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ABSTRACT 

Cooperative Q-learning approach allows multiple learners to learn independently and then share their 

Q-values among each other using a Q-value sharing strategy. A main problem with this approach is that 

the solutions of the learners may not converge to optimality, because the optimal Q-values may not be 

found. Another problem is that some cooperative algorithms perform very well with single-task problems, 

but quite poorly with multi-task problems. This paper proposes a new cooperative Q-learning algorithm 

called the Bat Q-learning algorithm (BQ-learning) that implements a Q-value sharing strategy based on 

the Bat algorithm. The Bat algorithm is a powerful optimization algorithm that increases the possibility of 

finding the optimal Q-values by balancing between the exploration and exploitation of actions by tuning 

the parameters of the algorithm. The BQ-learning algorithm was tested using two problems: the shortest 

path problem (single-task problem) and the taxi problem (multi-task problem). The experimental results 

suggest that BQ-learning performs better than single-agent Q-learning and some well-known cooperative 

Q-learning algorithms. 
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1. INTRODUCTION 

Q-learning is a well known reinforcement learning (RL) algorithm that allows machines and 

software agents to develop an ideal behavior within a specific environment based on trial and 

error [1]-[3]. A Q-learning agent learns how to behave by trying actions to determine how to 

maximize some reward. This is usually accomplished using temporal difference learning to find 

mapping from state-action pairs into quality values (Q-values). A Q-value of a state-action pair 

),( as  represents the expected utility of taking action a  in state s  and following a fixed policy 

thereafter. The Q-values are normally calculated using a utility function known as a Q-function. 

These values are usually stored in a data structure known as a Q-table. 

Cooperation among several reinforcement learners in the same multi-agent environment 

provides an opportunity for the learners to cooperatively solve a learning problem. Such an 

approach to RL, which is called cooperative RL, is increasingly used by research labs around 

the world to solve real world problems, such as robot control and autonomous navigation [4], 

[5]. This is because cooperative reinforcement learners can learn and converge faster than 

independent reinforcement learners via sharing of information (e.g., Q-values, Episodes, 

Policies) [3], [6]-[8]. One such example is cooperative Q-learning, in which several learners 

share their Q-values among each other in order to accelerate their convergence to optimal 

solutions [9], [10]. Cooperative Q-learning is normally broken into two stages. The first stage is 

known as the independent learning stage, in which each reinforcement learner individually 

applies Q-learning to enhance its own solution. In the second stage, the learning by interaction 

stage, the learners share their Q-values based on a sharing strategy. A Q-value sharing strategy 

defines how the independent learners can share their Q-values among each other to obtain new 

Q-tables. This strategy can only be applied when the agents have Q-tables with a similar 

structure. 



52 
"Bat Q-Learning Algorithm", Bilal H. Abed-alguni. 

 

Current cooperative Q-learning algorithms, such as AVE-Q, BEST-Q, PSO-Q [6], [11]-[15] and 

WSS [7], [16]-[19], may not find the optimal Q-values for different reasons (Section 3). As a 

result, the policies of the learners might not converge to optimality. In addition, some 

cooperative Q-learning algorithms perform well with single-task problems, but very poorly with 

multi-task problems [9]. This issue causes uncertainty about the benefit of choosing one 

cooperative algorithm over the other cooperative algorithms. 

The bat algorithm (BA) is a metaheuristic method that can be used to solve optimization 

problems by simulating the echolocation behavior of bats [20]. An advantage of BA is that it 

tries to balance between exploration and exploitation of actions by using tuning techniques that 

control its parameters (frequencies, pulse emission rates and loudness of the potential solutions) 

[20]. Consequently, the possibility of finding the optimal solutions increases. Therefore, in 

order to solve the problems of current cooperative Q-learning algorithms, this paper presents a 

new cooperative Q-learning algorithm called the Bat Q-learning algorithm (BQ-learning) that is 

based on the BA algorithm. BQ-learning is distinguished from the other cooperative algorithms 

by the use of a Q-value sharing strategy based on the BA algorithm. This paper argues that the 

proposed BQ-learning algorithm increases the possibility of finding the optimal Q-values for 

different types of learning problems. 

The remainder of the paper is organized as follows: Section 2 presents background information, 

Section 3 discusses related work, Section 4 discusses the BQ-learning algorithm, Section 5 

discusses simulation results using the shortest path problem and the taxi domain problem and 

Section 6 presents the conclusion and future work of this paper. 

2. BACKGROUND INFORMATION 

This section briefly summarizes some of the underlying concepts of Q-learning and Bat 

algorithms.  

2.1 Q-learning 

The problem model of Q-learning is commonly represented as a Markov Decision Process 

(MDP) [1]. An MDP comprises a set of states },...,,{= 10 nsssS , a set of actions 

},...,,{= 10 maaaA , a reward function  ASR : ℝ and a transition model [0,1]:  SAST . 

As specified by the transition model, all the transition probabilities are deterministic, meaning 

that they can only equal 1 or 0. For example, a transition probability 1=),,( yzx sasT  means 

that transitioning from state xs  to state ys  upon executing action za  is possible. On the other 

hand, a transition probability 0=),,( yzx sasT  indicates that the transition is invalid. The 

immediate expected reward for executing this transition is the deterministic reward ),( zx asR  

[3]. It is important to note that the implementation of Q-learning to stochastic MDPs is beyond 

the scope of this paper. 

A learner is normally required to apply Q-learning to an MDP for a number of learning episodes 

in order to learn which action is optimal for each state. A learning episode is the time the agent 

takes to reach the goal state starting from an initial selected state. Reaching the goal state 
requires the learner to apply a simple value iteration procedure during each learning episode. 
This procedure starts when the learner uses its selection policy to select an action a  from the set 

of possible actions A  of current state s . The learner then receives a reward ),( asR  and bserves 

a new state s  of the environment. Subsequently, the agent uses these information to update its 

Q-table using the following Q-function: 

          )],(),([),()(1),( asQ
Aa

maxasRasQasQ 


                               (1)             

https://www.google.jo/search?biw=1143&bih=517&q=define+subsequently&forcedict=subsequently&sa=X&sqi=2&ved=0ahUKEwjHq7LnrezRAhVBWxoKHcD5BwsQ_SoIHTAA
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where Ss , Aa , [0,1]  is the learning rate and [0,1]  is the discount factor. Upon 

successful convergence to a solution, the output of Q-learning is the optimal Q-function from 

which an optimal policy AS :*  (i.e., mapping from states to actions that maximizes the 

total discounted reward ( n
nrrrR   1

1
0= )) can be derived using a greedy selection 

method. 

2.2 Bat Algorithm 

Microbats are small bats that usually eat insects. An amazing feature of this species is that they 

rely on a special type of sonar called echolocation to locate their prey. Microbats make loud 

sound pulses as they fly. When these pulses hit an object, they produce echoes that return to the 

ears of the bats. The time required for the sound waves to return back to the microbat is used to 

calculate the distance of an object. 

The Bat algorithm (BA) is a metaheuristic method that is inspired from the echolocation 

behavior of microbats [20]. This algorithm combines the advantages of existing metaheuristic 

algorithms, such as particle swarm optimization (PSO) and intensive local search in one 

algorithm. The research works of Yang and Gandomi [21] and Yang [20] suggest that BA 

performs better than many existing metaheuristic algorithms, such as PSO, intensive local 

search, harmony search and genetic algorithm. 

The following simplifications of the main characteristics of the echolocation process were 

followed in order to simulate BA as a problem solver [22]: 

    • Microbats know the difference between prey and other objects and use echolocation 

       to calculate the distance of their prey.  

    • Each bat i  flies randomly at position ix  with velocity iv , frequency if , varying  

       wavelength   and loudness A  to hunt a prey. 

    • Loudness varies in the ],[ 0AAmin  interval. 

    • Each bat i  can adjust the frequency if  and the pulse rate [0,1]ir  of its emitted 

       pulse. 

    • Frequencies of the bats are in the range ],[ maxmin ff . These frequencies correspond to  

       wave lengths in the range ],[ maxmin   that can be calculated as follows: 

                    air.theinsoundofspeedtheiswhich/340=where;= smv
f

v
                      (2)  

Based on the above equation, either   or f can be used in the BA algorithm, because the 

relationship between these variables is  constant ( fv  ). The choice between   and f  

depends on the type of the problem of interest.  

At the beginning of BA (Figure 1), each bat is assigned a random frequency in the range 

],[ maxfminf . This range is normally chosen based on the size and complexity of the 

implemented problem. There are several rules that control the movement of a virtual bat. 

The following rules show how a virtual bat i  changes its position ix  (solution) and velocity iv  

at instant t : 

                              ,)(= minfmaxfminfif                                                   (3) 

                              ,)
*

1(1= ifxt
ixt

ivt
iv                                                          (4) 
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1:  Objective function T
d

xxxxfun ),...,1(=),(  

2:  Initialize the bat population )...,2,1,=( niix  and iv  

3:  Define pulse frequency if  at ix  

4:  Initialize pulse rates ir  to positive values around zero and loudness iA  to positive values 

around 1. 

5:  while t< Max number of iterations do 

6:        Generate new solutions by adjusting frequency and updating velocities and 

7:        locations/solutions [Equations (3) to (5)].
 

8:         if     rand > ri  then 

9:             Select a solution among the best solutions 
10:           Generate a local solution around the selected best solution 
11:       endif 
12:      Generate a new solution by flying randomly 

13:      Calculate the average loudness A* of all solutions 

14:       if  
 rand < A* and fun(xi) <  fun(x*) Then 

15:             Accept the new solutions 

16:             Increase ir  and reduce iA  

17:        endif 

18:        Rank the bats and find the current best 
*x  

19:        1= tt  

20: endwhile 

21:  Postprocess results and visualization 

Figure 1. The Bat algorithm (BA) [20]. 

                                          ,
1

=
t
iv

t
ix

t
ix 

                                                                       (5) 

where [0,1]  is a random parameter extracted from a uniform distribution and *x  is the 

current best position among the positions of all bats. 

 After calculating *x , a local solution can be generated randomly for each bat based on the 

following equation: 

                              *= Axx oldnew                                                                    (6) 

where 1,1][  is a tuning random parameter and *A  is the average loudness of all bats at 

instant t . 

The update equations of the velocities, positions and frequencies of the bats are similar to the 

update equations of the velocities and positions of the particles in PSO (Section 3). Actually, 

BA can be considered as a combination of PSO and intensive local search that aims to balance 

between the exploration and exploitation of solutions. 

In the nature, when a microbat finds a prey, it usually decreases the loudness and increases the 

pulse emission of its sound. This aspect is simplified in the BA algorithm by assuming that 

Amin=0  and A0=1 . The assumption that Amin=0 indicates that a bat has located a prey and 

temporarily has stopped emitting any sound. In the beginning of the simulation process of BA, 

positive random values around zero are generated and assigned to the pulse emission of each 

bat, while positive random values around 1 are generated and assigned to the loudness of each 

bat. 
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At each iteration of the BA algorithm, a local search for a new best solution around one of the 

best solutions x*  (line 8) is triggered when the pulse rate is less than a randomly generated 

number [0,1]rand . Then, each time x* is improved  (line 14) the pulse rate ri is increased 

and the loudness iA  is decreased as follows: 

                                                               t
i

t
i AA =1                                                                   (7) 

                                            ][1=1 t
i

t
i err                                                           (8) 

 where   and   are constant parameters that can be determined experimentally, however, as a 

general rule  0< <1 and  >0 to guarantee that the loudness will decrease and the pulse rate 

will increase as new best solutions are discovered.  

A new solution *x  is accepted if it satisfies two conditions. First, the estimation fun(x*) of the 

new x* must be better than the estimation of a randomly selected bat’s solution. Second, the 

value of rand  should be less than the average loudness of all the solutions. 

The purpose of setting the loudness to a value near to one and the pulse rate to a value near to 

zero is to  encourage the exploration of new solutions around the current best solutions. This is 

because a pulse rate near to zero is expected with a high probability to be less than the randomly 

generated number rand [0,1]  (line 8). Consequently, there is a high probability that a new 

solution would be generated around one of the best solutions (lines 8 to 11). As the values of 

pulse rates are increased each time a better solution is accepted (line 14), the probability of 

generating a new solution around one of the best solutions decreases (line 8). 

3. RELATED WORK 

This section provides an overview of well known cooperative Q-learning algorithms with  

special focus on the second learning stage of these algorithms. 

Iima and Kuroe [11]-[13] proposed three cooperative Q-learning algorithms (BEST-Q, AVE-Q 

and PSO-Q) that allow multiple learners to share their Q-values after each round of independent 

learning. Each one of these algorithms evaluates its Q-values during the independent learning 

stage using an evaluation method that approximates the rewards [6], [13], [14]. This method 

evaluates each state-action pair ),( as  by calculating the sum of its discounted rewards ),( asE  

used to update its Q-value during an episode (independent learning stage). Discounting the 

reward is important to increase the weight of rewards while approaching the end of the episode. 

This is because the Q-values are in continuous change during the episode. At the end of the 

independent learning stage, each learner i  calculates ),( asEi  for each ASas ),(  as follows: 

                       ),(=),(
1=

asRasE i
in

n

i

i
                                                            (9) 

where n  denotes the number of times the state-action pair ),( as  has been updated by agent i  

during the episode, ),( asRi  is the reward received for performing action a  at state s  and   is 

the discount parameter. The parameter   is the same discount factor used in Equation 1. This 

parameter is used in Equation 9 to balance between the rewards received in the beginning of the 

episode with rewards received in the end of it. 

In BEST-Q, the superior Q-values are extracted from the Q-tables of all of the learners, then  

copied to each Q-table of each agent. According to this description, an agent i  updates ),( asQi  

for all ASas ),(  as follows:  
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                                              ),(),( asQasQ best
i  .                                                   (10)  

In the above equation, ),( asQbest  of state-action pair ),( as   is the Q-value with the highest 

),( asE  for all agents. The main disadvantage of BEST-Q is that it might not find the optimal 

Q-values, because the Q-tables of all of the learners become the same after each update. As a 

result, the diversity of the Q-values is affected negatively [11]. 

AVE-Q is a modification of BEST-Q that retains the diversity of each agent’s Q-values after the 

learning by interaction stage. In this algorithm, the Q-values of learner i  are updated by 

averaging each Q-value in the learners’ Q-table and its corresponding best Q-value for all 

ASas ),(  as follows:  

                                 
2

),(),(
),(

asQasQ
asQ i

best

i


 .                                               (11) 

Actually, AVE-Q moves at the interaction stage into the middle of the agent’s Q-values and 

their corresponding best values without investigating the quality of the agent’s Q-values. As a 

consequence, AVE-Q may produce an incorrect policy, because it does not remove the bad Q-

values at the interaction stage [3]. 

The Particle Swarm Optimization (PSO) algorithm is a powerful metaheuristic method that 

attempts to iteratively optimize a solution with respect to a particular measure [23]. An 

optimization problem can be solved with PSO by moving the candidate solutions (particles) in 

the search space based on their positions and velocities. The movement of a particle is 

controlled by the particle’s local best position and directed in the direction of the global best 

positions in the search-space. The global best positions are the best positions found by all of the 

particles after each iteration of the algorithm. 

PSO-Q uses PSO at its second learning stage as a Q-value sharing method. In this method, the 

particles are the Q-values and the qualitative measurer is the Q-function. The Q-table of each 

learner is updated based on the velocities and positions of the Q-values as follows [12]: 

)],,(),([)],(),([),(),( 2211 asQasGRCasQasPRCasVWasV iiiii            (12) 

),,(),(),( asVasQasQ iii                                                 (13) 

 

where iV  is the velocity of learner i  for state-action pair ),( as , 1,CW  and 2C  are weight 

parameters and 1R  and [0,1]2 R  are random numbers. In the above equation, the best Q-value 

found by agent i  for ),( as  is denoted as ),( asPi  and the best Q-value found by all of the 

agents for ),( as  is denoted as ),( asG . Normally, the value of ),( asG  is estimated using 

Equation 10. 

Two issues should be taken into consideration when implementing PSO-Q to a specific 

problem. First, determining suitable values for the parameters of PSO-Q usually requires 

multiple simulations to insure that PSO-Q will perform well. Second, there is no guarantee that 

PSO-Q will search outside the surroundings of the best Q-value for each possible combination 

of states and actions for all agents. 

Ahmadabadi and Asadpour [18] proposed a cooperative Q-learning algorithm called Weighted 

Strategy Sharing (WSS). In this algorithm, each learner learns from its peers by following a 

two-step learning process. First, each learner assigns expertness values to the Q-tables of the 

other learners according to their relative expertness. Second, each learner updates its own Q-

table by calculating the weighted average of the Q-values of the learners’ Q-tables as follows: 
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                                )),((),(
1=

asQWasQ jij

n

j

i                                                     (14) 

where Wij is the expertness value assigned by learner i to learner j’s expertness. 

 An expertness value can be evaluated using one of many expertness measures that have similar 

outcomes [18]. One such measure is the Normal measure (Nrm) which calculates the expertness 

of a learner ( xr ) by finding the sum of rewards that the learner has obtained during the previous 

independent learning stage: 

                                 )(=
1=

trxr i

now

t

Nrm
i  ;                                                                   (15) 

where )(tri  is the reward that learner i  obtains at instant t . 

Based on the output of the above formula, learner i  can assign a weight to the knowledge of 

learner j  by taking into account the expertness of all learners as follows:  

                                          

k

n

k

i
ij

xr

xr
W




1=

 ;                                                                   (16) 

where n  is the number of learners and kxr  is the expertness of learner k  for nk ...,1,= .  

A problem with WSS is that it might not converge to optimality when the shared Q-values are 

so extreme, because these values will deform the average Q-value [9]. 

Abed-alguni et al. [9] suggested a new cooperative Q-learning algorithm called average 

aggregation Q-learning which combines WSS, AVE-Q, BEST-Q and PSO-Q into one algorithm 

in order to reduce the instability in the performance of these algorithms for different problems. 

In this algorithm, each agent improves its Q-values by averaging the Q-values that resulted after 

implementing WSS, BEST-Q, AVE-Q and PSO-Q algorithms. Respectively, each agent i  

calculates ),( asQi  for each ASas ),(  as follows:  

 

4

),(),(),(),(
),(

asQasQasQasQ
asQ

QPSOWSSQAVEQBEST

i

 
 ;                        (17) 

where i  is the learner’s identification number and the denominator is the number of the 

combined algorithms. 

Although average aggregation Q-learning solves the variability in performance for four famous 

cooperative Q-learning algorithms, it requires heavy computations to do so, because it mainly 

depends on the results of the other cooperative Q-learning algorithms. 

In conclusion, there is no guarantee that the algorithms discussed in this section will converge to 

optimal solutions. Moreover, none of these algorithms has a stable performance when 

implemented to various learning problems [9]. The next section will present the BQ-learning 

algorithm that attempts to solve these problems. 

4. BQ-LEARNING  

The BQ-learning algorithm comprises two repetitive sequential learning stages. 

    • First Learning Stage: each learner tries independently to enhance its policy by  

      applying Q-learning. Then, the Q-values of all the agents are evaluated by the  

      evaluation method described in Section 3 - Equation 9. 
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     • Second Learning Stage: the Q-values of all of the learners are updated through  

       sharing of Q-values among the learners according to the evaluation results of the  

       Q-values and the bat Q-value sharing strategy .  

4.1 First Stage of BQ-learning 

Figure 2 shows the BQ-learning algorithm. In the beginning of BQ-learning, the number of 

learners n and the total number of episodes of BQ-learning p should be specified. Also, the 

number of learning episodes mi that each learner i  performs during the first learning stage of 

BQ-learning should be specified. In addition, the Q-values and Q-value evaluations of each 

learner are initialized to zero (lines 8 to 10). That is, 0=),( asQi  and 0=),( asEi  for all 

ASas ),(  of each learner i . 

  1: iQ : Q -table of learner i . 

  2: ),( asQi : Q-value for state-action pair ),( as  of learner i . 

  3: ),( asEi : evaluated value for ),( asQi . 

  4: n : number of learners. 

  5: im : number of learning episodes performed by learner i  during the first  

             learning stage of BQ-learning. 

  6: p : total number of episodes of BQ-learning. 

  7: Begin 

  8:  for 1=i  to n do 

  9:    Initialize ),( asQi   and ),( asEi  for all ASas ),( . 

10:  end for 

11:  Set 0=counter . 

12:  while pcounter<  do  

13:     for 1=i  to n  do  

14:        Allow learner i  to apply Q-learning as described in Section 2.1 for im  

             episodes.  

15:        Find ),( asEi  for all ASas ),(  based on Equation (9).  

16:      end for 

17:      Update ),( asQi  for all ASas ),(  for all of the learners by interaction  

between the learners based on the bat Q-value sharing strategy described in  

Figure 3. 

18:      mncountercounter *=  . 

19:    end while 

20:  End 

Figure 2. The BQ-learning algorithm. 

Lines 13 to 16 in Figure 2 represent the first learning stage of BQ-learning, where each learner 

i  applies Q-learning for im  episodes and then calculates ),( asEi  for all ASas ),(  as 

described in Section 2.1. Allowing each learner to learn for the same number of episodes 

( nn mmmm  110 ...= ) indicates that all of the n  learners have equal levels of knowledge at 

the end of the first learning stage. On the other hand, allowing each learner to learn for a 

different number of episodes means that the learners have different levels of knowledge at the 

end of the first learning stage. 
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4.2 Second Stage of BQ-learning 

  1: iQ : Q -table of learner i .   

  2: ),( asQi : Q-value for state-action pair ),( as  for learner i .   

  3: ),(* asQ : best Q-value for state-action pair ),( as  for all agents.  

  4: ),( asFi : frequency for state-action pair ),( as  for learner i .  

  5: ),( asVi : difference of ),( asQi  before and after its update.   

  6: ),( asri : pulse rate for state-action pair ),( as  for learner i .  

  7: ),( asAi : loudness for state-action pair ),( as  for learner i . 

  8: ),( asEi : evaluated value for state-action pair ),( as  for learner i .  

  9: ),(* asE : evaluated value for ),(* asQ .   

10:  A*(s,a): average loudness of all ),( asAi . 

11: Begin   

12:  Set the objective function as the evaluation function of Q-values (Equation (9)).  

13:   for 1=i  to n  do 

14:     Initialize ),( asFi , ),( asri , ),( asAi  and ),( asVi  for all ASas ),( .  

15:   endfor  

16:  Find ),(* asQ  by applying the update function of BEST-Q algorithm  

       (Equation (10)).   

17:  while <t  Max number of iterations do 

18:      for  1=i  to n   do 

19:        Update ),( asVi , ),( asFi  and ),( asQi  for all ASas ),( . [Equations 18 to 20]. 

20:     endfor   

21:     Generate a random number ( [0,1]rand ).  

22:     if )),(>( * asrrand then    

23:        Allow learner 
*i  to apply Q-learning for few times starting from state s  of 

            ),(* asQ  using Equation 21. 

24:     endif 

25:    Randomly select ),( asQi . 

26:    if  (rand < A*(s,a) and )),(<),( * asEasEi  then  

27:        Accept the new Q-values. 

28:        Increase ),( asri  and reduce ),( asAi  [Equations 22 and 23] . 

29:       endif 

30:    Find ),(* asQ  by applying the update function of BEST-Q algorithm (Equation (10)).  

31:    1= tt   

32:  endwhile  

33: End  

Figure 3. Bat Q-value sharing strategy. 

Line 17 in Figure 2 represents the second learning stage of BQ-learning that is described in 

details in Figure 3. It is important to keep in mind that the second learning stage of BQ-learning 

is what really distinguishes it from the other cooperative Q-learning algorithms described in 

Section 3. 

Figure 3 shows the flow of the proposed Q-value sharing strategy that is based on the Bat 

algorithm. In Figure 3, the Q-values represent the locations of the bats (line 2), the velocity of a 

Q-value V(s,a) is the rate at which it changes (line 5) and the objective function is the evaluation 
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function E(s,a) of the Q-values (line 12). Line 14 in Figure 3 shows that the frequency, loudness 

and pulse rate for all ASas ),(  of each learner i  are initialized to zero. Then, in line 16, the 

best Q-value of each ASas ),(  is calculated. 

Line 19 of this algorithm shows that the Q-values and their frequencies and velocities are 

updated iteratively. The new Q-value ),( asQi , velocity ),( asVi  and frequency ),( asFi  of 

learner i  are given by:  

                                  ,)(=),( minmaxmini FFFasF                                                 (18) 

                                         ),,()),(),((),(=),( * asFasQasQasVasV iiii                             (19)                   

                                              ),,(),(=),( asVasQasQ iii                                                         (20)                                   

where [0,1]  is a random tuning parameter and ),(* asQ  is the current best Q-value among 

all n  Q-values for the state-action pair ),( as .  

A local Q-value can be generated around ),(* asQ  for each learner by allowing one of the 

learners to enhance ),(* asQ  by applying Equation 21 to ),(* asQ  for few times:  

    )],(*),([),()(1),( *** asQmaxAasRasQasQ Aa
  ;                           (21) 

where [0,1]  is the same learning rate used in Equation 1 and A* is the average loudness of 

all Q-values at iteration t . In the above equation, A* is used to control the influence of future 

rewards instead of   in Equation 1. 

At each iteration of the algorithm, a local search for a new best Q-value (line 22) around the 

current best Q-value ),(* asQ  for each ),( as  is triggered when the pulse rate ),(* asr  is less 

than a randomly generated number [0,1]rand .  

The new Q-value of ),(* asQ  is accepted if it satisfies two conditions. First, the estimation 

),(* asE  of the new ),(* asQ  must be better than the estimation of a randomly selected Q-value 

for the same ),( as . Second, the value of rand  should be less than the average loudness of 

),( as  of all the learners. Fulfilling these conditions also implies that the pulse rate ri(s,a) should 

be increased and the loudness iA (s,a) should be decreased as follows:  

                                     ),(=),( asAasA ii  ,                                                               (22) 

                                  ])[1,(=),( t
ii easrasr  ;                                                      (23) 

where   and   are constant parameters. As a general rule, 0< <1 to decrease the loudness 

and  >0 to increase the pulse rate each time the Q-values are improved.  

Assigning a low pulse rate ),( asri  for each ),( as  in the beginning of the optimization process 

(line 17) and then increasing it (line 28) is an essential factor for the success of the algorithm. 

This is because it reduces the rate of local search around ),(* asQ  as BQ-learning is 

approaching the best Q-value. 

The local search for the best Q-values can be performed simultaneously by multiple agents in 

BQ-learning as well as in other optimization-based cooperative Q-learning algorithms, such as 

PSO-Q and average aggregation Q-learning. BQ-learning is expected to perform better than the 

cooperative Q-learning algorithms discussed in Section 3, because it attempts to balance 

between the exploration and exploitation of the nominated best Q-values for sharing using 

tuning techniques that control its parameters (frequencies, pulse emission rates and loudness of 
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the potential solutions). Neither BEST-Q nor AVE-Q attempts to search around the best Q-

values before sharing them. Consequently, BEST-Q might not find the optimal Q-values [11], 

while AVE-Q may produce an incorrect policy [11]-[12]. 

5. EXPERIMENTS 

In this section, the performance of BQ-learning was compared with the performance of single-

agent Q-learning, AVE-Q, BEST-Q, PSO-Q, WSS and average-aggregation Q-learning (Section 

3) using two problems: the shortest path problem [12] and the taxi problem [24]. These 

problems have been widely used in the literature to evaluate the performance of cooperative  

Q-learning algorithms [12]-[13], [24]-[26]. 

5.1 Test Problems 

RL can be applied to two types of learning problems [24]. First, single-task problems (e.g., 

shortest path problem), in which the learner is required to learn a single task. Second, multi-task 

problems (e.g., taxi domain problem), in which the learner is required to learn multiple tasks. 

 

Figure 4. An example of shortest path problem on a grid size of 2020 .   

The shortest path problem is a single-task problem that has been used in many research studies 

to evaluate the efficiency of cooperative Q-learning algorithms [11]-[13]. In this problem, an 

agent is required to learn one task which is finding the shortest path from one cell to another in a 

grid, such that the number of visited cells is minimized. The grid in this problem is usually 

represented as a two-dimensional array that is indexed by two subscripts, one for the row and 

one for the column. In the shortest path problem, the target cell is usually specified prior to 

learning and the start cell is randomly selected before the beginning of each learning episode. 

The learner can move during each episode in four directions (up, down, right and left) as long 

there are no obstacles or barriers obstructing its way. Figure 4 shows an example of shortest 

path problem on a grid size of 2020  . Filled squares represent obstacles that the agent cannot 

pass, 0s  is the start cell and gs  is the target cell. 

The taxi domain problem is an episodic multi-task problem that has been used in many research 

studies to evaluate the performance of hierarchical Q-learning algorithms [24]-[26]. In each 

episode, a taxi agent in a grid world of size 55  is required to perform multiple tasks: finding a 

customer, picking up the customer, driving the customer to a destination location and dropping 
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down the customer in the destination location. The taxi agent can accomplish these goals by 

choosing actions from a set of six actions: move one cell (left, right, top or bottom), pickup 

action and drop off action. If any of these actions that leads the taxi agent to a barrier or a wall 

cell, the location of taxi agent remains unchanged. In the grid, there are four source and 

destination locations. Figure 5 shows an example of taxi domain problem. In the figure, a taxi is 

located on a 55 grid. There are four pre-determined locations in the grid, marked as Red (R), 

Blue (B), Green (G) and Yellow (Y). In the beginning of the simulation process, one of these 

locations is selected as a pick-up point and another location is selected as a drop-off point. 

 

Figure 5. Taxi domain problem.   

5.2 Setup 

The shortest path problem in Figure 4 was modeled as an MDP as follows: 

 

    • The cells in the 2020  grid represent the states of the MDP: 

 

                        [19][19])...,[0][1],[0][0],(= gridgridgridS .  

 

    • The target cell is specified prior to learning and the start cell is randomly selected before the  

      beginning of each learning episode.  

    • There are four primitive actions in the shortest path problem: 

            )right moveleft, movedown, moveup, move(=A .  

    • The reward model for the learners is defined as follows: 

              




                          otherwise0

celltargetthereacheditif10.0
R(s,a)=  

         • The transition model for the learners is:  

                           






 



                                                     otherwise0

                                  wallorbarrieranot

isandofdirectiontheintonextisif1

=),,(

ass

sasT  

The taxi domain problem in Figure 5 was modeled as an MDP as follows:  

    • The cells in the 55  grid represent the states of the MDP: 

       [4][4])...,[0][1],[0][0],(= gridgridgridS .  

    • The location of the taxi is specified prior to learning.  
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    • The location of the passenger (source) and the dropping point of the passenger (destination) 

        are randomly chosen in the beginning of each learning episode.  

    • There are six primitive actions in the taxi domain problem: 

)downput up,pick right, moveleft, movedown, moveup, move(=A .  

     • The reward model for the learners is defined as follows:  

















otherwise0

putdown   orpickupillegal10

point off  dropselected

itstodeliveredwaspassengertheIf10.0

=),( asR  

      

      • The transition model for the learners is: 







 



                                                     otherwise0

                                  wallorbarrieranot

isandofdirectiontheintonextisif1

=),,(

ass

sasT  

The experiments were implemented using two models of knowledge [19]. In the first model, the 

learners were assumed to have equal levels of knowledge. This was simulated by allowing the 

learners to learn for the same number of episodes before sharing of their Q-values. In the second 

model, the learners were assumed to have different levels of knowledge, which was achieved by 

allowing each learner to learn for a different number of episodes each time it is learning 

independently. For example, a learner that has learned for 25 episodes has more practical 

knowledge than a learner that has learned only for 10 episodes. 

The action selection policy was the  -soft policy, in which a random action is uniformly 

selected with probability   and the action with the highest expected reward is chosen the rest of 

the time [22]. 

The learning parameters for the experiments were set as follows: 

   • In Q-learning, the learning rate   was tuned dynamically, so that low Q-values have larger  

       learning rates than high Q-values as recommended by Ray and Oates [27]. The discount  

       factor 1=  [28]. 

    • In all the cooperative Q-learning algorithms, the learning rate 0.01=  and the discount 

      factor 0.9= . These values ensure that each cooperative learner learns adequately and  

      make, the best use of its current knowledge at each learning episode as recommended by  

      Abed-alguni et al. [9]. 

    • In each episode, a learner starts learning from a randomly selected state and finishes  

       learning when a goal state is reached. Otherwise, the learner finishes learning after 5,000 

       moves without meeting its goal.  

    • In order to ensure an adequate exploration/exploitation ratio, the probability of selecting a  

        random action was 0.05=  in the  -soft selection policy.  

    • The Nrm measure was selected as the expertness measure of WSS. This measure has a  

        similar performance to the performance of all other tested expertness measures.  

    • As in Abed-alguni et al. [9], the weight parameters in PSO-Q were 0=W , 1=2=1 CC .  

    • In BQ-learning, the frequency, the loudness and the pulse rate were in the range [0,1] for 

      each solution. The discount parameter of the frequencies β=0.5. Initially, the loudness A   

      was set to 1 and the pulse rate r  was set to 0 for each Q-value. 

Three agents are involved in the experiments. The total number of learning episodes is 2,000 for 

the shortest path problem, while the total number of learning episodes for the taxi problem is 
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12,000 episodes. Each algorithm was executed 100 times in order to provide meaningful 

statistical analysis of the experiments. 

In the experiments, an algorithm is considered to have converged to a good policy when the 

average number of moves in its policy enhances by less than one move over 100 successive 

episodes. 

5.3 Experimental Results 

5.3.1 Shortest Path Problem 

 Figure 6 shows the average number of moves per 10 episodes to find the shortest path to the 

goal state in a 2020  grid. The second learning stage of the cooperative Q-learning algorithms 

takes place after each 10 episodes of individual learning. We can see from the figure that BQ-

learning converges after 420 episodes to a solution. On the other hand, single agent Q-learning, 

AVE-Q, WSS, average aggregation Q-learning and PSO-Q converge after around 520 episodes 

to solutions, while BEST-Q requires 60 additional episodes to converge to a solution. These 

results suggest that the performance of BQ-learning is better than those of the other algorithms 

in single-task problems when the agents have similar levels of knowledge before sharing. 

 

Figure 6. Experiment 1: Average number of moves per 10 episodes in a shortest path problem of 

a grid size of 2020 . Each curve is the average of 100 runs. Sharing of Q-values takes place 

after each ten episodes of individual learning. 

Figure 7 shows the average number of moves per 10 episodes to find the shortest path to the 

goal state in a 2020  grid. Respectively, in Figure 7, the first, the second and the third agents 

learn for 10, 5 and 1 episodes before sharing of their Q-values among each other. In this 

experiment, BQ-learning requires 300 episodes of learning to converge to a solution, which is 

only 14.9%  of the number of episodes required for single-agent Q-learning (2020), 54%  of 

BEST-Q (550), 53.6%  of WSS (560), 62.5%  of PSO-Q (480), 61.2%  of AVE-Q (490) and 

29.4%  of average aggregation Q-learning (1,020). These results mean that BQ-learning 

outperforms the other algorithms in single-task problems when the agents have different levels 

of knowledge before sharing. 

5.3.2 Taxi Problem 

Figures 8 and 9 show the average number of steps per 10 episodes to deliver a passenger in a  
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Figure 7. Experiment 2: Average number of moves per 10 episodes in a shortest path problem of 

a grid size of 2020 . Each curve is the average of 100 runs. One, five and ten episodes of 

learning occur before implementing a Q-value sharing strategy. 

5 5 grid. Sharing of Q-values occurs in Figure 8 after each 10 episodes of independent 

learning, while in Figure 9, the 1st learner, the 2nd learner and the 3rd learner respectively learn 

for 1, 5 and 10 episodes before sharing of their Q-values. 

Figure 8 shows that BQ-learning requires 7,180 episodes to converge to a solution, followed by 

PSO-Q that requires 7,560 episodes (5 %  more episodes than BQ-learning) to converge to a 

solution. On the other hand, the other algorithms failed to converge to a solution at the end of 

the simulation process. These results suggest that BQ-learning converges to a solution faster 

than the other algorithms in multi-task problems when the agents have similar experiences. 

Figure 9 shows that all of the cooperative Q-learning algorithms failed to converge to a solution 

except BQ-learning and AVE-Q. As expected, BQ-learning has the fastest convergence speed 

among all algorithms. From Figure 9, we can also see that WSS has the worst performance 

among all the algorithms including single-agent Q-learning. These results indicate that BQ-

learning outperforms the other algorithms in multi-task problems when the agents have different 

levels of experience. 

5.4 Performance Analysis  

Two statistical measures were used in Table 1 to compare the performance of the tested 

algorithms over 100 runs. The results are in the format: average number of iterations   

standard deviation of iterations. The last row of the table shows that BQ-learning requires less 

number of iterations to converge to a solution. In addition, the standard deviations of the 

number of iterations of BQ-learning are the lowest among all the standard deviations of the 

other algorithms that converge to a solution. This means that the performance of BQ-learning is 

more stable than the performance of the other tested algorithms. 

Figures 10 and 11 show how the performance of three instances of BQ-learning is affected as 

the number of learning episodes of the agents is varied: (1-5-10), (15-30-45) and (25-50-100) 
learning episodes before sharing. The results in Figure 10 show that the convergence points of 

all instances of BQ-learning in the shortest path problem are not far from each other: BQ-

learning (1-5-10) converges after 303 episodes, BQ-learning (15-30-45) converges after 333 

episodes and BQ-learning (25-50-100) converges after 342 episodes.  
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Figure 8. Experiment 3: Average number of moves per 10 episodes in a taxi problem of a grid 

size of 55 . Each curve is the average of 100 runs. Sharing of Q-values takes place after each 

ten episodes of individual learning. 

 

Figure 9. Experiment 4: Average number of moves per 10 episodes in a taxi problem of a grid 

size of 55 . Each curve is the average of 100 runs. One, five and ten episodes of learning 

occur before implementing a Q-value sharing strategy. 

In Figure 11 (taxi domain), BQ-learning (1-5-10) converges after 9,136 episodes, BQ-learning 

(15-30-45) converges after 9,233 episodes and BQ-learning (25-50-100) converges after 9,417 

episodes. To sum up, the results in both figures indicate that the convergence speed of BQ-

learning is not highly sensitive to the number of episodes that each agent learns before sharing 

of Q-values. 

The overall results of the experiments suggest that BQ-learning performs better than 

conventional Q-learning and the other cooperative Q-learning algorithms, regardless of the 
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levels of experience of the agents (similar experiences vs. different experiences) and the types 

of the learning problems (single-task vs. multiple-task problems). 

Table 1. Average and standard deviation of number of iterations over 100 runs. The star symbol 

* indicates that the algorithm did not converge to a solution at the end of the simulation process. 

Algorithm Experiment 1 Experiment 2 Experiment 3 Experiment 4 

Single-agent Q-

learning 

520 36 2,000
*0  12,000

*0  12,000
*0  

BEST-Q 583 44 550 66 12,000
*0  12,000

*0  

AVE-Q 521 31 480 35 12,000
*0  11,003 356 

WSS 524 32 560 44 12,000
*0  12,000

*0  

PSO-Q 523 34 480 61 7,560 701 12,000
*0  

Average 

aggregation 

521 31 1,020 52 12,000
*0  12,000

*0  

BQ-learning 413 17 300 32 7,180 425 9,136 256 

 

 

Figure 10. Experiment 5: Performance of different instances of BQ-learning in a shortest path 

problem of a grid size of 2020 . Each curve is the average of 100 runs. 

6. CONCLUSION AND FUTURE WORK 

Cooperative Q-learning approach is an efficient learning approach that accelerates the learning 

process of individual learners in homogeneous multi-agent systems. This paper presented the 

BQ-learning algorithm which is a new cooperative Q-learning that is inspired from the bat 

algorithm. The learning process of BQ-learning comprises two stages. First, the individual 

learning stage, where each agent learns or improves its own policy by implementing the 

standard Q-learning algorithm. Second, the learning by interaction stage, where the learners 

share their Q-values among each other using a Q-value sharing strategy based on the bat 
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algorithm.The BQ-learning algorithm has many advantages. First, compared to current 

cooperative Q-learning algorithms, the BQ-learning algorithm can be implemented to single-

task and multi-task problems, because optimizing the tasks of a learning problem using the bat 

algorithm improves the overall solution for the problem. Second, the bat sharing strategy in BQ-

learning increases the possibility of finding the optimal Q-values, because it attempts to balance 

between the exploration and exploitation of actions using tuning techniques that control its 

parameters (frequencies, pulse emission rates and loudness of the potential solutions). 

 

Figure 11. Experiment 6: Performance of different instances of BQ-learning in a taxi problem of 

a grid size of 55 . Each curve is the average of 100 runs.  

Finally, the results of the pilot experiments suggest that BQ-learning performs faster than 

single-agent Q-learning and other famous cooperative Q-learning algorithms, whether the 

agents have similar or different levels of experience and regardless of the type of the learning 

problems (single-task vs. multiple-task problems). 

Future work includes implementing the BQ-learning algorithm to continuous space learning 

problems and developing a new cooperative Q-learning algorithm based on a combination of the 

firefly and monkey algorithms. 
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 ملخص البحث:

ملنمم م مم منسم   د ت ملتممام بمعم م ممك دميسمح منحنحممعمُّم كمم ملتمامني مممعلّمميح م دحممت من مملدمي مكممعي م ك مكمممث  

ُّبطمكهمانملهحمع منممث ةميستسمتةمُّمجمنيخعصةمكه مفتحمعمكتمحه منسم خلنت منام جنُّتلتةمي بمعمم م مت ملتما 

ميمم  دماعيتممةم مملمعيتممةلأم لم ممت ملتممامنيح نيححنحممعتمُّ ح مم مفممممولمام مما منيح م دحممت م مملمامُّ   مممم يممعمنيح 

مكمضمنيخانيزنتعتمني معلّتةمُّثالمذنتمومنءمجتدملمفت قمحمعمي م دم يلعمهع ملهحع منمث ةموخجىمهممولد

ةمنيانالةمكتححعميثالمومنؤهعمضمتفعمًفممنيحمثلاتمن ملدمةمنيحهع ممد كعيحمثلاتمذنتمنيحهحد

يخفدمع،تمنلهممخانيزنتةمُّمعلّتةمُّسمحعمخانيزنتمةممُّ  جحمهاهمنياي ةمخانيزنتةمجليلةمي م ك ملتات

مخانيزنتممة منيخفدممع،ملُّ مماممك حفتممامنامم جنُّتلتةمي بممعمم م ممت ملتممامنحب  ممةمبحهممع ملنيلممليجمكعيممالجمولد

عفمناا ثمممخانيزنتةمفمدعيةمُّزيلمن م نثعّتةم يلعمم ت ملتامنيح عيتةمب مطجيقم النثمني مانزلمكمت 

مجنتمنيخانيزنتة لناا غلا ميلأفمع مببجمضبطمن غت

ل لمُّ منخ بعيمخانيزنتةمنيخفدع،مي م ك ملتامكعا خلنممنسأي ت مهحع:منسأيةمو صجمنسعيتملهممنسمأيةم

مومنءممواعميممةمنيحهحممةتملنسممأيةمني علسمممتملهممممنسممأيةمن ممملدمةمنيحهممعمد  لُّ  ممجحمنيح ممعستمني لجيبتممةمولد

 ملتممامذامنيمعنمم منيانامململومنءمكمممضمخانيزنتممةمنيخفدممع،ميمم م ك ملتمماموفقمم مبحمملمن عيّ مم مكممأمنءمُّم كمم

 .نيخانيزنتعتمني معلّتةمي م ك ملتامنيحمجلفةمجتلنًم
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