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ABSTRACT

Genetic algorithms (GAs) are search algorithms based on population genetics and natural-selection concepts.
Maintaining population variety in GAs is critical for ensuring global exploration and mitigating the risks of
premature convergence. Rapid convergence to local optima is one such challenge in the application of genetic
algorithms. To address this issue, we provide Cave-Surface GA (CSGA), an alternative method based on the
Dual Population GA and inspired by the genetic variety observed in Mexican cavefish. Through inter-population
cross-breeding, CSGA increases diversity via a secondary population (cave population) and facilitates the
exchange of information between populations, effectively counteracting premature convergence. Several
experiments are carried out utilizing benchmark instances of the Traveling Salesman Problem (TSP) obtained
from TSPLIB, a well-known TSP problem library. Our experimental results over many TSP instances show that
CSGA outperforms both classic GAs and other GAs that use diversity-preservation techniques, such as
Multipopulation GA (MPGA). CSGA has the potential to give promising solutions to challenging optimization
issues like TSP.
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1. INTRODUCTION

GAs are one of the most well-known types of evolutionary algorithms [44]. The GA is based on the
principles of biological evolution, which were first devised by John Holland [25] at the University of
Michigan in the 1970s [19]. GA was created to investigate processes in natural systems and to
construct artificial systems that preserve the adaptability and resilience of natural systems [18], [37].

The GA is regarded as an optimization technique, since it has demonstrated its durability and
effectiveness in solving many challenges, such as: image recognition, combinatorial optimization,
machine learning, computer networks, neural networks, ...etc. [29]. Many combinatorial optimization
problems in engineering and sciences have been effectively handled using GAs. There are many recent
examples of the use of GA for combinatorial optimization. Examples include: TSP [30],[7] where the
TSP is widely considered as a standard testbed of numerous combinatorial optimization strategies [8],
routing problems [10], location problems [51] and scheduling problems [47][16].

The GA employs a set of solutions represented by a unique encoding. During the GA-implementation
process, each solution or individual is assigned a fitness value that serves as a measure of the GA’s
performance. Each individual’s fitness is directly related to the objective function of the optimization
issue under consideration. The present individual population can be adjusted to form a new population
utilizing three operations described by Holland: selection, crossover and mutation operators [38],
[40],[22] and [5]. The selection operator selects which chromosomes in the population are permitted to
reproduce, and generally, the chromosomes with the highest fitness are picked to generate more
children than the others [6]. Sub-parts of two chosen chromosomes are exchanged by crossover
operators [21],[24]. On the other hand, mutation operators randomly alter the allele values at certain
chromosomal regions [23], [4] and [27]. The Atness of the latest recent parent generation serves as an
iterative guide for the searches in GAs. Every time we use GAs to solve an optimization problem,
thousands of unique solutions are generated and to create offspring, the resulting solutions are assessed
and recombined [27].

It is critical to provide a diversified population in order to achieve the best overall solution and
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extensively explore the search space. According to the study of Osuna et al. [34], the amount of
population diversity is a crucial factor contributing to premature convergence. In a GA, premature
convergence occurs when a few highly ranked individuals dominate the population, forcing it to
converge to a local optimum rather than the global optimum. According to the studies [33, 36], the
main cause of premature convergence is a decline in population variety. This happens when the GASs
population reaches a point where the genetic operators are unable to produce offspring who
outperform their parents. It is crucial to protect population diversity throughout evolution in a GA in
order to prevent premature convergence [32] and [31]. for maintaining diversity in GAs and avoiding
the risk of premature convergence, numerous previous works used various methods, which include
[35]: improvement of the genetic operators (mutation, crossover and selection) ( [48], [6]-[4]),
dynamic parameter control [42], crowding method [12], MPGAs [45], a multi-objective evolutionary
algorithm, dual population GA (DPGA) [36], primal-dual GA [49], ...etc.

This research provides additional significant contributions, mostly to the area of enhanced GA
performance using a new approach in the form of a dual-population GA inspired by the genetic variety
discovered in Mexican cavefish, fittingly termed the ‘Cave-Surface Genetic Algorithm’ (CSGA). Due
to its use of an additional population, CSGA falls under the category of MPGA. The study’s specific
contributions are:

e Encouraging diversity of the GA: Permitting the insertion of important and contextually
relevant features into an individual’s chromosome, CSGA allows the natural introduction of
genetic variation.

e Mitigation of premature convergence: By keeping a diversified population throughout the
evolutionary process, CSGASs novel design seeks to prevent early convergence and allow for
the exploration of a larger solution space.

e Enhancement of solution quality: By virtue of its distinct characteristics and structures, CSGA
shows gains in the quality of solutions produced, advancing the performance of genetic
algorithms. These contributions reflect substantial advances in the field, providing useful
insights and prospective applications for both practitioners and researchers.

Our methodology will be tested by applying it to instances of the Traveling Salesman Problem (TSP)
supplied by the TSPLIB, a well-known resource of TSP problems [39]. To evaluate its performance
and effectiveness, we will conduct a comparison analysis, pitting CSGA against the standard GA,
MPGA as well as Particle Swarm Optimization (PSO).

The remaining part of this paper is structured as follows: Section 2 goes over similar works. The
proposed algorithm is shown in Section 3. Section 4 presents experimental data to demonstrate the
efficacy of the proposed approach. Section 5 concludes with a conclusion and discussion of future
work.

2. RELATED WORK

Many approaches have emerged in recent years to enhance and sustain population diversity and thus
reduce premature convergence. This helps improvement by giving global exploration assistance and
getting access to different global and local optima [18].

Du et al. [14] suggested the use of elitism and distance to reduce genetic drift. Elites remain in place.
Candidates for selection who are farthest from each elite are also retained to preserve diversification.
In their studies, three EAs are used, including a GA, which is called every generation to maintain
diversity. The second algorithm, DE/rand/2/bin, is a fundamental Differential Evolution (DE)
algorithm. The third EA uses CoBIiDE, a cutting-edge DE algorithm.

In [11], Osuna gave a great number of robust experimental and theoretical studies for EA to show how
and why diversity plays a crucial role. Different diversity methods have been compared in a number of
test functions within the framework of various EAs. The results obtained from the study shed light on
how factors and mechanisms related to apparent diversity influence the search behavior of
evolutionary algorithms, both in the presence and absence of diversity. These studies particularly point
out which diversity strategies work for particular issues and which don’t. Most significantly, they
describe how to create the best evolutionary algorithms for the issues at hand.
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To address the problems of exploration and exploitation, an enhanced GA-based new selection
strategy, stairwise selection (SWS), was introduced. Its overall performance was compared to those of
many other selection methods by employing 10 well-known benchmark functions across multiple
dimensions. Furthermore, the study compared the statistical significance of the proposed SWS. The
empirical results, supported by the graphical representation, showed that the SWS outperformed other
competing systems in terms of stability, efficiency and durability, as evidenced by the authentication
of a performance index [20].

Hassanat et al. [21] proposed two innovative deterministic crossover and mutation rate-control
strategies: Dynamic Decreasing of High Mutation/Dynamic Increasing of Low Crossover (DHM/ILC)
and Dynamic Increasing of Low Mutation/Dynamic Decreasing of High Crossover (ILM/DHC). These
methods are dynamic, allowing for linear changes in both crossover and mutation operator rates as the
search advances. Experiments on 10 instances of the Traveling Salesman Problem (TSP) were carried
out to assess the efficiency of the suggested techniques. These experiments’ results confirmed the
efficacy of the proposed techniques.

Shojaedini et al. [41] used an adaptable genetic operator to choose high-fitness individuals as parents
while mutating low-fitness ones. During the mutation phase, a training technique was used to
gradually learn which gene is the best replacement for the mutant gene. By learning about genes, the
suggested technique adaptively balances exploration and exploitation. The algorithm uses this
information to enhance the final outcomes during the last iterations.

Hussain and Muhammad [26] presented a new split-ranked selection operator that provided a solid
trade-off between exploration and exploitation. The proposed solution solves the fitness-scaling
problem by ranking individuals from poorest to strongest depending on the calculated fitness scores. A
series of experiments was carried out of some conventional operators and simulation studies using
TSPLIB instances.

Inspired by the theory of natural selection, Albadr et al. [3] proposed a novel GA based on natural
selection (GABONST), to better control over exploitation and exploration in optimization problems.
According to the study, GABONST has outperformed the regular GAs in fifteen different standard test
objective functions based on implementation and results. The algorithm’s efficacy is ascribed to its
capacity to focus on the more promising portions of the search space, which is accomplished by a
well-balanced combination of exploration and exploitation.

Koohestani [28] proposed a permutation-based GA for tackling combinatorial optimization issues to
improve the effectiveness of permutation-based GAs and to aid in developing high-quality solutions.
A new edition of the so-called Partially Mapped Crossover is the main component of this GA. To
evaluate the usefulness and efficiency of this crossover operator, two sets of experiments were carried
out on popular benchmark problems.

The Population Diversity Controller-GA (PDC-GA) technique was devised as a distinctive feature-
selection approach to reduce the search space during the construction of a machine-learning classifier.
To effectively manage population diversity during the exploration phase, the PDC-GA combines GA
with k-means clustering. When approximately 90% of the solutions become concentrated in a single
cluster, an injection approach is employed to redistribute the population, ensuring a controlled level of
diversity within the population [2].

A multi-objective binary GA with an adaptive operator-selection mechanism (MOBGA-AOS) was
proposed by [48]. MOBGA-AOS employs five crossover operators, each with a unique set of search
criteria. Each of them is allocated a probability based on how they perform during the evolution
process. The proposed approach was compared against five well-known evolutionary multi-objective
algorithms using ten datasets. MOBGA-AOS can remove a significant number of attributes while
keeping a low classification error, according to the experimental results. Furthermore, it can handle
high-dimensional feature-selection applications.

To solve the difficulties of readily slipping into a local optimum, low solution quality and sluggish
convergence speed when solving TSP using GA, a GA incorporating jumping gene and heuristic
operators (GA-JGHO) was presented by [50]. This algorithm features several improvements: a
bidirectional heuristic crossover operator, enhanced roulette selection, a combination mutation
operator and a jumping gene operator to prevent the formation of many similar individuals in the
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population. To avoid the development of nimiety identical to those within the population, a unique
operator was included. In addition, the local search operator was added to boost exploitation potential.

According to the preceding analysis of the literature, different approaches and algorithms have been
proposed to handle distinct issues in their respective sectors. While each of these approaches has made
substantial contributions and breakthroughs, it is crucial to remember that none of them is perfect and
there is still much opportunity for development. The wide range of proposed algorithms and
methodologies emphasizes the importance of the ongoing study and development in this sector. Each
method has advantages and disadvantages and it is critical to identify areas where improvements can
be made to improve their performances. Subsequently, while the literature study highlights the
availability of methods and algorithms, it also underscores the importance of further breakthroughs
and improvements. Researchers can help build more effective and more efficient algorithms in the
future by addressing the inadequacies of existing approaches.

3. METHODS

Many new concepts and ideas were incorporated into GAs. Following these concepts, we propose a
dual population for GAs inspired by cavefish. Cave-dwelling species have offered scientists valuable
knowledge regarding the evolutionary modifications of traits in response to distinct environmental and
ecological limitations, as highlighted since Darwin’s publication of "Origin of Species" [43]. Among
such species, the Mexican blind cavefish stands out as a powerful research model due to its well-
documented evolutionary lineage, clear ecological context and the presence of independently evolved
cave populations. This species provides researchers with an excellent opportunity to investigate the
factors contributing to convergent evolution [17]. Many of the cave-derived characteristics of cavefish,
such as eye loss, loss of schooling and sleep loss have evolved repeatedly through independent origins
and frequently by using various genetic pathways across caves [9] and [15], see Figures 1 and 2. This
recurring evolution is a powerful feature of the Mexican blind cavefish system.

Figure 2. Cave fish. Adapted from (Bradic, Martina et al., 2012, with permission) [9].
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This work is based on the study carried out by Bradic et al. [9] on cavefish, which concluded the
following points:

1) Many cavefish often get migrant fish from the surface and researchers continue to note that as
one descends further into the cave, the frequency of surface fish in the pools rises.

2) Many fish in caves often accept migratory fish from the surface.

3) Estimates of migration rates and population sizes verified the concept that the influx of genes
from surface populations and their effective population sizes are linked to the genetic diversity
of cave populations.

4) Several of the cave populations were distinct and had increased genetic diversity, which was
associated with rather high levels of migration from the surface. There was a significant gene
flow in both ways between surface and cave populations.

Based on these conclusions, we proposed a mechanism for the GA, called: Cave-Surface GA (CSGA),
in the hope of producing good individuals, increasing the diversity of the population and thus
improving the efficiency of the GA. This mechanism uses two distinct groups of populations: The
primary population is called the Cave, while the secondary population is called the Surface. The Cave
population plays the same role as the GA, while the Surface population only provides diversity to the
Cave population through cross-breeding.

CSGA begins with two populations that are generated at random, the Cave population and the Surface
population. Individuals in each population are assessed using the same fitness functions. The Cave
population undergoes evolutionary changes through a combination of inbreeding within the same
population and cross-breeding with individuals from Surface populations. On the other hand, the
surface population evolves primarily through inbreeding between parents from the same population.
Next, we will describe the fitness function that was utilized for both populations. Subsequently, we
will explain the evolutionary mechanism, including the processes of reproduction and survival
selection, for both populations.

A) Fitness function: The population fitness function is just the objective function of the specific
problem. In CSGA, the two populations use the same fitness function.

B) Evolutionary procedure: Traditional MPGAs reproduce simply by inbreeding among
parents belonging to the same population. Their populations interact by exchanging certain
individuals in accordance with a predetermined policy. Because MPGA populations share the
same evolutionary goals and fitness function, excellent migrants are quickly absorbed into the
new population. However, since the CSGA populations have similar fitness functions, there is
no migration process and we will use cross-breeding as a process to enrich diversity in the
populations.

The CCSGA generates offspring through both inbreeding and cross-breeding processes to facilitate the
exchange of information between populations. Cross-breeding takes place when an individual from the
Cave population reproduces with an individual from the Surface population, resulting in offspring that
possess genetic material from both populations. These cross-bred offspring often exhibit fitness values
that enable their survival in either population due to the combination of advantageous traits from both
sources.

A standard GA chooses two parent chromosomes for a cross-over operation and produces two
offspring. CSGA, on the other hand, has two extra parameters than GAs: the cross-breeding interval
(CI) and the cross-breeding rate (CR). The cross-breeding interval (CI) is the number of generations
between each cross-breeding and cross-breeding rate (CR) is the number of individuals selected from
each population at the time of cross-breeding. These factors have an impact on the accuracy of the
results, as well as on the computation time.

Based on the crossbreeding rate, CSGA randomly selects a number of parents from the two
populations for recombination and generates two offspring through each cross-over operator between
two parents. Then, through selection for local survival, one resulting offspring is selected to be a
member of the next generation of Cave population, whereas the other offspring is sent to the Surface
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population, as shown in Figure 3. This procedure is repeated for each of the two candidate parents and
in addition, this process does not take place in every generation, but takes place through specific
generations, based on CR rate. The CSGA psudocode is shown in Algorithm1.

Algorithm 1: CSGA Algorithm

Begin

stepl: initialize input parameters of problems: crossover rate, mutation rate, crossbreeding rate (cr),
crossbreeding interval (ci), max generation.

step2: initialize two subpopulations, cave population (cp) and surface population (sp).

step3: For each subpopulation, repeat the following steps until the termination criterion is met.
step4: Calculate fitness value;

step5: inbreeding:

a. Selection

b. Crossover

c. Mutation

step6: crossbreeding (based on ci and cr do):

a. choose individual from cp and choose individual from sp.

b. Crossover

c¢. Move offspring one to

cp and the second to sp.

step8: output the final best solution.

End.
Cave Population l Surface Populations
1
| Initial population
I
Selection =
% Crossover E;:
& Mutation / -
New population New population
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Crossbreading Crossbreading
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Figure 3. CSGA method; candidate offspring for cave and surface populations.
3.1 CSGA Procedure

The method begins by initializing the Cave population and Surface population, as well as the cross-
over rate, mutation rate, cross-breeding rate, cross-breeding interval and maximum generation. The
size of both populations is the same. Initially, the Cave population goes through the traditional GA
evolution cycle. In Step 2, the fitness of the cave and surface populations is calculated using an
objective function. Step 3: Inbreed both the Cave and Surface populations. The proper number of
parents is then determined for reproduction based on the cross-over rate. The Cave population and the
Surface population are then provided with diversity via mutation.

Cross-breeding between separate populations is performed in Step 4. Cross-breeding on the Cave and
Surface populations produces a particular number of offspring. In cross-breeding, the intermediate
Cave population, the intermediate Surface population and their offspring form a candidate set for the
Cave and Surface populations’ next generation. Step 5 evaluates created candidate sets using a fitness
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function for both populations and CSGA develops until either the maximum number of generation sets
is attained or the algorithm provides the best possible solution to the present problem.

Table 1. TSP benchmark dataset.

Class | Instance size TSP instances
1 size <200 a280, att48, berlin52, bier127, ch130, ch150, eil51, kroA100, lin105, pr76, pri44
2 size > 200 Lin318, ali535, rat783, kroB200

4. EXPERIMENTAL SETTINGS, RESULTS AND DISCUSSION

To verify the performance of the proposed algorithm, we conducted two sets of experiments on
different TSP instances, which are given by the TSPLIB [39], which contains between 40 and 800
vertices. It is crucial to note that the TSP is used in this study only to compare the proposed CSGA to
other methods in terms of diversity, rather than to seek a superior solution to the TSP problem.
Simulation experiments are performed in the Microsoft Visual Studio 2022 environment and the
system’s hardware and software specifications are as follows:

11th Gen Intel(R) Core (TM) i7-1165G7 @ 80GHz 2.80 GHz
e 8.00 GB of RAM
e Windows 11 Pro, 64-bit operating system.

In the conducted experiments, each algorithm was applied 10 times to multiple instances of the TSP.
The results obtained from each execution were averaged to provide a comprehensive assessment. Our
GA utilized the reinsertion strategy, specifically the expansion sampling method introduced by Dong
et al. [13]. This strategy involves selecting only the best half of individuals, including both new
individuals and individuals from the previous generation, to form the population for the next
generation. In other words, during the production of a new generation, the old generation competes
with the newly generated individuals and only the fittest individuals are retained.

4.1 First Set of Experiments

The proposed method is compared to established GA algorithms utilizing fifteen TSP instances and
varied numbers of vertices. Table 1 shows how the selected TSP instances were divided into two
classes based on TSP size. Table 2 displays the selected GA parameters used in our experimental
setup. The results of the proposed algorithms evaluated on TSP instances are summarized in Table 3.

As illustrated in Table 3, the CSGA performed better than the GAs in 7 out of 11 instances, in the first
class. As for the second class, CSGA achieved the best performance over the GAs in the four TSP
instances belonging to that category. Furthermore, when we look at the table, we can see in the Min
column that the proposed CSCA had the lowest cost in 12 of the 15 TSP instances. It is important to
mention that the simple GA-algorithm parameters were utilized as shown in Table 2; we did not use
any sophisticated parameter control procedures, since the main purpose of this paper is to evaluate the
efficacy and to demonstrate the goodness of the proposed method compared to the GAs in terms of
diversity, regardless of the parameters employed, neutralizing parameters’ tuning effect.

Table 2. The selected GA parameters used in our experimental setup.

Parameter Value

Population size 200

Generation limit 3000

Initialization method Random

Cross-over One-point modified
Cross-over rate 0.85

Mutation Exchange
Mutation rate 0.08

Selection Truncation selection
CR 5

Cl 7

Termination criteria Generation limit
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Figure 4 depicts each algorithm’s convergence to the shortest route. Again, CSGA outperforms GA on
a280 in terms of convergence to the minimal value, indicating that the population diversity provided
by the CSGA allows for better convergence. This is also evident in Figures 5 and 6 that show the
average convergence of the GA and CSGA, in small and large TSP instances, respectively.

Table 3. The results achieved by the GA and CSGA algorithms for TSP instances after 3000 iterations.

. . GA CSGA
Class No. | Optimal Solution Instance Min. Average Min. Average
2579 a280 6952 7587.1 5914 6541.2
10628 att48 35843 41766.4 35704 40468.3
7542 berlin52 8253 9123.1 8497 9572.5
118282 bier127 152453 | 170944.7 146855 | 161837.4
6110 ch130 8865 10000.7 8768 9777.2
Class1 6528 ch150 10114 10914.66667 9965 10906
426 eil51 465 478.3 476 502.5
21282 kroA100 27555 32230.6 27175 31655.4
14379 lin105 20153 24129.1 20006 23199.1
108159 pri6 134438 | 133195.8182 130101 | 1431114
58537 prld4 112926 | 119005.8 117911 | 1340504
42029 lin318 125686 | 139947.1 112936 | 1191634
Class? 202339 ali535 9484 10249.5 8418 8827.6
8806 rat783 51871 53879.1 46348 47547
29437 kroB200 58704 67404.5 57500 61319.4

CSGA vs GA Convergence - a280
16000
14113
14000

12000 11170

5

Figure 4. Average convergence of GA and CSGA for a280.
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Figure 5. Average convergence of GA and CSGA for small instances from TSP (classl).
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Figure 6. Average convergence of GA and CSGA for big instances from TSP (class2).

Figure 7 and Figure 8 show the route of two cities from TSBLIB, which are 1in318 and kroA100,
respectively. The resulting solution when applying the GA for the 1in318 city is 124600 and the result
when applying CSGA is 105240. As for the city of kroA100, the result of applying the GA was 32901
and as for the CSGA method, the result for this city was 26293. Note that these solutions and figures
are the result of applying the two methods (GA and CSGA) to the same parameters found in Table 2.

£ S 8 K ¢ S L » i —
after applying the GA and CSGA methods on 1in318 instance;
(a) GA, (b) CSGA.

a |

Figure 7. The resultant routes

| | f / [ .
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\

A)

Figure 8. The resultant routes after applying the GA and CSGA methods on kroA100 instance;
(a) GA, (b) CSGA.
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4.2 Second Set of Experiments

The second group of experiments aims to study the effects of cross-breeding rate and interval on the
proposed algorithm. It also aims to compare the proposed algorithm with one of the most famous
methods that help diversify the population, which is MPGA. The results were also compared with
those of a well- known optimization method; namely, PSO. We choose PSO, because GA and PSO are
heuristic-based optimization methods and have many similarities in their inherent parallel
characteristics [1]. In other words, PSO shares many similarities with evolutionary computation
techniques, such as GA.

The parameters for the PSO were as follows: number of population =200, number of iterations =3000,
cognitive component =1.5, social component=1.5 and inertia weight=0.7.

Table 4. Performance comparison of the CSGA, GA, PSO and MPGA.

Optimal Instance GA CSGA | MPGA PSO
2579 a280 7587.1 6496.2 7306.3 30814.28302
10628 att48 41766 39417 41766 124827.769
7542 berlin52 9123.1 9411.7 8955.3 26070.21051
118282 bier127 170945 165368 173151 581653.293
6110 ch130 10001 9312.8 9354.6 41792.24209
6528 ch150 10915 10650 10859 50091.11352
426 eil51 478.3 497.9 476.2 1367.987448
21282 kroA100 32231 30701 30957 146503.0298
14379 1in105 24129 22508 21860 107403.6209
29437 kroB200 67405 57890 62478 303044.6882

Table 5. P-values of Wilcoxon signed-rank test for each pair of the methods reported in Table 4.

GA | CSGA | MPGA | PSO
GA - 00137 | 0.0756 0.0020
CSGA | - - 0.1309 0.0020
MPGA | - - - 0.0020
PSO - - - -

The parameters of the GA are the same as those used in the first set of experiments, except for the
cross-breeding rate and cross-breeding interval, where the following values are set: CI=50, CR=10. As
these factors have an impact on the proposed algorithm. However, the number of populations of the
MPGA was 2. We performed experiments on ten TSP instances, each of which has a known optimal
solution. These instances include att48, eil51, berlin52, KroA100, 1in105, bier127, ch130, ch150,
kroB200 and a280. Table 4 displays the results of the CSGA in comparison to the traditional methods:
GA and MPGA. We increased the number of individuals for cross-breeding and at the same time
reduced the cross-breeding interval. The aim is to study the effect of these variables on the diversity of
the solutions. Consequently, these variables influence the quality of the results.

As seen in Table 4, by contrasting the results found in this table, the proposed CSGA has clearly been
able to give more satisfactory outcomes than GA, which is evident from the improvement in the
quality of the solutions obtained for 8 instances.

Table 4 demonstrates that the proposed CSGA outperforms the MPGA. Specifically, the CSGA
algorithm yielded better results than the MPGA algorithm in 7 instances: a280, att48, bier127, ch130,
ch150, kroA100 and kroB200.

The Wilcoxon signed-rank test is a non-parametric statistical test that is used to compare two related
samples and determine whether there are statistically significant differences between them. Table 5
shows the p-values from the Wilcoxon signed-rank test for every method pair. In this context, we’re
comparing the performance of several optimization algorithms on TSP instances.

A p-value is a measure of evidence against a null hypothesis, which in our case is that there are no
statistically significant differences in the performance of each pair of methods compared. Researchers
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typically employ a significance level (alpha) to evaluate whether a p-value is statistically significant or
not. The most common alpha levels are 0.05 and 0.01. Here, we considered statistically differences
significant if the p-value is less than or equal to alpha=0.05.

Table 4 shows that the proposed CSGA surpasses PSO in all TSP instances tested. The p-value of
0.0020, which is less than 0.05, supports this conclusion, suggesting statistically significant
differences between CSGA and PSO. In most cases, the proposed CSGA outperforms classic GA and
somewhat outperforms MPGA. The p-value between CSGA and GA is 0.0137, which is smaller than
(alpha = 0.05), indicating that the differences are statistically significant. The p-value between CSGA
and MPGA, on the other hand, is 0.1309, which is not statistically significant at alpha = 0.05. This is
owing to the difference being insignificant, despite being in favour of the proposed CSGA.

It is worth noting that when addressing the TSP problem, the GA produced much better results than
the PSO. This conclusion is confirmed further by references [29, 46], which compare the performances
of PSO and GA. According to their findings, PSO has quicker computing performance, although GA
produces shorter optimized pathways. Also, GA is a better option for dealing with TSP, particularly
when time is not a big concern according to [29, 46]. As a result, when handling the TSP issue, the
proposed approach outperforms typical GAs and MPGA, as well as one of the well-known
optimization methods (PSO). This highlights the ability of the proposed approach to improve the
efficiency of GAs in solving the TSP problem, which is a typical example of an optimization problem.
Furthermore, this enhancement may be relevant to a broader range of optimization problems; however,
further work is required, which is beyond the scope of this paper. The average convergence of GA,
CSGA, PSO and MPGA on 10 TSP instances is also shown in Figure 9.
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Figure 9. Average convergence of GA and CSGA for big instances from TSP (class2) [9].

It is commonly known that the parameters of GAs have a substantial impact on the results of earlier
studies. There isn’t a single, best option for every parameter that may be used in every TSP instance.
As a result, adjusting these settings becomes problem-specific [22]. However, the initialization of the
starting population is one of the most important parameters. This procedure guarantees that the GA has
a good starting point instead of starting from scratch, which entails initializing random solutions.
When solving a TSP issue, applying an approximation technique or a heuristic solution during the
initialization stage improves the GASs performance and speeds up its convergence to better solutions

[5].

Consequently, we carried out several experiments utilizing Iterative Approximate Methods for
Solving TSP (IAMTSP+), a recent initialization technique primarily intended to offer a heuristic
solution for TSP, as detailed in [8]. We also initialized the MPGA and the GA to ensure a fair
comparison. This excellent result from IAMTSP+ functions as the Surface population for the proposed
CSGA method. We choose to use a different, less advanced initialization method that is based on
linear regression (LG) [22] simultaneously. The Cave population responds effectively to this
comparatively less sophisticated initialization technique, because the solutions that it provides seem to
devolve and are of lower quality than those offered by IAMTSP+. Examples of both techniques
applied to cities created at random are shown in Figure 10.
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Figure 10. Visualization of the performance of the initialization methods. Top/Surface: IAMTSP+)
and Bottom/Cave: LG. Both applied on the same randomly generated TSP.

As anticipated, all methods performed better when initialized with the IAMTSP+ method, as Table 7
illustrates. Of them, CSGA is the most effective method, outperforming the other methods in five TSP
instances, yielding outcomes that are on par with the other approaches and obtaining the least average
approximation to the optimal solutions. It is worth noting that we used the same parameters in Table 2,
except for the CR and ClI, which were set to 1. This adjustment helped prevent the Surface population
from completely dominating the Cave population, thereby avoiding premature convergence.

This exceptional result can be described to CSGA’s novel methodology, which makes use of two
separate populations: fully evolved surface fish and less evolved cave fish allowing for more
diversity. Diversity is introduced by cross-breeding such populations and then separating their
offspring, sending one to the surface and the other to the cave. Through this process, some less-
developed genes taken to the surface by the offspring have the opportunity to breed with those in the
cave. With time, superior genes from the surface benefit the population residing in caves, while useful
genes from the surface can accelerate solution development in the cave, but may reach a local
optimum solution without the diversity provided by the offspring that newly inhabited the Surface
population. This approach fosters a broader exploration of the search space, contributing to the
algorithm’s effectiveness. Figure 11 illustrates the performance of the proposed CSGA with
IAMTSP+ and LG compared to the same TSP instance (kroA100) shown in Figure 8.

Figure 11. Visualization of the performance of the CSGA when using both initialization methods,
IAMTSP+ and LG, applied on kroA100.

Although the proposed CSGA performed reasonably well, in five instances it just marginally
outperformed other approaches and in five other cases it was not even close to the best. As seen from
the p-values of the Wilcoxon test in Table 7, these show no significant differences. As shown by [8],
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this phenomenon can be linked to the effectiveness of the initialization process, which autonomously
produces near-optimal solutions without requiring a meta-heuristic.

Table 6. Performance comparison of the CSGA, GA and MPGA using initial population (IAMTSP+).

Instance MPGA GA CSGA Optimal | App.MPGA App.GA | App.CSGA
a280 2984 2872 2803 2579 1.157037611 1.11361 1.086855
att48 34414 34334 33607 10628 3.238050433 3.230523 3.162119
berlin52 8065 7946 7748 7542 1.069345001 1.053567 1.027314
bier127 128142 | 129215 128743 118282 1.083360106 1.092432 1.088441
ch130 6521 6418 6491 6110 1.067266776 1.050409 1.062357
ch150 7208 7007 6954 6528 1.104166667 1.073376 1.065257
eil51 438 435 437 426 1028169014 1.021127 1.025822
kroal00 22057 22057 22274 21282 1.03641575 1.036416 1.046612
lin105 18062 15523 15485 14379 1.256137423 1.07956 1.076918
krob200 32149 32025 33390 29437 1.092128953 1.087917 1.134287
Sum 260040 257832 257932 217193 13.13207773 12.83894 12.77598
Avg. 26004 25783.2 25793.2 21719.3 1.313207773 1.283894 1.277598

Table 7. P-values of Wilcoxon signed-rank test for each pair of the methods reported in Table 6.

Differences are shown in the upper diagonal and p-values are shown in the lower diagonal.

GA CSGA MPGA
GA -10 -220.8
CSGA 0.6953125 -210.8
MPGA | 0.09720109 0.4921875

Although the CSGA shows promise for use, not only in the TSP, but also in several related fields,
including urban planning, networking, transportation planning, and location-based services, it has the
following limitations:

Solution quality: Using more diverse selection techniques, such as tournament selection, might
improve the quality of the solutions even further. More gains could come by tailoring cross-
over and mutation operators to the unique features of the proposed CSGA. Addressing these
areas of enhancement could pave the way for future research aimed at boosting the
performance of the proposed method.

Separated offspring: In this version of the proposed method, the appearance of offspring on
the surface might significantly increase the number of the Surface population, which could
lead to memory issues. By keeping the Surface population at a consistent size, this restriction
can be lessened. Appropriate actions must be taken as these offspring increasingly converge
towards the initial IAMTSP+ solutions. Examples of workable solutions would be coming up
with random new solutions or initiating the RG process over again.

Manual parameter selection: The CSGA’s settings were determined by hand without
optimization, allowing for future enhancements via the application of adaptive parameter-
management approaches. The exploration of adaptive parameter-tuning procedures points to a
promising future-research direction.

All of these difficulties highlight the need for additional studies to overcome them and improve the
efficacy of the proposed CSGA approach.

5. CONCLUSIONS

In this study, we introduced a novel multi-population method for the GAs called the Cave Surface
Genetic Algorithm (CSGA). Inspired by the evolutionary mechanism observed in cavefish, this
algorithm incorporates a secondary population to maintain diversity in the primary population. The
cross-breeding mechanism ensures the preservation of a diversified population. The CSGA was
applied to various instances of the Traveling Salesman Problem (TSP).
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The experimental results show that the proposed CSGA outperforms classical GAs, MPGAs and PSOs
in terms of solution quality across the majority of benchmark TSP instances. Nonetheless, limitations
must be acknowledged. The parameter choices for the CSGA were selected by hand without
optimization, giving the possibility for prospective improvements through the use of adaptive
parameter-management techniques. The investigation of adaptive parameter-tuning strategies indicates
a promising future research direction.

Extending the scope of our testing to include varied issue domains will not only provide significant
insights, but will also further validate the efficacy of the CSGA approach. Furthermore, digging into
multi-objective optimization issues has the potential to greatly expand the applicability of our
approach. These enhancements and extensions will be the key points of our future-research efforts.
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