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ABSTRACT 

Lung diseases such as COVID-19 and pneumonia can lead to severe complications, including breathing 

difficulties, decreased lung function and respiratory failure, which can be life-threatening if not promptly 

treated. Chest X-ray imaging techniques have proven to be quick, effective and cost-efficient in diagnosing and 

monitoring these diseases. Additionally, artificial intelligence, particularly through deep learning and machine 

learning, has shown promising results in detecting various lung diseases, including COVID-19 and pneumonia. 

This technology’s ability to analyze large datasets rapidly has contributed to reducing the spread of these 

diseases and has significantly advanced biomedical research in various medical disciplines. In this research 

paper, we introduced various advanced ensemble techniques as bagging, boosting, stacking and blending with 

different algorithms, to enhance the performance of our classification models in detecting coronavirus and 

pneumonia. We specifically focused on combining convolutional neural network (CNN) and vision transformer 

(ViT) models to create powerful ensemble models. Our objective was to determine the most accurate ensemble 

technique for diagnosing lung diseases. We assessed their ability to correctly classify chest X-ray images as 

either COVID-19, pneumonia or normal. The CatBoost model achieved the highest accuracy, F1-score and 

ROC-AUC score of 99.753%, 99.51% and 99.99%, respectively using the COVID-19 Radiography dataset. The 

bagging ensemble model achieved the highest accuracy, F1-score and ROC-AUC score of 95.08%, 95.2% and 

99.69%, respectively using COVIDx CXR-4. The results indicate that the advanced ensemble techniques can 

significantly improve the performance of machine-learning models. 
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1. INTRODUCTION 

Lung diseases are a group of conditions that affect the health of the respiratory system and include 

many different diseases, such as pneumonia, COVID-19, pulmonary fibrosis and asthma [1]. One of 

the diseases that currently poses a major challenge is the new Coronavirus (COVID-19), where the 

number of deaths exceeded 7 million cases until April 2024 [2]. Coronavirus cases are currently a 

common lung disease. The new coronavirus mutates rapidly, leading to an increase in infection cases, 

with the number of infections reaching more than 700 million cases [2]. Pneumonia is not less 

dangerous than COVID-19. Therefore, early detection of these diseases reduces their risk [3]. One of 

the methods that is widely used in the detection of lung diseases is X-rays, as it is fast and inexpensive 

compared to other methods [4]. While X-rays are valuable in the detection of lung diseases, they may 

pose potential health risks with repeated exposure to ionizing radiation. In addition, while X-rays 

provide valuable information about the structure of the lungs, they may not always provide detailed 

insights into specific lung conditions, such as distinguishing between different types of pneumonia or 

identifying lung cancer at an early stage. In such cases, additional imaging techniques, such as 

computed tomography (CT), magnetic resonance imaging (MRI) or diagnostic tests, may be necessary 

for a comprehensive evaluation. 

Artificial intelligence (AI) has revolutionized the medical field by searching medical data and 

revealing insights to enhance patient experiences and health outcomes [5]. It does this by utilizing 

machine-learning and deep-learning models. AI is frequently used in medical-imaging settings, 

analyzing CT scans, X-rays, MRIs and other images to look for lesions or other findings that a human 

radiologist might overlook, in addition to dealing with a huge volume of data quickly. Chest X-rays 
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(CXR) help detect lung abnormalities early and are also less expensive than other tests [6].  

There are many types of deep-learning algorithms, such as CNNs, Multilayer Perceptrons (MLPs), Re- 

current Neural Networks (RNNs) and Autoencoders, which are mainly used for image classification 

and object detection [7]-[9]. 

Ensemble methods are techniques the goal of which is to improve the performance of machine-

learning models by creating one more reliable model by combining multiple models. Through the use 

of these techniques, a more reliable and more accurate model is produced by merging the predictions 

of several separate models. The main types of ensemble techniques are: bagging, boosting, stacking 

and blending techniques [10]. The bagging ensemble technique is mainly applied in classification 

which can increase accuracy and eliminate overfitting [11]. Boosting ensemble technique combines 

several weak learners to form a strong one; it takes many algorithms including gradient boosting, 

adaptive boosting (AdaBoost), light gradient-boosting machine (LightGBM) and extreme gradient 

boosting (XGBoost) [12]. The stacking ensemble technique uses predictions for multiple models to 

build a new strong model [13]. The blending ensemble technique also combines predictions from 

multiple models as stacking and can improve the overall performance of the model [14]-[15]. 

The integration of AI and deep-learning algorithms with ensemble methods holds significant promise 

for advancing the capabilities of medical imaging, leading to more accurate and more efficient 

detection and diagnosis of lung diseases and other medical conditions. We must take several 

considerations associated with the integration of AI and deep-learning algorithms with ensemble 

methods in medical imaging as data-management considerations, including storage, retrieval and 

processing, as well as algorithmic methods for disease classification and segmentation to ensure the 

successful implementation of these technologies in clinical practice. 

The key contributions of this paper are: 

1. Involving a comprehensive evaluation of the optimized CNN and ViT models. 

2. Optimizing CNN and ViT hyper-parameters: The paper focuses on optimizing the hyper-

parameters of Convolutional Neural Network (CNN) and Vision Transformer (ViT) models to 

reduce model losses and achieve the best accuracy in diagnosing lung diseases, particularly 

pneumonia and COVID-19. 

3. Application of different ensemble techniques between CNN and ViT: The study explores the 

application of different ensemble techniques between CNN and ViT models. This involves 

leveraging ensemble methods to combine the strengths of these two architectures for improved 

diagnostic accuracy in lung-disease classification. 

4. Comparison between the types of advanced ensemble techniques and fusion: The paper makes 

a comparison between different types of advanced ensemble techniques and fusion methods. 

This comparison provides insights into the effectiveness of various ensemble approaches in 

enhancing the accuracy of lung-disease diagnosis. 

5. Use of the upgraded ensemble model to classify and recognize lung diseases: The upgraded 

ensemble model is utilized to classify and recognize lung diseases, such as pneumonia and 

COVID-19. This involves leveraging the optimized CNN and ViT models, along with 

ensemble techniques, to achieve accurate classification and recognition of lung diseases based 

on medical-imaging data. 

This paper is organized as follows: Section 2 highlights related work. Next, Section 3 discusses the 

proposed work, Section 4 discusses the experimental results and lastly, conclusions and future-

research directions are highlighted in Section 5. 

2. RELATED WORK 

We divided the previous studies according to the types of ensemble techniques that can be used to 

diagnose lung diseases based on X-ray images, including methods, such as bagging, stacking, 

boosting, blending and weighted-average techniques. 

Hasan et al. [16] created a model for automatically detecting pneumonia using CXR images. The 

weighted-average ensemble model was applied to three models; namely, VGG16, MobileNetV2 and 

DenseNet169. The ensemble model achieved an accuracy of 92%. Tang et al. [17] also presented a 
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weighted-average ensemble approach to detect COVID-19 with an accuracy of 95%. They used 

COVIDx dataset to evaluate their experiment. They used COVID-Net as the candidate to generate 

multiple model snapshots in terms of its promising performance for its CXR image-based COVID-19 

case detection. 

Govindarajan et al. [18] presented an Extreme Gradient Boosting (XGBoost) classifier that can detect 

tuberculosis (TB) disease using CXR images from NIAID TB Portals repository. All images were 401   

at a resolution of 1024×1024 pixels. The accuracy resulting from this model was 93%. Also, Kalaivani 

et al. [19] presented an ensemble boosted model using CNN and four different classifiers (decision 

tree, random forest, AdaBoost and support vector machine) to detect COVID-19. The suggested model 

achieved an accuracy of 99.35%. The images used were 5178 abnormal CXR images and 4310 normal 

CXR images collected from different sources. 

Soundrapandiyan et al. [20] introduced a stacked ensemble model for detecting coronavirus (COVID-

19) from chest X-ray images. The stacked ensemble technique between the models ResNet50, 

VGG19, Xception and DarkNet19 is named WavStaCovNet-19.  The model achieved an accuracy of 

94.24% on 4 classes (COVID-19, viral pneumonia, bacterial pneumonia and normal). They used two 

datasets, the COVID-19 image data-collection repository and chest X-ray images for normal cases and 

pneumonia [21]. Huang et al. [22] also presented a stacking ensemble model on the classification of 

multiple chest diseases including COVID-19 using the COVID-19 Radiography dataset. The model 

achieved an accuracy of 99.21%, Precision of 99.23%, Recall of 99.25%, F1-score of 99.20% and 

(area under the curve) AUC of 99.51% on the chest X-ray dataset. They verified that the combined 

model had better performance than individual pre-trained models. Six EfficientNetV2 models 

including EfficientNetV2-B0, EfficientNetV2- B1, EfficientNetV2-B2, EfficientNetV2-B3, 

EfficientNetV2-S and EfficientNetV2-M were stacked. 

EROL et al. [23] made a comparison between three types of ensemble techniques; namely, bagging, 

AdaBoost and random forest, to detect COVID-19. Adaboost classifier achieved the highest accuracy 

of 97.25%. Bagging and random-forest classifiers achieved an accuracy of 96.69% and 96.89%, 

respectively. The BIGDATA-COVID19 dataset was used that includes age, sex and routine blood-test 

results of 1218 patients. 

Banerjee et al. [24] presented the blending ensemble technique of DenseNet-201 snapshots, providing 

a variety of information regarding the features that were taken out of CXRs to detect COVID-19. To 

merge the decision scores, they employed the decision-level fusion approach, which involves a 

Random Forest (RF) meta-learner and the blending method. On the large COVID-X dataset, the model 

achieved an accuracy score of 94.55% and on the smaller dataset by Chowdhury et al., the model 

achieved an accuracy score of 98.13%. 

There are some common difficulties/issues in the papers that we presented, because of which the 

reliability of the proposed deep-learning models can be questioned as data imbalance, image-size 

handling, dataset availability and high correlation of errors when employing ensemble techniques. The 

potential ways to overcome these issues include further experimentation, data augmentation, 

ensemble-model refinement and feature engineering to extract more relevant features from the CXR 

images. 

3. PROPOSED WORK 

3.1 Dataset 

The COVID-19 radiography database of chest X-ray images is one of the available datasets utilized to 

develop and evaluate deep-learning models for the detection and classification of lung diseases, 

particularly COVID-19, as shown in Figure 1. The database consists of a collection of images from 

multiple sources, such as the COVID-19 Image Dataset, the COVID-19 Database of the Italian Society 

of Medical and Interventional Radiology (SIRM) and images from several different publications [25]-

[26]. It includes 3616 COVID-19-positive cases, 10,192 Normal, 6012 Lung Opacity (Non-COVID 

lung infection) and 1345 Viral Pneumonia images in PNG format [27]. All images have the same 

resolution of 299×299. The dataset was split into training, validation and test sets. The training set was 

used to train the model, the validation set was used to validate and tune the hyper-parameters of the 

model and the test set was used to evaluate the overall performance of the model. The training set 
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included 1075 normal images, 1075 images of COVID-19 and 1075 images of pneumonia. The 

validation set and test set included 135 normal images, 135 COVID-19 images and 135 pneumonia 

images. 

The COVIDx CXR-4 dataset is an open-source benchmark dataset that combines 5 different publicly 

available datasets which include: COVID-19 Image data collection, COVID-19 Chest X-Ray Dataset 

Initiative, COVID-19 radiography database, RSNA Pneumonia Detection challenge dataset and 

ActualMed COVID-19 Chest X-Ray Dataset Initiative [28]. The dataset includes 84,818 images from 

45,342 patients in PNG format with the same resolution of 1024×1024. The dataset is classified into 

positive and negative COVID-19 samples. We split the data into training, validation and test sets. The 

training set includes 9600 images, the validation set includes 1200 images and the test set includes 

1200 images. Each set contains 3 classes: COVID-19, normal and pneumonia. 

COVID Normal Pneumonia 

   
 

Figure 1. A batch of images from the training dataset. 

Figure 2. A batch of training images after data augmentation. 

3.2 Data Preparation 

A data-augmentation technique is used to increase data diversity, improve generalization and reduce 

overfitting in deep-learning models. Random transformations, such as rescale, shear, zoom and 

horizontal flip, were applied to the training images as shown in Figure 2. Both the shear-range and 

zoom-range parameters were set to 0.2 in the ImageDataGenerator class from the Keras library. 

Images have been resized to dimensions of 224×224. 

3.3 Model 

This research is a continuation of previous work where we used both DenseNet-169 and vision 

transformer (ViT-l32) models to detect COVID-19 and pneumonia lung diseases. The results were as 

follows: the accuracy of both models was 92.31% and 92.56%, respectively. To improve the 
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performance of the two models, they were combined using two different types of ensemble techniques: 

decision-level fusion and feature-level fusion. Indeed, the accuracy improved to 93.3% and 94.54%, 

respectively [3]. Now we use other ensemble methods on the same two models and the same dataset to 

achieve a better-performance model. 

3.3.1 DenseNet-169 

A CNN architecture called DenseNet-169 was created specifically for image-classification 

applications. It belongs to the DenseNet model family, which is famous for having dense connectivity 

between layers. It is composed of several dense blocks as shown in Figure 3, each dense block 

consisting of several convolutional layers. The primary advantage of DenseNet is its dense connection 

architecture, where each layer is feed-forward connected to every other layer. Enhanced information 

flow and feature reuse across the network are made possible by this dense connectivity. To reduce the 

number of parameters in the network and reduce the spatial dimensions of feature maps, transition 

layers between dense blocks are used. Transition layers include a combination of convolutional layers, 

pooling layers, batch-normalization and nonlinear-activation functions. When compared to the 

DenseNet-121 model, the DenseNet-169 is larger and more accurate. It is about 55MB in size and 

contains about 169 layers [29]. The increased depth allows DenseNet-169 to capture more complex 

features and potentially achieve improved accuracy in image-classification tasks [30]. The DenseNet-

169 model takes an image with a size of 224×224 pixels as input [31]. Compared with other CNN 

architectures, it is relatively low in parameters. 

 

 

 

Figure 3. DenseNet-169 architecture. 

3.3.2 Vision Transformer 

The vision transformer (ViT) has shown promising effectiveness for global feature extraction in many 

tasks of computer vision, such as image recognition, image classification, object detection and image 

segmentation [32]. It has gained attention due to its ability to capture long-term dependencies and its 

generalizability across different data modalities. The ViT model is an effective tool for image 

classification, because it uses self-attention processes to obtain global information from an image. By 

capturing global and local representations from shallow and deep layers, the ViT model differs from 

traditional CNN, which concentrates mostly on local features using convolutional filters [33], but ViT 

processes images using patches and the self-attention method by converting input images into a 

sequence of tokens. The input image is split up into fixed-size patches in the first stage. Every patch is 

viewed as a token and is put through a linear embedding process. Subsequently, position embeddings 

are appended to the patch embeddings to furnish spatial details regarding the patches’ placement 

within the image. The sequences of patch embeddings and position embeddings are then put into a 

typical transformer encoder. The transformer encoder is composed of feed-forward neural networks 

and numerous layers of self-attention. By creating attention maps from the provided embedded visual 

tokens, the multi-head self-attention (MSA) enables the model to focus on several regions of the input 

image concurrently. Batch normalization is used to improve training stability and reduce training time. 

The residual connections improve the overall performance of the network [34]. Figure 4 illustrates the 

ViT architecture. 

There are several variations related to ViT as ViT-l16, ViT-l32, ViT-b16, ViT-b32 and data-efficient 

image transformers (DeiT). The ViT-l32 is considered more significant and more powerful than some 

of the other variants [35]-[36] due to its ability to achieve superior results in image-recognition tasks, 

so ViT-l32 was chosen. l means ’large’ and 32 refers to batch size. 

3.3.3 The Used Ensemble Techniques Background 

The ensemble techniques refer to the use of several base models and combining their predictions to 

improve the overall performance and accuracy of the system [37]. Instead of relying on a single 

model, ensemble techniques leverage the diversity and collective intelligence of multiple models to 
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produce one optimal predictive model. It can reduce bias, variance and overfitting [38]-[39]. There are 

several types of ensemble techniques as bagging, stacking, blending and boosting [40]. 

In this paper, we applied a comprehensive range of ensemble techniques, including Bagging, Gradient 

Boosting, AdaBoost, XGBoost, LightGBM, CatBoost, Stacking and Blending.  

Bagging, also known as bootstrap aggregation, is an ensemble method that involves training multiple 

models independently on random sub-sets of the data [41]-[43]. The bagging involves the following 

steps: (1) Generating predictions from the base models using the holdout set (test set). (2) Combining 

the predictions as features for the bagging model using concatenate function. (3) Training a bagging 

model using the combined features and true labels. (4) Generating predictions from the trained 

bagging model on the combined features. (5) Evaluating the bagged model performance using the 

accuracy_score function with the combined predictions. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. ViT-l32 structure. 

Stacking uses a meta-learning algorithm to learn how to best combine the predictions from two or 

more models [44]. It can combine the capabilities of a group of models that perform well on a 

classification or regression task and make predictions that perform better than any single model in the 

group [45]-[46]. The stacking involves the following steps: (1) Compiling the models and making 

predictions. (2) Combining the predictions from the base models to create meta-features. (3) Useing 

the combined meta-features as input features for the meta-learner. (4) Training the meta-learner model 

using the meta-features and the true labels. (5) Evaluating the performance of the stacked model using 

appropriate evaluation metrics. This implementation follows the stacking ensemble technique, where 

predictions from base models are combined using a meta-model to improve predictive performance. 

The use of a meta-model allows for the aggregation of predictions from diverse base models, aiming to 

reduce overfitting and improve generalization. 
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Boosting is designed to address potential limitations of individual models, such as generalizability and 

data bias. By combining the predictions of multiple models, ensemble methods aim to improve the 

robustness and generalization of machine-learning models by combining a group of weak learners into 

a strong learner. It trains the models sequentially, where each subsequent model focuses on correcting 

the mistakes made by the previous models, so it can minimize training errors [47]-[48]. There are 

many types of boosting algorithms, such as AdaBoost, CatBoost, XGBoost and LGBoost [49]-[50]. 

The short form for adaptive boosting (AdaBoost) is a powerful ensemble learning algorithm used in 

machine learning for addressing binary-classification challenges. 

The catBoost is a high-performance open-source library for gradient boosting on decision trees, 

designed for use in classification, regression and ranking tasks. 

The eXtreme Gradient Boosting (XGBoost) is an open-source software library that provides a 

regularizing gradient boosting framework for various programming languages, such as C++, Java and 

Python. 

The light gradient boosting machine (LGBoost) is an open-source gradient boosting framework that is 

designed for efficiency, scalability and high performance in machine-learning tasks. 

The boosting steps: (1) Training each model separately. (2) Generating predictions from each model. 

(3) Combining the predictions using the concatenate function. (4) Training a boosting model 

(GradientBoost- ingClassifier) using the stacked features. (5) Generating predictions from the trained 

boosting model on the stacked features. (6) Evaluate the performance of the boosted model using 

appropriate evaluation metrics. 

Blending is an ensemble approach that can improve the model performance to be more accurate. It 

uses a particular method to merge predictions from various models contributing to the ensemble. The 

steps used in the blending process are: (1) Generating the predictions from the base models. (2) 

Building the model from the test set and the predictions. (3) The building model serves as the meta-

model. (4) Generating predictions from the meta-model. 

 

4. RESULTS AND DISCUSSION 

The proposed method was implemented using Python 3.8 with additional libraries, such as Pandas, 

Tensor Flow and Keras. Windows 10 Operating System powered the System with configuration, 

Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10 GHz, NVIDIA GeForce GTX 970 GPU and 64 GB 

RAM. 

The first dataset "COVID-19 Radiography dataset" obtained from Kaggle [27], was utilized to train 

and test DenseNet-169 and ViT-l32 models for multi-level classification aimed at detecting COVID-

19 patients. The training and validation sets comprised 90% of the dataset, while the testing set 

utilized the remaining 10%, as outlined in Table 1. Python and machine-learning libraries were 

employed for implementation, with the Python programming language utilized to train and evaluate 

the proposed models, which were pre-trained using TensorFlow. The training data underwent 

modification through data-augmentation techniques, as illustrated in Figure 2. The second dataset 

COVIDx CXR-4 was split into the training, validation and test set in the ratio 8:1:1, as shown in Table 

2. 

The pre-trained DenseNet 169 model was trained on the initialization weights illustrated in Table 3 

using the first dataset and the Adam optimizer. Subsequently, the ViT-l32 was separately trained on 

the same dataset. Predictions were generated from the two models using the test set and combined 

using ensemble techniques, as shown in Figure 5. 

Table 1. Class-wise distribution of CXR samples in the COVID-19 Radiography database. 

Phase COVID-19 Normal Pneumonia Total 

Training 1075 1075 1075 3225 

Validation 135 135 135 405 

Test 135 135 135 405 

Total 1345 1345 1345 4035 
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Table 2. Class-wise distribution of CXR samples in the COVIDx CXR-4 dataset. 

Phase COVID-19 Normal Pneumonia Total 

Training 3200 3200 3200 9600 

Validation 400 400 400 1200 

Test 400 400 400 1200 

Total 4000 4000 4000 12000 

Table 3. Training parameters. 

Training Parameters Values/Types 

Number of epochs 100 

Batch size 32 

Optimizer Adam 

Learning rate 0.001 

Zoom and shear range 20% 

Fill mode Nearest 

Rescale 1./255 

Horizontal flip True 

Shuffle True 

Class mode Categorical 

Figure 5. Proposed workflow model. 

Ensemble techniques typically refer to Bagging (bootstrap-aggregating), Boosting or 

Stacking/Blending techniques to induce high variability among the base models. These techniques aim 

to combine the predictions from multiple models to improve predictive performance. To evaluate the 

bagged-model performance, we combined the predictions from the two models using a voting 

mechanism (majority voting). Finally, we evaluated the combined predictions and obtained an 

accuracy of 98.27% from the random-forest bagging model, as shown in Figure 6a. 

When implementing boosting ensemble techniques using the DenseNet169 and ViTl32 models, the 

weak learners (base models) are combined sequentially to form a strong learner (ensemble model). 

The gradient- boost, AdaBoost, XGBoost, LGBoost and CatBoost ensemble techniques achieved an 

accuracy of 98.765%, 97.04%, 96.54%, 97.79% and 99.753%, respectively as shown in Figure 6b, 

Figure 6c, Figure 6d, Figure 6e and Figure 6f. 

Stacking, also known as stacked generalization, allows a training algorithm to ensemble several 

similar learning-algorithm predictions. A stacking model is implemented using a holdout set to 

generate predictions from base models (CNN and ViTl32 models). These predictions are then 

concatenated to create   a stacked dataset. The true labels for the holdout set are one-hot encoded using 

the OneHotEncoder class. A meta-model for multi-class classification is defined and trained using the 

stacked dataset. The meta-model consists of three dense layers with ReLU and Softmax activations. 

The accuracy and F1-score of the stacked ensemble model are then calculated. The accuracy result 

was 96.296%, as shown in Figure 6g. 

The blending ensemble technique combines the predictions of several base models to enhance overall 

predictive performance, minimize overfitting and leverage the advantages of different methods. It 

achieved an accuracy of 96.79%, as shown in Figure 6h. 

So, from the previous results, CatBoost achieved the highest accuracy using one dataset. The 

optimization for the ensemble implementation involved: 1) A combination of hyper-parameter tuning, 
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such as the learning rate, depth and regularization parameters. 2) Model selection. 3) Validation and 

benchmarking against other algorithms to achieve the highest accuracy for the specific dataset. 

Other performance metrics, such as precision, recall, f1-score, sensitivity, specificity and ROC-AUC 

score, can be calculated using the COVID-19 Radiography dataset and the results are shown in Table 

4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Confusion matrices for all ensemble models using COVID-19 Radiography dataset. 

Table 4. Performance of the proposed ensemble models using the COVID-19 

Radiography dataset. 

Ensemble Techniques Precision Recall F1-score Sensitivity Specificity ROC-AUC score 

Bagging 98.53% 98.52% 98.52% 100% 100% 99.69% 

GradientBoost 98.55% 98.52% 98.52% 100% 100% 99.94% 

AdaBoost 97.79% 97.78% 97.78% 100% 100% 99.54% 

XGBoost 97% 96.79% 96.80% 100% 99.26% 99% 

LGBoost 97.55% 97.53% 97.53% 100% 100% 99.84% 

CatBoost 99.51% 99.51% 99.51% 100% 100% 99.99% 

Stacking 99.25% 100% 96.06% 100% 99.25% 99.69% 

Blending 99.25% 100% 96.06% 100% 99.25% 99.72% 
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When using more than one dataset (COVIDx CXR-4) the results became as follows: RF bagging 

model achieved an accuracy of 95.08%, as shown in Figure 7a. The gradient-boost, AdaBoost, 

XGBoost, LGBoost and CatBoost ensemble techniques achieved an accuracy of 91%, 89.42%, 

88.67%, 89.67% and 91.08%, respectively, as shown in Figure 7b, Figure 7c, Figure 7d, Figure 7e and 

Figure 7f. The stacking and blending models achieved an accuracy of 89% and 89.83%, as shown in 

Figure 7g and Figure 7h, respectively. From these results, the RF bagging ensemble model achieved 

the highest accuracy of 95.42%. The other performance metrics using COVIDx CXR-4 can be 

calculated and the results are shown in Table 5. 

Table 5. Performance of the proposed ensemble models using COVIDx CXR-4. 

Ensemble Techniques Precision Recall F1-score Sensitivity Specificity ROC-AUC score 

Bagging 95.17% 95.17% 95.2% 92% 93.5% 99.69% 

GradientBoost 92.45% 92.42% 92.41% 86.75% 90.5% 98.6% 

AdaBoost 91.2% 91.1% 91.2% 83.5% 90.68% 96.37% 

XGBoost 91.15% 91.17% 90.1% 95.25% 75.25% 96.45% 

LGBoost 91.67% 91.67% 91.65% 86.25% 89.89% 98.53% 

CatBoost 93.1% 93.1% 93.1% 89% 90.25% 98.79% 

Stacking 91.94% 91.92% 91.92% 86.5% 89.5% 98.35% 

Blending 91.3% 91.25% 91.25% 89% 85% 98.34% 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 7. Confusion matrices for all ensemble models using COVIDx CXR-4 dataset. 
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Table 6. Comparison between the proposed model and previous ensemble studies. 
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By looking at the results summarized in Figure 8, we find that the accuracy of the models decreased 

when using more than one dataset, which may be due to various factors, such as data complexity and 

diversity. As previously mentioned, this work is a continuation of our last work [3] to improve the 

model’s performance. The results we obtained from the earlier work were as follows: decision-level 

fusion and feature-level fusion achieved an accuracy of 93.3% and 94.53%, respectively. However, the 

results from the advanced ensemble techniques reached 99.753% when using the same COVID-19 

Radiograph dataset. Finally, the results confirm that the performance of these advanced ensemble 

models surpasses that of fusion models, as shown in Figure 8. Table 6 compares the previous studies 

and our proposed methods. 

 

 

 

 

 

 

 

 

 

 

Figure 8. The accuracy of our proposed ensemble models. 

5. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

This paper presented different types of advanced ensemble techniques to improve the model 

performance in diagnosing lung diseases using CXR images. We used pre-trained CNN models 

DenseNet-169 and ViT-l32. This work is related to a previous research paper, but we presented 

different methods that showed more accurate results. In previous work, we used simple ensemble 

techniques, such as feature-level fusion and decision-level fusion, achieving accuracy results as 

follows: 94.54% and 93.3%, respectively. However, using advanced ensemble techniques, we 

achieved a higher accuracy of fusion operations, reaching 99.753%. To aid in lung-disease prevention 

and early diagnosis, researchers continue to develop a variety of detection technologies and 

architectures by increasing the size and diversity of training datasets, but this can be costly and time-

consuming. To avoid these issues, researchers are exploring techniques like data augmentation to 

address the challenge of limited datasets. 

In our future work, we plan to use multiple datasets and explainable AI (XAI) models to enhance the 

accuracy and comprehensiveness of lung-disease diagnosis and classification. We also consider 

including multi-model data to expand the feature space and improve disease-classification accuracy, 

such as medical records and clinical metadata. 
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 ملخص البحث:

إنّ أمرررررررّئ ّ رّلرررررر ك موررررررت الرررررررمك  أنم ررررررت معّا ّ رّلرررررر ك    رررررر  أن    رررررر ّ   رررررر ّ لتا  رررررر    ك 

ّ رّلرررررر ك مااررررررت ارررررر  ّ   ررررررت  ب ررررررت ارررررر  ع ررررررُّ ،ررررررفأبتا ارررررر  ّ  رّررررر    ك م ررررررف  ارررررر    ررررررت 

رررررفت ل   رررررأن ّ ا  رررررأن  ملررررر  أ   ررررر  ّ    ّ  ّ    ررررر ك مّ رررررت لررررر    ررررر لّ ّ للرررررت  إعّ  ررررر   صفرررررت ع  يررررر  ّ   

ررررررر     رررررررت    يّ ررررررر  ن  رررررررر  ررررررر.ل  ذررررررر   ّ مررررررررّئ مّ   ا   ت مات يل  رررررررت مفررررررر مّذت اررررررر   ا 

ف لرررررر  بتلإ ررررررتا  إ رررررر  ع ررررررُّك أ يرررررر  ّ رررررر ّ تا ّّ،رررررري ت   مرررررر   رررررر    في رررررر  ّ  رررررر  مّ رررررر فّي   ّ 

ررررر   ررررر  ّ ف  ررررر  مررررر  أمررررررّئ ّ رّلررررر ك مم  رررررت الررررررمك  أنم رررررت معّا    رررررتلع مّ ررررر  ف اررررر  ّ  ا 

ّ رّلررررررر   ملررررررر  أ ررررررر    لررررررر ن ص ذررررررر   ّ    أ أفلرررررررت  يررررررر  ّ  فّتمرررررررت مررررررر  م  أ رررررررتا ّ  لت رررررررتا 

ّ ضّررررر.   م ليلي رررررت اررررر  ّ لررررر ّ مررررر  ّ  ارررررتن ذررررر   ّ مررررررّئ م رررررتن   رررررت لمن برررررتن  اررررر    ررررر    

 .   تا ّ يّ لّ  مّ  لأ أفل   ّ ّ  لث ّ في   ا  ّ ف    م  ّ 

ارررررر  ذرررررر ّ ّ  لررررررثك   رررررر .   م  أ رررررر ف مرررررر     لررررررتا  أ لرررررر  ّ لّا  رررررر   ر رررررر   أّن ملررررررتا 

رررررر   رررررر  ّلإ،ررررررتب  ب لرررررررمك  أنم ررررررت معّا  م. ي رررررر    ل ررررررل  ألّا   ررررررتعْ ّ  ّ رررررر ل  ارررررر  ّ  ا 

فررررر    رررررأ   يررررر   أ لررررر  ّ لّا  م  ررررر    ّ رّلررررر   مبت  لّ  ررررر ك ا ررررر  نّ م رررررت  يررررر  إ  رررررتل   رررررتعْ م   

 يرررررر  ّ اّرررررر  تا ّ ف رررررر ل  ّّ   تالرررررر  مملررررررأّّا ّ رّ  رررررر   م ررررررتن ذرررررر ا ت  ل  رررررر  أاضررررررت  يررررررُّ 

ررررر.ل  أمررررررّئ ّ رّلررررر ك مع رررررُّ مررررر   ررررر     لرررررل   ّ  ّ رررررتعْ ّ  تل ررررر   يررررر   أ لررررر  ّ لّا اررررر   ا 

ن   رررررأ  رررررأن ّ اّرررررفت ل   يّ ررررر ن إ ررررر  ،ص لررررر ن  ّ  ّ رررررتعْ ّ   ررررر . م   يررررر  ّ  ّ ررررر ل  ّ ّ رررررللص  ي  

ب  ب لررررررمك  أنم رررررتك مأ ررررررب  ررررر     يررررر  ّلإ،رررررتب  بررررر ّا ّ رّلررررر ك م ت وررررر   ررررر     يررررر  ّلإ،رررررت

يأّ م  أمرّئ ّ رّل      لفل   الر أ   ّ .ص

م   ررررررر  ّ  رررررررأ  إنّ    لرررررررتا  أ لررررررر  ّ لّا  ف  رررررررت  يررررررر   ل رررررررل  للرّرررررر  ّ  اّررررررر.ل   ي ّ رررررررتعْ 

 ّ    . م  ا  ّ  ا      أمرّئ ّ رّل ك ّ  تل    ي   في   ّ     
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