
214

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 02, June 2024.

K. Letrache and M. Ramdani are with Informatics Department, LIM Laboratory, Faculty of Science and Techniques of Mohammedia,

University Hassan II, Casablanca, Morocco Emails: khadija.letrache@fstm.ac.ma and mohammed.ramdani@fstm.ac.ma

A MODEL DRIVEN FRAMEWORK FOR COLLABORATIVE

AND DYNAMIC DESIGN AND IMPLEMENTATION OF

NOSQL-ORIENTED DATA WAREHOUSES

Khadija Letrache and Mohammed Ramdani

(Received: 10-Feb.-2024, Revised: 12-Apr.-2024, Accepted: 27-Apr.-2024)

ABSTRACT

Nowadays, modernizing the data warehouse ecosystem is a key challenge in decision-support systems. This

modernization is crucial for ensuring scalability and meeting evolving business requirements, especially with the

advent of big data. A promising solution involves implementing data warehouses with contemporary data stores,

such as NoSQL. In this context, we introduce in this paper a framework that leverages Model-driven Architecture

(MDA) to design and implement modern data warehouses across NoSQL data stores. Our MDA approach aims to

offer a collaborative, dynamic and reusable process for developing NoSQL-oriented data warehouses tailored to

specific project requirements. It facilitates the automatic and dynamic generation of a hybrid data-warehouse

model from its conceptual model, which encompasses structural, domain and access parameters. Moreover, our

framework includes the generation of implementation code for the data warehouse, along with a set of files to

validate, document and illustrate the data-warehouse schema on a target platform. Finally, we present a detailed

case study to highlight the effectiveness of our MDA framework.

KEYWORDS

Data warehouse, Model driven architecture, Metamodel, Dynamic transformation rule, NoSQL, Document, Key-

value, Column-Family, Graph.

1. INTRODUCTION

A few years ago, traditional data warehouses were implemented on relational systems and utilized for

analyzing operational data derived from relational databases [1]. However, with the advent of big data,

numerous voices proclaimed the end of the data-warehousing era, asserting that such systems had be-

come obsolete [2]-[3]. Meanwhile, according to a survey conducted by TDWI [4], it was found that a

significant majority of enterprises, approximately 75%, continue to utilize on-premises or cloud-based

data warehouses. The survey also revealed that more than a half of these enterprises have transitioned

from analyzing only traditional structured data to exploring new types of data. This shift introduced a

new generation of data-warehousing systems, deploying a new data stack that covers the entire decision-

support ecosystem, from data storage to data visualization. This process is commonly known as data-

warehouse modernization or data-warehouse augmentation [5].

Consequently, the focus for Business Intelligence (BI) developers often shifts towards mastering various

technologies rather than addressing the analysis of actual requirements. In this context, we introduce a

collaborative framework in this paper that enables the automatic generation of data-warehouse models

across different NoSQL data stores. Our approach leverages the power of the Model-driven Architecture

(MDA) paradigm [6] to automate the process of modeling and implementing data warehouses on

selected platforms. The objective of the proposed framework is to guide BI developers in constructing

their data warehouses on any desired platform, even with limited expertise in that particular platform.

Furthermore, automation allows developers to seamlessly incorporate best practices from previous

designs into future projects, enabling them to leverage valuable feedback and accumulate essential

knowledge.

The proposed framework employs dynamic transformation rules to generate a data -mart model

that is driven by the project’s requirements. Traditionally, in classical MDA approaches, users define

static transformation rules to automatically generate a specific model, either star or snowflake schema

and its implementation code. However, when applied to NoSQL-oriented data warehouses, the obtained

code provides limited metadata about the generated model. In contrast, our approach maximizes the

mailto:khadija.letrache@fstm.ac.ma
mailto:mohammed.ramdani@fstm.ac.ma

215
"A Model Driven Framework for Collaborative and Dynamic Design and Implementation of NoSQL-oriented Data Warehouses", K.

Letrache and M. Ramdani.

utility of MDA by utilizing it as a channel for conveying design and tuning practices through predefined

transformation rules. Consequently, the model generated by our framework is recommended based on

the project’s specific requirements, ensuring a more tailored and efficient design process.

To achieve this objective, this paper introduces four metamodels designed to effectively represent the

target data stores: document, column-family, key-value and graph stores. Furthermore, we propose an

extended conceptual metamodel that encompasses all the essential aspects required during the data

warehouse-design process. Additionally, we introduce dynamic transformation rules that automatically

derive destination models from the conceptual model.

Leveraging MDA model-to-text transformation rules, we then automatically generate the DW

implementation code and documentation. These outputs are presented in three distinct files: The first

contains the DW implementation code for a representative platform, which, in the case of NoSQL stores,

offers limited metadata due to their schema-less nature. The second file is a data template, generated in

JSON format, to provide guidance on data organization and storage. Lastly, a validation file is included

to offer additional metadata and aid in verifying and validating the integrity of the DW data during the

loading phase.

The remainder of this paper is organized as follows: Section 2 discusses the most relevant works related

to NoSQL-oriented data warehouses. Section 3 outlines our approach and introduces the proposed

conceptual metamodel, providing a background and context for our proposal. In Section 4, we delve

into the metamodel and transformation rules for document-oriented data warehouses, while Section 5

focuses on key-value oriented DWs. The discussion on column-family DWs is presented in Section 6

and graph- oriented DWs are examined in Section 7. A case study that illustrates our approach is detailed

in Section 8. In Section 9, we describe the generated code and documentation files and the used

transformation rules. Finally, Section 10 concludes the paper, summarizing our findings and proposing

directions for future research and perspectives.

2. RELATED WORKS

The primary objective of a data warehouse is to effectively store enterprise data, enabling data analysis

and decision-making. Traditionally, DWs have been implemented using relational database

management systems (RDBMS) as the foundational layer for data storage [1]. However, with the

emergence of NoSQL databases, there has been a growing suggestion to utilize these data stores for the

data-warehousing systems. In [7], the authors Chevalier et al. have studied the transition from a data

warehouse conceptual model to NoSQL logical model; namely, column-family (CF) and document

oriented stores. The authors provide the outline rules to model a data warehouse on document or column-

family oriented stores. The same authors have proposed in [8] the implementation of OLAP cuboids in

a document oriented data store designed as flat and shattered models and using materialized views.

Boussahoua et al. [9] conducted a comprehensive study on implementing data warehouses in column-

family oriented stores. The authors employed a k-means clustering method to effectively identify the

necessary column families to group attributes. Other studies have investigated the implementation of

data warehouses in graph- oriented databases, including the approaches proposed by Sellami [10] and

Vaisman [11]. Additionally, Benhissen et al. [12] employed a shattered model, utilizing a distinct node

for each attribute.

On the other hand, there has been research dealing with the development and automation of NoSQL-

oriented data warehouses through model-driven approaches. In [13], the authors proposed an MDA

approach for generating data warehouses in the four NoSQL data stores. The authors proposed a single

metamodel that encompasses the basic concepts of document, column-family, key-value and graph

rather than data-warehousing concepts. The proposed metamodel contains a "Value" class in all stores

which is not a concept related to metamodeling. The authors also proposed four metamodels for specific

database systems in each store type. These latter are generated from the generic PSM. The authors

illustrated and provided transformation rules to obtain a column-family PSM from a relational PSM. In

another related work focusing on Cassandra, the author proposed in [14] an approach for generating a

data warehouse model within Cassandra, based on an information model that represents the DW

conceptual model, but does not use data-warehousing concepts. Additionally, Yangui et al. [15] put

forward an approach for mapping data from a multidimensional model of document and column-family

216

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 02, June 2024.

oriented databases as a flat model in both cases. More recently, Oukhouya et al. [16] proposed an MDA

approach for DW design using a generic PIM (Platform Independent Model) metamodel for both

NoSQL and relational platforms. The proposed metamodels present some drawbacks, such as the

association between measures and dimensions, the cardinality of the primary key in the relational model

or the generalization between identifiers, atomic fields and documents in the MongoDB metamodel. In

a recent work, [17] deals with key-value oriented DWs using an MDA approach. Finally, another work

proposed by Abdelhedi et al. [18] aims to create document-oriented data warehouses from relational

data lakes using an MDA approach. However, the proposed transformation rules are related to models

rather than metamodels, transforming data records into documents, for instance.

By analyzing the aforementioned works and their contributions to the modernization of the data

warehouse ecosystem, we notice that all approaches are based on static transformation rules, where the

user must independently choose a specific target model driven solely by the description of

multidimensional concepts. Thus, our approach aims to guide users in designing a DW model tailored

to each specific project, based on dynamic transformation rules. These rules are implemented through a

collaborative process, driven by environmental parameters and developers’ feedback. The objective of

our approach is to leverage the model-driven paradigm to create a collaborative framework that

facilitates the sharing and capitalization of developers’ knowledge. Table 1 summarizes the state-of-the-

art and outlines our contribution according to the following criteria: whether it is an MDA approach, the

type of proposed transformation rules (static vs. dynamic, manual vs. automatic), the source model of

the transformations, the target NoSQL store and model (flat using a single "table", star, snowflake,

hybrid which is a combination of different models) and finally, the nature of the code generated by the

proposed approach.

Table 1. Comparative analysis of related works on NoSQL-oriented data warehouses.

Paper MDA Trans.

Rules
Source Model Target

NoSQL Store
Target Model Generated

code

[7]-[8] Yes Static Multidimensional CF/Document Flat

model/Star

Model

-

[9] No Dynamic -

Automatic

(k-means)

- CF Flat -

[10] No Static - Manual Multidimensional Graph Snowflake -

[12] No Static - Manual Multidimensional Graph Shattered -

[11] No - Multidimensional Graph Star-

Snowflake
-

[13] Yes Static -

Automatic
Relational PSM Document

- CF - Key

value- Graph

Generic

NoSQL
-

[14] Yes Static Information Model CF Flat Impl. code

[15] Yes Static Multidimensional Document -

CF
Flat -

[16] Yes Static -

Automatic
Generic Relational -

Document -

CF

Star (re

lational,

document) -

Flat (CF)

Impl. code

[17] Yes Static -

Automatic
Relational Key value Flat -

[18] Yes Static Relational Document - Data file

Our

Approach
Yes Dynamic -

Automatic
Extended

Multidimensional
Document

- CF - Key

value- Graph

Hybrid (with

vertical

partitioning)

Impl. code-

Validation file

- Data template

217
"A Model Driven Framework for Collaborative and Dynamic Design and Implementation of NoSQL-oriented Data Warehouses", K.

Letrache and M. Ramdani.

3. OUR MDA APPROACH

3.1 Approach Description

As a reminder, the MDA is a modeling and automation approach based on metamodels. The MDA

architecture distinguishes between three abstraction levels in any software application:

1. Computation-independent Model (CIM): This level captures the user requirements and high-

level specifications of the application.

2. Platform-independent Model (PIM): This level represents the conceptual model of the

application, independently of any specific target platform.

3. Platform-specific Model (PSM): This level represents the application’s design tailored to a

specific target platform.

The transition between these levels is performed automatically through the use of model-to-model

transformation rules expressed using a transformation language, such as Atlas Transformation Language

(ATL) [19] and Query/View/Transformation (QVT) [6]. Moreover, the MDA allows the generation of

the implementation code from the PSM model through model-to-text transformation rules. The MDA

offers numerous advantages, such as automation, communication and interoperability, while reducing

development time and costs [20].

In this work, we employed the MDA paradigm to design a framework for data-warehouse modeling and

implementation across diverse NoSQL stores, as illustrated in Figure 1. The objective of our approach

is not only to automatically derive the data warehouse PSM model from the PIM model, but also to

generate a model with a recommended design and configuration defined regarding developers’ feedback

and data stores’ recommendations. Therefore, instead of choosing a predefined target model, flat, star

or snowflake, our collaborative approach aims to provide the user with a suitable hybrid schema based

on the defined project parameters. In this context, the transformation rules are implemented with a focus

on the following aspects:

- Depending on the target platform, determining when to use normalization, denormalization

and/or vertical partitioning.

- Identifying which project parameters should guide the DW modeling to obtain a tailored and

efficient model.

- Determining which configuration parameters are crucial for the model’s performance and that

must be communicated through the transformation rules.

In fact, besides the DW structural model, our transformation rules address three main aspects: sharding,

distribution and vertical partitioning. Indeed, in NoSQL systems, defining the appropriate sharding and

distribution configuration is a crucial design consideration. Vertical partitioning is also an important

design aspect in NoSQL, where splitting a "table" can provide better performance compared to using a

single table. It’s important to note that replication parameters are not included in our approach, as these

are determined at the DW level, that is, for the database as a whole rather than for specific data marts.

Thereby, we extended the PIM metamodel described in [21] to include essential project parameters

needed to generate a tailored model of a data mart. This dynamic design enables us to formulate a

transformation rule as follows:

Sp + Dynamic Transformation rule (p) = D p (1)

where S is the source model (PIM), p is a set of project’s parameters and Dp is a fitted destination

model (PSM) in terms of p.

However, to ensure coherent resulting models without missing or redundant elements, dynamic

transformation rules must carry out the following constraints:

- Completeness: During the execution of transformation rules, all the necessary DW components

and attributes are generated to avoid any omissions.

- Disjoint: During the execution of transformation rules, no DW components or attributes are

generated more than once, thus avoiding redundancy.

218

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 02, June 2024.

It is essential to note that the objective of this paper is not to define specific design patterns, as these

should be the outcome of numerous experiments tailored to each project’s specific architecture and

data characteristics.

Finally, from the obtained PSM, we generate three DW files using model-to-text transformation rules.

The first one is the implementation code which in case of NoSQL databases because of their

schemaless aspect [22] does not include all DW metadata. Therefore, our framework generates two

additional files: data template and a schema validation file, the purpose of which is to enhance

developers’ comprehension of the derived model and to provide them with directives for the loading

phase.

Figure 1. Our collaborative model-driven framework for NoSQL-oriented data warehouses,

generated from the PIM model using collaborative dynamic transformation rules that are

continuously enhanced with new design practices.

Figure 2. Our extended multidimensional metamodel (PIM) comprising domain and access

parameters.

3.2 PIM Metamodel

To represent the data-warehouse conceptual model (PIM), we propose an extended multidimensional

metamodel, as illustrated in Figure 2. This metamodel describes the data-warehouse structure and all

aspects of the environment necessary for its design. Within this metamodel, the data warehouse is

depicted as a package that includes facts and dimensions. Facts contain attributes (measures)

characterized by a name, type and aggregation function. Furthermore, facts are linked to their related

dimensions through relationships (either one-to-many or many-to-many relatioships). Additionally,

dimensions are composed of base elements that represent hierarchy levels.

219

"A Model Driven Framework for Collaborative and Dynamic Design and Implementation of NoSQL-oriented Data Warehouses", K.

Letrache and M. Ramdani.

Besides the multidimensional aspects, our proposed metamodel is further extended to encompass

domain parameters and access patterns, which play a crucial role in guiding data-warehouse design,

especially within NoSQL platforms. This adaptation of the metamodel enables the definition of dynamic

transformation rules based on these parameters. Consequently, our conceptual metamodel incorporates

domain parameters related to data-size estimation, the number of users and a realTimeRequests boolean.

For facts, in addition to estimated data size, attributes, such as isVpartitioned and maxPartitions are

included. These allow users to specify whether facts could be vertically partitioned and to define the

maximum number of partitions allowed. Furthermore, we have enhanced fact attributes by adding

querying frequency attributes and the "queried with" association to capture access patterns among fact

attributes. In regard to dimensions, similar to facts and fact attributes, we have incorporated attributes

for estimated data size, is Vpartitioned, maxPartitions and the querying frequency of the dimension.

Additionally, we introduced the changing frequency attribute for dimensions, which influences

decisions related to dimension design. At the dimension attributes’ level, we introduced is Historized to

indicate decisions that must be made during the conception phase, impacting the attribute physical

design. Attributes is Unique and is ID were also added to further define dimension characteristics. To

capture access patterns between dimension attributes, the association “queried with” has been added. It

is important to highlight that the environment parameters can be personalized and enriched by BI

developers according to their specific needs.

4. DOCUMENT-ORIENTED DATA WAREHOUSE

4.1 Document-oriented Databases Metamodel

A document-oriented database consists of a collection of records stored in formats such as JSON, BSON,

XML or YAML. Each record, referred to as a document, comprises key-value pairs Key:Value. The

schema-less nature of these databases allows records within the same collection to possess different

attributes, prompting us to represent a collection by a FieldSet (Figure 3). A FieldSet is defined as a

group of documents that share the same fields. Each field, also known as a property, is characterized by

a type (e.g. string, integer, array, list, …etc.), a description, a derivation rule and an isHistorized

attribute. Additionally, a FieldSet may include other FieldSets, known as embedded documents.

Collections in some document databases may have an optional identifier. These collections can also

contain reference keys, similar to foreign keys in a relational model, which reference other collections

using their URIs. It is possible to designate certain fields within a collection as required, ensuring their

presence. Moreover, to improve model performance, parameters relating to sharding and distribution

can be specified at the collection level. In our metamodel, these aspects are represented as dictionaries,

allowing for the inclusion of numerous parameters as needed.

Figure 3. Our proposed document-oriented metamodel.

220

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 02, June 2024.

4.2 From PIM to Document-oriented PSM

In a document-oriented data warehouse, the transformation rules aim to determine the collections to be

created for facts and dimensions within the data warehouse. They also dictate how data is distributed

across these collections and define which attributes should be embedded or referenced. The

configuration of these parameters is a critical task. It must be based on a combination of factors related

to domain-specific requirements and access patterns, in addition to the experience and feedback of

business-intelligence developers.

Basically, three fundamental models serve as a foundation for document-oriented data warehouses:

- Flat Model: In this model, a single collection is dedicated for each fact with its associated

dimensions. Within this collection, all attributes of the fact are represented as fields, while the

dimensions are incorporated as embedded documents.

- Star Model: In this model, an individual collection is created for each fact and for each

dimension. Each dimension is then referenced within the corresponding fact collection.

Hierarchies are embedded into the root or terminal dimension.

- Snowflake Model: This model employs separate collections to store facts, dimensions and

hierarchy levels, joined through references.

In our approach, in addition to these classical models, we propose a hybrid model that combines

embedded, referenced and vertically partitioned documents. This model is driven by project parameters

defined in the PIM model through automatic and dynamic transformation rules. Below, we present

possible mappings for each DW element.

 Fact F: Each fact F, defined by a set of fact attributes, can be mapped to a single collection CF

with all the fact attributes represented as fields. Alternatively, it can be mapped to a set of

collections, each containing a sub-set of the fact attributes and sharing the same dimensions.

(Figure 4) illustrates an example of a dynamic rule for mapping a fact table to either a single

collection or two collections. This decision is based on the fact table’s estimated size, the

querying frequency of its attributes and whether vertical partitioning of the facts is permitted by

the user. It should be noted that the division of a fact into multiple collections can be executed

based on more complex formulae. For example, using the "queried with" attribute allows for

grouping fact attributes that are commonly queried together into the same collection.

 Regular Dimension: Each dimension D, defined by a set of dimension attributes, can be mapped

to an embedded document within the fact collection, to a single collection Cd or to a set of

collections.

Figure 4. ATL dynamic transformation rule for mapping a fact to collections based on its estimated

size and the querying frequency of its attributes.

221

"A Model Driven Framework for Collaborative and Dynamic Design and Implementation of NoSQL-oriented Data Warehouses", K.

Letrache and M. Ramdani.

 Hierarchy: Each hierarchy level L within dimension D is mapped according to the mapping of

D. If D is mapped as embedded, then L is also mapped as embedded. Otherwise, L can be

mapped to an embedded document Eh within collection Cd or to a separate collection Ch.

 Many-to-many dimension: In traditional data warehouses, this kind of dimension is linked to

the fact using a degenerate fact [21]. However, in the context of NoSQL data stores, which

support a wide range of data types, the many-to-many dimensions D m2m are mapped to a field

in the fact collection. This field utilizes collection data types, such as sets or lists, to store the

dimension if it has only a single attribute. In cases where the dimension possesses multiple

attributes, a distinct collection Cm2m is created to accommodate the dimension’s attributes and

a collection field is added to the fact to store references to this dimension’s collection.

5. KEY VALUE-ORIENTED DATA WAREHOUSE

5.1 Key-value-oriented Databases Metamodel

Key-value stores, akin to hash tables [23]-[24], function by mapping values to specific keys. These

values can range from primitive data types like integers and strings to more complex ones like lists,

blobs and JSON documents. A distinguishing characteristic of key-value databases is their schema-less

nature, which allows users to dynamically add or remove values (fields) at any time. This results in

records that may possess different attributes within the same table.

To represent this flexible data model, we propose the following metamodel (Figure 5). The principal

component in this metamodel is the table, which has a primary key, also known as a partition key and a

set of attributes. Additionally, most key-value data stores offer the ability to define multiple indices on

attributes, known as secondary, sort or local keys. These indices play a crucial role in enabling efficient

data querying. Due to the flexibility of the key-value model, we utilize KeyValueSets to group key-

value pairs that share the same attributes. Although the KeyValueSet concept is not employed during

the implementation phase, it helps developers understand how data can conceptually be organized.

Figure 5. Our proposed key-value oriented metamodel.

5.2 From PIM to Key-value Oriented PSM

In the context of key-value oriented data warehouse and considering the lack of joins in most key-value

stores, we adopt in this paper a flat model using a single table. Under this model, each fact is associated

to a single table with all its corresponding dimensions. The table has a primary key formed by the

concatenation of all dimensions keys, to allow and facilitate data querying. All attributes of the fact and

dimensions are mapped to attributes within that single table. The same solution is also applicable for the

many-to-many dimensions, but using collection data type. Additionally, an index is created for each

dimension attribute required for querying data as illustrated by the (Figure 6). It is important to note that

222

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 02, June 2024.

defining indices is a design consideration requiring knowledge and expertise in the chosen database

system and environment. Such expertise can be communicated through dynamic transformation rules.

Figure 6. ATL dynamic transformation rule for mapping a dimension to a KeyValueSet and

dimension attributes to attributes and generating an index for each frequently accessed attribute.

6. COLUMN-FAMILY ORIENTED DATA WAREHOUSE

6.1 Column-family Oriented Database Metamodel

NoSQL column or column-family stores, also referred as wide-column stores [25], closely resemble

key-value stores [23], with data stored as keys mapped to values and rows or records having varying

attributes. However, in column-family stores, data can be grouped into column families [24], where each

column family represents a specific map of data [25]. Thus, to represent the column-family oriented

data model, we propose the metamodel depicted in (Figure 7). In this metamodel, a database (also

referred to as a keyspace in some data stores) is composed of tables. Each table is made up of columns

that can be organized into column families translated by the 0,1 multiplicity. It is important to note that

in some NoSQL column-family stores, like Cassandra, a column family is synonymous with a table.

Our proposed metamodel accommodates all scenarios. Moreover, in some column-family stores,

column families can be further grouped by super columns, which we represent in our metamodel with a

reflexive association between column families. Additionally, in most column-family stores, each

column is assigned a timestamp, which the DBMS uses to manage consistency conflicts. Each table has

a row key, serving as its primary key. It is noteworthy that, unlike relational databases, NoSQL column-

family stores do not support joins. Finally, tables in our metamodel include two dictionaries for

configuration parameters related to sharding and distribution, which are key design considerations for

such types of databases. Meanwhile, hardware and replication parameters are defined at the database

level. These configuration parameters are generally determined based on the platform used, hardware

capacity and expert feedback.

Figure 7. Our proposed column-family oriented metamodel.

223

"A Model Driven Framework for Collaborative and Dynamic Design and Implementation of NoSQL-oriented Data Warehouses", K.

Letrache and M. Ramdani.

6.2 From PIM to Column-Family oriented PSM

To design a column-family oriented data warehouse, similar to a key-value oriented data warehouse, the

flat model is the only viable approach. This model utilizes a single table to manage both facts and

dimensions, including both regular and many-to-many dimensions, with columns organized into column

families.

Indeed, one crucial design consideration in column-family stores is how columns are grouped, which

implicitly defines how data is stored and accessed. Therefore, the organization of columns must be

carefully planned based on access patterns, as defined at the PIM level. The division of columns into

column families can be guided by a straightforward transformation rule, such as using access frequency,

or it can involve more complex criteria, like clustering columns into sub-groups according to the

"queried with" association.

Figure 8 shows an example of a dynamic transformation rule: The rule generates a table containing all

attributes of facts and dimensions, grouped into two column families, one for frequently queried

attributes and the other for rarely accessed attributes. Additionally, the rule recommends two

configuration parameters: the compaction strategy and the clustering key.

Figure 8. ATL dynamic transformation rule for converting a fact into a table with two column-

families; one for frequently accessed attributes and one for rarely accessed attributes. The rule

specifies configuration parameters essential for data mart table creation.

7. GRAPH-ORIENTED DATA WAREHOUSE

7.1 Graph-oriented Metamodel

Graph databases have many distinct characteristics when compared to other NoSQL databases and these

characteristics can also vary when comparing different graph database platforms. In this paper, we

introduce a metamodel designed to capture the essential concepts necessary for the implementation of a

data warehouse in a graph-database environment. The primary components in a graph-oriented database

are nodes, which store data and edges which represent relationships between nodes, as depicted in Figure

9. Each edge has two endpoints: a start and an end node. Furthermore, like nodes, edges can also possess

attributes. They may be directed or undirected, a distinction represented in our metamodel by the

"isDirected" attribute. The "type" attribute categorizes edges based on other characteristics, such as

whether they are weighted, reflexive or composite. Additionally, attributes may include an "isUnique"

property, allowing for the specification of unique identifiers at the node level, functioning like primary

keys. Each attribute can also be assigned one or many indices of different types. Finally, unlike other

224

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 02, June 2024.

types of NoSQL stores, in graph-oriented databases, most configuration parameters are set at the

database level rather than at the node level, as represented in our metamodel. However, we have retained

a configuration dictionary at the node level for specific cases.

Figure 9. Graph-oriented metamodel (PSM).

Figure 10. ATL dynamic transformation rule for mapping a fact into one or multiple nodes based on

the number of fact attributes.

7.2 From PIM to Graph-oriented PSM

In designing a graph-oriented data warehouse, two primary models are typically considered; star and

snowflake, while the flat model with one single node is not recommended in graph stores as it does not

leverage the inherent advantages of graph databases.

- Star model: this model employs separate nodes to store facts and dimensions, joined through

edges. Hierarchies are placed in the related dimension’s node.

- Snowflake model: this model employs separate nodes to store facts, dimensions and

hierarchies, joined through edges.

Building on these two fundamental models, our approach aims to dynamically generate a hybrid model

that satisfies the DW requirements, rather than being a predetermined choice. Below, we present

possible mappings for each DW component:

 Fact F: Each fact is mapped to a single node N containing all the fact attributes, which is then

connected to its dimension nodes through edges. Alternatively, a fact can be mapped to several

nodes that contain groups of fact attributes. This approach is used in scenarios such as a high

number of fact attributes or a large size of the fact. Figure 10 illustrates an example of a dynamic

transformation rule for mapping a fact based on the number of fact attributes.

 Regular Dimension D: A dimension can be either normalized or denormalized, depending on

the transformation rule parameters. In the normalized case, each dimension is mapped to a node

Nd, which is joined to the fact node N and contains all the dimension’s attributes and hierarchies.

In the denormalized case, the dimension and its hierarchies are mapped to distinct nodes. It is

225

"A Model Driven Framework for Collaborative and Dynamic Design and Implementation of NoSQL-oriented Data Warehouses", K.

Letrache and M. Ramdani.

important to note that, in both scenarios, the dimension nodes can be further vertically split into

multiple nodes under certain conditions, such as an excessive number of attributes or if some

attributes are rarely queried. Furthermore, to leverage the attributes of edges, we add two

attributes to each edge to manage historical data: is Last and Modification Date. Figure 11

illustrates an example of a dynamic transformation rule for dimension mapping, driven by the

changing frequency of the dimension.

• Many-to-many dimensions: These dimensions can be implemented similarly to regular

dimensions, using a dedicated node connected to the fact node through edges.

Figure 11. ATL dynamic transformation rule for converting a dimension; slowly changing dimensions

and their hierarchies are mapped to a single node. In contrast, frequently changing dimensions are

mapped with a separate node for each hierarchy level.

8. FROM NOSQL PSM TO CODE

In addition to model-to-model transformations, the MDA offers the capability of generating text through

model-to-text transformations. This feature is particularly useful when generating the implementation

code for a specific platform or generating text in any desired format. In our approach, as previously

mentioned, three different files are generated for each data-warehouse project:

- The data warehouse or data-mart implementation code for the target platform.

- Data-template file.

- Schema-validation file.

To ensure flexibility and clarity for the framework’s users, the data-template and schema-validation files

are generated in JSON format.

8.1 From PSM to Implementation Code

In NoSQL stores, due to the schemaless aspect of these databases, a predefined schema is not required.

In document databases, the schema is dynamically derived from the documents inserted into the

database. For other types of NoSQL stores, creating a data warehouse necessitates defining only the

table names while the attributes are deduced at the data-loading time. For this reason, the implementation

code generated by our framework is coupled with other files to provide developers with all metadata

available in the PSM model.

In case of key-value databases, the table can be created with an initial schema. This can be performed

through a JSON file in some platforms or using a programming language or a platform-specific script.

To illustrate that, we generate in this work the implementation code for the DynamoDB [26] platform.

In DynamoDB, only the primary key attribute is mandatory and an optional sort key can be specified.

226

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 02, June 2024.

The remaining attributes are defined during the data-loading process. Below, we present a conceptual

template for creating a table in DynamoDB:

aws dynamodb create-table \

–table-name T-name \

–attribute-definitions \

AttributeName=PKA-name,

AttributeType=PKA-type \

AttributeName=SKA-name,

AttributeType=SKA-type \

–key-schema \

AttributeName=PKA-name,KeyType=HASH \

AttributeName=SKA-name,KeyType=RANGE \

In the context of a column-family data warehouses, various specific languages are available for

generating the implementation code, with most of them being specific to each database system. In our

framework, we generate the code to implement the data warehouse in Hbase. In this latter, only the table

name and the names of its column-families are required. Below, we present a conceptual template for

creating a table in Hbase:

CREATE HBASE TABLE T name,CF1 name,CF2 name, ..., CFn name

Figure 12 illustrates the transformation rule used to generate the data-mart table for our case study.

Figure 12. M2T transformation rule and the obtained implementation code to create the data-mart

table in HBase for our case study.

In graph-oriented databases, many specific query languages exist, depending on the platform used, such

as Gremlin, SPARQL and Cypher. In our framework, we generate a code for Neo4j, which utilizes the

Cypher language. In this scenario, only the names of the nodes and the edges joining them are specified:

CREATE (f:N-name) CREATE (di : Ndi -name)// foreach dimension
MATCH (f:N-name), (di : Ndi name)
CREATE (f)-[r:Ed-name] > (di)

//foreach edge

8.2 From PSM to Schema-validation File

In data-warehousing systems, each field plays a crucial role in the analysis and visualization phases,

making precise control over the DW’s data essential. Such control ensures accurate calculations and

prevents the occurrence of empty data in reports. However, in NoSQL data stores, being schemaless,

the responsibility for managing the database schema and business rules is assigned to the application

layer rather than to the database itself. Consequently, in NoSQL-oriented data-warehousing systems,

schema control typically occurs during the loading phase.

In our MDA approach, the schema-validation file provides the user with all available metadata and

outlines on how data should be organized, considering that the implementation code does not offer this

information. This file can also be used in data-loading batches to control data structure. It serves to

outline the required fields and to provide a detailed description of each field. In case of a document-

oriented data warehouse, a schema-validation file is generated for each collection encompassing all its

fields or embedded documents. In the case of a key-value data warehouse, all table attributes are directly

listed in a single file. For a column-family data warehouse, a single schema-validation file is generated

for the data mart, with column-family attributes grouped in embedded documents. In case of graph-

oriented DW, a validation file is generated for each node. Figure 13 shows the schema-validation file

227

"A Model Driven Framework for Collaborative and Dynamic Design and Implementation of NoSQL-oriented Data Warehouses", K.

Letrache and M. Ramdani.

generated for our case study.

Figure 13. M2T transformation rule to generate a schema-validation file.

8.3 From PSM to Data Template

To enhance developers’ understanding of the data-warehouse model, we generate a data template for

each destination model. This generated template is a JSON file that includes examples of automatically

generated data, along with descriptions of each attribute as detailed in the PIM model and transferred to

the target PSM model. Figure 14 illustrates the definition of the model-to-text transformation rule and

the resulting data template in the case of a key-value PSM.

Figure 14. M2T transformation rule to generate a JSON data-template file.

228

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 02, June 2024.

9. CASE STUDY

To illustrate and validate our approach, we conducted experiments utilizing the benchmark database

TPC- DS [27], which comprises a fact table named StoreSales and four dimensions; namely, Item,

Customer, Date and Store. We used the Eclipse Modeling Framework (EMF) to create the PIM

metamodel, along with our four proposed PSM metamodels; namely, document, key-value, column-

family and graph. We then implemented the model-to-model and model-to-text transformation rules

using the ATL language [19]. Figure 15 displays the metamodel instance and the properties of the

Customer Login attribute, with the "querying frequency" set to "rare." This attribute serves as a

parameter for the dynamic transformation rule related to dimensions and their attributes, as illustrated

in Figure 4. The same applies to the attributes First Name, Last Name, Email Address, Current Price,

Color, NbEmployees and FloorSpace. This is the reason why they have been placed in a separate column

family, as explained by the rule displayed in Figure 8. The Customer dimension, defined as rarely

accessed, has been placed in a separate collection in the document store, while the Date and Store

dimensions were embedded within the fact collection due to their frequent access. In contrast, due to its

estimated size, the Item dimension was divided: frequently queried attributes were placed in an

embedded document and the remaining attributes were stored in a separate collection. In the graph

scenario, the Item dimension, identified as frequently changing, was normalized by creating a dedicated

node for the hierarchy-level category, as defined by the transformation rule displayed in Figure 11. In

the key-value scenario, a single table was created to hold all facts and dimension attributes. These were

grouped by KeyValueSet to show data organization, even though this concept is not directly applied

during the implementation phase. Similarly, we have implemented model-to-text transformation rules,

facilitated by the ATL writeTo function, as previously demonstrated.

Figure 15. On the left, the PIM of our case study, showing the ’Login’ attribute defined as rarely

queried. On the right, the obtained physical models for the four NoSQL stores, with attributes

organized according to the transformation rules previously presented.

10. CONCLUSION

In this paper, we introduced an MDA-based framework for the design and implementation of NoSQL-

oriented data warehouses. We proposed a conceptual model that captures all the essential concepts

needed to design a data warehouse and facilitates the transition to specific models. Additionally, we

presented four metamodels to represent the logical model of a data warehouse related to document,

column-family, key-value and graph data stores.

Furthermore, we proposed possible designs for a data warehouse in each type of data store. These

designs are supported by dynamic transformation rules, enabling the automatic and dynamic derivation

of target models. These models are tailored based on the metadata provided at the conceptual-model

level, involving not just structural concepts, but also domain and access parameters. By employing

229

"A Model Driven Framework for Collaborative and Dynamic Design and Implementation of NoSQL-oriented Data Warehouses", K.

Letrache and M. Ramdani.

model-to-text transformations, our framework generates three critical files to implement and document

the obtained model. To validate our approach, we have presented a case study demonstrating the

practical implementation of dynamic transformation rules in the ATL language, showcasing the

resulting models and files. Our proposal is driven by our conviction that MDA serves not only to model

and automate data-warehouse creation, but also to foster a collaborative environment. This environment

enables developers to consolidate their design patterns and feedback through the definition of

transformation rules.

In our future work, we plan to delve deeper into each individual model, defining specialized design

patterns for each targeted platform and comparing their performances. Additionally, we aim to

incorporate more data platforms into our MDA framework, thereby expanding the scope and

applicability of our approach.

REFERENCES

[1] W. H. Inmon and D. Linstedt, Data Architecture:A Primer for the Data Scientist, Elsevier Kaufman, 2014.
[2] C. Costa and M. Y. Santos, "Evaluating Several Design Patterns and Trends in Big Data Warehousing

Systems," Proc. of the Int. Conf. on Advanced Information Systems Engineering, pp. 459-473, Springer,

Cham, June 2018.

[3] F. Halper, "Modernizing the Organization to Support Data and Analytics," TDWI, Best Practices

Report, [Online], Available: https://tdwi.org/research/2022/06/ppm-all-best-practices-report-

modernizing-the-organization-support-data-analytics.aspx?tc=assetpg, 2022.

[4] D. Stodder, "Modernizing Data and Information Integration for Business Innovation," TDWI,

[Online], Available: https://f.hubspotusercontent30.net/hubfs/6618383/Report%20-

%20TDWI%20Best%20Practices%20-%20Q4-2021.pdf, Q4 2021.

[5] S. Chowdhury, [Online], Available: https://www.ibm.com/developerworks/analytics/library/baaugment-

data-warehouse4/ba-augment-data-warehouse4-pdf.pdf.

[6] OMG, "MDA Guide Rev. 2.0," Object Management Group Model Driven Architecture (MDA), OMG

Document ormsc/2014-06-01, [Online], Available: https://www.omg.org/cgi-bin/doc?ormsc/14-06-01,

2014.

[7] M. Chevalier, M. E. Malki, A. Kopliku, O. Teste and R. Tournier, "How Can We Implement a Multi-

dimensional Data Warehouse Using NoSQL?," Proc. of the Int. Conf. on Enterprise Information Systems,

LNBIP, vol. 241, pp. 108-130, Springer, Cham, April 2015.

[8] M. Chevalier, M. El Malki, A. Kopliku, O. Teste and R. Tournier, "Document-oriented Data Warehouses:

Models and Extended Cuboids," Proc. of the 2016 IEEE 10th Int. Conf. on Research Challenges in

Information Science (RCIS), DOI: 10.1109/RCIS.2016.7549351, Grenoble, France, 2016.

[9] M. Boussahoua, O. Boussaid and F. Bentayeb, "Logical Schema for Data Warehouse on Column-oriented

NoSQL Databases," Proc. of the Int. Conf. on Database and Expert Systems Applications, LNISA, vol.

10439, pp. 247-256, Springer, Cham, August 2017.

[10] A. Sellami, A. Nabli and F. Gargouri, "Transformation of data warehouse schema to NoSQL graph data

base," Proc. of the 18th Int. Conf. on Intelligent Systems Design and Applications (ISDA 2018), vol. 2, pp.

410-420, Vellore, India, December 6-8, 2018, Springer International Publishing, 2020.

[11] A. Vaisman, F. Besteiro and M. Valverde, "Modeling and Querying Star and Snowflake Warehouses

Using Graph Databases," Proc. of New Trends in Databases and Information Systems: ADBIS 2019 Short

Papers, Workshops BBIGAP, QAUCA, SemBDM, SIMPDA, M2P, MADEISD and Doctoral Consortium,

Proceedings 23, pp. 144-152, Bled, Slovenia, Springer International Publishing, September 8–11, 2019.

[12] R. Benhissen, F. Bentayeb and O. Boussaid, "GAMM: Graph-based Agile Multidimensional Model,"

CEUR, [Online], Available: https://ceur-ws.org/Vol-3369/paper2.pdf, 2023.

[13] F. Kalna, A. Belangour, M. Banane and A. Erraissi, "MDA Transformation Process of a PIM Logical

Decision-making from NoSQL Database to Big Data NoSQL PSM," Int.

J. of Engineering and Advanced Technology, vol. 9, no. 1, pp. 4208-4215, 2019.

[14] D. Prakash, "NOSOLAP: Moving from Data Warehouse Requirements to NoSQL Databases," Proc. of

the 14th Int. Conf. on Evaluation of Novel Approaches to Software Engineering, vol. 1: ENASE, pp. 452-

458, DOI: 10.5220/0007748304520458, May 2019.

[15] R. Yangui, A. Nabli and F. Gargouri, "Automatic Transformation of Data Warehouse Schema to NoSQL

Data Base: Comparative Study," Procedia Computer Science, vol. 96, pp. 255-264, 2016.

[16] L. Oukhouya, A. El Haddadi, B. Er-Raha and A. Sbai, "Automating Data Warehouse Design With MDA

Approach Using NoSQL and Relational Systems," J. of Theoretical and Applied Information Technology,

vol. 101, no. 23, pp. 7941-7957, 2023.

[17] A. Srai and F. Guerouate, "MDA Approach for Generating the PSM Model for the NoSQL Key-

value Database, Application on Redis," Proc. of the 2023 3rd Int. Conf. on Innovative Research in Applied

230

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 02, June 2024.

Science, Engineering and Technology (IRASET), pp. 1-5, Mohammedia, Morocco, 2023.

[18] F. Abdelhedi, R. Jemmali and G. Zurfluh, "Relational Databases Ingestion into a NoSQL Data

Warehouse," arXiv preprint, arXiv: 2203.06949, 2022.

[19] Eclipse, "ATL Documentation," [Online], Available: https://www.eclipse.org/atl/documentation.

[20] OMG, "MDA - The Architecture of Choice for a Changing World," [Online], Available:

https://www.omg.org/mda/

[21] K. Letrache, O. El Beggar and M. Ramdani, "The Automatic Creation of OLAP Cube Using an MDA

Approach," Software: Practice and Experience, vol. 47, no 12, pp. 1887-1903, 2017.

[22] W. Khan, T. Kumar, C. Zhang, K. Raj, A. M. Roy and B. Luo, "SQL and NoSQL Database Software

Architecture Performance Analysis and Assessments: A Systematic Literature Review," Big

Data and Cognitive Computing, vol. 7, no. 2, Atricle no. 97, DOI: 10.3390/bdcc7020097, 2023.

[23] P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot

Persistence, 1st Edition, ISBN-10: 0321826620, Pearson Education, 2013.

[24] A. Meier and M. Kaufmann, SQL & NoSQL Databases, ISBN-10: 3658245484, Springer Fachmedien

Wiesbaden, 2019.

[25] A. Vaisman and E. Zimányi, Data Warehouse Systems: Design and Implementation, 2nd Edition, ISBN-

10: 3642546544, 2022.

[26] G. DeCandia et al., "Dynamo: Amazon’s Highly Available Key-value Store," ACM SIGOPS Operating

Systems Review, vol. 41, no. 6, pp. 205-220, 2007.

[27] TPC BENCHMARK, Standard Specification, Version 3.2.0, pp. 1-141, [Online], Available:

http://tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf, June 2021.

 ملخص البحث:

ييييييي ي ييييييي ت يحن ات يييييييت ي ييييييي يحن ثايييييييتثيت ي فيييييييلأيّيييييييّ يحديثيييييييت اييايييييييتثيعايييييييتيتيحن اليييييييت يحن ت ث

ييييييثيحنويييييياح ح بييّييييييّحيحن ثاييييييتيتي يييييياي ين يييييي ت ي ت ايييييي يحد ر يييييي ي حدستسييييييا يفييييييلأيل ر يييييي ي ا

يين ث سيييييابييع اييييي ي ه ث يييييت ي يييييتا ييييي مبييّ يييييت ي ييييي ث لايسييييياث تي ايييييتيا ييييي يمحن ات يييييت يحن ث

ي يييييبي يييييت ين ات يييييت ي ييييي ي ييييياح ي يح يييييتين يييييّ يحن ييييينن يي تثييييي يفيييييلأيع خايييييّي ييييي ت ي ات يييييت

(NoSQLب)ي

ي ايييييي ح ي يييييي يفييييييلأيّييييييّ يحن يييييي اي وييييييتث ي ييييييت ي ن صيييييي اثييع خاييييييّي يييييي ت ي تيتيييييي ييي يييييي

يي ت ييييي ي يييييت ين ات يييييت بييع يييييت يحن عاييييي يحن ث اييييي ي نييييي يعويييييتي يي ي ت اةاييييي يعاتي اييييي ثي ايوييييي

ي ص صييييييييي ين يييييييييت يبي ح ي ه ث يييييييييت ي اا ييييييييي بي حلاسييييييييي تح ين هييييييييي ياي ييييييييي ت ي ات يييييييييت

ي يع ييييييي ث يحنهثايوييييييي يحن و ا ييييييي يحن ث نايييييييتيحديع يييييييتعاةلأييحنيييييييتثي ت اةلأين ييييييي ي ييييييي ي ات يييييييت

ي يييييييي ي مييييييييّيحن خييييييييتّا لأايي يييييييي يحن اثيييييييياح يحن ا ييييييييي ايي اثيييييييي اح يحناويييييييي ايّعييييييييا

يي اثاح يحن ب

يييييي ي تن ث خاييييييّين يييييي ي يييييياخا يحن ت ث حن ات ييييييت يكييييييّنّيي يييييي ث ي ييييييت يحنا يييييي يحن و ييييييانيع ناييييييتيحن ث

ي ييييي يحن خثيييييت ين او ييييي ي ييييي يحن ث ييييي يحن و يييييانييع اويييييّيي سيييييثي حن و ييييياناي نييييي يمت يييييمي ع ييييي

ييييت بي يييي يمت ييييمي يييييااي وييييتث ي حسيييي ي ّ ييييي ي ييييي يي هييييتي يييي يحن ات ييييت ي يييي ي صث ي خصث تنيييي

ييحن ث ءي يفت ا ي ت يحنا يحن و انبين ات ي

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).ييي

http://www.eclipse.org/atl/documentation
http://www.eclipse.org/atl/documentation
http://www.omg.org/mda/
http://tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v3.2.0.pdf
http://creativecommons.org/licenses/by/4.0/

