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ABSTRACT 

The performance of sorting algorithms has a great impact on many computationally intensive applications. 

Researchers worked on parallelizing many sorting algorithms on various interconnection networks to improve 

their sequential counterpart performance. One of these interconnection networks is the optical chained-cubic 

tree (OCCT). In this paper, a parallel bucket sort (PBS) algorithm is presented and applied to the OCCT 

interconnection network. This PBS algorithm is evaluated analytically and by simulation in terms of various 

performance metrics including parallel runtime, computation time, communication time, concatenation time, 

speedup and efficiency, for a different number of processors, dataset sizes and data distributions including 

random and descending distributions. Simulation results show that the highest obtained speedup is 

approximately 912x on OCCT using 1020 processors, which means that the parallel runtime of the PBS on 1020 

processors is 912 times faster than the sequential runtime of BS on a single processor. 
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1. INTRODUCTION

Many researchers concentrate their efforts on minimizing the run time needed to perform sorting 

algorithms efficiently on various architectures [1]-[11]. Also, several comparative sorting algorithms 

have been presented and analyzed in detail to show their advantages and disadvantages [12]-[17]. In 

general, sorting algorithms are among the most studied algorithms and are important in the computer 

science field, since sorting is one of the most essential operations used in many problems and 

applications, such as integer problems, databases, search engines, text data, image processing and 

information retrieval [18]-[24]. 

One of the well-known sorting algorithms is the bucket sort (BS) [14][19][25], which is a good choice 

for sorting elements with values uniformly distributed over an interval. In the BS algorithm, the 

interval is divided into consecutive non-overlapping sub-intervals called buckets to sort the input, 

where each element is placed in an appropriate bucket based on the element's value and each bucket is 

sorted using any sorting algorithm, such as quicksort, merge sort, count sort, insertion sort, …etc. 

Then, buckets are concatenated to form the sorted list [19], [25]-[26]. 

Practically, sorting a large number of elements using a sequential bucket-sort algorithm requires a high 

runtime. So, one way to improve the runtime of the bucket-sort algorithm is to run it on parallel or 

distributed architectures [27]-[30]. Examples of these architectures are optical chained-cubic tree 

(OCCT) [31] and optical transpose interconnection system (OTIS) and its variants, such as OTIS-

Mesh, OTIS-Hypercube and OTIS Hyper Hexa-Cell (OHHC) [32]-[34]. 

The OCCT interconnection network is based on the chained-cubic tree (CCT) which is constructed 

from a tree and hypercubes in addition to electronic and optical links [31][35]. The electronic links 

connect processors within tree levels and hypercubes, whereas optical links are added on a certain 

level of the tree to reduce the distance between processors. In general, optical links can carry data with 

less power consumption and a high data rate compared to electronic links [36]-[37]. OCCT shows 

efficient topological properties including low diameter, high maximum node degree and high bisection 

width [31]-[32]. Also, the CCT was evaluated by implementing a parallel bitonic sort algorithm on 

this interconnection network, where it showed a great performance [3]. The efficient properties of 
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OCCT and the previous work on CCT motivate us to implement a parallel bucket-sort (PBS) 

algorithm on OCCT taking advantage of the OCCT-structure properties to get an efficient parallel 

sorting algorithm. 

The main contribution of this paper is implementing an efficient PBS algorithm on the OCCT 

interconnection network and evaluating the PBS algorithm analytically and by simulation in terms of 

parallel runtime, computation time, communication time, concatenation time, speedup and efficiency, 

for different numbers of processors and dataset sizes and two types of data distributions; namely, 

random and descending distributions. 

2. RELATED WORK

Several research works have been conducted on the parallel bucket-sort algorithm using various 

architectures and platforms. For example, in [27], the author showed how to convert a sequential 

bucket-sort algorithm into a parallel algorithm, which has been implemented and executed using 

OpenMP API. Experimental results showed that this parallel version is a scalable algorithm, where its 

performance can be improved as the number of cores is increased. Also, in [28], the authors 

implemented a parallel bucket-sort algorithm for a many-core architecture of graphics processing units 

(GPUs) based on convex optimization. Moreover, in [29], the author used threads and GPU 

programming to optimize the bucket-sort algorithm. Experimental results showed that for a small 

number of elements, it is better to carry out the sorting in a single thread. Also, using the bucket-sort 

algorithm, the bottleneck of GPU and CPU is shown in this research work clearly. 

Additionally, several research works have been conducted on opto-electronic architectures. In [32], the 

authors presented a detailed review of nine optoelectronic architectures in terms of their topological 

structure and topological properties including the OCCT. These opto-electronic architectures are 

interconnection networks that use electronic and optical links to connect processors. All these 

architectures except the OCCT are based on OTIS. These architectures are evaluated in terms of 

various topological properties; namely, size, diameter, cost, bisection width, maximum node degree 

and minimum node degree and Hamiltonian path and cycle. Among these architectures, the OCCT 

showed great performance in terms of diameter, maximum node degree and bisection width [31]-[32]. 

However, up to this time and up to our knowledge, none of the parallel bucket-sorting algorithms has 

been applied to opto-electronic architectures, which motivates us to implement an efficient parallel 

bucket-sort algorithm on the OCCT opto-electronic architecture and evaluate it analytically and by 

simulation in terms of various performance metrics. 

3. OCCT INTERCONNECTION NETWORK

The structure of the OCCT interconnection network [31] is based on CCT [35], where the CCT 

interconnection network is based on a binary tree and hypercubes. The height h of OCCT is floor(log 

G) and each hypercube in OCCT is a group G of 2d processors of dimension d, in addition to a specific

level lv that is chosen according to the height of the tree where the optical links are added in a 

cascading manner between distant hypercubes at that level. Thus, OCCT is referred to as OCCT (h, d, 

lv). An OCCT can be a full or complete binary tree network based on the status of its last level. Figure 

1 shows a full OCCT(3, 2, 2) [31], where 3 is the height of the tree, 2 is the dimension of each 

hypercube group and 2 is the lv level number wherein at that level, the optical links are added (thick 

black lines). Figure 2 shows the lv level where lv = 2 in details of the OCCT(3, 2, 2) [31]. Also, as 

shown in Figure 2, the label of each processor is unique and contains a pair of numbers (Gi, pj). For 

example, processor (3, 2) means processor number 2 in group number 3. However, more details 

regarding the labeling of groups and processors in OCCT can be found in [31]. 

The lv value depends on two factors; the type of binary tree whether it is full or complete. If the tree is 

a full binary tree, then the level lv = ceiling(h/2) and if the tree is a complete binary tree, then the level 

lv depends on the tree height type; whether odd or even and the number of groups in the last level. 

Thus, there are three cases; the first case is if the tree height h is even, then lv= h/2. In the second case, 

if the tree height h is odd and the number of groups in the last level is less than (2(h-1)/2)×3+1, then lv = 

(h-1)/2. In the third case, if the tree height h is odd and the number of groups in the last level is greater 

than or equal to (2(h-1)/2)×3+1, then lv = (h+1)/2 [31]. However, more details regarding implementing  
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the structures of OCCT and CCT can be found in [31][35]. 

The size is the number of processors in the OCCT interconnection network. The size of the OCCT(h, 

d, lv) is G × 2d, where G is the number of hypercube groups in the tree and 2d is the number of 

processors in each hypercube of dimension d [31]-[32]. 

Figure 1. An OCCT(3, 2, 2). 

Figure 2. Level two of OCCT(3, 2, 2). 

4. SEQUENTIAL BUCKET SORT ALGORITHM

The sequential BS algorithm is a well-known sorting algorithm. It sorts n elements the values of which 

are uniformly distributed over an interval [1, n], where this interval is divided into b equal-sized sub-

intervals called buckets. That is, the BS algorithm uses buckets of the same size and each element is 

placed in the appropriate bucket according to its value. As a result, each bucket will have almost the 

same number of elements which is approximately n/b. Then, the BS algorithm uses an efficient and 

easy-to-implement sorting algorithm, such as quicksort [14][38], to sort the elements in each bucket. 

Finally, these sorted buckets are concatenated in the appropriate order to form the final sorted list. The 

run time of this sequential BS algorithm is Θ(n log (n/b)), where this low time complexity is due to the 

assumption that the n elements to be sorted are uniformly distributed over the interval [1, n]. 

The sequential BS algorithm’s steps are shown in Algorithm 1, where the input parameters are defined 

in Table 1 and the size of a bucket (s) and its sub-interval are computed using Equations (1)-(3). 

s = (max – min + 1) / b      (1) 

Bucketstart(B) = min + B × s, where B = 0, 1, 2, …, b–1        (2) 

Bucketend(B) = Bucketstart(B) + s – 1  (3)
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Algorithm 1 Sequential BS algorithm’s steps. 

Input Initially, a single processor has the input of n elements, which are distributed uniformly 

over the interval [1, n]. 

Output Sorted n elements in ascending order. 

1 Sizes and sub-intervals of the buckets are computed by a single processor using 

Equations (1)-(3). 

2 Using the created buckets in Step 1, each element is placed in its appropriate bucket 

according to its value and the bucket’s sub-interval. That is the input array is scanned 

from left to right and each element is moved to its appropriate bucket. 

3 After all elements are placed in their buckets, a call to a quicksort algorithm is executed 

to sort each bucket. 

4 After each bucket is sorted, buckets are concatenated in the required order to produce the 

final sorted list. 

Table 1. Input parameters of sequential BS algorithm. 

Parameters Description 

n Number of elements to be sorted (input size) 

b Number of buckets 

B Bucket number 

max Maximum element value in the input (last index of input array equals n) 

min Minimum element value in the input (first index of input array equals 1) 

s Size of the bucket, which is the number of elements in the bucket, where all buckets 

have almost the same size 

Bucketstart(B) First element in the sub-interval of bucket number B 

Bucketend(B) Last element in the sub-interval of bucket number B 

5. PARALLEL BUCKET SORT ALGORITHM ON OCCT

In this section, we introduce the PBS algorithm on the OCCT interconnection network, as shown in 

Algorithm 2. In the proposed PBS algorithm, we assume a list of n elements uniformly distributed 

over the interval [1, n] to be sorted using a number of buckets (b), where these b buckets are almost of 

the same size. Each bucket is assigned to a single processor in OCCT; that is, p = b, where p is the 

number of processors. Also, we assume that the bucket size is s, where s = n/b. Additionally, we 

assume initially that each processor has a complete copy of the input n elements. 

The PBS algorithm consists of two phases: the computation phase and the communication and 

concatenation phase, where, in Algorithm 2, steps 1–4 present the computation phase and steps 5 and 

6 present the communication and concatenation phase. 

Algorithm 2 works as follows: In step 1, in parallel, each processor in OCCT calculates the size of the 

bucket and the sub-intervals of the buckets using Equations (1)-(3).  

In step 2, each processor is assigned a bucket according to a global group sequential ordering, where 

for example every four buckets are assigned to one group (i.e., one hypercube of four processors) by 

sequential order. For example, the first four buckets numbered 0 to 3 are assigned to group 0, while 

the second four buckets which are numbered 4 to 7 are assigned to group 1, …and so on. 

In step 3, in parallel, each processor scans the entire n input elements and determines the elements that 

belong to its bucket according to both its bucket sub-interval and the elements’ values which must be 

within the bucket’s sub-interval. As a result, each bucket will have almost the same number of 

elements, which is approximately n/b. 

In step 4, in parallel, each processor applies the sequential quicksort algorithm to sort the elements of 

its bucket which are approximately n/b elements. The quicksort algorithm is an in-place sorting 
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algorithm that does not need additional memory space to sort the n/b elements and it is easy to 

implement using the divide-and-conquer approach. Also, it is efficient in terms of time complexity, 

which is O(n/b log2 n/b), since it sorts n/b elements in each processor in parallel and independently. 

In step 5, the processors communicate with each other to combine their sorted buckets at a single 

processor located at the left-most hypercube group of the lv level in OCCT, where the optical links 

exist to take advantage of these links. Thus, the communication pattern of the proposed PBS algorithm 

takes place in three major stages as follows: 

1. Upper and lower tree communication stage: In this stage, processors at the lv level gather results

from processors at upper and lower levels in the tree at the same time in parallel. 

2. Hypercube-communication stage: In this stage, each group of processors from a hypercube at the

lv level gathers their results at processor number 0 of that hypercube. 

3. Optical-communication stage: In this stage, processor number 0 of the left-most hypercube at the

lv level gathers results from other processors number 0 of other hypercubes of the same lv level. 

Finally, in step 6, at this left-most group, the single processor that received all sorted buckets 

concatenates them as one list of elements according to the buckets’ number from lowest to highest 

which presents the buckets’ sub-intervals from lowest to highest to have the n elements sorted in 

ascending order. 

Algorithm 2 PBS algorithm’s steps on OCCT. 

Input Initially, each processor pi has a complete copy of the input n elements which are 

uniformly distributed over the interval [1, n]. 

Output Sorted n elements in ascending order. 

1 In parallel, the size of the bucket and the sub-intervals of buckets are computed by each 

processor in OCCT using Equations (1)-(3). 

2 Each processor pi is assigned a bucket bi according to a global ordering, where for 

example every four buckets are assigned to one group (i.e., one hypercube of four 

processors) by sequential order.  

3 In parallel, each processor pi scans the input n elements and determines the elements that 

belong to its bucket bi according to its sub-interval and the elements' values. 

4 In parallel, each processor pi applies the sequential quicksort algorithm to sort the 

elements of its bucket bi. 

5 Processors communicate with each other to combine and concatenate their results at a 

single processor located at the left-most group of the lv level in OCCT. 

6 At this single processor, the buckets are concatenated according to their number and sub-

intervals from lowest to highest to have the n elements sorted. 

The proposed PBS algorithm is modified slightly and customized to be applied to OCCT architecture 

efficiently. The modification is made in the computation phase by having the buckets almost equal in 

size and p=b to distribute buckets on processors evenly (i.e., load-balanced) to have all processors 

finish approximately at the same time, which leads to better performance. The customization is made 

in the communication and concatenation phase, where the buckets are distributed and gathered in less 

communication time using the electronic and optical links; that is reaching all processors using the 

shortest path (the diameter of OCCT). 

An example of the PBS algorithm’s steps is shown in Figure 3. In this example, we do not show the 

communication phase in detail, for simplicity. Also, in this example, we assume that n = 16 and b = p 

= 4. Therefore, the size of each bucket is 4. Initially, each processor has a copy of the input list which 

contains uniformly distributed 16 elements over the interval [1, 16], as shown in Figure 3(a). Then the 

bucket’s size and sub-interval of each bucket are computed using Eqs. (1–3) and each processor 

determines its elements according to its bucket’s sub-interval, as shown in Figure 3(b). Then, each 

processor sorts its bucket, as shown in Figure 3(c) and finally, the processors communicate to gather 
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the buckets at processor(0), where it concatenates the buckets sequentially according to their number 

and sub-intervals from lowest to highest to have a sorted list in ascending order, as shown in Figure 

3(d). 

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Processor(0) 5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4 

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Processor(1) 5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4 

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Processor(2) 5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4 

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Processor(3) 5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4 

(a) Initially, each processor has a copy of the input list which contains uniformly distributed 16 elements

over the interval [1, 16]. 

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Processor(0) 

Subinterval [1, 4] 
5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4 

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Processor(1) 

Subinterval [5, 8] 
5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4 

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Processor(2) 

Subinterval [9, 12] 
5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4 

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Processor(3) 

Subinterval [13, 16] 
5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4 

(b) Bucket sizes and the sub-intervals of buckets are computed and each bucket is assigned to a processor.

Index 1 2 3 4 Index 1 2 3 4 

Processor(0) 

Unsorted Bucket(0) 
3 1 2 4 

Processor(0) 

Sorted Bucket(0) 
1 2 3 4 

Index 1 2 3 4 Index 1 2 3 4 

Processor(1) 

Unsorted Bucket(1) 
5 6 8 7 

Processor(1) 

Sorted Bucket(1) 
5 6 7 8 

Index 1 2 3 4 Index 1 2 3 4 

Processor(2) 

Unsorted Bucket(2) 
10 11 12 9 

Processor(2) 

Sorted Bucket(2) 
9 10 11 12 

Index 1 2 3 4 Index 1 2 3 4 

Processor(3) 

Unsorted Bucket(3) 
15 16 14 13 

Processor(3) 

Sorted Bucket(3) 
13 14 15 16 

(c) Each processor sorts its unsorted bucket.

Buckets subintervals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Concatenated sorted 

buckets at Processor(0) 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Bucket(0) Bucket(1) Bucket(2) Bucket(3) 

(d) Processor(0) concatenates all received buckets to form a sorted list.

Figure 3. Example of the PBS algorithm’s steps. 



325

.Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024 

6. ANALYTICAL EVALUATION

In this section, the proposed PBS algorithm is evaluated analytically in terms of several performance 

metrics, including parallel runtime complexity, speedup and efficiency. The parallel runtime is the 

time that passes from the moment that a parallel computation starts to the moment at which the last 

processor finishes execution, where it includes the time that a parallel program spends in computation 

and communication [13]. Thus, the analytical evaluation of the PBS algorithm is presented for its 

computation phase first in sub-section 6.1 followed by its communication and concatenation phase in 

sub-section 6.2 and lastly, in sub-section 6.3, the mentioned performance metrics are presented.  

6.1 Computation-phase Analysis 

In this sub-section, the computation analysis of the proposed PBS algorithm (Algorithm 2) is 

presented. In the computation phase, according to Algorithm 2, four steps are shown as follows, where 

each step is followed by its expected sequential and parallel runtime complexity: 

1. Finding bucket size and sub-intervals of all buckets: Sequential and parallel runtime complexity

for finding bucket size is constant O(1) and for finding the sub-intervals of all buckets is O(b), 

since in BS and PBS algorithms, finding the size and the sub-intervals of buckets can be carried 

out using Equations (1)-(3). 

2. Assigning buckets: Sequential and parallel runtime complexity is O(1), since, in the BS algorithm,

all buckets are assigned to a single processor and in the PBS algorithm, each processor is assigned 

one bucket according to a global sequential ordering; specifically, buckets are assigned according 

to group number and processor number.  

3. Putting each element in its proper bucket: Sequential and parallel runtime complexity is O(n),

since, in BS and PBS algorithms, each processor passes over the n elements to find its bucket 

elements. 

4. Sorting buckets: Sequential runtime is O(b × s log s) as best and average cases, since we have b

buckets to sort each of size s, assuming that each bucket has the same number of elements and 

using quicksort to sort each bucket sequentially. The quicksort best and average-case time 

complexity is O(n log n) to sort n elements, where these cases occur when the elements are 

random [14][38]. Since n = b × s, then the sequential runtime is O(n log s). In the worst case, the 

time complexity of quicksort is O(n2) to sort n elements, where this case occurs when the elements 

are already ascendingly or descendingly sorted [14]. Thus, the bucket sort worst-case time 

complexity would be O(b × s2) = O(n × s). Whereas, the parallel runtime complexity is O(s log s), 

since in parallel each processor uses a quicksort algorithm to sort its s elements in the best and 

average cases and in the worst case, it would be O(s2). Note that s << n, since s = n / b. 

The sequential and parallel computation runtimes of the PBS algorithm differ only in the fourth step, 

which is the step of sorting buckets. Thus, based on the four computational steps, the sequential 

runtime (Tseq) of the BS algorithm as best and average cases and worst case is shown in Equations (4)-

(5), respectively. The parallel computation runtime (Tcomp) of the PBS algorithm as best and average 

cases and worst case is shown in Equations (6)-(7), respectively.  

Tseq = O(1) + O(b) + O(1) + O(n) + O(n log s) ≈ O(n log s) (best & average cases) (4)

Tseq = O(1) + O(b) + O(1) + O(n) + O(n × s) ≈ O(n × s) (worst case)  (5)

Tcomp = O(1) + O(b) + O(1) + O(n) + O(s log s) ≈ O(s log s) (best & average cases) (6)

Tcomp = O(1) + O(b) + O(1) + O(n) + O(s2) ≈ O(s2) (worst case)     (7) 

6.2 Communication and Concatenation Phase Analysis 

In this sub-section, the communication and concatenation phase of the proposed PBS algorithm 

(Algorithm 2) is presented. The communication pattern of the proposed PBS algorithm has the 

following three stages: The upper and lower tree communication stage, the hypercube-communication 

stage and the optical-communication stage. 

In general, the communication time equals the number of required steps multiplied by the message 

size, where a message may contain one sorted bucket or two concatenated sorted buckets or more, 

multiplied by the time to transmit a word of data on an electronic (𝑇𝑤𝑒) or an optical link (𝑇𝑤𝑜).
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For the first stage, the upper tree communication time is presented in Equation (8). The number of 

required steps for the upper tree communication equals the value of lv, because we have to pass lv 

levels from the root of the tree (level 0) to the optical links level (lv). In each step, we pass a bucket of 

size s = (n / b). Also, in this upper communication, buckets are transmitted using only electronic links. 

So, the total communication time required for the upper tree is Tup, as shown in Equation (8).  

𝑇𝑢𝑝 = 𝑙𝑣 × 𝑠 × 𝑇𝑤𝑒  (8) 

The tree height from the last level of the tree to the lv level is (h – lv), which is equal to lv or (lv–1) 

depending on the place of the optical links, as discussed in Section 3. Thus, the number of 

communication steps is the maximum between lv and (lv – 1), which is lv. In the first step, the size of 

the transferred message is s, which is the size of a single bucket. In the second step, the size becomes 

(2 × s), while in the third step, the size is (4 × s), …and so on. At maximum, the size of the transferred 

message is (2𝑙𝑣−1  × 𝑠); that is at every step, the size of the transferred message doubles, which means

that the number of transferred buckets doubles. Also, only the electronic links are used to transfer the 

buckets to the lv level. So, the total communication time required for the lower tree is Tlow, as shown in 

Equation (9), where the size of the transferred buckets is (∑ 2𝑖−1𝑙𝑣
𝑖=1 × 𝑠) .  Equation 9 can be

simplified, as shown in Equation (10). Note that, in our simulation runs, the values of lv vary 

according to the size of OCCT, specifically from 2 to 4, which is a small value. 

𝑇𝑙𝑜𝑤 = 𝑙𝑣 × (∑ 2𝑖−1𝑙𝑣
𝑖=1 × 𝑠) × 𝑇𝑤𝑒         (9) 

𝑇𝑙𝑜𝑤 = 𝑙𝑣 × ((2𝑙𝑣 − 1) × 𝑠) × 𝑇𝑤𝑒       (10) 

Since the upper and the lower tree communication are carried out in parallel, then the communication 

time of this stage is 𝑇𝑢𝑝−𝑙𝑜𝑤 , which is the maximum time between the upper and the lower tree

communication times, as shown in Equation (11). Thus, since the lower tree communication time is 

larger than the upper tree communication time because a larger message size is transferred, the 

communication time of this stage is dominated by the lower-communication time.  

𝑇𝑢𝑝−𝑙𝑜𝑤 = max ((𝑙𝑣 × 𝑠 × 𝑇𝑤𝑒), (𝑙𝑣 × ((2𝑙𝑣 − 1) × 𝑠) × 𝑇𝑤𝑒))                    (11)

The number of communication steps in the hypercube is d, which is the dimension of the hypercube, 

in our case d = 2. Specifically, in the first step, the size of the message equals the results (concatenated 

sorted buckets) gathered from stage 1 in addition to one bucket that each processor in the hypercube 

originally has. However, the hypercube-communication time in this stage depends on the number of 

received buckets from the previous stage. So, the total hypercube-communication time (𝑇𝑄) is shown

in Equation (12), where the size of the received buckets from the upper tree levels is (𝑙𝑣 × 𝑠) and the 

size of the received buckets from the lower tree levels including the bucket that each processor in the 

hypercube originally had is (2 × (2𝑙𝑣 − 1) × 𝑠 + 𝑠) where it can be simplified as ((2𝑙𝑣+1 − 1) × 𝑠).

Also, the communication links used in the hypercubes are electronic links. 

𝑇𝑄 = 𝑑 × ((𝑙𝑣 × 𝑠) + ((2𝑙𝑣+1 − 1) × 𝑠)) × 𝑇𝑤𝑒    (12) 

In the last stage of communication, the optical communication stage, processor number 0 at the left-

most hypercube of level lv gathers all results (concatenated sorted buckets) from its counterpart 

processors numbered 0 of other hypercubes in the same level lv using the optical links. This required 

at most two optical steps, since there are no adjacent nodes and groups connected using optical links in 

the lv level [31]. The size of the transferred concatenated sorted buckets is the size of the received 

buckets from stage 2 (hypercube-communication stage) to processor 0, in addition to its bucket. 

Equation 13 presents the total optical communication time of this stage, which is 𝑇𝑜𝑝.

𝑇𝑜𝑝 =  2 × (2𝑑 × (((𝑙𝑣 − 1) × 𝑠) + ((2𝑙𝑣+1 − 1) × 𝑠))) × 𝑇𝑤𝑜        (13) 

The total communication time (𝑇𝑐𝑜𝑚𝑚) of the PBS algorithm on OCCT is the summation of the upper

and the lower-communication time, hypercube communication time and optical communication time, 

as shown in Equation (14), which are presented in Equations (11)-(13), respectively. 

𝑇𝑐𝑜𝑚𝑚 = 𝑇𝑢𝑝−𝑙𝑜𝑤 + 𝑇𝑄 + 𝑇𝑜𝑝 (14) 

During each stage of communication, sorted buckets are concatenated once they are received by a 

processor according to the group and processor numbers. So, the parallel runtime complexity of the 
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concatenation of the buckets is 𝑇𝑝𝑐, as shown in Equation (15), which is the number of communication

steps in each stage, where lv is the number of communication steps in the upper and the lower 

communication stage, d is the number of communication steps in the hypercube-communication stage 

and 2 is the number of communication steps in the optical-communication stage. Also, lv and d are 

small values, where in our case d = 2 and lv varies between 2 and 4 according to the OCCT size. 

However, the sequential runtime complexity of the concatenation of buckets is O(b), where b is the 

number of buckets. 

𝑇𝑝𝑐 = O(𝑙𝑣 + 𝑑 + 2)  (15) 

6.3 Performance Metrics 

In this sub-section, the performance metrics of the proposed PBS algorithm are presented, including 

the parallel runtime complexity, speedup and efficiency. The parallel runtime complexity (𝑇𝑝) of the

PBS algorithm on OCCT is the summation of the computation, communication and concatenation 

times, as shown in Equation (16), which are presented in Equations (6) (14) (15), respectively, as 

shown in Equation (17). However, the parallel runtime complexity of the PBS algorithm, which is 

presented in Equation (17) as the best and average cases, is dominated by the computation time for 

large n, which is the common case. The speedup (𝑆𝑝) is defined as the sequential runtime divided by

the parallel runtime of solving the same problem, as shown in Equation (18). Thus, the speedup of the 

PBS algorithm on OCCT is shown in Equation (19), where the sequential runtime complexity (𝑇𝑠𝑒𝑞)

of the BS algorithm is shown as the best and average cases. Accordingly, Equation (19) shows the 

speedup as the best and average cases. The efficiency (𝐸𝑓) is defined as the speedup divided by the

number of used processors, as shown in Equation (20). Thus, the efficiency of the PBS algorithm on 

OCCT is shown in Equation (21) as the best and average cases. 

𝑇𝑝 = 𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑐𝑜𝑚𝑚 + 𝑇𝑝𝑐         (16) 

𝑇𝑝 = O(𝑠 log 𝑠) + (𝑇𝑢𝑝−𝑙𝑜𝑤 + 𝑇𝑄 + 𝑇𝑜𝑝) + O(𝑙𝑣 + 𝑑 + 2)  (17) 

𝑆𝑝 =
𝑇𝑠𝑒𝑞

𝑇𝑝
 (18) 

𝑆𝑝 =  
O(𝑛 log 𝑠)

O(𝑠 log 𝑠)+(𝑇𝑢𝑝−𝑙𝑜𝑤+𝑇𝑄+𝑇𝑜𝑝)+O(𝑙𝑣+𝑑+2)
        (19) 

𝐸𝑓 =
𝑆𝑝

𝑝
 (20) 

𝐸𝑓 =
O(𝑛 log 𝑠)

𝑝 ×(O(𝑠 log 𝑠)+(𝑇𝑢𝑝−𝑙𝑜𝑤+𝑇𝑄+𝑇𝑜𝑝)+O(𝑙𝑣+𝑑+2))
    (21) 

7. SIMULATION ENVIRONMENT AND RESULTS

In this section, the simulation environment and results are presented and discussed. The simulation 

results are evaluated in terms of two performance metrics; namely, speedup and efficiency. 

7.1 Simulation Environment 

The OCCT interconnection network does not exist as a real-machine or real-computing environment. 

Therefore, the OCCT interconnection network and the algorithms are implemented using Java Virtual 

Threads, simulated as a distributed memory model. However, the simulation runs under a shared 

memory multi-core computer machine. 

In this sub-section, the simulation environment is presented, including software and hardware 

specifications and input-data distributions. The simulation implementation is programmed using Java 

Virtual Threads, which offer lightweight and efficient concurrency management within the Java 

Virtual Machine, on a multi-core computer machine with the specifications provided in Table 2. The 

parameter settings of the PBS algorithm’s conducted simulation runs are shown in Table 3. Also, 

Table 4 presents the required parameter settings to implement the OCCT interconnection network 

which are the type of OCCT whether it is full or complete, the height h of the tree, the number of 

processors (p), the number of groups (G) in OCCT, the number of groups at the last level of OCCT 

(GL) and the values of the level lv, where these values are calculated according to the equations 

presented in Section 3.  
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Table 2. Hardware specifications of the computer machine used for simulation runs. 

Processor 
Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz   1.50 GHz 

(4 Cores and 8 Threads) 

RAM 16 GB 

Operating system 64-bit Windows 10 Pro

Table 3. Parameter settings of the PBS algorithm’s conducted simulation runs. 

Type of sorting Ascending 

Type of input elements 4-byte integer number

Input size (MB) 0.4, 1.2, 2, 2.8, 4, 12, 20, 40, 60, 100, 150, 200, 400 

Type of OCCT 
Full OCCT(h, 2, lv), two-dimensional hypercube 

Complete OCCT(h, 2, lv), two-dimensional hypercube 

Number of processors 
Full OCCT: 60, 124, 252, 508, 1020 

Complete OCCT: 92, 188, 380, 764 

Input-data distribution 
R: Random 

D: Descending and continuous (reverse ordered) 

Table 4. Parameter settings of the OCCT interconnection network. 

OCCT Type Height (h) 
Number of 

Processors (p) 

Number of 

Groups (G) 

Number of Groups 

at Last Level (GL) 
Level (lv) 

Full 3 60 15 8 2 

Complete 4 92 23 8 2 

Full 4 124 31 16 2 

Complete 5 188 47 16 3 

Full 5 252 63 32 3 

Complete 6 380 95 32 3 

Full 6 508 127 64 3 

Complete 7 764 191 64 4 

Full 7 1020 255 128 4 

Table 5. Communication-time parameters. 

Parameters Values 

𝑊𝑠𝑖𝑧𝑒 4 𝐵𝑦𝑡𝑒𝑠 × 𝐵𝑦𝑡𝑒 𝑆𝑖𝑧𝑒 = 4 × 8 = 32 𝑏𝑖𝑡𝑠 

𝐿𝑠𝑖𝑧𝑒 4 𝐵𝑦𝑡𝑒𝑠 × 𝐵𝑦𝑡𝑒 𝑆𝑖𝑧𝑒 = 4 × 8 = 32 𝑏𝑖𝑡𝑠 

𝐸𝑙𝑠𝑝𝑒𝑒𝑑 250 𝑀𝑏𝑝𝑠 

𝑂𝑝𝑠𝑝𝑒𝑒𝑑 2.5 𝐺𝑏𝑝𝑠 

𝑇𝑤𝑒

𝑊𝑠𝑖𝑧𝑒

𝐸𝑙𝑠𝑝𝑒𝑒𝑑

 =
32

250 × 1024 × 1024
= 122.1  𝑛𝑠𝑒𝑐 

𝑇𝑤𝑜

𝑊𝑠𝑖𝑧𝑒

𝑂𝑝𝑠𝑝𝑒𝑒𝑑

 =
32

2.5 × 1024 × 1024 × 1024
 = 12.2 𝑛𝑠𝑒𝑐 

Moreover, to compute and analyze the communication time, the values of word size (𝑊𝑠𝑖𝑧𝑒) which is

equal to the element size ( 𝐿𝑠𝑖𝑧𝑒 ), electronic link speed ( 𝐸𝑙𝑠𝑝𝑒𝑒𝑑 ) [36]-[37], optical link speed

(𝑂𝑝𝑠𝑝𝑒𝑒𝑑) [36], time to transmit word of data on the electronic link (𝑇𝑤𝑒) and time to transmit word of

data on the optical link (𝑇𝑤𝑜), are shown in Table 5.

7.2 Simulation Results 

In this sub-section, the simulation results are presented and evaluated in terms of speedup and 

efficiency using random and descending input-data distributions. Figures 4 and 5 show the speedup of 
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PBS using random and descending distributions of different sizes on a different number of processors 

on OCCT, respectively. In these figures, the speedup was highest when the input is 40 MB and lowest 

when the input is 0.4 MB. However, two main cases can be observed from Figures 4 and 5 as follows: 

 For a certain size of the input data distribution, the speedup increases as the number of processors

increases. This is because, as we increase the number of processors, the computation time on each 

processor decreases since the data on each processor is decreased in size. 

 For a certain number of processors, the speedup increases as we increase the size of the input-data

distribution. This is because the gap between parallel runtime and sequential runtime increases as 

the size of data is increased. 

Figure 4. PBS speedup for various random data-distribution sizes on OCCT. 

Figure 5. PBS speedup for various descending data-distribution sizes on OCCT. 

Figures 6 and 7 show the efficiency of the PBS algorithm running on a different numbers of 

processors using random and descending distributions over OCCT, respectively. The highest 

efficiency is achieved, which is approximately 92%, when we used descending data distribution of 

size 40 MB on 124 processors, as shown in Figure 7. However, two main cases can be observed from 

Figures 6 and 7 as follows:  

 For a certain small size of the input-data distribution, the efficiency decreases as the number of

processors increases. 

 For a certain number of processors, the efficiency decreases as we decrease the size of the input

data distribution. 
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Figure 6. PBS efficiency for various random data-distribution sizes on OCCT. 

Figure 7. PBS efficiency for various descending data-distribution sizes on OCCT. 

In general, data distribution affects the performance of the PBS algorithm. Specifically, sorting 

random data distribution on OCCT using the sequential quicksort on each processor, as mentioned in 

Algorithm 2, will lead to the best and average case scenarios, whereas sorting descending data 

distribution will lead to the worst-case scenario. 

Figure 8 shows the scalability of the proposed PBS algorithm in terms of different large data sizes 
ranging from 60 MB to 400 MB presented as random data distributions on 1020 OCCT processors. 

Specifically, as shown in Figure 8, as the data gets larger, the speedup gets higher; that is for 60, 100, 

150, 200 and 400 MB, the speedup is approximately 832, 846, 857, 861 and 871, respectively. 

Additionally, the proposed PBS algorithm is compared with the parallel quicksort (PQS) algorithm in 

terms of speedup, as shown in Figure 8. In this comparison, the PBS algorithm is applied on the 

OCCT interconnection network using 1020 processors, whereas the PQS algorithm is applied on the 

OHHC interconnection network using 1152 processors. The difference in the number of processors is 

due to the structures of the OCCT and OHHC interconnection networks, as shown in [31][34]. As 

shown in Figure 8, the PBS algorithm outperforms the PQS algorithm for all ranges of data sizes. 

However, for 400 MB, the PBS algorithm outperforms the PQS algorithm slightly; specifically the 

PBS algorithm achieved a speedup of 871, whereas the PQS algorithm achieved a speedup of 867. 

This is due to the number of processors in OHHC which has more processors than OCCT by 132. 
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Figure 8. Speedup comparison between the PBS algorithm on 1020 OCCT processors and the PQS 

algorithm on 1152 OHHC processors for various random data-distribution sizes. 

Additionally, as shown in Table 6, the PBS on OCCT is compared with the parallel bucket-sort 

algorithm using various techniques and architectures, where random data distribution of size 40 MB is 

used. In this table, the results show that PBS on OCCT outperforms these techniques and architectures 

since the parallel bucket-sort algorithms are implemented on shared-memory architectures with 

limited resources. Specifically, as the number of threads increases, the performance of these 

algorithms decreases; that is, creating more threads than cores degrades the performance of these 

algorithms, as mentioned in [27][29].  

Table 6. Speedup comparisons between the PBS algorithm on OCCT and other parallel bucket-sort 

algorithms using different techniques and architectures. 

Technique/Architecture Speedup Threads/Nodes Number of Buckets 

Multi-threaded [29] 1.88 8 100 

OpenMP [29] 3.13 8 100 

GPGPU using CUDA [29] 1.25 8 100 

OpenMP API [27] 2.2 8 100 

PBS on OCCT 6.54 8 100 

Table 7 shows analytical versus simulation speedup for the PBS algorithm using 400 MB descending 

data distribution on OCCT for different numbers of processors. It can be seen from the table that the 

difference between the analytical and simulation speedup is small, ranging from 7% up to 12%, which 

validates the correctness of the obtained simulation results.    

Table 7. Analytical versus simulation speedup results of PBS algorithm over various numbers of 

processors on OCCT using descending data distribution of 400 MB input size. 

Number of Processors 

60 92 124 188 252 380 508 764 1020 

Analytical 59.995 91.989 123.981 187.902 251.824 379.594 507.2651066 760.377 1013.471 

Simulation 53.996 80.951 114.063 169.112 231.678 337.839 471.7565491 669.132 912.124 

Difference 10% 12% 8% 10% 8% 11% 7% 12% 10% 

8. CONCLUSIONS

In this paper, an efficient PBS is implemented on OCCT using up to 1020 processors, up to 400 MB of 

input-data size and two data distributions; namely, random and descending. The performance of the 

PBS algorithm on OCCT is evaluated analytically in terms of parallel runtime, which includes 

computation, communication and concatenation, in addition to speedup and efficiency. Also, the PBS 

algorithm is evaluated by simulation in terms of speedup and efficiency. Moreover, a comparison is 
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presented in terms of speedup between the PBS algorithm on 1020 processors of the OCCT and the 

PQS algorithm on 1152 processors of the OHHC for random data distribution ranges from 60 MB to 

400 MB. 

As simulation results, the PBS algorithm on OCCT outperforms the PQS algorithm on OHHC in terms 

of speedup for various random data sizes ranging from 60 MB to 400 MB. A maximum speedup of 

approximately 912x is obtained on OCCT using 1020 processors and descending input-data 

distribution of size 400 MB. Also, a maximum efficiency of approximately 92% is obtained on OCCT 

using 124 processors and descending input-data distribution of size 40 MB, which means that the 

utilization of the OCCT processors reaches 92%.  

In general, the PBS algorithm has some limitations, where its performance can be affected by the type 

of data distribution. For example, when the data distribution is random, then the best and average 

cases are obtained, since we used the sequential quicksort to sort the data locally at each processor. 

Whereas the worst-case is obtained when we used the descending data distribution for the same 

mentioned reason. 

Moreover, in general, bucket-sort performance is sensitive to the distribution of the input values; so, if 

you have tightly clustered values, it is not recommended. Also, the performance of bucket sort 

depends on the number of buckets chosen, which might require some extra performance tuning 

compared to other algorithms. However, these limitations need to be considered when the bucket-sort 

algorithm is applied to various architectures. 

As potential future research directions to this work, the PBS algorithm can be applied to other opto-

electronic interconnection networks, such as the OTIS and its variants, to show the performance of 

such opto-electronic interconnection networks [31] [33]. Moreover, the PBS algorithm can be applied 

to other well-known architectures, such as multi-threaded architectures, shared-memory multi-core 

architectures and mesh-connected multi-processors to evaluate their performance [1], [39]-[40]. 
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ملخص البحث:

صن ا أااااااا   ا اااااااو  إنّ لأداء خوارزمياااااااصن ا أرّااااااااي  لىااااااا ان اليااااااا ان   ااااااا  ا    ااااااا  مااااااا  ا أّ لي ااااااا

  ااااااا   ماااااااصقصنع م ابّااااااالى موااااااا   رااااااار ا لاااااااص اون   ااااااا  ماااااااوازا  ا  ايااااااا  مااااااا  خوارزمياااااااصن 

ا أرّااااااي  كااااا  اااااال صن ا رّاااااص  مأاوّ ااااال قايااااال   ماااااي  لدا  اااااص ا ر صقااااار ا أأّاااااصق  ى ممااااا  قاااااي  

نى    ك ا شّل صن مص  ُ  ف قص شّج   ا رّ  لل ا رمَْ مَل ضو يص

ت اااااو  قأ لي  اااااص   ااااا  اااااال ل مْ وِ اّاااال مأواز ااااالة كااااا  لااااا ن ا وروااااالة ت ااااا ّ  خوارزميااااال  رااااااي  دَ 

نى ااااااااا  ك ت راااااااار   اااااااا    يااااااااي  الأداء ا أرّااااااااايب   أ ااااااااك  ا رّااااااااص  مّ  لاااااااال مُمَْ مَاااااااال ضااااااااو يص

  مااااااا خوارزمياااااال  اااااا     اااااا  ااااااارّع ماااااا  ا أّ  ياااااار ما ر صاااااااص  ماااااا   ياااااا  مجرو اااااال مأاوّ اااااال 

 ة صرااااااا ّ لاا  ماااااازم ةبصماااااا  ا  ماااااازم ة زاوأاااااار ا رياشاااااااأّ  ا  مااااااز ص اااااايك صرااااااق ءادلأا سي ص اااااام

  صجاااااا لأم ةنصجاااااا ِ ص ر ا  ماااااا لباااااا أخم دا  اااااالأ ك ااااااذم ؛لياااااا ص ب ام ةل  مّاااااا ام ةعياااااارجأّ  ا  ماااااازم

 ع اااااااازوأّ  ا) نصتااااااااصيل ا ع اااااااازو   ماااااااا لباااااااا أخم عاوتاااااااالأم ةنصتااااااااصيل ا نص ااااااااورجم  ماااااااا لباااااااا أخم

 ى(  زصاأّ  ا ع زوأّ  ام ة  اوش  ا

 ص ااااايك  صرااااا ّ ا ل لشااااا  تتاااااصا ص اااااي    ورااااا  ا  ّ  ااااا ل  سااااا  راااااول نّ ل  صااااااص ر ا ج صأااااات تاااااايّ قم

ن جااااااا ِ ص م (1020) ن جااااااا ِ ص مُ  (1020)  ا خأساااااااصق  زاوأااااااار ا رياشاااااااأّ  ا  ماااااااز غ اااااااق  يااااااا  ةص  (912) ص

ن ب ْ ضِ   ى  ام جع  ِ ص مُ   ا خأسصق  وِ  ْ     ا  يارأّ      قصأأّ  ا رياشأّ  ا  مزق لترص م ص
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