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ABSTRACT 

The challenging endeavour of text-to-video creation requires transforming text descriptions into realistic and 

cohesive videos. This field of study has made substantial progress in recent years, with the development of diffusion 

models and generative adversarial networks (GANs). This study examines the most modern text-to-video 

generation models, as well as the various steps involved in text-to-video generation, including temporal coherence, 

video generation and text encoding. We additionally emphasise the challenges involved with text-to-video 

generation, as well as recent advances to overcome these issues. The most frequently used datasets and metrics in 

this field are also analyzed and reviewed. 
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1. INTRODUCTION

Video generation has grown dramatically in recent years, gaining popularity due to its various ad- 

vantages and applications in a variety of sectors, including marketing, branding, content development, 

artificial video-dataset generation and so on. The objective of this article is to review and compare 

various text-to-video (T2V) generation approaches. Our goal is to investigate various models across 

various stages. Very few articles investigated video generation in depth. Furthermore, as new approaches 

are discovered, it becomes necessary to compare them in order to identify the limitations and constraints 

of existing techniques, which may then be used by other researchers for future study and enhancements. 

Table 1 compares the proposed survey study to existing T2V survey studies, including their features and 

limitations. 

T2V is the next step after text-to-image (T2I). Like T2I, T2V began with the use of GAN[3] models and 

proceeded to the use of different techniques, the most common of which is diffusion, which allows us 

to use previously existing text to image models. A lot of study has been done in the text-to-image field, 

since it is used in T2V in diffusion video models. 

In the beginning, GANs, which were excellent at generating images at the time, were used to generate 

images from text. However, stable diffusion has grabbed the lead in producing images of excellent 

quality in recent years. Different methodologies and tactics for addressing additional concerns, such as 

temporal and spatial consistency, were considered. Furthermore, the metrics used to evaluate text-to-

video models have changed and novel metrics, such as FVD [4], have been established to provide further 

insight into text-to-video models. Some well-known models, such as Text2VideoZero [5] and Hotshot-

XL [6], are also evaluated in terms of how well they perform using an FVD matrix. 

The rest of the paper is organized as follows. Section 2 summarizes the various stages and approaches 

employed in T2V. In Section 3, we discussed the most often used datasets in T2V. In Section 4, we 

reviewed numerous metrics for evaluating T2V performance. In Section 5, we discussed open challenges 

and directions for future research and in Section 6, we concluded the work. 

2. LITERATURE SURVEY

2.1 Video Generation 

Video generation, a dynamic field at the intersection of artificial intelligence and multimedia, 

encompasses a spectrum of techniques dedicated to converting conditional and unconditional 

information into captivating visual content. The process involves a thoughtful blend of natural language 
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processing (NLP), machine learning and creative design principles. 

Table 1. Comparison of existing studies with proposed studies. 

Study 

& Year 
Advantages Limitations 

[1], 2023 

 Provides  an  overview  of  existing

literature of T2I and T2V AI

generation

 Theoretical  comparison  of  different T2I

and T2V models

 Performance evaluation is not conducted

 Does not describe the processes involved in

T2I or T2V generation

[2], 2023 

 Comprehensive coverage-covering

domains :  video generation, editing and

understanding

 In-depth examination of the diffusion-

model applications in the context of video

 Conducted Performance evaluation

 Does not explain internal processes 

involved in T2V generation

Proposed 

Review 

 Comprehensive coverage of video
generation using textual input

 Discussed the  internal  processes involved

in T2V generation (including T2I, cross

frame attention, motion dynamics and frame

interpolation)

 Conducted performance evaluation of

various models using FVD score

 Evaluated FVD score for models that

were not included in [2]

As video generation continues to evolve, researchers explore novel ways to dynamically generate 

scenes, integrate user feedback and enhance content creation through adaptive systems. This fusion of 

technology and creativity not only automates the process of video production, but also opens new 

frontiers for personalized and engaging multimedia experiences. Whether used in education, 

entertainment or communication, video generation stands as a testament to the ever-expanding 

capabilities of AI in transforming textual narratives into visually compelling stories. 

Zhen Xing et al. [2] categorized video generation into four categories: Text-to-video generation, video-

generation using different conditions, unconditional video generation and video-completion. In the 

proposed survey, we will delve into a comprehensive exploration of text-to-video generation thoroughly 

examining the various steps involved in the text-to-video generation process. 

2.2 Text-to-video Generation 

Video generation using GANs and diffusion models represents a cutting-edge approach in the realm of 

artificial intelligence and computer vision. GANs, pioneered by Ian Goodfellow et al. [3], consist of two 

neural networks, the generator and the discriminator, engaged in a game-like scenario, where the 

generator strives to create realistic data (in this case, video frames), while the discriminator aims to 

differentiate between real and generated data. This adversarial training process leads to the generator 

producing increasingly realistic video sequences over time. The entire system optimizes a function 

denoted as in Equation (1): 

V (D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz (z)[log(1 − D(G(z)))]  (1) 

where D(x) denotes the output of the discriminator for real data (x), G(z)) denotes the output value of 

the generator for latent vector (z), Ex∼pdata(x)[log D(x)] is the desired output value of the discriminator 

for actual data (x), Ez∼pz (z)[log(1 − D(G(z)))] denotes the desired output value of the discriminator 

for generated data (G(z)),  x is derived using data distribution pdata(x) and z is derived using the latent 

space distribution pz (z). Video GAN generators employ four primary strategies to effectively generate 

realistic video sequences. Firstly, they often utilize a hybrid approach that combines Recurrent Neural 

Network (RNN) architectures using 2D CNN to handle both temporal and spatial information. Secondly, 

some models opt for 3D convolutional networks instead of 2D ones to directly capture spatiotemporal 
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features from video data. Additionally, inspired by progressive growing GAN architecture, video GANs 

implement a coarse-to-fine strategy, refining generated data progressively for enhanced output. Lastly, 

they may adopt a two-stream architecture, with parallel streams specialized in processing different 

aspects of video data, aiding in capturing spatial and temporal features effectively. For the discriminator, 

strategies such as using a two-stream architecture or a 3D convolutional network are employed to 

distinguish between real and generated video data based on their effectiveness. These strategies 

collectively contribute to the advancement of video generation techniques. In recent years, researchers 

have integrated diffusion models into the video generation process to optimize the quality and realism 

of generated content. Diffusion models, inspired by the concept of Brownian motion, simulate the 

gradual spreading or diffusion of information or features across a data space. Diffusion models can 

capture long-range dependencies and temporal coherence, allowing for the creation of smoother and 

more natural-looking video sequences. 

Text-to-video generation using diffusion models involves a series of interconnected steps orchestrated 

to transform textual prompts into coherent video sequences, as depicted in Figure 1. Initially, a text 

prompt is provided as input, which undergoes encoding by a text encoder to capture its semantic 

meaning, resulting in a fixed-length text embedding. Concurrently, a scheduler controls the diffusion 

process, modulating noise application to a latent image over successive time steps. This latent image 

represents the evolving state of video generation and serves as a canvas for subsequent transformations. 

Incorporating temporal information, timestamp embedding encodes frame sequences, facilitating 

coherent motion dynamics throughout the video-generation process. Alongside, text embedding, derived 

from the text prompt, as well as timestamp embedding, are concatenated and utilized by the decoder to 

synthesize each frame. The motion dynamics within the latent code are shaped by these embeddings, 

aligning the generated video with the provided text and ensuring smooth temporal progression. Integral 

to the process is the diffusion model or noise predictor, like U-NET, which models the conditional 

distribution of subsequent frames based on the current frame and noise level. Cross-frame attention 

mechanisms capture dependencies between frames, enabling the model to maintain coherence and 

consistency across the video sequence. Finally, frame-interpolation techniques may be employed to 

generate intermediate frames for smooth transitions, while background smoothing enhances visual 

quality and reduces artifacts, ensuring the fidelity of the generated video. Through this orchestrated 

flow, text-to-video generation using diffusion models seamlessly translates textual descriptions into 

visually compelling video content. 

Diffusion models [7]-[8] acquire the ability to create data by progressively refining samples taken from 

a noise distribution. Gaussian diffusion models operate under the assumption of a forward noising 

process, where noise (ϵ) is gradually added to genuine data (x0 ∼ pdata). The mathematical definition 

denoting the forward noising process is represented in Equation (2): 

𝑥𝑡 = √𝛾(𝑡)𝑥0 + √1 − 𝛾(𝑡)𝜖, 𝜖~𝑁(0, 𝐼), 𝑡 ∈ [0,1]           (2) 

where γ(t) represents a function that steadily decreases from 1 to 0 (referred to as the "noise schedule"). 

Diffusion models are trained for converse procedure, which counteracts the initial corruptions 

introduced during the forward process. The mathematical definition denoting the converse noising 

procedure is represented in Equation (3): 

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎,𝑡~𝑈(0,1), 𝜖~𝑁(0, 𝐼)[‖𝑦 − 𝑓𝜃(𝑥𝑡; 𝑐, 𝑡‖2]  (3) 

where fθ represents the denoiser model, which is defined by a neural network’s parameters, conditioning 

information is donoted by c, such as textual prompts or class labels, while the target y can be arbitrary 

noise ϵ,and the denoised input 𝑥0 or 𝑣 = √1 − 𝛾(𝑡)𝜖 − √𝛾(𝑡)𝑥0. Combining GANs and diffusion

models for video generation involves leveraging the strengths of both approaches. GANs excel at 

capturing high-frequency details and local structure in video frames, while diffusion models are effective 

at modeling long-term dependencies and global temporal coherence. By integrating these techniques, 

researchers have achieved significant advancements in generating high-resolution, photorealistic videos 

with coherent motion and semantic consistency. The synergy between GANs and diffusion models 

opens up new possibilities for applications, such as video synthesis, content creation and video editing. 

Furthermore, ongoing research in this field continues to push the boundaries of what is achievable, 

paving the way for more sophisticated and life-like video-generation systems in the future. 
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Figure 1. Architecture of a general text-to-video model using stable diffusion. 

Video generation with text condition is further divided into two distinct categories: training-based and 

training-free T2V diffusion methods. 

1. Training-based T2V Diffusion Methods: Diverse approaches are used for video synthesis in

training- based text-to-video diffusion models, which improve quality by introducing novel

training tactics and techniques. The most widely used training-based text-to-video diffusion

models are listed here, along with some of their key features.

 Make-A-Video, as described by Singer et al. [9], revolutionizes the process of learning

visual- textual associations by leveraging paired image-text data and extracting video

dynamics from unsupervised video datasets. This approach minimizes the need for

extensive data-collection efforts, facilitating the generation of diverse and life-like

videos through the integration of multiple super-resolution models and interpolation

networks.

 Imagen Video [10], an extension of the established T2I model Imagen [11], introduces a

cascaded video-diffusion model consisting of seven interconnected sub-models. The

effectiveness of training methodologies, such as classifier-free guidance, conditioning

augmentation and v-parameterization, is validated, with additional benefits achieved

through progressive distillation techniques aimed at enhancing sampling efficiency.

 Show-1 [12], introduced by Zhang et al. (2023), innovates by combining pixel-based and

latent- based diffusion models for T2V generation. This model operates across four

distinct stages, each focusing on different aspects, such as key-frame generation, frame

interpolation, super-resolution and latent super-resolution modules, thereby enhancing

the overall video-synthesis process.

 MagicVideo [13], developed by Zhou et al. (2022), employs the Latent Diffusion Model

(LDM) to generate videos in latent space, effectively reducing computational overhead

and accelerating processing speed. A frame-wise lightweight adaptor is introduced to

align distributions, thereby improving temporal relationship modeling and the overall

video quality.

 Latent-Shift [14], as presented by An et al. (2023), prioritizes lightweight temporal

modeling inspired by Temporal Shift Module (TSM). This approach involves channel

shifting between adjacent frames within convolutional blocks, ensuring the retention of

T2I capabilities while generating videos.

 ModelScope [15], as described by Wang et al. (2023), integrates spatial-temporal

convolution and attention mechanisms into the Latent Diffusion Model (LDM)
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framework for T2V tasks. Leveraging a mixed training approach utilizing LAION and 

WebVid datasets, it serves as an open-source benchmark for T2V-synthesis methods. 

 VideoFusion [16], proposed by Luo et al. (2023), addresses content redundancy and

temporal correlations by decomposing the diffusion process using shared base noise and

residual noise along the temporal axis for each frame. Two co-training networks are

employed for noise decomposition, ensuring coherence in frame motion and improving

the overall video-synthesis quality.

2. Training-free T2V diffusion methods: Training-free text-to-video (T2V) diffusion methods

involve direct synthesis or utilize pre-existing models without dedicated training, bypassing

explicit training processes.

 Text2Video-Zero [5] uses a pre-trained text-to-image model for the purpose of video

generation, incorporating a cross-attention mechanism and modifying latent code

sampling to enhance motion dynamics.

 DirecT2V [17] and Free-Bloom [18] employ large language models (LLMs) for frame-

to-frame descriptions based on user prompts. DirecT2V uses dual-softmax filtering and

value mapping for continuity between frames, while Free-Bloom introduces

enhancements, like joint noise sampling and step-aware attention shifting.

2.3 Processes Involved in Text to Video Generation 

In the intricate process of T2V generation, several key stages unfold. Initially, the system undertakes 

T2I generation, crafting a single frame that encapsulates the visual representation of the provided textual 

input. Subsequently, the model engages in cross-frame attention and motion dynamics, employing 

attention mechanisms to intricately link frames and model the dynamic motion inherent in the video 

sequence. This step ensures a coherent and realistic flow between frames. Finally, frame Interpolation 

comes into play, facilitating the creation of intermediate frames. This interpolation process enhances 

temporal continuity, contributing to the seamless generation of a cohesive and visually compelling video 

sequence. Together, these stages form a comprehensive pipeline for the transformation of text 

descriptions into dynamic and visually engaging video content. 

2.3.1 Text-to-Image (Generation of a Single Frame) 

T2I models serve as a foundational stage and point of entry for T2V models. Currently, there are various 

cutting-edge models based on stable diffusion and GANs. Table 2 provides a summary of popular studies 

in this field of study. 

Generative Adversial Networks (GANs) [3] are unsupervised machine learning methods that function 

like supervised ones. Discriminators and generators are the two components of a GAN. While 

discriminators attempt to determine whether an image is real or not, generators attempt to create new 

images from the original dataset. In a zero-sum game, both players participate and the game ends when 

generators trick the discriminator more often than not. The two main advantages of GANs are their 

speed of inference and their ability to manipulate latent spaces to influence the synthesized outcome. A 

well-researched latent space in StyleGAN enables principled control over generated images. Diffusion 

models have made significant strides toward speeding up, but they are still far behind GANs, which only 

need a single forward pass. 

Large-scale text-to-image (T2I) synthesis poses unique challenges, all of which are addressed by 

StyleGAN- T [19]. The specific requirements include extensive capacity, robust training across diverse 

datasets, precise text alignment and the ability to balance variation against text alignment according to 

user preferences. In terms of sample quality and speed, StyleGAN-T performs noticeably better than 

earlier GANs and surpasses distilled-diffusion models, which were the prior state-of-the-art models in 

quick T2I synthesis. 

Diffusion models were first presented in [7], drawing inspiration from thermodynamics’ non- 

equilibrium state. Fundamentally, in diffusion models, we gradually add Gaussian noise and then figure 

out how to reverse it. 

Encoders play a pivotal role in both text and image encoding, providing a bridge between disparate data 
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modalities. The encoder’s function is to transform complex information from textual and image inputs 

into a compressed, abstract representation conducive to further analysis or synthesis. In the context of 

text encoding, natural-language processing techniques are employed to distill semantic meaning, 

contextual nuances and sentiment from textual data. Simultaneously, in image encoding, visual features, 

patterns and spatial arrangements are captured and encoded to represent the essence of the visual content. 

It has been demonstrated that contrasting models, such as CLIP [20], are able to learn stable 

representations of images that capture both style and meaning to create images by using these 

representations. An effective technique for learning picture representation from natural-language 

supervision is Contrastive Language-Image Pre-training (CLIP), which trains both a text encoder and 

an image encoder simultaneously to anticipate the right pairings of a batch of (image, text) training 

samples. The target dataset’s class names or descriptions are embedded by the learnt text encoder, which 

then uses this information to create a zero-shot linear classifier at test time. 

Two methods were merged by A. Ramesh et al. [21] to solve the text-conditional image-creation 

problem. They initially trained the CLIP image encoder inverted using a diffusion decoder. The inverter 

exhibited non-determinism and had the ability to generate several pictures that corresponded to a 

particular embedding. Beyond T2I translation, the existence of an encoder and its near inverse (the 

decoder) enabled other possibilities. Encoding and decoding an input image yield semantically identical 

output images, just like in GAN inversion. By inverting the interpolations of the input images’ image 

embeddings, this technique also made it possible to interpolate between them. But one important benefit 

of employing the CLIP latent space is that, unlike GAN latent space, which requires trial and error and 

intensive manual analysis to find these directions, one can semantically edit images by moving in the 

direction of any encoded text vector. Moreover, the processes of encoding and decoding images offer 

instruments for discerning the aspects of the image that CLIP acknowledges or ignores. The authors 

coupled the CLIP-image embedding decoder with an earlier model that produced CLIP image 

embeddings from a given text caption in order to create a comprehensive generative model of images. 

A new degree of flexibility is provided by T2I, which allows users to direct the creative process using 

natural language. Customizing these models to match user-supplied visual conceptions is still a difficult 

issue, though. Combining several personalized concepts into a single image, keeping a modest model 

size and preserving high visual fidelity while permitting creative flexibility are just a few of the difficult 

problems that face T2I penalization.  The Where Pathway and the What Pathway were utilized by Y. 

Tewel et al. [22] to enhance the user’s control over what and where objects should be present in the final 

image. Using a text encoder, a text input is first turned to a sequence of word embeddings, which is 

subsequently changed into a sequence of encodings. Next, these encodings are projected via the Wk and 

Wv cross- attention matrices. K routes or Wk, were used to direct objects to their proper locations in the 

final image. On the other hand, Wv, sometimes called V routes, determined what should be included in 

the final image. 

2.3.2 Motion Dynamics 

Motion dynamics in the realm of video generation encompass the representation and understanding of 

temporal changes, spatial relationships and the flow of motion within a sequence of frames. This concept 

involves capturing the evolution and transitions of objects or scenes over time, ensuring that the 

generated videos exhibit realistic and coherent motion patterns. Key considerations include modeling 

how objects move in relation to each other, recognizing various actions or activities and representing 

the flow of motion with attention to factors, such as acceleration, deceleration and changes in direction. 

Effective motion-dynamics modeling also accounts for long-term dependencies, ensuring that the 

generated videos maintain consistency and contextually relevant temporal sequences. Now let’s discuss 

some of the pivotal methodologies employed to attain motion dynamics. 

 Carl Vondrick et al. [23] harnessed the wealth of unlabeled video data to develop a robust

model centered around scene dynamics, emphasizing its applicability in both video

recognition tasks, such as action classification and video generation tasks, like future

prediction. A key contribution lies in the introduction of a generative adversarial network

with a spatio-temporal convolutional architecture, strategically designed to disentangle

foreground and background components within scenes.

 MoCoGAN [24] explicitly addresses the distinction between content and motion dynamics. It
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employs a unique framework where a sequence of video frames is generated by mapping 

random vectors, with each vector comprising fixed content and a dynamic motion component 

modeled as a stochastic process. The innovation lies in its adversarial learning scheme, 

integrating video discriminators with images, to achieve unsupervised motion and content 

decomposition. The framework excels in generating videos with consistent content yet 

diverse motion and vice versa, showcasing its prowess in capturing and manipulating intricate 

motion dynamics within generated content. 

Table 2. Text-to-image models and their features. 

Study & 

Year 
Algorithm Dataset Advantages Limitations Accuracy 

[21], 2022 unCLIP 

(AR), 

unCLIP 

(diffusion) 

 MS-COCO  Complex,

diverse &

realistic

images

 Not good at

binding

attributes

 unCLIP (AR

prior) 10.63

FID Score

 unCLIP

(Diffusion

prior) 10.39

FID score

[22], 2023 Gated 

Rank-1 

 MS  Less overfit

 Better Pareto

front

 Over- 

generalization

 High amount

of prompt

engineering

required when

combining

two or more

concepts

 2.18±0.02

(SEM)

[19], 2023 StyleGAN-T  CC12m

 CC

 YFCC 100m

(filtered)

 Redcaps

 LAION-

aesthetic- 6+

 Better than

DM at low

resolution

 Less resolution

 Struggles in

producing

images

13.90 FID score 

 While existing methods struggled with entangling content tasks and motion in a sole-generator

network, Ximeng Sun et al. proposed Two-Stream Variational Adversarial Network

(TwoStream- VAN) [25] that adopts a two-stream model to disentangle these tasks. By

progressively generating and fusing multiscaler motion alongside corresponding spatial

content, the model excels in creating clear and consistent motion, resulting in photorealistic

videos.

 Kangyeol Kim et al. [26] introduced an innovative method that entails learning distinct

distributions for motion and appearance. Unlike previous methods that discretize motion

dynamics, the proposed model utilizes neural ODE to capture the continuous nature of

physical-body motion. The two-stage approach involves generation of a sequence of key

points using a noise vector and synthesizing videos based on this sequence and an appearance

noise vector. The model outperforms recent baselines quantitatively and showcases versatile

functionalities, like motion-transfer among different datasets and dynamic frame-rate

conversion, indicating promising applications for diverse video-generation scenarios.

2.3.3 Cross-frame Attention 

It is imperative to verify that the video accurately depicts the event, that every frame is part of the same 

film and that there are no jumps in the video. To do this, it is essential to make sure that the frames 

generated after this are comparable. Cross-frame attention [27][9][28] approaches by various models 

were used to accomplish this. Table 3 presents the summary of work done in this area. A key idea in the 

fields of deep learning and artificial intelligence is attention [29]. Regarding neural networks and natural 

language processing, attention can be conceptualized as a technique that facilitates the model’s ability 
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to concentrate on key information while processing data. Think of it like a spotlight that is focused on 

the most important portions of the input data. The mathematical definition denoting attention is 

represented in Equation (4): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉    (4) 

The attention function takes Q, K and V as inputs and its scaling factor is 
1

√𝑑𝑘
. While Q, K and V in self-

attention are all part of the same sequence, in cross-attention, K and V are diffusion’s conditioning 

parameters that control generation. 

Fundamentally, attention enables the model to give distinct parts in a sequence various levels of 

importance. For example, when parsing a statement, some words or phrases could be more important 

than others to grasp the sentence’s meaning. The model can adaptively weigh these words or phrases by 

highlighting the important ones and downplaying the less important ones according to attention 

mechanisms. When exploring self-attention, where the model evaluates the relationships between 

components inside the same sequence or cross-attention, which enables it to take into account 

interactions between elements from separate sequences, this idea becomes quite potent. Many natural 

language processing tasks now perform much better because to these methods, which also make them 

more accurate and context-aware. Essentially, attention functions as a kind of spotlight for neural 

networks, assisting them in identifying and concentrating on the most important data, ultimately 

producing increasingly complex and contextually-aware models. 

A new issue in video creation arises from the addition of time as a dimension. The creation of context- 

aware videos presents whole new difficulties. In addition to having to pay attention to what is being 

done, there may be other things requiring focus that might be challenging to manage. 

Using a U-Net architecture, J. Ho et al. [28] were able to create longer scenes by utilizing autoregressive 

extension and classifier-free guidance, which improved text-image linkages. Interleaved Spatial Super 

Resolution Model (SSR) and Temporal Super Resolution Model are employed by J. Ho et al. [10]. That 

enabled them to produce 128x128 videos at 24 frames per second, equivalent to 128x768 frames. 

In order to introduce the time dimension into a two-dimensional (2D) conditional network, Uriel Singer 

et al. [9] employed spatiotemporal layers, specifically pseudo-3d convolutional layers and pseudo-3d 

attention layers. Consequently, cross-frame focus and consistent video were guaranteed. Inspired by 

separable convolutions, they inserted a 1D convolution after every 2D convolutional layer [30]. This 

improved temporal information fusion and made greater use of text-to-image (T2I). 

Use of Large Language Models or LLMs is a very novel concept that H. Fei et al. [27] proposed. By 

employing existing LLMs for better simulation that is much closer to reality and produces better results, 

LLMs are used for scene simulation, making them more performant. Using Dysen (Dynamic Scene 

Manager)-VDM, a three-layer system combines scene imagination, event-to-DSG conversion and action 

planning. These layers provide more complicated scenarios by allowing several activities to occur 

simultaneously by using ChatGPT to interpret the action in a scene. When compared to Make-a-Video, 

it works noticeably better in longer, more intricate sequences. 

2.3.4 Frame Interpolation 

Frame Interpolation in text-to-video generation is a crucial step that enhances the temporal flow and 

smoothness of the generated video sequence. This process involves creating intermediate frames 

between existing frames to fill the gaps and improve the overall frame rate. By intelligently estimating 

the content and motion dynamics between consecutive frames, frame interpolation ensures a more fluid 

and natural transition in the video, contributing to a visually coherent and realistic output. This technique 

is particularly valuable in scenarios where the original frame rate is low or when generating high-quality 

videos to achieve a more lifelike and dynamic visual experience from the textual input. 

1) Adaptive Separable Convolution:

 Niklaus et al. [30] employed a unique method to utilize a fully convolutional neural network

to predict spatially adaptive convolutional kernels for each pixel, eliminating the need for

independent-motion estimation and resampling stages. This approach efficiently captures

local movement, rendering it resistant to occlusion, brightness fluctuations and blur.
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Table 3. Algorithms for cross attention and their features. 

Study & 

Year 
Algorithm Dataset Advantages Limitations Accuracy 

[27], 2022 Dysen (Dynamic 

Scene Manager)- 

VDM 

 UCF-101

 MSR-VTT

 Performs

better in 

scenarios 

with 

complex 

actions. 

 Uses   LLMs

for better 

dynamic 

scenes.

 Depends on

ChatGPT 

 IS 95.23

 FVD 255.42

[9], 2022 Spatiotemporal 

layers (pseudo- 3D 

convolution) 

 WebVid-

10M 

 HD-VILA-

100M 

 Better 

leverage a 

T2I 

architecture. 

 Allows for

better 

temporal 

information 

fusion. 

 Can not learn

associations 

between text 

and 

phenomenon 

that can only 

be inferred in 

videos 

 Can generate

short videos, 

and single 

scene/event. 

 FVD 367

 IS 33

[28], 2023 U-Net classifier- 

free guidance 

autoregressive 

video extension 

 Kinetics-600

 BAIR

Robot 

Pushing 

 UCF101

 Enables joint

training of 

text and 

video. 

 Much worse

compared to 

Make-A-

Video in 

temporal 

information 

fusion 

 FID 295±3

 IS 57±0.62

[10], 2022 SSR   &   TSR 

autoregressive 

video extension 

 LAION-

400M 

 128×128
videos at 24
frames per
second
equivalent to
128×768
frames.

 Lack of

customizatio

n options 

 Clip Score

24.27 

 Clip R- 

Precision 

86.18 

The introduction of separable convolutions significantly reduces processing requirements 

and the authors achieved substantial memory savings by estimating spatially adaptable 1D 

convolution kernels. This breakthrough improved previous methods, such as AdaConv, 

using a specialized encoder-decoder network to estimate kernels for all pixels 

simultaneously. The study addresses challenges in CNN-based frame interpolation, 

including occlusion management and resolution adaptation, marking a significant 

advancement in the field’s effectiveness and accessibility. 

 To mitigate computational complexity, Chen et al. [31] introduced deformable separable

convolution (DSepConv). This technique aims to adaptively estimate kernels with suitable

features to handle substantial motion. Subsequent enhancements in their model, known as

EDSC [32], enabled the generation of numerous interpolated frames between consecutive

frames. Nevertheless, achieving optimal performance for interpolating at arbitrary times

remained challenging.

2) Path Selective Interpolation:

 Path Selective Interpolation is a powerful approach based on the principle that each pixel

in interpolated frames follows a distinct path in preceding frames. Pioneered by Mahajan

et al. [33], this method employs a path-based framework coupled with inverse optical flow
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to calculate background motion. By moving and duplicating pixel gradients along 

anticipated paths, it minimizes issues like holes, chromatic aberrations and visual blur 

associated with traditional optical-flow techniques. Notably, path-based interpolation 

preserves the original frequency content and deterministically identifies veiled zones by 

prioritizing flow consistency, setting it apart from blending-based techniques. 

 B. Yan et al. [34] incorporated standard optical-flow algorithms to the framework to

control path direction and maintain global path coherency. They also introduced a pixel

interlacing model to optimize optical-flow estimation, which significantly boosted

efficiency.

 Y. Fan et al. [35] integrated semantic information acquired from input frames to identify

crucial pixels via optimal-energy minimization, enhancing the precision of motion pattern

detection. The inclusion of feature points from input frames resulted in more realistic and

visually pleasing results. The approach, designed for processing larger input images and

generating an arbitrary number of intermediate frames, aimed to provide exceptional visual

quality.

3) Efficient Optical-flow Estimation:

 L. Khachatryan et al. [36] proposed an efficient optical-flow estimation method based on

the local all-pass approach, operating in real time at high spatiotemporal resolutions. Using

quadratic approximations, a higher-order approach compared to conventional first-order

methods, the technique offers precise flow estimations. This unique methodology

significantly enhances interpolated frame clarity by reducing motion boundary blur and

preserving local geometric information. Notably, the approach addresses challenges in

capturing fast, large- scale motion in optical flow-guided frame interpolation, employing

a Laplacian cotangent mesh constraint for accurate motion representation, even in the

presence of complex non- rigid motion. The implementation of a mesh system with one

vertex per pixel demonstrates remarkable results in the Middlebury interpolation-error

criterion, showcasing its potential applicability in optical flow-guided frame interpolation.

4) Real-time Frame Interpolation via GAN:

 J. van Amersfoort et al.’s work, "FIGAN" [37], represents a significant advancement in

GAN- based frame interpolation. Demonstrating an impressive average runtime speedup

of ×47 compared to rival approaches, FIGAN excelled in real-time YouTube 8M movies,

establishing itself as the most sophisticated technique in the field. The authors introduced

a multi-scale network with a mixed perceptual loss function, integrating spatial

transformer networks with conventional optical-flow modeling. FIGAN’s notable

improvement over prior methods, such as SepConv-Lf, lies in its ability to generate higher-

quality interpolated frames with fewer training parameters. This efficiency is particularly

crucial in resource-limited scenarios, such as real-time video processing.

 S. Wen et al. [38] introduced a network comprising two concatenated GANs. The first

GAN captures motion from training video clips and integrates finer frame data to enhance

output quality, while the other generates frame details. To address issues related to noise

that affected earlier approaches, they employed the Normalized Product Correlation Loss

(NPCL). This innovative framework achieved visually appealing effects and demonstrated

remarkable performance, particularly attributed to the effective use of NPCL, showcasing

notable progress in the domain of GAN-based frame interpolation.

 J. Xiao et al.’s work, "FI MSAGAN"[39], used multi-scale dense attention generative

adversarial networks to interpolate interim frames. FI MSAGAN accomplished more

efficient fusion of local and global information details by using multiple generators and

discriminator networks with varied sized input images. Its accuracy and runtime were

found to be comparable to those of other state-of-the-art approaches.

5) Phase-based Frame Interpolation:

 P. Didyk et al. led the first study on phase-based frame interpolation. Their approach, as

presented in [40], was based on the hypothesis that individual pixel phase-shift values
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might contain limited motion information. However, the method struggled to effectively 

handle large movements, resulting in less than optimal results. 

 S. Meyer et al. [41] developed a coarse-to-fine framework with a multi-scale pyramid level

structure to communicate phase information. To address the issue of tolerating large

motions, they capped phase-shift values. Phase-shift values were computed, phase

differences were used to interpolate frames and amplitude values were used to blend the

interpolated frames. Their algorithm was made up of these three essential steps. This

method’s inability to handle high- frequency motion resulted in blurry output in areas with

small but high-frequency motion.

 The earliest phase-based techniques, including those introduced by the authors of [41],

were characterized by the manual adjustment of parameters, such as amplitude and phase

shift, to produce images. However, this manual adjustment process imposed limitations on

the method’s adaptability and efficiency. In order to estimate amplitude and phase-shift

values directly, S. Meyer et al. [42] proposed the Phase-Net neural network architecture.

Eliminating the need for manually adjusted parameters, this innovation significantly

expanded the technique’s ability to handle a broader spectrum of motion and frequencies.

The authors used a decoder-only Phase-Net design, in which all levels were identical

except for the last layer. Simulating a level-wise decomposition of phase information, the

interpolated frame’s resolution progressively grew as one proceeded up the network levels.

By estimating parameters directly, Phase-Net was able to achieve more robust and

diversified frame-interpolation capabilities than it could have achieved with hand-tuned

phase-based approaches.

6) Bidirectional Optical Flow Estimation:

 H. E. Ahn et al. [43] proposed a method to effectively estimate bidirectional optical flow

at lower resolutions and then reconstruct high-resolution optical flow. This multi-scale

motion-reconstruction network works especially well with 4K footage and other high-

resolution video frames. The method begins with bidirectional optical flow estimation at a

lower resolution (e.g. one-fourth of the original resolution for 4K recordings). A multi-

scale reconstruction strategy is then used to reconstruct the estimated optical-flow to match

the original resolution. The authors trained their network using a variety of loss functions,

such as adversarial loss, consistency loss and multi-scale smoothening loss. This all-

encompassing strategy tack led the challenges of high-resolution video-frame interpolation

and generated computationally efficient results while maintaining visual quality.

 In addition to interpolating frames, S. Y. Kim et al. [44] acknowledged the significance of

boosting spatiotemporal resolution in contemporary videos. Both objectives were sought

after by their combined model, which provided a thorough response to the requirements of

high-resolution video footage.

 W. Bao et al. [45] used flow vectors and convolutional kernels to build an adaptive warping

layer that generated output pixels by using both flow vectors and motion-compensation

kernels. This method not only made frame interpolation better, but it also made other video

enhancement methods, such as super-resolution, possible.

 By taking depth information into account, techniques such as depth-aware flow projection

(DAIN) [46] specifically addressed issues with occlusion. Using depth-aware frame

synthesis networks, kernel estimation and context extraction, DAIN presented an effective

approach. With less parameters and more effective performance, DAIN produced

impressive results by highlighting the significance of depth in frame interpolation.

 The incorporation of meta-learning approaches by M. Choi et al. [47], as well as the usage

of attention networks by J. Xiao et al. [39] and M. Choi et al. [48], improved the efficiency

of frame-interpolation techniques. These methods increased performance and efficiency

by concentrating on attention and adaptation within feature representations.

3. DATASETS

Several datasets are instrumental in the development and evaluation of T2V generation models, each 
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offering unique challenges and characteristics that cater to specific research goals. Table 4 presents the 

summary of some popular datasets used in T2V generative models. 

Table 4. Datasets used in T2V. 

Dataset Description 

UCF-101 [49] 
13,320 videos with 101 action categories; 

Realistic action videos collected form YouTube. 

MSR-VTT [50] 
10,000 videos with 20 classes; 

annotation of 20 sentences per video clip. 

WebVid-10M  [51] 

10.7M video-caption pairs. 

Short videos with textual descriptions; 

2.5 M video subset with a total of 52K video hours. 

HD-VILA-100M [52] 
100M video-caption pairs. 

720p videos ranging over a total of 371.5K video hours. 

Kinetics-600 [53] 
480K video clips with 600 action classes; 

video duration of 10-sec. 

BAIR Robot Pushing [54] 
64x64 images of a robot pushing objects on a tabletop; 

conditioned on 2 frames, predicting 14 frames. 

4. METRICS AND RESULTS DISCUSSION

Text-to-video generative models are commonly evaluated using metrics, such as Frechet Inception 

Distance (FID) [55], Clip score [20], among others. However, the Fréchet Video Distance (FVD) [4] 

metric stands out as a superior choice. FVD incorporates both visual quality and temporal coherence, 

providing a more comprehensive assessment of generated videos [1]. In contrast to FID, which only 

looks at static-picture quality, FVD takes into account the dynamic elements that are important for video 

assessment. As a result, FVD becomes a more reliable tool for evaluating the general coherence and 

integrity of produced video sequences. Thus, we employed it as the standard metric for our testing. FVD 

works on trajectories that reflect the routes of moving objects in the movies, drawing inspiration from 

the Fréchet distance used in curve-similarity evaluations. Through the application of the Fréchet distance 

concept to video analysis, FVD allows researchers to evaluate the entire motion patterns holistically and 

identify subtle changes or similarities across different video sequences. Understanding the underlying 

motion dynamics is essential for good video interpretation in a number of computer-vision disciplines, 

such as action recognition, anomaly detection and content-similarity evaluation, where its application is 

widespread. 

Trajectory representation, spatial point correspondence and trajectory-distance evaluation are laborious 

steps in the computation of FVD. By using this technique, FVD provides a sophisticated assessment of 

video content, making it possible to spot minute changes in motion patterns that could go unnoticed by 

conventional video-comparison criteria. FVD is a useful tool for researchers and practitioners trying to 

quantify and comprehend the nuances of motion dynamics in video data; the lower the value, the more 

comparable the films. FVD is still a crucial indicator in the ever-evolving field of video analysis, helping 

progress areas like automatic video-content classification, human-behavior analysis and surveillance. 

Instead of using Google’s initial implementation [56], we adopted FVD, which was developed by 

StyleGAN- V [57]. It uses approximations for faster FVD calculation and the errors are within the range 

of 1e-6, which is a reasonal trade off. We used MSR-VTT [50] dataset which has 10000 videos and used 

the standard test-train split. For each test, the video shortest prompt (caption) was selected, so as to 

reduce test size and ensure faster testing and all test videos were scaled to 256x256 resolution. For all 

models in Table, 5 2990 videos with 16 frames each were generated. These were further scaled to 

256x256 resolution to have uniformity in tests. All videos were then converted into frames and 

respective FVD scores for 16 frames were calculated. 

For experimentation, we utilized an Nvidia RTX Quadro A5000 (24 GB VRAM), 64 GB RAM and an 

Intel Xenon 20 core CPU. Table 5 shows the performance (FVD scores) of the various pre-trained 

models along with their inference time. Show-1 [12] yielded the best results for 16 frames; however, it 

employed 4 models (1 generation model, 2 SR models, 1 interpolation model) and took the longest time 

(10min-12min) compared to other examined models (15sec-20sec) per video. Hotshot-XL [6] yielded 
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good results for 8 frames, but when tested for 16 frames, it performed significantly worse. We evaluated 

Text2Video- zero with three base T2I models and observed that better performing T2I models produced 

better T2V outcomes. The training steps of text-to-video models vary due to differences in architectures 

and methodologies. Show1 follows a modular approach, with distinct modules undergoing specific 

numbers of training steps: Keyframe Module (120,000 steps), Interpolation Module (40,000 steps) and 

First and Second Super-resolution modules (40,000 and 120,000 steps, respectively). Zero-shot models 

leverage pre-existing T2I architectures, eliminating the need for a training phase. Stable-Diffusion-v1.5, 

a base T2I model, underwent training over 595,000 steps at a resolution of 512x512. Dreamlike-

diffusion-1.0 and Dreamlike- photoreal-2.0 are derived from Stable-Diffusion-v1.5, thereby inheriting 

its training characteristics. Potat1, a text-to-video finetuning model, undergoes around 2,500 steps with 

a consistent learning rate of 5e-6, leveraging ModelsScope’s architecture for rapid adaptation. 

Table 5. Comparison of various open-source models and their FVD scores along with their inference 

time. 

Model 
FVD Score 

(fvd2048_16f) 

Inference 

Time(sec/video) 

Text2Video-zero [5] (dreamlike-photoreal-2.0) 1420.9068 18.7556 

Text2Video-zero  [5]  (dreamlike-diffusion-1.0) 1519.5902 18.2612 

Text2Video-zero  [5] (stable-diffusion-v1-5) 1498.2528 18.6525 

Show-1 [12] 1094.6304 654.8715 

Text-to-video-finetuning [15] (camenduru/potat1) 2132.1784 15.1471 

Hotshot-XL [6] 1421.3931 19.9149 

5. OPEN CHALLENGES

The field of T2V generation confronts several prominent challenges that impede the seamless transition 

from textual descriptions to visually coherent and compelling video content. One significant hurdle is 

the lack of coherence in the generated videos, which necessitates the development of advanced methods 

to ensure smooth transitions between frames and scenes, preventing abrupt changes and disjointed visual 

elements. 

Penalization is another critical aspect that demands attention, with the need to explore techniques that 

can tailor generated videos to individual preferences and contextual details, making the content more 

engaging and relevant to diverse audiences. The persistent issue of low resolution in generated videos 

calls for innovative approaches to enhance visual quality, involving sophisticated upscaling methods 

and the preservation of fine details. Frame interpolation, a fundamental process in video generation, 

faces challenges related to the lack of intricate details, requiring solutions that produce smoother and 

more realistic transitions between frames. Background-smoothening techniques must be developed to 

eliminate artifacts and inconsistencies, ensuring a natural flow in the visual elements of the generated 

videos. Moreover, the field lacks comprehensive study and survey papers, which hinders a thorough 

understanding of existing research and limits the identification of critical gaps and opportunities for 

advancement. 

Additionally, the language dependency on English presents a significant limitation, urging the 

exploration of models and approaches that can accommodate multiple languages to enhance inclusivity 

and accessibility. Addressing these multifaceted challenges collectively will propel the field towards the 

development of more coherent, personalized and culturally-aware text-to-video generation systems. 

6. CONCLUSION AND FUTURE SCOPE

In conclusion, this article has provided a comprehensive overview of the advancements in text-to-video 

generation leveraging GANs and stable diffusion models. The synthesis of these two powerful 

techniques has demonstrated promising results in overcoming challenges associated with coherence, 

personalization and visual quality. GANs have proven effective in capturing intricate details and 

generating realistic video frames, while Stable Diffusion models contribute to stable and coherent video 

synthesis over extended sequences. The synergistic integration of these approaches holds great potential 

for addressing the limitations identified in the existing literature. As we move forward, it is imperative 
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to continue exploring innovative combinations of GANs and stable diffusion models, pushing the 

boundaries of text-to-video synthesis to new heights. Moreover, future-research directions should 

prioritize scalability, real-time processing and ethical considerations, ensuring the responsible 

development and deployment of these advanced techniques in diverse applications. The amalgamation 

of GANs and stable diffusion models signifies a promising trajectory for the evolution of text-to-video 

synthesis, offering a rich landscape of possibilities for researchers, practitioners and industries invested 

in multimedia content generation. 

In the future, improved temporal modeling techniques within GANs and stable diffusion frameworks 

can be used to overcome the coherence challenge. Personalization gaps can be bridged by integrating 

attention mechanisms and reinforcement learning for a more nuanced understanding of individual 

preferences. To tackle low resolution, exploring novel upscaling methods, incorporating perceptual loss 

functions and fine-tuning architectures can significantly enhance visual quality. Future studies should 

focus on creating versatile models capable of handling diverse content types through domain adaptation 

and cross- modal learning. In summary, the future scope lies in integrating cutting-edge technologies to 

create more coherent, personalized and high-resolution text-to-video generation systems. 
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 ملخص البحث:

بببببلاحصيبببببيح  ي بببببلحدي  بببببلي ح ببببب حدي ّ ببببب  ح ل يبببببىح دلأوصببببب  حيتطلبّببببّحديتلّبببببل حدياتا بّببببىحتببببباحديدّو

دي ّّ بببببب محصيببببببيح قبببببب تمحت ببببببلي حّق ق ببببببمحو تا حبببببب م حويقببببببلح لبّببببب  ح بببببب دحديا بببببب  حدي ل بببببباحصيببببببيح

 طبببببببّ دد حيليبببببببللأحتببببببباحديدببببببب  د حدلأم ببببببب لأبح بببببببمح طبببببببّ دحدي اّببببببب   حد  ل    بببببببمحوديّ ببببببب    ح

ح( GANsد حتلددك محديتّ ي ليمح)

صيبببببببيحصببببببب دحت بببببببلي بح  لبببببببلح ببببببب دحدي دذبببببببمحتببببببباح ّبببببببل ح اببببببب   حديتلّ يبببببببىح ببببببب ح   ببببببب  ح

ببببببب حوديخطببببببب  د حديتّببببببباحيتتببببببباّ ل ح  ي بببببببلحصببببببب دحدي  بببببببلي ح ببببببب حدي ّ ببببببب  بح اببببببب حت لببببببب حديتاّ ح 

دياؤذببببببلبحو  ي ببببببلحدي  ببببببلي بحصيببببببيح   ببببببّح    ببببببّحدي ّ بببببب   حكبببببب ي ح ت بببببب و حديتلّببببببليّ  حديتّبببببباح

ي طببببب  حيل لببببب ح ل يبببببىحدي ّ ببببب  حصيبببببيحت بببببلي حو ّبببببل ح ببببب ح بببببّ حديتّ صّبببببىحصي ببببب ح ببببب حديطّببببب  ح

لببببببمح  ا يبببببب  حدي    بببببب  حودياقبببببب ي  حديتبببببباحيلتغلبّبببببّحيل لبببببب  ح بببببب دحصيببببببيح   ببببببّح لل ببببببىحو  د 

حي   حدحتخلد ل حتاح  دحديا    ح
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