
319

.Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024

B. A. Mahafzah is with Department of Computer Science, King Abdullah II School of Information Technology, The University of Jordan

and with Department of Computer Science, King Hussein School of Computing Sciences, Princess Sumaya University for Technology,

Amman, Jordan. Emails: b.mahafzah@ju.edu.jo and b.mahafzah@psut.edu.jo

PARALLEL BUCKET-SORT ALGORITHM ON OPTICAL

CHAINED-CUBIC TREE INTERCONNECTION

NETWORK

Basel A. Mahafzah

(Received: 15-Mar.-2024, Revised: 12-May-2024 and 19-Jun.-2024, Accepted: 23-Jun.-2024)

ABSTRACT

The performance of sorting algorithms has a great impact on many computationally intensive applications.

Researchers worked on parallelizing many sorting algorithms on various interconnection networks to improve

their sequential counterpart performance. One of these interconnection networks is the optical chained-cubic

tree (OCCT). In this paper, a parallel bucket sort (PBS) algorithm is presented and applied to the OCCT

interconnection network. This PBS algorithm is evaluated analytically and by simulation in terms of various

performance metrics including parallel runtime, computation time, communication time, concatenation time,

speedup and efficiency, for a different number of processors, dataset sizes and data distributions including

random and descending distributions. Simulation results show that the highest obtained speedup is

approximately 912x on OCCT using 1020 processors, which means that the parallel runtime of the PBS on 1020

processors is 912 times faster than the sequential runtime of BS on a single processor.

KEYWORDS

Bucket sort, Parallel sorting algorithm, Interconnection network, Opto-electronic architecture.

1. INTRODUCTION

Many researchers concentrate their efforts on minimizing the run time needed to perform sorting

algorithms efficiently on various architectures [1]-[11]. Also, several comparative sorting algorithms

have been presented and analyzed in detail to show their advantages and disadvantages [12]-[17]. In

general, sorting algorithms are among the most studied algorithms and are important in the computer

science field, since sorting is one of the most essential operations used in many problems and

applications, such as integer problems, databases, search engines, text data, image processing and

information retrieval [18]-[24].

One of the well-known sorting algorithms is the bucket sort (BS) [14][19][25], which is a good choice

for sorting elements with values uniformly distributed over an interval. In the BS algorithm, the

interval is divided into consecutive non-overlapping sub-intervals called buckets to sort the input,

where each element is placed in an appropriate bucket based on the element's value and each bucket is

sorted using any sorting algorithm, such as quicksort, merge sort, count sort, insertion sort, …etc.

Then, buckets are concatenated to form the sorted list [19], [25]-[26].

Practically, sorting a large number of elements using a sequential bucket-sort algorithm requires a high

runtime. So, one way to improve the runtime of the bucket-sort algorithm is to run it on parallel or

distributed architectures [27]-[30]. Examples of these architectures are optical chained-cubic tree

(OCCT) [31] and optical transpose interconnection system (OTIS) and its variants, such as OTIS-

Mesh, OTIS-Hypercube and OTIS Hyper Hexa-Cell (OHHC) [32]-[34].

The OCCT interconnection network is based on the chained-cubic tree (CCT) which is constructed

from a tree and hypercubes in addition to electronic and optical links [31][35]. The electronic links

connect processors within tree levels and hypercubes, whereas optical links are added on a certain

level of the tree to reduce the distance between processors. In general, optical links can carry data with

less power consumption and a high data rate compared to electronic links [36]-[37]. OCCT shows

efficient topological properties including low diameter, high maximum node degree and high bisection

width [31]-[32]. Also, the CCT was evaluated by implementing a parallel bitonic sort algorithm on

this interconnection network, where it showed a great performance [3]. The efficient properties of

320

"Parallel Bucket-sort Algorithm on Optical Chained-cubic Tree Interconnection Network", B. A. Mahafzah.

OCCT and the previous work on CCT motivate us to implement a parallel bucket-sort (PBS)

algorithm on OCCT taking advantage of the OCCT-structure properties to get an efficient parallel

sorting algorithm.

The main contribution of this paper is implementing an efficient PBS algorithm on the OCCT

interconnection network and evaluating the PBS algorithm analytically and by simulation in terms of

parallel runtime, computation time, communication time, concatenation time, speedup and efficiency,

for different numbers of processors and dataset sizes and two types of data distributions; namely,

random and descending distributions.

2. RELATED WORK

Several research works have been conducted on the parallel bucket-sort algorithm using various

architectures and platforms. For example, in [27], the author showed how to convert a sequential

bucket-sort algorithm into a parallel algorithm, which has been implemented and executed using

OpenMP API. Experimental results showed that this parallel version is a scalable algorithm, where its

performance can be improved as the number of cores is increased. Also, in [28], the authors

implemented a parallel bucket-sort algorithm for a many-core architecture of graphics processing units

(GPUs) based on convex optimization. Moreover, in [29], the author used threads and GPU

programming to optimize the bucket-sort algorithm. Experimental results showed that for a small

number of elements, it is better to carry out the sorting in a single thread. Also, using the bucket-sort

algorithm, the bottleneck of GPU and CPU is shown in this research work clearly.

Additionally, several research works have been conducted on opto-electronic architectures. In [32], the

authors presented a detailed review of nine optoelectronic architectures in terms of their topological

structure and topological properties including the OCCT. These opto-electronic architectures are

interconnection networks that use electronic and optical links to connect processors. All these

architectures except the OCCT are based on OTIS. These architectures are evaluated in terms of

various topological properties; namely, size, diameter, cost, bisection width, maximum node degree

and minimum node degree and Hamiltonian path and cycle. Among these architectures, the OCCT

showed great performance in terms of diameter, maximum node degree and bisection width [31]-[32].

However, up to this time and up to our knowledge, none of the parallel bucket-sorting algorithms has

been applied to opto-electronic architectures, which motivates us to implement an efficient parallel

bucket-sort algorithm on the OCCT opto-electronic architecture and evaluate it analytically and by

simulation in terms of various performance metrics.

3. OCCT INTERCONNECTION NETWORK

The structure of the OCCT interconnection network [31] is based on CCT [35], where the CCT

interconnection network is based on a binary tree and hypercubes. The height h of OCCT is floor(log

G) and each hypercube in OCCT is a group G of 2d processors of dimension d, in addition to a specific

level lv that is chosen according to the height of the tree where the optical links are added in a

cascading manner between distant hypercubes at that level. Thus, OCCT is referred to as OCCT (h, d,

lv). An OCCT can be a full or complete binary tree network based on the status of its last level. Figure

1 shows a full OCCT(3, 2, 2) [31], where 3 is the height of the tree, 2 is the dimension of each

hypercube group and 2 is the lv level number wherein at that level, the optical links are added (thick

black lines). Figure 2 shows the lv level where lv = 2 in details of the OCCT(3, 2, 2) [31]. Also, as

shown in Figure 2, the label of each processor is unique and contains a pair of numbers (Gi, pj). For

example, processor (3, 2) means processor number 2 in group number 3. However, more details

regarding the labeling of groups and processors in OCCT can be found in [31].

The lv value depends on two factors; the type of binary tree whether it is full or complete. If the tree is

a full binary tree, then the level lv = ceiling(h/2) and if the tree is a complete binary tree, then the level

lv depends on the tree height type; whether odd or even and the number of groups in the last level.

Thus, there are three cases; the first case is if the tree height h is even, then lv= h/2. In the second case,

if the tree height h is odd and the number of groups in the last level is less than (2(h-1)/2)×3+1, then lv =

(h-1)/2. In the third case, if the tree height h is odd and the number of groups in the last level is greater

than or equal to (2(h-1)/2)×3+1, then lv = (h+1)/2 [31]. However, more details regarding implementing

321

.Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024

the structures of OCCT and CCT can be found in [31][35].

The size is the number of processors in the OCCT interconnection network. The size of the OCCT(h,

d, lv) is G × 2d, where G is the number of hypercube groups in the tree and 2d is the number of

processors in each hypercube of dimension d [31]-[32].

Figure 1. An OCCT(3, 2, 2).

Figure 2. Level two of OCCT(3, 2, 2).

4. SEQUENTIAL BUCKET SORT ALGORITHM

The sequential BS algorithm is a well-known sorting algorithm. It sorts n elements the values of which

are uniformly distributed over an interval [1, n], where this interval is divided into b equal-sized sub-

intervals called buckets. That is, the BS algorithm uses buckets of the same size and each element is

placed in the appropriate bucket according to its value. As a result, each bucket will have almost the

same number of elements which is approximately n/b. Then, the BS algorithm uses an efficient and

easy-to-implement sorting algorithm, such as quicksort [14][38], to sort the elements in each bucket.

Finally, these sorted buckets are concatenated in the appropriate order to form the final sorted list. The

run time of this sequential BS algorithm is Θ(n log (n/b)), where this low time complexity is due to the

assumption that the n elements to be sorted are uniformly distributed over the interval [1, n].

The sequential BS algorithm’s steps are shown in Algorithm 1, where the input parameters are defined

in Table 1 and the size of a bucket (s) and its sub-interval are computed using Equations (1)-(3).

s = (max – min + 1) / b (1)

Bucketstart(B) = min + B × s, where B = 0, 1, 2, …, b–1 (2)

Bucketend(B) = Bucketstart(B) + s – 1 (3)

322

"Parallel Bucket-sort Algorithm on Optical Chained-cubic Tree Interconnection Network", B. A. Mahafzah.

Algorithm 1 Sequential BS algorithm’s steps.

Input Initially, a single processor has the input of n elements, which are distributed uniformly

over the interval [1, n].

Output Sorted n elements in ascending order.

1 Sizes and sub-intervals of the buckets are computed by a single processor using

Equations (1)-(3).

2 Using the created buckets in Step 1, each element is placed in its appropriate bucket

according to its value and the bucket’s sub-interval. That is the input array is scanned

from left to right and each element is moved to its appropriate bucket.

3 After all elements are placed in their buckets, a call to a quicksort algorithm is executed

to sort each bucket.

4 After each bucket is sorted, buckets are concatenated in the required order to produce the

final sorted list.

Table 1. Input parameters of sequential BS algorithm.

Parameters Description

n Number of elements to be sorted (input size)

b Number of buckets

B Bucket number

max Maximum element value in the input (last index of input array equals n)

min Minimum element value in the input (first index of input array equals 1)

s Size of the bucket, which is the number of elements in the bucket, where all buckets

have almost the same size

Bucketstart(B) First element in the sub-interval of bucket number B

Bucketend(B) Last element in the sub-interval of bucket number B

5. PARALLEL BUCKET SORT ALGORITHM ON OCCT

In this section, we introduce the PBS algorithm on the OCCT interconnection network, as shown in

Algorithm 2. In the proposed PBS algorithm, we assume a list of n elements uniformly distributed

over the interval [1, n] to be sorted using a number of buckets (b), where these b buckets are almost of

the same size. Each bucket is assigned to a single processor in OCCT; that is, p = b, where p is the

number of processors. Also, we assume that the bucket size is s, where s = n/b. Additionally, we

assume initially that each processor has a complete copy of the input n elements.

The PBS algorithm consists of two phases: the computation phase and the communication and

concatenation phase, where, in Algorithm 2, steps 1–4 present the computation phase and steps 5 and

6 present the communication and concatenation phase.

Algorithm 2 works as follows: In step 1, in parallel, each processor in OCCT calculates the size of the

bucket and the sub-intervals of the buckets using Equations (1)-(3).

In step 2, each processor is assigned a bucket according to a global group sequential ordering, where

for example every four buckets are assigned to one group (i.e., one hypercube of four processors) by

sequential order. For example, the first four buckets numbered 0 to 3 are assigned to group 0, while

the second four buckets which are numbered 4 to 7 are assigned to group 1, …and so on.

In step 3, in parallel, each processor scans the entire n input elements and determines the elements that

belong to its bucket according to both its bucket sub-interval and the elements’ values which must be

within the bucket’s sub-interval. As a result, each bucket will have almost the same number of

elements, which is approximately n/b.

In step 4, in parallel, each processor applies the sequential quicksort algorithm to sort the elements of

its bucket which are approximately n/b elements. The quicksort algorithm is an in-place sorting

323

.Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024

algorithm that does not need additional memory space to sort the n/b elements and it is easy to

implement using the divide-and-conquer approach. Also, it is efficient in terms of time complexity,

which is O(n/b log2 n/b), since it sorts n/b elements in each processor in parallel and independently.

In step 5, the processors communicate with each other to combine their sorted buckets at a single

processor located at the left-most hypercube group of the lv level in OCCT, where the optical links

exist to take advantage of these links. Thus, the communication pattern of the proposed PBS algorithm

takes place in three major stages as follows:

1. Upper and lower tree communication stage: In this stage, processors at the lv level gather results

from processors at upper and lower levels in the tree at the same time in parallel.

2. Hypercube-communication stage: In this stage, each group of processors from a hypercube at the

lv level gathers their results at processor number 0 of that hypercube.

3. Optical-communication stage: In this stage, processor number 0 of the left-most hypercube at the

lv level gathers results from other processors number 0 of other hypercubes of the same lv level.

Finally, in step 6, at this left-most group, the single processor that received all sorted buckets

concatenates them as one list of elements according to the buckets’ number from lowest to highest

which presents the buckets’ sub-intervals from lowest to highest to have the n elements sorted in

ascending order.

Algorithm 2 PBS algorithm’s steps on OCCT.

Input Initially, each processor pi has a complete copy of the input n elements which are

uniformly distributed over the interval [1, n].

Output Sorted n elements in ascending order.

1 In parallel, the size of the bucket and the sub-intervals of buckets are computed by each

processor in OCCT using Equations (1)-(3).

2 Each processor pi is assigned a bucket bi according to a global ordering, where for

example every four buckets are assigned to one group (i.e., one hypercube of four

processors) by sequential order.

3 In parallel, each processor pi scans the input n elements and determines the elements that

belong to its bucket bi according to its sub-interval and the elements' values.

4 In parallel, each processor pi applies the sequential quicksort algorithm to sort the

elements of its bucket bi.

5 Processors communicate with each other to combine and concatenate their results at a

single processor located at the left-most group of the lv level in OCCT.

6 At this single processor, the buckets are concatenated according to their number and sub-

intervals from lowest to highest to have the n elements sorted.

The proposed PBS algorithm is modified slightly and customized to be applied to OCCT architecture

efficiently. The modification is made in the computation phase by having the buckets almost equal in

size and p=b to distribute buckets on processors evenly (i.e., load-balanced) to have all processors

finish approximately at the same time, which leads to better performance. The customization is made

in the communication and concatenation phase, where the buckets are distributed and gathered in less

communication time using the electronic and optical links; that is reaching all processors using the

shortest path (the diameter of OCCT).

An example of the PBS algorithm’s steps is shown in Figure 3. In this example, we do not show the

communication phase in detail, for simplicity. Also, in this example, we assume that n = 16 and b = p

= 4. Therefore, the size of each bucket is 4. Initially, each processor has a copy of the input list which

contains uniformly distributed 16 elements over the interval [1, 16], as shown in Figure 3(a). Then the

bucket’s size and sub-interval of each bucket are computed using Eqs. (1–3) and each processor

determines its elements according to its bucket’s sub-interval, as shown in Figure 3(b). Then, each

processor sorts its bucket, as shown in Figure 3(c) and finally, the processors communicate to gather

324

"Parallel Bucket-sort Algorithm on Optical Chained-cubic Tree Interconnection Network", B. A. Mahafzah.

the buckets at processor(0), where it concatenates the buckets sequentially according to their number

and sub-intervals from lowest to highest to have a sorted list in ascending order, as shown in Figure

3(d).

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor(0) 5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor(1) 5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor(2) 5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor(3) 5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4

(a) Initially, each processor has a copy of the input list which contains uniformly distributed 16 elements

over the interval [1, 16].

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor(0)

Subinterval [1, 4]
5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor(1)

Subinterval [5, 8]
5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor(2)

Subinterval [9, 12]
5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processor(3)

Subinterval [13, 16]
5 3 1 2 6 8 10 11 15 16 14 13 12 7 9 4

(b) Bucket sizes and the sub-intervals of buckets are computed and each bucket is assigned to a processor.

Index 1 2 3 4 Index 1 2 3 4

Processor(0)

Unsorted Bucket(0)
3 1 2 4

Processor(0)

Sorted Bucket(0)
1 2 3 4

Index 1 2 3 4 Index 1 2 3 4

Processor(1)

Unsorted Bucket(1)
5 6 8 7

Processor(1)

Sorted Bucket(1)
5 6 7 8

Index 1 2 3 4 Index 1 2 3 4

Processor(2)

Unsorted Bucket(2)
10 11 12 9

Processor(2)

Sorted Bucket(2)
9 10 11 12

Index 1 2 3 4 Index 1 2 3 4

Processor(3)

Unsorted Bucket(3)
15 16 14 13

Processor(3)

Sorted Bucket(3)
13 14 15 16

(c) Each processor sorts its unsorted bucket.

Buckets subintervals 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Concatenated sorted

buckets at Processor(0)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bucket(0) Bucket(1) Bucket(2) Bucket(3)

(d) Processor(0) concatenates all received buckets to form a sorted list.

Figure 3. Example of the PBS algorithm’s steps.

325

.Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024

6. ANALYTICAL EVALUATION

In this section, the proposed PBS algorithm is evaluated analytically in terms of several performance

metrics, including parallel runtime complexity, speedup and efficiency. The parallel runtime is the

time that passes from the moment that a parallel computation starts to the moment at which the last

processor finishes execution, where it includes the time that a parallel program spends in computation

and communication [13]. Thus, the analytical evaluation of the PBS algorithm is presented for its

computation phase first in sub-section 6.1 followed by its communication and concatenation phase in

sub-section 6.2 and lastly, in sub-section 6.3, the mentioned performance metrics are presented.

6.1 Computation-phase Analysis

In this sub-section, the computation analysis of the proposed PBS algorithm (Algorithm 2) is

presented. In the computation phase, according to Algorithm 2, four steps are shown as follows, where

each step is followed by its expected sequential and parallel runtime complexity:

1. Finding bucket size and sub-intervals of all buckets: Sequential and parallel runtime complexity

for finding bucket size is constant O(1) and for finding the sub-intervals of all buckets is O(b),

since in BS and PBS algorithms, finding the size and the sub-intervals of buckets can be carried

out using Equations (1)-(3).

2. Assigning buckets: Sequential and parallel runtime complexity is O(1), since, in the BS algorithm,

all buckets are assigned to a single processor and in the PBS algorithm, each processor is assigned

one bucket according to a global sequential ordering; specifically, buckets are assigned according

to group number and processor number.

3. Putting each element in its proper bucket: Sequential and parallel runtime complexity is O(n),

since, in BS and PBS algorithms, each processor passes over the n elements to find its bucket

elements.

4. Sorting buckets: Sequential runtime is O(b × s log s) as best and average cases, since we have b

buckets to sort each of size s, assuming that each bucket has the same number of elements and

using quicksort to sort each bucket sequentially. The quicksort best and average-case time

complexity is O(n log n) to sort n elements, where these cases occur when the elements are

random [14][38]. Since n = b × s, then the sequential runtime is O(n log s). In the worst case, the

time complexity of quicksort is O(n2) to sort n elements, where this case occurs when the elements

are already ascendingly or descendingly sorted [14]. Thus, the bucket sort worst-case time

complexity would be O(b × s2) = O(n × s). Whereas, the parallel runtime complexity is O(s log s),

since in parallel each processor uses a quicksort algorithm to sort its s elements in the best and

average cases and in the worst case, it would be O(s2). Note that s << n, since s = n / b.

The sequential and parallel computation runtimes of the PBS algorithm differ only in the fourth step,

which is the step of sorting buckets. Thus, based on the four computational steps, the sequential

runtime (Tseq) of the BS algorithm as best and average cases and worst case is shown in Equations (4)-

(5), respectively. The parallel computation runtime (Tcomp) of the PBS algorithm as best and average

cases and worst case is shown in Equations (6)-(7), respectively.

Tseq = O(1) + O(b) + O(1) + O(n) + O(n log s) ≈ O(n log s) (best & average cases) (4)

Tseq = O(1) + O(b) + O(1) + O(n) + O(n × s) ≈ O(n × s) (worst case) (5)

Tcomp = O(1) + O(b) + O(1) + O(n) + O(s log s) ≈ O(s log s) (best & average cases) (6)

Tcomp = O(1) + O(b) + O(1) + O(n) + O(s2) ≈ O(s2) (worst case) (7)

6.2 Communication and Concatenation Phase Analysis

In this sub-section, the communication and concatenation phase of the proposed PBS algorithm

(Algorithm 2) is presented. The communication pattern of the proposed PBS algorithm has the

following three stages: The upper and lower tree communication stage, the hypercube-communication

stage and the optical-communication stage.

In general, the communication time equals the number of required steps multiplied by the message

size, where a message may contain one sorted bucket or two concatenated sorted buckets or more,

multiplied by the time to transmit a word of data on an electronic (𝑇𝑤𝑒) or an optical link (𝑇𝑤𝑜).

326

"Parallel Bucket-sort Algorithm on Optical Chained-cubic Tree Interconnection Network", B. A. Mahafzah.

For the first stage, the upper tree communication time is presented in Equation (8). The number of

required steps for the upper tree communication equals the value of lv, because we have to pass lv

levels from the root of the tree (level 0) to the optical links level (lv). In each step, we pass a bucket of

size s = (n / b). Also, in this upper communication, buckets are transmitted using only electronic links.

So, the total communication time required for the upper tree is Tup, as shown in Equation (8).

𝑇𝑢𝑝 = 𝑙𝑣 × 𝑠 × 𝑇𝑤𝑒 (8)

The tree height from the last level of the tree to the lv level is (h – lv), which is equal to lv or (lv–1)

depending on the place of the optical links, as discussed in Section 3. Thus, the number of

communication steps is the maximum between lv and (lv – 1), which is lv. In the first step, the size of

the transferred message is s, which is the size of a single bucket. In the second step, the size becomes

(2 × s), while in the third step, the size is (4 × s), …and so on. At maximum, the size of the transferred

message is (2𝑙𝑣−1 × 𝑠); that is at every step, the size of the transferred message doubles, which means

that the number of transferred buckets doubles. Also, only the electronic links are used to transfer the

buckets to the lv level. So, the total communication time required for the lower tree is Tlow, as shown in

Equation (9), where the size of the transferred buckets is (∑ 2𝑖−1𝑙𝑣
𝑖=1 × 𝑠) . Equation 9 can be

simplified, as shown in Equation (10). Note that, in our simulation runs, the values of lv vary

according to the size of OCCT, specifically from 2 to 4, which is a small value.

𝑇𝑙𝑜𝑤 = 𝑙𝑣 × (∑ 2𝑖−1𝑙𝑣
𝑖=1 × 𝑠) × 𝑇𝑤𝑒 (9)

𝑇𝑙𝑜𝑤 = 𝑙𝑣 × ((2𝑙𝑣 − 1) × 𝑠) × 𝑇𝑤𝑒 (10)

Since the upper and the lower tree communication are carried out in parallel, then the communication

time of this stage is 𝑇𝑢𝑝−𝑙𝑜𝑤 , which is the maximum time between the upper and the lower tree

communication times, as shown in Equation (11). Thus, since the lower tree communication time is

larger than the upper tree communication time because a larger message size is transferred, the

communication time of this stage is dominated by the lower-communication time.

𝑇𝑢𝑝−𝑙𝑜𝑤 = max ((𝑙𝑣 × 𝑠 × 𝑇𝑤𝑒), (𝑙𝑣 × ((2𝑙𝑣 − 1) × 𝑠) × 𝑇𝑤𝑒)) (11)

The number of communication steps in the hypercube is d, which is the dimension of the hypercube,

in our case d = 2. Specifically, in the first step, the size of the message equals the results (concatenated

sorted buckets) gathered from stage 1 in addition to one bucket that each processor in the hypercube

originally has. However, the hypercube-communication time in this stage depends on the number of

received buckets from the previous stage. So, the total hypercube-communication time (𝑇𝑄) is shown

in Equation (12), where the size of the received buckets from the upper tree levels is (𝑙𝑣 × 𝑠) and the

size of the received buckets from the lower tree levels including the bucket that each processor in the

hypercube originally had is (2 × (2𝑙𝑣 − 1) × 𝑠 + 𝑠) where it can be simplified as ((2𝑙𝑣+1 − 1) × 𝑠).

Also, the communication links used in the hypercubes are electronic links.

𝑇𝑄 = 𝑑 × ((𝑙𝑣 × 𝑠) + ((2𝑙𝑣+1 − 1) × 𝑠)) × 𝑇𝑤𝑒 (12)

In the last stage of communication, the optical communication stage, processor number 0 at the left-

most hypercube of level lv gathers all results (concatenated sorted buckets) from its counterpart

processors numbered 0 of other hypercubes in the same level lv using the optical links. This required

at most two optical steps, since there are no adjacent nodes and groups connected using optical links in

the lv level [31]. The size of the transferred concatenated sorted buckets is the size of the received

buckets from stage 2 (hypercube-communication stage) to processor 0, in addition to its bucket.

Equation 13 presents the total optical communication time of this stage, which is 𝑇𝑜𝑝.

𝑇𝑜𝑝 = 2 × (2𝑑 × (((𝑙𝑣 − 1) × 𝑠) + ((2𝑙𝑣+1 − 1) × 𝑠))) × 𝑇𝑤𝑜 (13)

The total communication time (𝑇𝑐𝑜𝑚𝑚) of the PBS algorithm on OCCT is the summation of the upper

and the lower-communication time, hypercube communication time and optical communication time,

as shown in Equation (14), which are presented in Equations (11)-(13), respectively.

𝑇𝑐𝑜𝑚𝑚 = 𝑇𝑢𝑝−𝑙𝑜𝑤 + 𝑇𝑄 + 𝑇𝑜𝑝 (14)

During each stage of communication, sorted buckets are concatenated once they are received by a

processor according to the group and processor numbers. So, the parallel runtime complexity of the

327

.Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024

concatenation of the buckets is 𝑇𝑝𝑐, as shown in Equation (15), which is the number of communication

steps in each stage, where lv is the number of communication steps in the upper and the lower

communication stage, d is the number of communication steps in the hypercube-communication stage

and 2 is the number of communication steps in the optical-communication stage. Also, lv and d are

small values, where in our case d = 2 and lv varies between 2 and 4 according to the OCCT size.

However, the sequential runtime complexity of the concatenation of buckets is O(b), where b is the

number of buckets.

𝑇𝑝𝑐 = O(𝑙𝑣 + 𝑑 + 2) (15)

6.3 Performance Metrics

In this sub-section, the performance metrics of the proposed PBS algorithm are presented, including

the parallel runtime complexity, speedup and efficiency. The parallel runtime complexity (𝑇𝑝) of the

PBS algorithm on OCCT is the summation of the computation, communication and concatenation

times, as shown in Equation (16), which are presented in Equations (6) (14) (15), respectively, as

shown in Equation (17). However, the parallel runtime complexity of the PBS algorithm, which is

presented in Equation (17) as the best and average cases, is dominated by the computation time for

large n, which is the common case. The speedup (𝑆𝑝) is defined as the sequential runtime divided by

the parallel runtime of solving the same problem, as shown in Equation (18). Thus, the speedup of the

PBS algorithm on OCCT is shown in Equation (19), where the sequential runtime complexity (𝑇𝑠𝑒𝑞)

of the BS algorithm is shown as the best and average cases. Accordingly, Equation (19) shows the

speedup as the best and average cases. The efficiency (𝐸𝑓) is defined as the speedup divided by the

number of used processors, as shown in Equation (20). Thus, the efficiency of the PBS algorithm on

OCCT is shown in Equation (21) as the best and average cases.

𝑇𝑝 = 𝑇𝑐𝑜𝑚𝑝 + 𝑇𝑐𝑜𝑚𝑚 + 𝑇𝑝𝑐 (16)

𝑇𝑝 = O(𝑠 log 𝑠) + (𝑇𝑢𝑝−𝑙𝑜𝑤 + 𝑇𝑄 + 𝑇𝑜𝑝) + O(𝑙𝑣 + 𝑑 + 2) (17)

𝑆𝑝 =
𝑇𝑠𝑒𝑞

𝑇𝑝
 (18)

𝑆𝑝 =
O(𝑛 log 𝑠)

O(𝑠 log 𝑠)+(𝑇𝑢𝑝−𝑙𝑜𝑤+𝑇𝑄+𝑇𝑜𝑝)+O(𝑙𝑣+𝑑+2)
 (19)

𝐸𝑓 =
𝑆𝑝

𝑝
 (20)

𝐸𝑓 =
O(𝑛 log 𝑠)

𝑝 ×(O(𝑠 log 𝑠)+(𝑇𝑢𝑝−𝑙𝑜𝑤+𝑇𝑄+𝑇𝑜𝑝)+O(𝑙𝑣+𝑑+2))
 (21)

7. SIMULATION ENVIRONMENT AND RESULTS

In this section, the simulation environment and results are presented and discussed. The simulation

results are evaluated in terms of two performance metrics; namely, speedup and efficiency.

7.1 Simulation Environment

The OCCT interconnection network does not exist as a real-machine or real-computing environment.

Therefore, the OCCT interconnection network and the algorithms are implemented using Java Virtual

Threads, simulated as a distributed memory model. However, the simulation runs under a shared

memory multi-core computer machine.

In this sub-section, the simulation environment is presented, including software and hardware

specifications and input-data distributions. The simulation implementation is programmed using Java

Virtual Threads, which offer lightweight and efficient concurrency management within the Java

Virtual Machine, on a multi-core computer machine with the specifications provided in Table 2. The

parameter settings of the PBS algorithm’s conducted simulation runs are shown in Table 3. Also,

Table 4 presents the required parameter settings to implement the OCCT interconnection network

which are the type of OCCT whether it is full or complete, the height h of the tree, the number of

processors (p), the number of groups (G) in OCCT, the number of groups at the last level of OCCT

(GL) and the values of the level lv, where these values are calculated according to the equations

presented in Section 3.

328

"Parallel Bucket-sort Algorithm on Optical Chained-cubic Tree Interconnection Network", B. A. Mahafzah.

Table 2. Hardware specifications of the computer machine used for simulation runs.

Processor
Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz

(4 Cores and 8 Threads)

RAM 16 GB

Operating system 64-bit Windows 10 Pro

Table 3. Parameter settings of the PBS algorithm’s conducted simulation runs.

Type of sorting Ascending

Type of input elements 4-byte integer number

Input size (MB) 0.4, 1.2, 2, 2.8, 4, 12, 20, 40, 60, 100, 150, 200, 400

Type of OCCT
Full OCCT(h, 2, lv), two-dimensional hypercube

Complete OCCT(h, 2, lv), two-dimensional hypercube

Number of processors
Full OCCT: 60, 124, 252, 508, 1020

Complete OCCT: 92, 188, 380, 764

Input-data distribution
R: Random

D: Descending and continuous (reverse ordered)

Table 4. Parameter settings of the OCCT interconnection network.

OCCT Type Height (h)
Number of

Processors (p)

Number of

Groups (G)

Number of Groups

at Last Level (GL)
Level (lv)

Full 3 60 15 8 2

Complete 4 92 23 8 2

Full 4 124 31 16 2

Complete 5 188 47 16 3

Full 5 252 63 32 3

Complete 6 380 95 32 3

Full 6 508 127 64 3

Complete 7 764 191 64 4

Full 7 1020 255 128 4

Table 5. Communication-time parameters.

Parameters Values

𝑊𝑠𝑖𝑧𝑒 4 𝐵𝑦𝑡𝑒𝑠 × 𝐵𝑦𝑡𝑒 𝑆𝑖𝑧𝑒 = 4 × 8 = 32 𝑏𝑖𝑡𝑠

𝐿𝑠𝑖𝑧𝑒 4 𝐵𝑦𝑡𝑒𝑠 × 𝐵𝑦𝑡𝑒 𝑆𝑖𝑧𝑒 = 4 × 8 = 32 𝑏𝑖𝑡𝑠

𝐸𝑙𝑠𝑝𝑒𝑒𝑑 250 𝑀𝑏𝑝𝑠

𝑂𝑝𝑠𝑝𝑒𝑒𝑑 2.5 𝐺𝑏𝑝𝑠

𝑇𝑤𝑒

𝑊𝑠𝑖𝑧𝑒

𝐸𝑙𝑠𝑝𝑒𝑒𝑑

 =
32

250 × 1024 × 1024
= 122.1 𝑛𝑠𝑒𝑐

𝑇𝑤𝑜

𝑊𝑠𝑖𝑧𝑒

𝑂𝑝𝑠𝑝𝑒𝑒𝑑

 =
32

2.5 × 1024 × 1024 × 1024
 = 12.2 𝑛𝑠𝑒𝑐

Moreover, to compute and analyze the communication time, the values of word size (𝑊𝑠𝑖𝑧𝑒) which is

equal to the element size (𝐿𝑠𝑖𝑧𝑒), electronic link speed (𝐸𝑙𝑠𝑝𝑒𝑒𝑑) [36]-[37], optical link speed

(𝑂𝑝𝑠𝑝𝑒𝑒𝑑) [36], time to transmit word of data on the electronic link (𝑇𝑤𝑒) and time to transmit word of

data on the optical link (𝑇𝑤𝑜), are shown in Table 5.

7.2 Simulation Results

In this sub-section, the simulation results are presented and evaluated in terms of speedup and

efficiency using random and descending input-data distributions. Figures 4 and 5 show the speedup of

329

.Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024

PBS using random and descending distributions of different sizes on a different number of processors

on OCCT, respectively. In these figures, the speedup was highest when the input is 40 MB and lowest

when the input is 0.4 MB. However, two main cases can be observed from Figures 4 and 5 as follows:

 For a certain size of the input data distribution, the speedup increases as the number of processors

increases. This is because, as we increase the number of processors, the computation time on each

processor decreases since the data on each processor is decreased in size.

 For a certain number of processors, the speedup increases as we increase the size of the input-data

distribution. This is because the gap between parallel runtime and sequential runtime increases as

the size of data is increased.

Figure 4. PBS speedup for various random data-distribution sizes on OCCT.

Figure 5. PBS speedup for various descending data-distribution sizes on OCCT.

Figures 6 and 7 show the efficiency of the PBS algorithm running on a different numbers of

processors using random and descending distributions over OCCT, respectively. The highest

efficiency is achieved, which is approximately 92%, when we used descending data distribution of

size 40 MB on 124 processors, as shown in Figure 7. However, two main cases can be observed from

Figures 6 and 7 as follows:

 For a certain small size of the input-data distribution, the efficiency decreases as the number of

processors increases.

 For a certain number of processors, the efficiency decreases as we decrease the size of the input

data distribution.

0

100

200

300

400

500

600

700

800

900

1000

60 92 124 188 252 380 508 764 1020

Sp
ee

d
u

p

Number of Processors

40 (MB)

20 (MB)

12 (MB)

4 (MB)

2.8 (MB)

2 (MB)

1.2 (MB)

0.4 (MB)

0

100

200

300

400

500

600

700

800

900

60 92 124 188 252 380 508 764 1020

Sp
ee

d
u

p

Number of Processors

40 (MB)

20 (MB)

12 (MB)

4 (MB)

2.8 (MB)

2 (MB)

1.2 (MB)

0.4 (MB)

330

"Parallel Bucket-sort Algorithm on Optical Chained-cubic Tree Interconnection Network", B. A. Mahafzah.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

60 92 124 188 252 380 508 764 1020

Ef
fi

ci
en

cy

Number of Processors

40 (MB)

20 (MB)

12 (MB)

4 (MB)

2.8 (MB)

2 (MB)

1.2 (MB)

0.4 (MB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

60 92 124 188 252 380 508 764 1020

Ef
fi

ci
en

cy

Number of Processors

40 (MB)

20 (MB)

12 (MB)

4 (MB)

2.8 (MB)

2 (MB)

1.2 (MB)

0.4 (MB)

Figure 6. PBS efficiency for various random data-distribution sizes on OCCT.

Figure 7. PBS efficiency for various descending data-distribution sizes on OCCT.

In general, data distribution affects the performance of the PBS algorithm. Specifically, sorting

random data distribution on OCCT using the sequential quicksort on each processor, as mentioned in

Algorithm 2, will lead to the best and average case scenarios, whereas sorting descending data

distribution will lead to the worst-case scenario.

Figure 8 shows the scalability of the proposed PBS algorithm in terms of different large data sizes
ranging from 60 MB to 400 MB presented as random data distributions on 1020 OCCT processors.

Specifically, as shown in Figure 8, as the data gets larger, the speedup gets higher; that is for 60, 100,

150, 200 and 400 MB, the speedup is approximately 832, 846, 857, 861 and 871, respectively.

Additionally, the proposed PBS algorithm is compared with the parallel quicksort (PQS) algorithm in

terms of speedup, as shown in Figure 8. In this comparison, the PBS algorithm is applied on the

OCCT interconnection network using 1020 processors, whereas the PQS algorithm is applied on the

OHHC interconnection network using 1152 processors. The difference in the number of processors is

due to the structures of the OCCT and OHHC interconnection networks, as shown in [31][34]. As

shown in Figure 8, the PBS algorithm outperforms the PQS algorithm for all ranges of data sizes.

However, for 400 MB, the PBS algorithm outperforms the PQS algorithm slightly; specifically the

PBS algorithm achieved a speedup of 871, whereas the PQS algorithm achieved a speedup of 867.

This is due to the number of processors in OHHC which has more processors than OCCT by 132.

331

.Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024

Figure 8. Speedup comparison between the PBS algorithm on 1020 OCCT processors and the PQS

algorithm on 1152 OHHC processors for various random data-distribution sizes.

Additionally, as shown in Table 6, the PBS on OCCT is compared with the parallel bucket-sort

algorithm using various techniques and architectures, where random data distribution of size 40 MB is

used. In this table, the results show that PBS on OCCT outperforms these techniques and architectures

since the parallel bucket-sort algorithms are implemented on shared-memory architectures with

limited resources. Specifically, as the number of threads increases, the performance of these

algorithms decreases; that is, creating more threads than cores degrades the performance of these

algorithms, as mentioned in [27][29].

Table 6. Speedup comparisons between the PBS algorithm on OCCT and other parallel bucket-sort

algorithms using different techniques and architectures.

Technique/Architecture Speedup Threads/Nodes Number of Buckets

Multi-threaded [29] 1.88 8 100

OpenMP [29] 3.13 8 100

GPGPU using CUDA [29] 1.25 8 100

OpenMP API [27] 2.2 8 100

PBS on OCCT 6.54 8 100

Table 7 shows analytical versus simulation speedup for the PBS algorithm using 400 MB descending

data distribution on OCCT for different numbers of processors. It can be seen from the table that the

difference between the analytical and simulation speedup is small, ranging from 7% up to 12%, which

validates the correctness of the obtained simulation results.

Table 7. Analytical versus simulation speedup results of PBS algorithm over various numbers of

processors on OCCT using descending data distribution of 400 MB input size.

Number of Processors

60 92 124 188 252 380 508 764 1020

Analytical 59.995 91.989 123.981 187.902 251.824 379.594 507.2651066 760.377 1013.471

Simulation 53.996 80.951 114.063 169.112 231.678 337.839 471.7565491 669.132 912.124

Difference 10% 12% 8% 10% 8% 11% 7% 12% 10%

8. CONCLUSIONS

In this paper, an efficient PBS is implemented on OCCT using up to 1020 processors, up to 400 MB of

input-data size and two data distributions; namely, random and descending. The performance of the

PBS algorithm on OCCT is evaluated analytically in terms of parallel runtime, which includes

computation, communication and concatenation, in addition to speedup and efficiency. Also, the PBS

algorithm is evaluated by simulation in terms of speedup and efficiency. Moreover, a comparison is

0

100

200

300

400

500

600

700

800

900

1000

60 100 150 200 400

Sp
ee

d
u

p

Input Size (MB)

PBS

PQS

332

"Parallel Bucket-sort Algorithm on Optical Chained-cubic Tree Interconnection Network", B. A. Mahafzah.

presented in terms of speedup between the PBS algorithm on 1020 processors of the OCCT and the

PQS algorithm on 1152 processors of the OHHC for random data distribution ranges from 60 MB to

400 MB.

As simulation results, the PBS algorithm on OCCT outperforms the PQS algorithm on OHHC in terms

of speedup for various random data sizes ranging from 60 MB to 400 MB. A maximum speedup of

approximately 912x is obtained on OCCT using 1020 processors and descending input-data

distribution of size 400 MB. Also, a maximum efficiency of approximately 92% is obtained on OCCT

using 124 processors and descending input-data distribution of size 40 MB, which means that the

utilization of the OCCT processors reaches 92%.

In general, the PBS algorithm has some limitations, where its performance can be affected by the type

of data distribution. For example, when the data distribution is random, then the best and average

cases are obtained, since we used the sequential quicksort to sort the data locally at each processor.

Whereas the worst-case is obtained when we used the descending data distribution for the same

mentioned reason.

Moreover, in general, bucket-sort performance is sensitive to the distribution of the input values; so, if

you have tightly clustered values, it is not recommended. Also, the performance of bucket sort

depends on the number of buckets chosen, which might require some extra performance tuning

compared to other algorithms. However, these limitations need to be considered when the bucket-sort

algorithm is applied to various architectures.

As potential future research directions to this work, the PBS algorithm can be applied to other opto-

electronic interconnection networks, such as the OTIS and its variants, to show the performance of

such opto-electronic interconnection networks [31] [33]. Moreover, the PBS algorithm can be applied

to other well-known architectures, such as multi-threaded architectures, shared-memory multi-core

architectures and mesh-connected multi-processors to evaluate their performance [1], [39]-[40].

ACKNOWLEDGMENT

The author would like to express his deep gratitude to the anonymous referees for their valuable

comments and helpful suggestions, which enhanced this research manuscript. This research work was

conducted during the sabbatical leave from the University of Jordan for the academic year 2022/2023,

where this research work was accomplished at the Department of Computer Science, King Hussein

School of Computing Sciences, Princess Sumaya University for Technology, Amman, Jordan.

REFERENCES

[1] L. Rashid, W. M. Hassanein and M. A. Hammad, "Analyzing and Enhancing the Parallel Sort

Operation on Multithreaded Architectures," Journal of Supercomputing, vol. 53, pp. 293–312, 2010.

[2] N. R. Nitin, "Analysis of Multi-sort Algorithm on Multi-mesh of Trees (MMT) Architecture," Journal

of Supercomputing, vol. 57, pp. 276–313, 2011.

[3] S. Al-Haj Baddar and B. Mahafzah, "Bitonic Sort on a Chained-cubic Tree Interconnection Network,"

Journal of Parallel and Distributed Computing, vol. 74, pp. 1744–1761, 2014.

[4] F. Dehne and H. Zaboli, "Parallel Sorting for GPUs," In: Adamatzky, A., editor. Emergent

Computation. Emergence, Complexity and Computation (ECC), vol. 24, DOI: 10.1007/978-3-319-

46376-6_12, Springer, Cham., 2017.

[5] A. Al-Adwan, R. Zaghloul, B. Mahafzah and A. Sharieh, "Parallel Quicksort Algorithm on OTIS Hyper

Hexa-Cell Optoelectronic Architecture," Journal of Parallel and Distributed Computing, vol. 141, pp.

61–73, DOI: 10.1016/j.jpdc.2020.03.015, 2020.

[6] M. K. I. Rahmani, "Smart Bubble Sort: A Novel and Dynamic Variant of Bubble Sort Algorithm,"

Computers, Materials & Continua, vol. 71, no. 3, pp. 4895–4913, 2022.

[7] P. Preethi, K. G. Mohan, S. Kumar and K. K. Mahapatra, "Sorter Design with Structured Low Power

Techniques," SN COMPUT. SCI., vol. 4, no. 129, DOI: 10.1007/s42979-022-01546-7, 2023.

[8] Y. Han and X. He, "More Efficient Parallel Integer Sorting," International Journal of Foundations of

Computer Science, vol. 33, no. 5, pp. 411–427, DOI: 10.1142/S0129054122500071, 2022.

[9] B. Bramas, "A Fast Vectorized Sorting Implementation Based on the ARM Scalable Vector Extension

(SVE)," PeerJ Computer Science, vol. 7, p. e769, DOI: 10.7717/peerj-cs.769, 2021.

[10] O. Obeya, E. Kahssay, E. M. Fan and J. Shun, "Theoretically Efficient and Practical Parallel In-place

Radix Sorting," Proc. of the 31st ACM Symposium on Parallelism in Algorithms and Architectures,

333

.Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 10, No. 03, September 2024

DOI: 10.1145/3323165.3323198, 2019.

[11] T. Tokuue and T. Ishiyama, "Performance Evaluation of Parallel Sortings on the Supercomputer

Fugaku," Journal of Information Processing, vol. 31, pp. 452–458, 2023.

[12] S. K. Gill, V. P. Singh, P. Sharma and D. Kumar, "A Comparative Study of Various Sorting

Algorithms," Int. Journal of Advanced Studies of Scientific Research, vol. 4, pp. 367–372, 2019.

[13] A. Grama, A. Gupta, G. Karypis and V. Kumar, Introduction to Parallel Computing, 2ed Edition,

Reading: Addison-Wesley, 2003.

[14] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to Algorithms, 4th Edition,

Massachusetts: The MIT Press, 2022.

[15] H. Wang et al., "PMS-Sorting: A New Sorting Algorithm Based on Similarity," Computers, Materials

& Continua, vol. 59, no. 1, pp. 229–237, DOI: 10.32604/cmc.2019.04628, 2019.

[16] M. Nowicki, "Comparison of Sort Algorithms in Hadoop and PCJ," Journal of Big Data, vol. 7, no. 101,

DOI: 10.1186/s40537-020-00376-9, 2020.

[17] M. Garland, "Chapter 13 – Sorting," in the Book: Programming Massively Parallel Processors: A

Hands-on Approach, 4th Edition, Morgan Kaufmann Publisher, pp. 293–310, DOI: 10.1016/B978-0-

323-91231-0.00019-7, 2023.

[18] W. X. Zhang and Z. Wen, "Efficient Parallel Algorithms for Some Integer Problems," Proc. of the 19th

Annual Conference on Computer Science (CSC '91), pp. 11–20, San Antonio, USA, DOI:

10.1145/327164.327169, 1991.

[19] T. Rożen, K. Boryczko and W. Alda, "GPU Bucket Sort Algorithm with Applications to Nearest-

Neighbour Search," Journal of WSCG, vol. 16, pp. 161–167, 2008.

[20] M. Amirul et al., "Sorting Very Large Text Data in Multi GPUs," Proc. of the 2012 IEEE Int. Conf. on

Control System, Computing and Engineering, pp. 160–165, Penang, Malaysia, DOI:

10.1109/ICCSCE.2012.6487134, 2012.

[21] M. Asiatici, D. Maiorano and P. Ienne, "How Many CPU Cores Is an FPGA Worth? Lessons Learned

from Accelerating String Sorting on a CPU-FPGA System," Journal of Signal Processing Systems, vol.

93, pp. 1405–1417, DOI: 10.1007/s11265-021-01686-8, 2021.

[22] H. Chen, S. Madaminov, M. Ferdman and P. Milder, "Sorting Large Datasets with FPGA-accelerated

Sample Sort," Proc. of 27th IEEE Int. Symposium on Field-Programmable Custom Computing

Machines (FCCM 2019), Art. no. 8735541, p. 326, DOI: 10.1109/FCCM.2019.00067, 2019.

[23] M. Kaur and V. Kumar, "Parallel Non-dominated Sorting Genetic Algorithm-II-based Image

Encryption Technique," The Imaging Science Journal, vol. 66, no. 8, pp. 453–462, 2018.

[24] J. Xie, Z. Li, H. Wu, L. Li, B. Pan, P. Guo and G. Sun, “Application of Quicksort Algorithm in

Information Retrieval," Journal on Big Data, vol. 3, no. 4, pp. 135–145, 2021.

[25] N. Faujdar and S. Saraswat, "The Detailed Experimental Analysis of Bucket Sort," Proc. of the 7th Int.

Conf. on Cloud Computing, Data Science & Engineering (Confluence), pp. 1–6, Noida, India, DOI:

10.1109/confluence.2017.7943114, 2017.

[26] M. Khurana, N. Faujdar and S. Saraswat, "Hybrid Bucket Sort Switching Internal Sorting Based on the

Data Inside the Bucket," Proc. of the 6th Int. Conf. on Reliability, Infocom Technologies and

Optimization (Trends and Future Directions) (ICRITO), pp. 476–482, DOI:

10.1109/icrito.2017.8342474, Noida, India, 2017.

[27] H. Hong, "Parallel Bucket Sorting Algorithm Hiep Hong," [Online], Available:

https://api.semanticscholar.org/CorpusID:33533373, 2014.

[28] G. Beliakov, G. Li and S. Liu, "Parallel Bucket Sorting on Graphics Processing Units Based on Convex

Optimization," Optimization, vol. 64, pp. 1033–1055, 2015.

[29] H. I. S. Wijayabandara, Performance Analysis of Parallel Bucket Sort, Thesis for Master's Degree in

Computer Science, University of Colombo, School of Computing, 2018.

[30] K. Chen, H. Chen and C. Wang, "Bucket MapReduce: Relieving the Disk I/O Intensity of Data-

intensive Applications in MapReduce Frameworks," Proc. of the 29th Euromicro Int. Conf. on Parallel,

Distributed and Network-based Processing (PDP), DOI: 10.1109/pdp52278.2021.00013, 2021.

[31] B. Mahafzah, M. Alshraideh, T. Abu-Kabeer, E. Ahmad and N. Hamad, "The Optical Chained-cubic

Tree Interconnection Network: Topological Structure and Properties," Computers & Electrical

Engineering, vol. 38, pp. 330–345, DOI: 10.1016/j.compeleceng.2011.11.023, 2012.

[32] B. Mahafzah, A. Al-Adwan and R. Zaghloul, "Topological Properties Assessment of Opto-electronic

Architectures," Telecomm. Systems, vol. 80, pp. 599–627, DOI: 10.1007/s11235-022-00910-5, 2022.

[33] G. C. Marsden, P. J. Marchand, P. Harvey and S. C. Esener, "Optical Transpose Interconnection System

Architectures," Optics Letters, vol. 18, pp. 1083–1085, 1993.

[34] B. A. Mahafzah, A. Sleit, N. A. Hamad, E. F. Ahmad and T. M. Abu-Kabeer, "The OTIS Hyper Hexa-

Cell Optoelectronic Architecture," Computing, vol. 94, pp. 411–432, 2012.

[35] M. Abdullah, E. Abuelrub and B. Mahafzah, "The Chained-cubic Tree Interconnection Network," Int.

Arab Journal of Information Technology, vol. 8, pp. 334–343, 2011.

[36] O. Kibar, P. J. Marchand and S. C. Esener, "High Speed CMOS Switch Designs for Free-space Opto-

334

"Parallel Bucket-sort Algorithm on Optical Chained-cubic Tree Interconnection Network", B. A. Mahafzah.

electronic MINs," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 6, pp. 372–

386, DOI: 10.1109/92.711309, 1998.

[37] I. Kaminow, T. Li and A. Willner, "Optical Fiber Telecommunications VB: Systems and Networks," 5th

Edition, Academic Press, 2008.

[38] D. K. J. Lin and J. Chen, "Adaptive Order-of-Addition Experiments via the Quick-sort Algorithm,"

Technometrics, vol. 65, no. 3, pp. 396–405, DOI: 10.1080/00401706.2023.2174601, 2023.

[39] M. S. Mohammed and G. A. Abandah, "Characterization of Shared-memory Multi-core Applications,"

Jordanian Journal of Computers and Information Technology (JJCIT), vol. 2, no. 1, pp. 37–54, DOI:

10.5455/jjcit.71-1448574289, 2016.

[40] J. Al-Azzeh, "Distributed Mutual Inter-unit Test Method for D-Dimensional Mesh-connected

Multiprocessors with Round-Robin Collision Resolution," Jordanian Journal of Computers and

Information Technology (JJCIT), vol. 5, no. 1, pp. 1–16, DOI: 10.5455/jjcit.71-1539688899, 2019.

ملخص البحث:

صن ا أااااااا ا اااااااو إنّ لأداء خوارزمياااااااصن ا أرّااااااااي لىااااااا ان اليااااااا ان ااااااا ا ااااااا مااااااا ا أّ لي ااااااا

 ااااااا ماااااااصقصنع م ابّااااااالى موااااااا رااااااار ا لاااااااص اون ااااااا ماااااااوازا ا ايااااااا مااااااا خوارزمياااااااصن

ا أرّااااااي كااااا اااااال صن ا رّاااااص مأاوّ ااااال قايااااال ماااااي لدا اااااص ا ر صقااااار ا أأّاااااصق ى ممااااا قاااااي

نى ك ا شّل صن مص ُ ف قص شّج ا رّ لل ا رمَْ مَل ضو يص

ت اااااو قأ لي اااااص ااااا اااااال ل مْ وِ اّاااال مأواز ااااالة كااااا لااااا ن ا وروااااالة ت ااااا ّ خوارزميااااال رااااااي دَ

نى ااااااااا ك ت راااااااار اااااااا يااااااااي الأداء ا أرّااااااااايب أ ااااااااك ا رّااااااااص مّ لاااااااال مُمَْ مَاااااااال ضااااااااو يص

 مااااااا خوارزمياااااال اااااا اااااا ااااااارّع ماااااا ا أّ ياااااار ما ر صاااااااص ماااااا ياااااا مجرو اااااال مأاوّ اااااال

 ة صرااااااا ّ لاا ماااااازم ةبصماااااا ا ماااااازم ة زاوأاااااار ا رياشاااااااأّ ا مااااااز ص اااااايك صرااااااق ءادلأا سي ص اااااام

 صجاااااا لأم ةنصجاااااا ِ ص ر ا ماااااا لباااااا أخم دا اااااالأ ك ااااااذم ؛لياااااا ص ب ام ةل مّاااااا ام ةعياااااارجأّ ا ماااااازم

 ع اااااااازوأّ ا) نصتااااااااصيل ا ع اااااااازو ماااااااا لباااااااا أخم عاوتاااااااالأم ةنصتااااااااصيل ا نص ااااااااورجم ماااااااا لباااااااا أخم

 ى(زصاأّ ا ع زوأّ ام ة اوش ا

 ص ااااايك صرااااا ّ ا ل لشااااا تتاااااصا ص اااااي ورااااا ا ّ ااااا ل سااااا راااااول نّ ل صااااااص ر ا ج صأااااات تاااااايّ قم

ن جااااااا ِ ص م (1020) ن جااااااا ِ ص مُ (1020) ا خأساااااااصق زاوأااااااار ا رياشاااااااأّ ا ماااااااز غ اااااااق يااااااا ةص (912) ص

ن ب ْ ضِ ى ام جع ِ ص مُ ا خأسصق وِ ْ ا يارأّ قصأأّ ا رياشأّ ا مزق لترص م ص

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

