
51

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

B. Abed-alguni is with the Computer Science Department, Yarmouk University, Irbid, Jordan.

E-mail: Bilal.h@yu.edu.jo.

BAT Q-LEARNING ALGORITHM

Bilal H. Abed-alguni

 (Received: 30-Nov.-2016, Revised: 01-Feb.-2017, Accepted: 23-Feb.-2017)

ABSTRACT

Cooperative Q-learning approach allows multiple learners to learn independently and then share their

Q-values among each other using a Q-value sharing strategy. A main problem with this approach is that

the solutions of the learners may not converge to optimality, because the optimal Q-values may not be

found. Another problem is that some cooperative algorithms perform very well with single-task problems,

but quite poorly with multi-task problems. This paper proposes a new cooperative Q-learning algorithm

called the Bat Q-learning algorithm (BQ-learning) that implements a Q-value sharing strategy based on

the Bat algorithm. The Bat algorithm is a powerful optimization algorithm that increases the possibility of

finding the optimal Q-values by balancing between the exploration and exploitation of actions by tuning

the parameters of the algorithm. The BQ-learning algorithm was tested using two problems: the shortest

path problem (single-task problem) and the taxi problem (multi-task problem). The experimental results

suggest that BQ-learning performs better than single-agent Q-learning and some well-known cooperative

Q-learning algorithms.

KEYWORDS

Q-learning, Bat algorithm, Optimization, Cooperative reinforcement learning.

1. INTRODUCTION

Q-learning is a well known reinforcement learning (RL) algorithm that allows machines and

software agents to develop an ideal behavior within a specific environment based on trial and

error [1]-[3]. A Q-learning agent learns how to behave by trying actions to determine how to

maximize some reward. This is usually accomplished using temporal difference learning to find

mapping from state-action pairs into quality values (Q-values). A Q-value of a state-action pair

),(as represents the expected utility of taking action a in state s and following a fixed policy

thereafter. The Q-values are normally calculated using a utility function known as a Q-function.

These values are usually stored in a data structure known as a Q-table.

Cooperation among several reinforcement learners in the same multi-agent environment

provides an opportunity for the learners to cooperatively solve a learning problem. Such an

approach to RL, which is called cooperative RL, is increasingly used by research labs around

the world to solve real world problems, such as robot control and autonomous navigation [4],

[5]. This is because cooperative reinforcement learners can learn and converge faster than

independent reinforcement learners via sharing of information (e.g., Q-values, Episodes,

Policies) [3], [6]-[8]. One such example is cooperative Q-learning, in which several learners

share their Q-values among each other in order to accelerate their convergence to optimal

solutions [9], [10]. Cooperative Q-learning is normally broken into two stages. The first stage is

known as the independent learning stage, in which each reinforcement learner individually

applies Q-learning to enhance its own solution. In the second stage, the learning by interaction

stage, the learners share their Q-values based on a sharing strategy. A Q-value sharing strategy

defines how the independent learners can share their Q-values among each other to obtain new

Q-tables. This strategy can only be applied when the agents have Q-tables with a similar

structure.

52
"Bat Q-Learning Algorithm", Bilal H. Abed-alguni.

Current cooperative Q-learning algorithms, such as AVE-Q, BEST-Q, PSO-Q [6], [11]-[15] and

WSS [7], [16]-[19], may not find the optimal Q-values for different reasons (Section 3). As a

result, the policies of the learners might not converge to optimality. In addition, some

cooperative Q-learning algorithms perform well with single-task problems, but very poorly with

multi-task problems [9]. This issue causes uncertainty about the benefit of choosing one

cooperative algorithm over the other cooperative algorithms.

The bat algorithm (BA) is a metaheuristic method that can be used to solve optimization

problems by simulating the echolocation behavior of bats [20]. An advantage of BA is that it

tries to balance between exploration and exploitation of actions by using tuning techniques that

control its parameters (frequencies, pulse emission rates and loudness of the potential solutions)

[20]. Consequently, the possibility of finding the optimal solutions increases. Therefore, in

order to solve the problems of current cooperative Q-learning algorithms, this paper presents a

new cooperative Q-learning algorithm called the Bat Q-learning algorithm (BQ-learning) that is

based on the BA algorithm. BQ-learning is distinguished from the other cooperative algorithms

by the use of a Q-value sharing strategy based on the BA algorithm. This paper argues that the

proposed BQ-learning algorithm increases the possibility of finding the optimal Q-values for

different types of learning problems.

The remainder of the paper is organized as follows: Section 2 presents background information,

Section 3 discusses related work, Section 4 discusses the BQ-learning algorithm, Section 5

discusses simulation results using the shortest path problem and the taxi domain problem and

Section 6 presents the conclusion and future work of this paper.

2. BACKGROUND INFORMATION

This section briefly summarizes some of the underlying concepts of Q-learning and Bat

algorithms.

2.1 Q-learning

The problem model of Q-learning is commonly represented as a Markov Decision Process

(MDP) [1]. An MDP comprises a set of states },...,,{= 10 nsssS , a set of actions

},...,,{= 10 maaaA , a reward function  ASR : ℝ and a transition model [0,1]:  SAST .

As specified by the transition model, all the transition probabilities are deterministic, meaning

that they can only equal 1 or 0. For example, a transition probability 1=),,(yzx sasT means

that transitioning from state xs to state ys upon executing action za is possible. On the other

hand, a transition probability 0=),,(yzx sasT indicates that the transition is invalid. The

immediate expected reward for executing this transition is the deterministic reward),(zx asR

[3]. It is important to note that the implementation of Q-learning to stochastic MDPs is beyond

the scope of this paper.

A learner is normally required to apply Q-learning to an MDP for a number of learning episodes

in order to learn which action is optimal for each state. A learning episode is the time the agent

takes to reach the goal state starting from an initial selected state. Reaching the goal state
requires the learner to apply a simple value iteration procedure during each learning episode.
This procedure starts when the learner uses its selection policy to select an action a from the set

of possible actions A of current state s . The learner then receives a reward),(asR and bserves

a new state s of the environment. Subsequently, the agent uses these information to update its

Q-table using the following Q-function:

)],(),([),()(1),(asQ
Aa

maxasRasQasQ 


  (1)

https://www.google.jo/search?biw=1143&bih=517&q=define+subsequently&forcedict=subsequently&sa=X&sqi=2&ved=0ahUKEwjHq7LnrezRAhVBWxoKHcD5BwsQ_SoIHTAA

53
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

where Ss , Aa , [0,1] is the learning rate and [0,1] is the discount factor. Upon

successful convergence to a solution, the output of Q-learning is the optimal Q-function from

which an optimal policy AS :* (i.e., mapping from states to actions that maximizes the

total discounted reward (n
nrrrR   1

1
0=)) can be derived using a greedy selection

method.

2.2 Bat Algorithm

Microbats are small bats that usually eat insects. An amazing feature of this species is that they

rely on a special type of sonar called echolocation to locate their prey. Microbats make loud

sound pulses as they fly. When these pulses hit an object, they produce echoes that return to the

ears of the bats. The time required for the sound waves to return back to the microbat is used to

calculate the distance of an object.

The Bat algorithm (BA) is a metaheuristic method that is inspired from the echolocation

behavior of microbats [20]. This algorithm combines the advantages of existing metaheuristic

algorithms, such as particle swarm optimization (PSO) and intensive local search in one

algorithm. The research works of Yang and Gandomi [21] and Yang [20] suggest that BA

performs better than many existing metaheuristic algorithms, such as PSO, intensive local

search, harmony search and genetic algorithm.

The following simplifications of the main characteristics of the echolocation process were

followed in order to simulate BA as a problem solver [22]:

 • Microbats know the difference between prey and other objects and use echolocation

 to calculate the distance of their prey.

 • Each bat i flies randomly at position ix with velocity iv , frequency if , varying

 wavelength  and loudness A to hunt a prey.

 • Loudness varies in the],[0AAmin interval.

 • Each bat i can adjust the frequency if and the pulse rate [0,1]ir of its emitted

 pulse.

 • Frequencies of the bats are in the range],[maxmin ff . These frequencies correspond to

 wave lengths in the range],[maxmin  that can be calculated as follows:

 air.theinsoundofspeedtheiswhich/340=where;= smv
f

v
 (2)

Based on the above equation, either  or f can be used in the BA algorithm, because the

relationship between these variables is constant (fv ). The choice between  and f

depends on the type of the problem of interest.

At the beginning of BA (Figure 1), each bat is assigned a random frequency in the range

],[maxfminf . This range is normally chosen based on the size and complexity of the

implemented problem. There are several rules that control the movement of a virtual bat.

The following rules show how a virtual bat i changes its position ix (solution) and velocity iv

at instant t :

 ,)(= minfmaxfminfif  (3)

 ,)
*

1(1= ifxt
ixt

ivt
iv  (4)

54
"Bat Q-Learning Algorithm", Bilal H. Abed-alguni.

1: Objective function T
d

xxxxfun),...,1(=),(

2: Initialize the bat population)...,2,1,=(niix and iv

3: Define pulse frequency if at ix

4: Initialize pulse rates ir to positive values around zero and loudness iA to positive values

around 1.

5: while t< Max number of iterations do

6: Generate new solutions by adjusting frequency and updating velocities and

7: locations/solutions [Equations (3) to (5)].

8: if rand > ri then

9: Select a solution among the best solutions
10: Generate a local solution around the selected best solution
11: endif
12: Generate a new solution by flying randomly

13: Calculate the average loudness A* of all solutions

14: if
 rand < A* and fun(xi) < fun(x*) Then

15: Accept the new solutions

16: Increase ir and reduce iA

17: endif

18: Rank the bats and find the current best
*x

19: 1= tt

20: endwhile

21: Postprocess results and visualization

Figure 1. The Bat algorithm (BA) [20].

 ,
1

=
t
iv

t
ix

t
ix 

 (5)

where [0,1] is a random parameter extracted from a uniform distribution and *x is the

current best position among the positions of all bats.

 After calculating *x , a local solution can be generated randomly for each bat based on the

following equation:

 *= Axx oldnew  (6)

where 1,1][ is a tuning random parameter and *A is the average loudness of all bats at

instant t .

The update equations of the velocities, positions and frequencies of the bats are similar to the

update equations of the velocities and positions of the particles in PSO (Section 3). Actually,

BA can be considered as a combination of PSO and intensive local search that aims to balance

between the exploration and exploitation of solutions.

In the nature, when a microbat finds a prey, it usually decreases the loudness and increases the

pulse emission of its sound. This aspect is simplified in the BA algorithm by assuming that

Amin=0 and A0=1 . The assumption that Amin=0 indicates that a bat has located a prey and

temporarily has stopped emitting any sound. In the beginning of the simulation process of BA,

positive random values around zero are generated and assigned to the pulse emission of each

bat, while positive random values around 1 are generated and assigned to the loudness of each

bat.

55
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

At each iteration of the BA algorithm, a local search for a new best solution around one of the

best solutions x* (line 8) is triggered when the pulse rate is less than a randomly generated

number [0,1]rand . Then, each time x* is improved (line 14) the pulse rate ri is increased

and the loudness iA is decreased as follows:

 t
i

t
i AA =1 (7)

][1=1 t
i

t
i err   (8)

 where  and  are constant parameters that can be determined experimentally, however, as a

general rule 0< <1 and  >0 to guarantee that the loudness will decrease and the pulse rate

will increase as new best solutions are discovered.

A new solution *x is accepted if it satisfies two conditions. First, the estimation fun(x*) of the

new x* must be better than the estimation of a randomly selected bat’s solution. Second, the

value of rand should be less than the average loudness of all the solutions.

The purpose of setting the loudness to a value near to one and the pulse rate to a value near to

zero is to encourage the exploration of new solutions around the current best solutions. This is

because a pulse rate near to zero is expected with a high probability to be less than the randomly

generated number rand [0,1] (line 8). Consequently, there is a high probability that a new

solution would be generated around one of the best solutions (lines 8 to 11). As the values of

pulse rates are increased each time a better solution is accepted (line 14), the probability of

generating a new solution around one of the best solutions decreases (line 8).

3. RELATED WORK

This section provides an overview of well known cooperative Q-learning algorithms with

special focus on the second learning stage of these algorithms.

Iima and Kuroe [11]-[13] proposed three cooperative Q-learning algorithms (BEST-Q, AVE-Q

and PSO-Q) that allow multiple learners to share their Q-values after each round of independent

learning. Each one of these algorithms evaluates its Q-values during the independent learning

stage using an evaluation method that approximates the rewards [6], [13], [14]. This method

evaluates each state-action pair),(as by calculating the sum of its discounted rewards),(asE

used to update its Q-value during an episode (independent learning stage). Discounting the

reward is important to increase the weight of rewards while approaching the end of the episode.

This is because the Q-values are in continuous change during the episode. At the end of the

independent learning stage, each learner i calculates),(asEi for each ASas ),(as follows:

),(=),(
1=

asRasE i
in

n

i

i
  (9)

where n denotes the number of times the state-action pair),(as has been updated by agent i

during the episode,),(asRi is the reward received for performing action a at state s and  is

the discount parameter. The parameter  is the same discount factor used in Equation 1. This

parameter is used in Equation 9 to balance between the rewards received in the beginning of the

episode with rewards received in the end of it.

In BEST-Q, the superior Q-values are extracted from the Q-tables of all of the learners, then

copied to each Q-table of each agent. According to this description, an agent i updates),(asQi

for all ASas ),(as follows:

56
"Bat Q-Learning Algorithm", Bilal H. Abed-alguni.

),(),(asQasQ best
i  . (10)

In the above equation,),(asQbest of state-action pair),(as is the Q-value with the highest

),(asE for all agents. The main disadvantage of BEST-Q is that it might not find the optimal

Q-values, because the Q-tables of all of the learners become the same after each update. As a

result, the diversity of the Q-values is affected negatively [11].

AVE-Q is a modification of BEST-Q that retains the diversity of each agent’s Q-values after the

learning by interaction stage. In this algorithm, the Q-values of learner i are updated by

averaging each Q-value in the learners’ Q-table and its corresponding best Q-value for all

ASas ),(as follows:

2

),(),(
),(

asQasQ
asQ i

best

i


 . (11)

Actually, AVE-Q moves at the interaction stage into the middle of the agent’s Q-values and

their corresponding best values without investigating the quality of the agent’s Q-values. As a

consequence, AVE-Q may produce an incorrect policy, because it does not remove the bad Q-

values at the interaction stage [3].

The Particle Swarm Optimization (PSO) algorithm is a powerful metaheuristic method that

attempts to iteratively optimize a solution with respect to a particular measure [23]. An

optimization problem can be solved with PSO by moving the candidate solutions (particles) in

the search space based on their positions and velocities. The movement of a particle is

controlled by the particle’s local best position and directed in the direction of the global best

positions in the search-space. The global best positions are the best positions found by all of the

particles after each iteration of the algorithm.

PSO-Q uses PSO at its second learning stage as a Q-value sharing method. In this method, the

particles are the Q-values and the qualitative measurer is the Q-function. The Q-table of each

learner is updated based on the velocities and positions of the Q-values as follows [12]:

)],,(),([)],(),([),(),(2211 asQasGRCasQasPRCasVWasV iiiii  (12)

),,(),(),(asVasQasQ iii  (13)

where iV is the velocity of learner i for state-action pair),(as , 1,CW and 2C are weight

parameters and 1R and [0,1]2 R are random numbers. In the above equation, the best Q-value

found by agent i for),(as is denoted as),(asPi and the best Q-value found by all of the

agents for),(as is denoted as),(asG . Normally, the value of),(asG is estimated using

Equation 10.

Two issues should be taken into consideration when implementing PSO-Q to a specific

problem. First, determining suitable values for the parameters of PSO-Q usually requires

multiple simulations to insure that PSO-Q will perform well. Second, there is no guarantee that

PSO-Q will search outside the surroundings of the best Q-value for each possible combination

of states and actions for all agents.

Ahmadabadi and Asadpour [18] proposed a cooperative Q-learning algorithm called Weighted

Strategy Sharing (WSS). In this algorithm, each learner learns from its peers by following a

two-step learning process. First, each learner assigns expertness values to the Q-tables of the

other learners according to their relative expertness. Second, each learner updates its own Q-

table by calculating the weighted average of the Q-values of the learners’ Q-tables as follows:

57
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

)),((),(
1=

asQWasQ jij

n

j

i  (14)

where Wij is the expertness value assigned by learner i to learner j’s expertness.

 An expertness value can be evaluated using one of many expertness measures that have similar

outcomes [18]. One such measure is the Normal measure (Nrm) which calculates the expertness

of a learner (xr) by finding the sum of rewards that the learner has obtained during the previous

independent learning stage:

)(=
1=

trxr i

now

t

Nrm
i  ; (15)

where)(tri is the reward that learner i obtains at instant t .

Based on the output of the above formula, learner i can assign a weight to the knowledge of

learner j by taking into account the expertness of all learners as follows:

k

n

k

i
ij

xr

xr
W




1=

 ; (16)

where n is the number of learners and kxr is the expertness of learner k for nk ...,1,= .

A problem with WSS is that it might not converge to optimality when the shared Q-values are

so extreme, because these values will deform the average Q-value [9].

Abed-alguni et al. [9] suggested a new cooperative Q-learning algorithm called average

aggregation Q-learning which combines WSS, AVE-Q, BEST-Q and PSO-Q into one algorithm

in order to reduce the instability in the performance of these algorithms for different problems.

In this algorithm, each agent improves its Q-values by averaging the Q-values that resulted after

implementing WSS, BEST-Q, AVE-Q and PSO-Q algorithms. Respectively, each agent i

calculates),(asQi for each ASas ),(as follows:

4

),(),(),(),(
),(

asQasQasQasQ
asQ

QPSOWSSQAVEQBEST

i

 
 ; (17)

where i is the learner’s identification number and the denominator is the number of the

combined algorithms.

Although average aggregation Q-learning solves the variability in performance for four famous

cooperative Q-learning algorithms, it requires heavy computations to do so, because it mainly

depends on the results of the other cooperative Q-learning algorithms.

In conclusion, there is no guarantee that the algorithms discussed in this section will converge to

optimal solutions. Moreover, none of these algorithms has a stable performance when

implemented to various learning problems [9]. The next section will present the BQ-learning

algorithm that attempts to solve these problems.

4. BQ-LEARNING

The BQ-learning algorithm comprises two repetitive sequential learning stages.

 • First Learning Stage: each learner tries independently to enhance its policy by

 applying Q-learning. Then, the Q-values of all the agents are evaluated by the

 evaluation method described in Section 3 - Equation 9.

58
"Bat Q-Learning Algorithm", Bilal H. Abed-alguni.

 • Second Learning Stage: the Q-values of all of the learners are updated through

 sharing of Q-values among the learners according to the evaluation results of the

 Q-values and the bat Q-value sharing strategy .

4.1 First Stage of BQ-learning

Figure 2 shows the BQ-learning algorithm. In the beginning of BQ-learning, the number of

learners n and the total number of episodes of BQ-learning p should be specified. Also, the

number of learning episodes mi that each learner i performs during the first learning stage of

BQ-learning should be specified. In addition, the Q-values and Q-value evaluations of each

learner are initialized to zero (lines 8 to 10). That is, 0=),(asQi and 0=),(asEi for all

ASas ),(of each learner i .

 1: iQ : Q -table of learner i .

 2:),(asQi : Q-value for state-action pair),(as of learner i .

 3:),(asEi : evaluated value for),(asQi .

 4: n : number of learners.

 5: im : number of learning episodes performed by learner i during the first

 learning stage of BQ-learning.

 6: p : total number of episodes of BQ-learning.

 7: Begin

 8: for 1=i to n do

 9: Initialize),(asQi and),(asEi for all ASas ),(.

10: end for

11: Set 0=counter .

12: while pcounter< do

13: for 1=i to n do

14: Allow learner i to apply Q-learning as described in Section 2.1 for im

 episodes.

15: Find),(asEi for all ASas ),(based on Equation (9).

16: end for

17: Update),(asQi for all ASas ),(for all of the learners by interaction

between the learners based on the bat Q-value sharing strategy described in

Figure 3.

18: mncountercounter *=  .

19: end while

20: End

Figure 2. The BQ-learning algorithm.

Lines 13 to 16 in Figure 2 represent the first learning stage of BQ-learning, where each learner

i applies Q-learning for im episodes and then calculates),(asEi for all ASas ),(as

described in Section 2.1. Allowing each learner to learn for the same number of episodes

(nn mmmm  110 ...=) indicates that all of the n learners have equal levels of knowledge at

the end of the first learning stage. On the other hand, allowing each learner to learn for a

different number of episodes means that the learners have different levels of knowledge at the

end of the first learning stage.

59
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

4.2 Second Stage of BQ-learning

 1: iQ : Q -table of learner i .

 2:),(asQi : Q-value for state-action pair),(as for learner i .

 3:),(* asQ : best Q-value for state-action pair),(as for all agents.

 4:),(asFi : frequency for state-action pair),(as for learner i .

 5:),(asVi : difference of),(asQi before and after its update.

 6:),(asri : pulse rate for state-action pair),(as for learner i .

 7:),(asAi : loudness for state-action pair),(as for learner i .

 8:),(asEi : evaluated value for state-action pair),(as for learner i .

 9:),(* asE : evaluated value for),(* asQ .

10: A*(s,a): average loudness of all),(asAi .

11: Begin

12: Set the objective function as the evaluation function of Q-values (Equation (9)).

13: for 1=i to n do

14: Initialize),(asFi ,),(asri ,),(asAi and),(asVi for all ASas ),(.

15: endfor

16: Find),(* asQ by applying the update function of BEST-Q algorithm

 (Equation (10)).

17: while <t Max number of iterations do

18: for 1=i to n do

19: Update),(asVi ,),(asFi and),(asQi for all ASas ),(. [Equations 18 to 20].

20: endfor

21: Generate a random number ([0,1]rand).

22: if)),(>(* asrrand then

23: Allow learner
*i to apply Q-learning for few times starting from state s of

),(* asQ using Equation 21.

24: endif

25: Randomly select),(asQi .

26: if (rand < A*(s,a) and)),(<),(* asEasEi then

27: Accept the new Q-values.

28: Increase),(asri and reduce),(asAi [Equations 22 and 23] .

29: endif

30: Find),(* asQ by applying the update function of BEST-Q algorithm (Equation (10)).

31: 1= tt

32: endwhile

33: End

Figure 3. Bat Q-value sharing strategy.

Line 17 in Figure 2 represents the second learning stage of BQ-learning that is described in

details in Figure 3. It is important to keep in mind that the second learning stage of BQ-learning

is what really distinguishes it from the other cooperative Q-learning algorithms described in

Section 3.

Figure 3 shows the flow of the proposed Q-value sharing strategy that is based on the Bat

algorithm. In Figure 3, the Q-values represent the locations of the bats (line 2), the velocity of a

Q-value V(s,a) is the rate at which it changes (line 5) and the objective function is the evaluation

60
"Bat Q-Learning Algorithm", Bilal H. Abed-alguni.

function E(s,a) of the Q-values (line 12). Line 14 in Figure 3 shows that the frequency, loudness

and pulse rate for all ASas ),(of each learner i are initialized to zero. Then, in line 16, the

best Q-value of each ASas ),(is calculated.

Line 19 of this algorithm shows that the Q-values and their frequencies and velocities are

updated iteratively. The new Q-value),(asQi , velocity),(asVi and frequency),(asFi of

learner i are given by:

 ,)(=),(minmaxmini FFFasF  (18)

),,()),(),((),(=),(* asFasQasQasVasV iiii  (19)

),,(),(=),(asVasQasQ iii  (20)

where [0,1] is a random tuning parameter and),(* asQ is the current best Q-value among

all n Q-values for the state-action pair),(as .

A local Q-value can be generated around),(* asQ for each learner by allowing one of the

learners to enhance),(* asQ by applying Equation 21 to),(* asQ for few times:

)],(*),([),()(1),(*** asQmaxAasRasQasQ Aa
  ; (21)

where [0,1] is the same learning rate used in Equation 1 and A* is the average loudness of

all Q-values at iteration t . In the above equation, A* is used to control the influence of future

rewards instead of  in Equation 1.

At each iteration of the algorithm, a local search for a new best Q-value (line 22) around the

current best Q-value),(* asQ for each),(as is triggered when the pulse rate),(* asr is less

than a randomly generated number [0,1]rand .

The new Q-value of),(* asQ is accepted if it satisfies two conditions. First, the estimation

),(* asE of the new),(* asQ must be better than the estimation of a randomly selected Q-value

for the same),(as . Second, the value of rand should be less than the average loudness of

),(as of all the learners. Fulfilling these conditions also implies that the pulse rate ri(s,a) should

be increased and the loudness iA (s,a) should be decreased as follows:

),(=),(asAasA ii  , (22)

])[1,(=),(t
ii easrasr  ; (23)

where  and  are constant parameters. As a general rule, 0< <1 to decrease the loudness

and  >0 to increase the pulse rate each time the Q-values are improved.

Assigning a low pulse rate),(asri for each),(as in the beginning of the optimization process

(line 17) and then increasing it (line 28) is an essential factor for the success of the algorithm.

This is because it reduces the rate of local search around),(* asQ as BQ-learning is

approaching the best Q-value.

The local search for the best Q-values can be performed simultaneously by multiple agents in

BQ-learning as well as in other optimization-based cooperative Q-learning algorithms, such as

PSO-Q and average aggregation Q-learning. BQ-learning is expected to perform better than the

cooperative Q-learning algorithms discussed in Section 3, because it attempts to balance

between the exploration and exploitation of the nominated best Q-values for sharing using

tuning techniques that control its parameters (frequencies, pulse emission rates and loudness of

61
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

the potential solutions). Neither BEST-Q nor AVE-Q attempts to search around the best Q-

values before sharing them. Consequently, BEST-Q might not find the optimal Q-values [11],

while AVE-Q may produce an incorrect policy [11]-[12].

5. EXPERIMENTS

In this section, the performance of BQ-learning was compared with the performance of single-

agent Q-learning, AVE-Q, BEST-Q, PSO-Q, WSS and average-aggregation Q-learning (Section

3) using two problems: the shortest path problem [12] and the taxi problem [24]. These

problems have been widely used in the literature to evaluate the performance of cooperative

Q-learning algorithms [12]-[13], [24]-[26].

5.1 Test Problems

RL can be applied to two types of learning problems [24]. First, single-task problems (e.g.,

shortest path problem), in which the learner is required to learn a single task. Second, multi-task

problems (e.g., taxi domain problem), in which the learner is required to learn multiple tasks.

Figure 4. An example of shortest path problem on a grid size of 2020 .

The shortest path problem is a single-task problem that has been used in many research studies

to evaluate the efficiency of cooperative Q-learning algorithms [11]-[13]. In this problem, an

agent is required to learn one task which is finding the shortest path from one cell to another in a

grid, such that the number of visited cells is minimized. The grid in this problem is usually

represented as a two-dimensional array that is indexed by two subscripts, one for the row and

one for the column. In the shortest path problem, the target cell is usually specified prior to

learning and the start cell is randomly selected before the beginning of each learning episode.

The learner can move during each episode in four directions (up, down, right and left) as long

there are no obstacles or barriers obstructing its way. Figure 4 shows an example of shortest

path problem on a grid size of 2020  . Filled squares represent obstacles that the agent cannot

pass, 0s is the start cell and gs is the target cell.

The taxi domain problem is an episodic multi-task problem that has been used in many research

studies to evaluate the performance of hierarchical Q-learning algorithms [24]-[26]. In each

episode, a taxi agent in a grid world of size 55 is required to perform multiple tasks: finding a

customer, picking up the customer, driving the customer to a destination location and dropping

62
"Bat Q-Learning Algorithm", Bilal H. Abed-alguni.

down the customer in the destination location. The taxi agent can accomplish these goals by

choosing actions from a set of six actions: move one cell (left, right, top or bottom), pickup

action and drop off action. If any of these actions that leads the taxi agent to a barrier or a wall

cell, the location of taxi agent remains unchanged. In the grid, there are four source and

destination locations. Figure 5 shows an example of taxi domain problem. In the figure, a taxi is

located on a 55 grid. There are four pre-determined locations in the grid, marked as Red (R),

Blue (B), Green (G) and Yellow (Y). In the beginning of the simulation process, one of these

locations is selected as a pick-up point and another location is selected as a drop-off point.

Figure 5. Taxi domain problem.

5.2 Setup

The shortest path problem in Figure 4 was modeled as an MDP as follows:

 • The cells in the 2020 grid represent the states of the MDP:

 [19][19])...,[0][1],[0][0],(= gridgridgridS .

 • The target cell is specified prior to learning and the start cell is randomly selected before the

 beginning of each learning episode.

 • There are four primitive actions in the shortest path problem:

)right moveleft, movedown, moveup, move(=A .

 • The reward model for the learners is defined as follows:





 otherwise0

celltargetthereacheditif10.0
R(s,a)=

 • The transition model for the learners is:







 



 otherwise0

 wallorbarrieranot

isandofdirectiontheintonextisif1

=),,(

ass

sasT

The taxi domain problem in Figure 5 was modeled as an MDP as follows:

 • The cells in the 55 grid represent the states of the MDP:

 [4][4])...,[0][1],[0][0],(= gridgridgridS .

 • The location of the taxi is specified prior to learning.

63
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

 • The location of the passenger (source) and the dropping point of the passenger (destination)

 are randomly chosen in the beginning of each learning episode.

 • There are six primitive actions in the taxi domain problem:

)downput up,pick right, moveleft, movedown, moveup, move(=A .

 • The reward model for the learners is defined as follows:

















otherwise0

putdown orpickupillegal10

point off dropselected

itstodeliveredwaspassengertheIf10.0

=),(asR

 • The transition model for the learners is:







 



 otherwise0

 wallorbarrieranot

isandofdirectiontheintonextisif1

=),,(

ass

sasT

The experiments were implemented using two models of knowledge [19]. In the first model, the

learners were assumed to have equal levels of knowledge. This was simulated by allowing the

learners to learn for the same number of episodes before sharing of their Q-values. In the second

model, the learners were assumed to have different levels of knowledge, which was achieved by

allowing each learner to learn for a different number of episodes each time it is learning

independently. For example, a learner that has learned for 25 episodes has more practical

knowledge than a learner that has learned only for 10 episodes.

The action selection policy was the  -soft policy, in which a random action is uniformly

selected with probability  and the action with the highest expected reward is chosen the rest of

the time [22].

The learning parameters for the experiments were set as follows:

 • In Q-learning, the learning rate  was tuned dynamically, so that low Q-values have larger

 learning rates than high Q-values as recommended by Ray and Oates [27]. The discount

 factor 1= [28].

 • In all the cooperative Q-learning algorithms, the learning rate 0.01= and the discount

 factor 0.9= . These values ensure that each cooperative learner learns adequately and

 make, the best use of its current knowledge at each learning episode as recommended by

 Abed-alguni et al. [9].

 • In each episode, a learner starts learning from a randomly selected state and finishes

 learning when a goal state is reached. Otherwise, the learner finishes learning after 5,000

 moves without meeting its goal.

 • In order to ensure an adequate exploration/exploitation ratio, the probability of selecting a

 random action was 0.05= in the  -soft selection policy.

 • The Nrm measure was selected as the expertness measure of WSS. This measure has a

 similar performance to the performance of all other tested expertness measures.

 • As in Abed-alguni et al. [9], the weight parameters in PSO-Q were 0=W , 1=2=1 CC .

 • In BQ-learning, the frequency, the loudness and the pulse rate were in the range [0,1] for

 each solution. The discount parameter of the frequencies β=0.5. Initially, the loudness A

 was set to 1 and the pulse rate r was set to 0 for each Q-value.

Three agents are involved in the experiments. The total number of learning episodes is 2,000 for

the shortest path problem, while the total number of learning episodes for the taxi problem is

64
"Bat Q-Learning Algorithm", Bilal H. Abed-alguni.

12,000 episodes. Each algorithm was executed 100 times in order to provide meaningful

statistical analysis of the experiments.

In the experiments, an algorithm is considered to have converged to a good policy when the

average number of moves in its policy enhances by less than one move over 100 successive

episodes.

5.3 Experimental Results

5.3.1 Shortest Path Problem

 Figure 6 shows the average number of moves per 10 episodes to find the shortest path to the

goal state in a 2020 grid. The second learning stage of the cooperative Q-learning algorithms

takes place after each 10 episodes of individual learning. We can see from the figure that BQ-

learning converges after 420 episodes to a solution. On the other hand, single agent Q-learning,

AVE-Q, WSS, average aggregation Q-learning and PSO-Q converge after around 520 episodes

to solutions, while BEST-Q requires 60 additional episodes to converge to a solution. These

results suggest that the performance of BQ-learning is better than those of the other algorithms

in single-task problems when the agents have similar levels of knowledge before sharing.

Figure 6. Experiment 1: Average number of moves per 10 episodes in a shortest path problem of

a grid size of 2020 . Each curve is the average of 100 runs. Sharing of Q-values takes place

after each ten episodes of individual learning.

Figure 7 shows the average number of moves per 10 episodes to find the shortest path to the

goal state in a 2020 grid. Respectively, in Figure 7, the first, the second and the third agents

learn for 10, 5 and 1 episodes before sharing of their Q-values among each other. In this

experiment, BQ-learning requires 300 episodes of learning to converge to a solution, which is

only 14.9% of the number of episodes required for single-agent Q-learning (2020), 54% of

BEST-Q (550), 53.6% of WSS (560), 62.5% of PSO-Q (480), 61.2% of AVE-Q (490) and

29.4% of average aggregation Q-learning (1,020). These results mean that BQ-learning

outperforms the other algorithms in single-task problems when the agents have different levels

of knowledge before sharing.

5.3.2 Taxi Problem

Figures 8 and 9 show the average number of steps per 10 episodes to deliver a passenger in a

65
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

Figure 7. Experiment 2: Average number of moves per 10 episodes in a shortest path problem of

a grid size of 2020 . Each curve is the average of 100 runs. One, five and ten episodes of

learning occur before implementing a Q-value sharing strategy.

5 5 grid. Sharing of Q-values occurs in Figure 8 after each 10 episodes of independent

learning, while in Figure 9, the 1st learner, the 2nd learner and the 3rd learner respectively learn

for 1, 5 and 10 episodes before sharing of their Q-values.

Figure 8 shows that BQ-learning requires 7,180 episodes to converge to a solution, followed by

PSO-Q that requires 7,560 episodes (5 % more episodes than BQ-learning) to converge to a

solution. On the other hand, the other algorithms failed to converge to a solution at the end of

the simulation process. These results suggest that BQ-learning converges to a solution faster

than the other algorithms in multi-task problems when the agents have similar experiences.

Figure 9 shows that all of the cooperative Q-learning algorithms failed to converge to a solution

except BQ-learning and AVE-Q. As expected, BQ-learning has the fastest convergence speed

among all algorithms. From Figure 9, we can also see that WSS has the worst performance

among all the algorithms including single-agent Q-learning. These results indicate that BQ-

learning outperforms the other algorithms in multi-task problems when the agents have different

levels of experience.

5.4 Performance Analysis

Two statistical measures were used in Table 1 to compare the performance of the tested

algorithms over 100 runs. The results are in the format: average number of iterations 

standard deviation of iterations. The last row of the table shows that BQ-learning requires less

number of iterations to converge to a solution. In addition, the standard deviations of the

number of iterations of BQ-learning are the lowest among all the standard deviations of the

other algorithms that converge to a solution. This means that the performance of BQ-learning is

more stable than the performance of the other tested algorithms.

Figures 10 and 11 show how the performance of three instances of BQ-learning is affected as

the number of learning episodes of the agents is varied: (1-5-10), (15-30-45) and (25-50-100)
learning episodes before sharing. The results in Figure 10 show that the convergence points of

all instances of BQ-learning in the shortest path problem are not far from each other: BQ-

learning (1-5-10) converges after 303 episodes, BQ-learning (15-30-45) converges after 333

episodes and BQ-learning (25-50-100) converges after 342 episodes.

66
"Bat Q-Learning Algorithm", Bilal H. Abed-alguni.

Figure 8. Experiment 3: Average number of moves per 10 episodes in a taxi problem of a grid

size of 55 . Each curve is the average of 100 runs. Sharing of Q-values takes place after each

ten episodes of individual learning.

Figure 9. Experiment 4: Average number of moves per 10 episodes in a taxi problem of a grid

size of 55 . Each curve is the average of 100 runs. One, five and ten episodes of learning

occur before implementing a Q-value sharing strategy.

In Figure 11 (taxi domain), BQ-learning (1-5-10) converges after 9,136 episodes, BQ-learning

(15-30-45) converges after 9,233 episodes and BQ-learning (25-50-100) converges after 9,417

episodes. To sum up, the results in both figures indicate that the convergence speed of BQ-

learning is not highly sensitive to the number of episodes that each agent learns before sharing

of Q-values.

The overall results of the experiments suggest that BQ-learning performs better than

conventional Q-learning and the other cooperative Q-learning algorithms, regardless of the

67
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

levels of experience of the agents (similar experiences vs. different experiences) and the types

of the learning problems (single-task vs. multiple-task problems).

Table 1. Average and standard deviation of number of iterations over 100 runs. The star symbol

* indicates that the algorithm did not converge to a solution at the end of the simulation process.

Algorithm Experiment 1 Experiment 2 Experiment 3 Experiment 4

Single-agent Q-

learning

520 36 2,000
*0 12,000

*0 12,000
*0

BEST-Q 583 44 550 66 12,000
*0 12,000

*0

AVE-Q 521 31 480 35 12,000
*0 11,003 356

WSS 524 32 560 44 12,000
*0 12,000

*0

PSO-Q 523 34 480 61 7,560 701 12,000
*0

Average

aggregation

521 31 1,020 52 12,000
*0 12,000

*0

BQ-learning 413 17 300 32 7,180 425 9,136 256

Figure 10. Experiment 5: Performance of different instances of BQ-learning in a shortest path

problem of a grid size of 2020 . Each curve is the average of 100 runs.

6. CONCLUSION AND FUTURE WORK

Cooperative Q-learning approach is an efficient learning approach that accelerates the learning

process of individual learners in homogeneous multi-agent systems. This paper presented the

BQ-learning algorithm which is a new cooperative Q-learning that is inspired from the bat

algorithm. The learning process of BQ-learning comprises two stages. First, the individual

learning stage, where each agent learns or improves its own policy by implementing the

standard Q-learning algorithm. Second, the learning by interaction stage, where the learners

share their Q-values among each other using a Q-value sharing strategy based on the bat

68
"Bat Q-Learning Algorithm", Bilal H. Abed-alguni.

algorithm.The BQ-learning algorithm has many advantages. First, compared to current

cooperative Q-learning algorithms, the BQ-learning algorithm can be implemented to single-

task and multi-task problems, because optimizing the tasks of a learning problem using the bat

algorithm improves the overall solution for the problem. Second, the bat sharing strategy in BQ-

learning increases the possibility of finding the optimal Q-values, because it attempts to balance

between the exploration and exploitation of actions using tuning techniques that control its

parameters (frequencies, pulse emission rates and loudness of the potential solutions).

Figure 11. Experiment 6: Performance of different instances of BQ-learning in a taxi problem of

a grid size of 55 . Each curve is the average of 100 runs.

Finally, the results of the pilot experiments suggest that BQ-learning performs faster than

single-agent Q-learning and other famous cooperative Q-learning algorithms, whether the

agents have similar or different levels of experience and regardless of the type of the learning

problems (single-task vs. multiple-task problems).

Future work includes implementing the BQ-learning algorithm to continuous space learning

problems and developing a new cooperative Q-learning algorithm based on a combination of the

firefly and monkey algorithms.

REFERENCES

[1] C. Watkins, Learning from Delayed Rewards, PhD thesis, Cambridge University, Cambridge,

England, 1989.

[2] C. Watkins and P. Dayan, "Technical Note: Q-learning," Machine Learning, vol. 8, no. 3, pp.

279-292, 1992.

[3] B. H. Abed-alguni, S. K. Chalup, F. A. Henskens and D. J. Paul, "A Multi-agent Cooperative

Reinforcement Learning Model Using a Hierarchy of Consultants, Tutors and Workers,"

Vietnam Journal of Computer Science, vol. 2, no. 4, pp. 213-226, 2015.

[4] P. Kormushev, S. Calinon and D. G. Caldwell, "Reinforcement Learning in Robotics:

Applications and Real-world Challenges," Robotics, vol. 2, no. 3, pp. 122-148, 2013.

69
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 3, No. 1, April 2017.

[5] J. Kober, J. A. Bagnell and J. Peters, "Reinforcement Learning in Robotics: A Survey,"

 The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238-1274, 2013.

[6] H. Iima, Y. Kuroe and S. Matsuda, "Swarm Reinforcement Learning Method Based on Ant

Colony Optimization," Proc. of 2010 IEEE International Conference on Systems, Man and

Cybernetics (SMC), (O. Kaynak and G. Dimirovski, eds.), pp. 1726-1733, 2010.

[7] B. Cunningham and Y. Cao, "Non-reciprocating Sharing Methods in Cooperative Q-learning

Environments," Proc. of the 2012 IEEE/WIC/ACM International Joint Conference on Web

Intelligence and Intelligent Agent Technology, vol. 2, pp. 212-219, IEEE Computer Society,

2012.

[8] M. Tan, "Multi-agent Reinforcement Learning: Independent vs. Cooperative Agents," Proc. of

10th International Conference on Machine Learning, vol. 337, Amherst, MA, 1993.

[9] B. H. Abed-alguni, D. J. Paul, S. K. Chalup and F. A. Henskens, "A Comparison Study of

Cooperative Q-learning Algorithms for Independent Learners," International Journal of Artificial

Intelligence, vol. 14, no. 1, pp. 71-93, 2016.

[10] H. Iima, Y. Kuroe and K. Emoto, "Swarm Reinforcement Learning Methods for Problems with

Continuous State-action Space," Proc. of 2011 IEEE International Conference on Systems, Man

and Cybernetics (SMC), pp. 2173-2180, 2011.

[11] H. Iima and Y. Kuroe, "Reinforcement Learning through Interaction among Multiple Agents,"

Institute of Control, Automation and Systems Engineers (ICASE) and the Society of Instrument

and Control Engineers (SICE) International Joint Conference, pp. 2457-2462, October 2006.

[12] H. Iima and Y. Kuroe, "Swarm Reinforcement Learning Algorithms-Exchange of Information

among Multiple Agents," The Society of Instrument and Control Engineers (SICE), 2007 Annual

Conference, pp. 2779-2784, September 2007.

[13] H. Iima and Y. Kuroe, "Swarm Reinforcement Learning Algorithms Based on SARSA Method,"

The Society of Instrument and Control Engineers (SICE) Annual Conference 2008, pp. 2045-

2049, August 2008.

[14] E. Di Mario, Z. Talebpour and A. Martinoli, "A Comparison of PSO and Reinforcement

Learning for Multi-robot Obstacle Avoidance," 2013 IEEE Congress on Evolutionary

Computation (CEC), pp. 149-156, June 2013.

[15] B. Dğan and T. Ölmez, "A Novel State Space Representation for the Solution of 2D-HP Protein

Folding Problem Using Reinforcement Learning Methods," Applied Soft Computing, vol. 26,

pp. 213-223, 2015.

[16] E. Pakizeh, M. Palhang and M. Pedram, "Multi-criteria Expertness Based Cooperative Q-

learning," Applied Intelligence, vol. 39, no. 1, pp. 28-40, 2013.

[17] K.-S. Hwang, W.-C. Jiang and Y.-J. Chen, "Model Learning and Knowledge Sharing for a

Multi-agent System with Dyna Q-learning," IEEE Transactions on Cybernetics, vol. 45, pp. 964-

976, May 2015.

[18] M. N. Ahmadabadi and M. Asadpour, "Expertness Based Cooperative Q-learning," IEEE

Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, vol. 32, no. 1, pp. 66-76,

2002.

[19] M. Ahmadabadi, A. Imanipour, B. Araabi, M. Asadpour and R. Siegwart, "Knowledge-based

Extraction of Area of Expertise for Cooperation in Learning," International Conference on

Intelligent Robots and Systems, 2006 IEEE/RSJ, pp. 3700-3705, 2006.

[20] X.-S. Yang, "A New Metaheuristic Bat-inspired Algorithm," Conference on Nature Inspired

Cooperative Strategies for Optimization (NICSO 2010), pp. 65-74, Springer, 2010.

[21] X.-S. Yang and A. Hossein Gandomi, "Bat Algorithm: A Novel Approach for Global

Engineering Optimization," Engineering Computations, vol. 29, no. 5, pp. 464-483, 2012.

[22] X.-S. Yang, "Bat Algorithm for Multi-objective Optimization," International Journal of Bio-

Inspired Computation, vol. 3, no. 5, pp. 267-274, 2011.

70
"Bat Q-Learning Algorithm", Bilal H. Abed-alguni.

[23] J. Kennedy, "Particle Swarm Optimization," Encyclopaedia of Machine Learning, pp. 760-766,

Springer, 2011.

[24] B. Hengst, "Model Approximation for HEXQ Hierarchical Reinforcement Learning," Machine

Learning: ECML 2004 (J.-F. Boulicaut, F. Esposito, F. Giannotti and D. Pedreschi, eds.), vol.

3201 of Lecture Notes in Computer Science, pp. 144-155, Springer, Berlin, Heidelberg, 2004.

[25] T. G. Dietterich, "Hierarchical Reinforcement Learning With the MAXQ Value Function

Decomposition," Journal of Artificial Intelligence Research, vol. 13, no. 1, pp. 227-303, 2000.

[26] D. Andre and S. J. Russell, "State Abstraction for Programmable Reinforcement Learning

Agents," AAAI/IAAI, pp. 119-125, 2002.

[27] S. Ray and T. Oates, "Locking in Returns: Speeding Up Q-learning by Scaling," Proc. European

Workshop on Reinforcement Learning (EWRL), pp. 32-36, 2011.

[28] R.-S. Sutton and A.-G. Barto, Reinforcement Learning: An Introduction, Cambridge, USA: MIT

Press, 1998.

 ملخص البحث:

ملنمم م مم منسم د ت ملتممام بمعم م ممك دميسمح منحنحممعمُّم كمم ملتمامني مممعلّمميح م دحممت من مملدمي مكممعي م ك مكمممث

ُّبطمكهمانملهحمع منممث ةميستسمتةمُّمجمنيخعصةمكه مفتحمعمكتمحه منسم خلنت منام جنُّتلتةمي بمعمم م مت ملتما

ميمم دماعيتممةم مملمعيتممةلأم لم ممت ملتممامنيح نيححنحممعتمُّ ح مم مفممممولمام مما منيح م دحممت م مملمامُّ مممم يممعمنيح

مكمضمنيخانيزنتعتمني معلّتةمُّثالمذنتمومنءمجتدملمفت قمحمعمي م دم يلعمهع ملهحع منمث ةموخجىمهممولد

ةمنيانالةمكتححعميثالمومنؤهعمضمتفعمًفممنيحمثلاتمن ملدمةمنيحهع ممد كعيحمثلاتمذنتمنيحهحد

يخفدمع،تمنلهممخانيزنتةمُّمعلّتةمُّسمحعمخانيزنتمةممُّ جحمهاهمنياي ةمخانيزنتةمجليلةمي م ك ملتات

مخانيزنتممة منيخفدممع،ملُّ مماممك حفتممامنامم جنُّتلتةمي بممعمم م ممت ملتممامنحب ممةمبحهممع ملنيلممليجمكعيممالجمولد

عفمناا ثمممخانيزنتةمفمدعيةمُّزيلمن م نثعّتةم يلعمم ت ملتامنيح عيتةمب مطجيقم النثمني مانزلمكمت

مجنتمنيخانيزنتة لناا غلا ميلأفمع مببجمضبطمن غت

ل لمُّ منخ بعيمخانيزنتةمنيخفدع،مي م ك ملتامكعا خلنممنسأي ت مهحع:منسأيةمو صجمنسعيتملهممنسمأيةم

مومنءممواعميممةمنيحهحممةتملنسممأيةمني علسمممتملهممممنسممأيةمن ممملدمةمنيحهممعمد لُّ ممجحمنيح ممعستمني لجيبتممةمولد

 ملتممامذامنيمعنمم منيانامململومنءمكمممضمخانيزنتممةمنيخفدممع،ميمم م ك ملتمماموفقمم مبحمملمن عيّ مم مكممأمنءمُّم كمم

 .نيخانيزنتعتمني معلّتةمي م ك ملتامنيحمجلفةمجتلنًم

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

