  ولتنل ننننن وم ّ نننننلنولننننن وماصل نننننع  و جاننننن ،ويبقننننن وما صٍ يننننن وماننننن ٍ   وا ض م 

لننننننعبل و ننننننضعب بدلنننننن م ول  ننننننملألنننننن وب لننننننلب وي ض نٍننننن ولولماغمننننننع  ولاتُّ د ننننننعمنوملأ ننننننخل وملنو  

نننننض ووإاننننن وص  ننننن  ومام قل بننننن وجليوملأ منننننل و امضلاجننننن وهنننننقموملألننننن ،وّق ننننن  ولو اهنننننل لضهنننننلوتم يت 

(وCommon Voice)ي ننننننن خ رولنننننننلويضننننننن ووبمجمع ننننننن وب لّنننننننلنوماتٍنننننننعنوماضنننننننلروّمعج نننننننل و

وا ختنننننلخصو لا ننننن وماجنننننعص   لنننننزوجنننننمٍويجننننن يوإص نننننل ولوا صعيننننن وماتٍنننننعنوماخنننننلروإاننننن وتماننننن  ن 

ا  غٍ ُّنننننن و  نننننن و  مننننننع ولولاا نلك نننننن  هننننننق وماختننننننلخصوإانننننن و   نننننن  ولننننننزومالٍننننننبكلنوماضتننننننب  وم

ننننن و  ننننن وص نٍنننن وما مٍنننننعج و ماض مننننن ،وك ٍّ نننننلوّضمننننن و  ننننن وتق ننننن مولجنننننل ولجمع ننننن ول  ع ننننن ولنننننزوصلمٍ ومانق 

و عت  ولخ وماال   وابقلخهل   ن ومان   وك وتق ي وإ ل من 

ل نننننن ودجب ننننننلوما جٍننننننل  وما نننننن ود  ي لهننننننلو  نننننن ولجمع نننننن وب لّننننننلنو)ماتٍننننننعنوماضننننننلر(وّجل نننننن و

ولنننننزوما مٍنننننلج ومامملج ننننن ومانننننعم ص وكننننن ودصب نننننلنومامع نننننع  وما ٍو منننننعج ومامق ننننن  ولتنع نٍنننن و  ننننن و ننننن ص 

ننننن وص نٍنننن  وما مٍنننننعج ومامق ننننن  وكننننن وتقننننن ي وماض وكقننننن و قنٍنننن و ،ومانننننقٍ ع ا م ك مننننن زو%و87ل ننننن لوإاننننن وم 

وإ ملا ننننننن ووب غنننننننلو91لو %،وب  منننننننلوب غنننننننلوما ٍ ننننننن وم  ملا ننننننن و89%وا م ك منننننننلنوم ّنننننننلي،وب  ننننننن  

 % 1 99ك ملوي ض ٍ وبج سومام ك مٍو
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