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ABSTRACT 

The majority of contemporary fingerprint synthesis is based on the Generative Adversarial Network (GAN). 

Recently, the Denoising Diffusion Probabilistic Model (DDPM) has been demonstrated to be more effective than 

GAN in numerous scenarios, particularly in terms of diversity and fidelity. This research develops a model based 

on the enhanced DDPM for fingerprint generation. Specifically, the image is decomposed into sub-images of 

varying frequency sub-bands through the use of a wavelet packet transform (WPT). This method enables DDPM 

to operate at a more local and detailed level, thereby accurately obtaining the characteristics of the data. 

Furthermore, a polynomial noise schedule has been designed to replace the linear noise strategy, which can result 

in a smoother noise-addition process. Experiments based on multiple metrics on the datasets SOCOFing and 

NIST4 demonstrate that the proposed model is superior to existing models.  
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1. INTRODUCTION

The singularity and immutability of fingerprints render them an indispensable biometric trait of humans, 

which is extensively utilized in a multitude of contexts including identity authentication, criminal 

investigation, medical research and so forth [1]–[3]. Nevertheless, the establishment of such a 

fingerprint system necessitates a substantial quantity of fingerprint samples and direct fingerprint 

collection is constrained by equipment, environmental or legal considerations. In response to this 

challenge, the advent of computer vision has led to the emergence of synthetic fingerprint technology. 

However, the intricacies of fingerprints are considerable, encompassing a multitude of diverse pattern 

types, including whorls, loops and arches [4]. 

Most early model-based methods typically synthesize or reconstruct fingerprints based on minutiae 

templates or shallow model. While these methods have been demonstrated to be effective in synthesizing 

fingerprint structure and texture [5]–[8], they exhibit low automation levels and poor model adaptability 

and scalability. Furthermore, deep learning-based generative models have gradually become the 

dominant models for fingerprint generation, employing more complex network structures, such as auto-

encoders and GANs [9]–[13]. However, images generated by VAEs are often quite blurry and the 

shortcomings of GAN models, such as mode collapse and difficulty in training, cannot be ignored either. 

The recent emergence of Denoising Diffusion Probabilistic Models (DDPMs) [14] has ushered in a 

novel technical approach to image synthesis. This model is based on the Markov chain, which gradually 

introduces noise to the data in the forward stage until the data is corrupted and becomes completely 

Gaussian noise. In the reverse stage, the Gaussian noise is then restored to the original data. The model 

must ensure that the reverse Markov chain closely resembles the forward process during optimization. 

It has demonstrated remarkable efficacy in the generation of images, videos and other forms of data, 

particularly in the domain of image synthesis, as evidenced by its performance in DALL-E 2 [15] and 

Stable Diffusion [16]. 

This study proposes a novel fingerprint-generation method based on an enhanced model of DDPM. 

Specifically, the original image is decomposed into sub-images of varying frequency bands through 

wavelet packet transform. These sub-images contain information of different scales and directions, 

which enables DDPM to operate at a more local and detailed level, thereby improving the stability of 
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training and the quality of generated images. Moreover, in consideration of the potential for the linear 

noise schedule in the original DDPM to result in the corruption of data too quickly in the forward phase, 

this study devised a polynomial noise schedule to facilitate a more gradual and less disruptive noise-

addition process, which prevents an abrupt change in noise level. Experimental results have 

demonstrated the effectiveness of this approach in both SOCOFig [17] and NIST Special Database 4 

[18].  

2. RELATED WORK

Inspired by non-equilibrium statistical physics, [19] designed a parameterized Markov-chain model that 

slowly destroys data in the forward phase and gradually recovers data in the backward phase which is 

highly flexible and tractable. DDPM model further extended this idea to high quality tasks. The forward 

process commences with the real distribution of data 𝑞(𝑥0) and incorporates a minimal quantity of

Gaussian noise at each stage, gradually transforming the data into pure noise. The whole process can be 

represented by 𝑞(𝑥𝑡|(𝑥𝑡−1). In the generation process, DDPM starts with a standard Gaussian noise

sample  𝑥𝑡, gradually removes the noise through the reverse process and finally generates a sample 𝑥0,

which can be defined as 𝑝𝜃((𝑥𝑡−1|(𝑥𝑡).

2.1 The Principle of DDPM 

In the forward process, let 𝑥0, 𝑥1………𝑥𝑛 represent the gradual addition of Gaussian noise to an image

until the image becomes completely noisy. This process can be described as shown in Figure 1. 

Figure 1. The forward process of DDPM. 

It should be noted that the degree of noise added in each step is not uniform. It is controlled by weight 

𝛽 and its value must be gradually increased. For example, it normally ranges from 0.0001 to 0.02. The 

actual noise added is represented by 𝛼, which is defined as 𝛼𝑡 = 1 − 𝛽𝑡 to represent the weight of the

noise at step 𝑡. Since the image obtained at each step depends on the image from the previous step plus 

the noise 𝑧~ 𝑁(0, 1) of the current step, that is the model relies on a Markov chain, the image at any 

step can be obtained by 𝑥𝑡 = √𝛼𝑡𝑥𝑡−1 + √1 − 𝛼𝑡𝑧𝑡 . As the diffusion process continues, the noise

content of the image will increase until it reaches a point where the entire image is comprised of noise. 

Due to the recursive nature of the model, the diffusion process does not occur in discrete steps during 

training. Instead, the model directly calculates the relationship between the original image and the noise 

image at any given step. This relationship is represented by the cumulative product of all steps, denoted 

by 𝛼𝑡̅̅ ̅. In the reverse process, the model must restore the noise to the image (Figure 2), Although it is

challenging to determine 𝑝𝜃(𝑥𝑡−1|𝑥𝑡) directly, 𝑥0 and 𝑥𝑡 are known in the forward process, which is

available to calculate posterior probability 𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0) to estimate the mean and variance of

reverse-process distribution. After Bayesian transformation, the goal can be transformed into 

calculating the distribution (2), (3), (4). 

Figure 2. The reverse process of DDPM. 
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𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0) = 𝑞(𝑥𝑡|𝑥𝑡−1, 𝑥0)
𝑞(𝑥𝑡−1|𝑥0)

𝑞(𝑥𝑡|𝑥0)
(1) 

𝑞(𝑥𝑡−1|𝑥0) = √𝛼𝑡−1̅̅ ̅̅ ̅̅ 𝑥0 + √1 − 𝛼𝑡−1̅̅ ̅̅ ̅̅ 𝑧𝑡−1~𝑁(√𝛼𝑡−1̅̅ ̅̅ ̅̅ 𝑥0, 1 − 𝛼𝑡−1̅̅ ̅̅ ̅̅ ) (2)

𝑞(𝑥𝑡|𝑥0) = √𝛼𝑡̅̅ ̅𝑥0 + √1 − 𝛼𝑡̅̅ ̅𝑧𝑡~𝑁(√𝛼𝑡̅̅ ̅𝑥0, 1 − 𝛼𝑡̅̅ ̅) (3) 

𝑞(𝑥𝑡|𝑥𝑡−1, 𝑥0) = √𝛼𝑡𝑥𝑡−1 + √1 − 𝛼𝑡𝑧𝑡~𝑁(√𝛼𝑡𝑥𝑡−1, 1 − 𝛼𝑡) (4)

Since all three distributions are normal distributions, but with different means and variances, according 

to the normal distribution probability density function, the mean (𝜇) and variance (𝜎  ) of the reverse-

process distribution can be obtained: 

𝜎2 =
𝛼𝑡

𝛽𝑡
+

1

1 − 𝛼𝑡−1̅̅ ̅̅ ̅̅
𝑥𝑡−1

2 (5) 

𝜇 =  
1

√𝛼𝑡

(𝑥𝑡 −
𝛽𝑡

1 − 𝛼𝑡̅̅ ̅
𝜖𝜃) (6) 

Where 𝜖𝜃 is the predicted value of 𝑧. Finally, the loss function can be defined as follows:

𝐿𝑠𝑖𝑚𝑝𝑙𝑒(𝜃) =  𝐸𝑡,𝑥0,𝑧 ∥ z −  𝜖𝜃 (√𝛼𝑡̅̅ ̅𝑥0 + √1 − 𝛼𝑡̅̅ ̅𝑧, 𝑡) ∥2 (7) 

2.2 The Improvements of DDPM 

Although DDPM has made considerable achievements, it still has shortcomings. [20] found that adding 

linear noise may cause the 𝛼𝑡̅̅ ̅ to approach 0 too quickly, which may damage data information quickly

during training. It proposes adding a certain amount of cosine noise in the forward process, which can 

obtain better log-likelihoods. [21] established a noise signal in a learnable format and incorporated 

Fourier features into the input of the network, enabling the prediction of noise. These enhancements 

exceed the performance of autoregressive models. [22] put forth a methodology for dynamically 

adjusting the noise parameters with the objective of enhancing the denoising capabilities of the model, 

thereby improving the quality of the synthesized results. [23] introduced an Adversarial Purification 

approach, which incorporates noise and adversarial images into the forward process. In the reverse 

process, it is necessary to remove both the noise and the adversarial perturbation, while retaining the 

main content of the input image. This has the effect of improving the classification task. [24] presented 

a non-Markovian mechanism that renders the sampling process deterministic in the reverse process. This 

improvement has led to an improvement in the efficiency of the sampling process. 

Some researchers have employed a combination of signal-processing techniques with DDPM. The 

wavelet transform is a widely utilized signal-processing technique that enables the decomposition of 

signals into components with varying frequencies and time resolutions. In the field of image processing, 

the wavelet transform is a valuable tool that can assist in the analysis and processing of information at 

different scales and frequencies within images. Its applications include tasks, such as image denoising, 

compression and feature extraction. In a recent study, [25] developed a model that combined wavelet 

and DDPM for 3D medical scans. This model performed a wavelet transform on the input to predict 

both wavelet coefficients and noise. [26] posited that the use of wavelet transform can mitigate the long-

term inference issue by transferring the image reconstruction task from the spatial domain to the wavelet 

domain. [27] also used a similar concept, proposing a Stage-by-stage Wavelet Optimization Refinement 

Diffusion model, which takes wavelet transformation to improve the robustness of the model. The 

authors further argued that wavelet transform can facilitate the disentanglement of image content and 

features at varying scales, thereby enhancing the stability of the model-training process. [28] extracted 

the high-frequency and low-frequency information of the image after wavelet transformation in order to 

accelerate the training of the model without compromising the quality of the output. 

3. DDPM WITH WAVELET PACKET TRANSFORM

This study implemented the following improvements based on DDPM. Firstly, the Wavelet Packet 

Transform (WPT) was initially introduced in the training stage. In this stage, the original data was 

transformed into wavelet packets to obtain sub-bands at different scales and frequencies. The diffusion 
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process was applied to the sub-bands of each scale and frequency to gradually add noise, which helps 

the model better extract data features and improve training stability. In the sampling stage, the original 

image was reconstructed using the inverse wavelet packet transform (IWPT). Moreover, a polynomial 

noise schedule was devised with the objective of reducing abrupt change of noise level. This strategy 

allows for the addition of noise in a more gradual and smoother manner, thereby reducing the potential 

for information loss. 

3.1 Principle of Wavelet Packet Transform 

The wavelet transform is a mathematical tool that employs various wavelets to decompose a signal into 

low-frequency and high-frequency components including the Morlet, Daubechies and Haar wavelets. 

Wavelet transform can provide both time and frequency information. It has a wide range of applications 

in image denoising, image compression, feature extraction and so forth. Wavelet packet transform is a 

generalization of wavelet transform, allowing further decomposition of the approximate and detailed 

parts of the signal. It provides finer frequency resolution by recursively decomposing all frequency 

bands of the signal. Specifically, for the discrete signal 𝑓(𝑡), its decomposition by wavelet packet 

transform can be expressed as follows: 

𝑊𝑗,𝑘(𝑡) =  ∑ 𝑓(𝑡)𝜓𝑗,𝑘(𝑡)

𝑡

(8) 

In this context, 𝜓𝑗,𝑘(𝑡) represents the function of the wavelet packet transform, with j and k denoting

the scale and position parameters, respectively. The reconstruction of the inverse wavelet packet 

transform can be defined as follows: 

𝑓(𝑡) = ∑  

𝑗

∑ 𝑊𝑗,𝑘𝜓𝑗,𝑘(𝑡)

𝑘

(9) 

The characteristics of WPT are employed to perform multi-scale processing on the model. Multi-scale 

analysis facilitates the capture of structural information within the data, thereby enhancing the quality 

of the denoising and reconstruction process. The addition of noise to different frequency components 

independently serves to render the distribution of noise more reasonable, which in turn improves the 

quality of the generated data. 

3.2 Wavelet Packet Transform on DDPM 

In the forward process, let  𝑥 ∈ ℝ𝐷×𝐻×𝑊 denote the input data. During the experiment, the three-level

wavelet packet transform of Haar was employed on the input data, with 𝑙  and ℎ  indicating low-

frequency and high-frequency sub-bands, respectively. Following the application of the wavelet packet 

transform to the first layer, four sub-images can be derived, which are: 𝑥𝑙𝑙
1 , 𝑥𝑙ℎ

1 , 𝑥ℎ𝑙
1 , 𝑥ℎℎ

1 , all of which

are elements of ℝ
𝐷

2
×

𝐻

2
×

𝑊

2 . Subsequently, the two dimensions of 𝑥𝑙𝑙
1  and 𝑥𝑙ℎ

1  are concatenated in the width

direction and the two dimensions of 𝑥ℎ𝑙
1  and 𝑥ℎℎ

1  are concatenated in the height direction. Finally, the

two aforementioned structures are concatenated to obtain the matrix 𝑥1 ∈ ℝ𝐷×𝐻×𝑊. As with a binary

tree, it can be demonstrated that 16 sub-images can be obtained in the second layer and 64 sub-images 

in the third layer. Similar operations are then performed on the second and third layers to obtain 𝑥2 and

𝑥3, which are subsequently spliced from each level to finally yield 𝑦 ∈ ℝ3(𝐷×𝐻×𝑊), which is then used

for DDPM processing. The complete training and sampling process of the model is as follows: 

Figure 3. The pipeline of WPT diffusion. 
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__________________________________        __________________________________ 

Algorithm 1 Training                Algorithm 2 Sampling 

Repeat 𝑦𝑡~𝑁(0, 𝐼)

𝑦0 = 𝑊𝑃𝑇(𝑥0) for t = T,…,1 do 

T~Uniform (1,…,T)  z 𝜖~𝑁(0, 𝐼) 

𝜖~𝑁(0,1)                                                                    𝑝𝜃 = (𝑦𝑡−1|𝑦𝑡 , 𝑧, 𝜖𝜃(𝑦𝑡 , 𝑡))

𝑞(𝑦𝑡|𝑦𝑡−1) = 𝑁(𝑦𝑡 , √𝛼𝑡𝑦𝑡−1, (1 − 𝛼𝑡)𝐼)                𝑥0 = 𝐼𝑊𝑃𝑇 (𝑦0)

Take gradient descent step on                        return 𝑥0

𝜃 ∥ 𝜖 − 𝜖𝜃(𝑦𝑡 , 𝑡) ∥2

Until converge 

__________________________________        ___________________________________ 

During the training process, the input data is transformed by WPT into several sub-bands and all sub-

band signals are spliced and trained in the WPT domain rather than in the original pixel domain. In the 

sampling process, the distribution of 𝑦𝑡 is first determined to be 𝑁(0, 𝐼) and the entire reverse process is 

then applied to obtain all sub-images. The image 𝑦0 is finally reconstructed by performing an inverse

wavelet packet transform (IWPT). 

3.3 Polynomial Noise Schedule 

Linear noise schedules may bring abrupt changes in noise level during training, which causes 

information disruption too quickly during training, especially for images with lower resolution (less than 

or equal to 64× 64) [20]. To avoid this phenomenon, this research designs a polynomial noise schedule, 

where this noise strategy is smoother in the process of adding, especially at 𝑡 = 0 and 𝑡 = 𝑇. It is milder 

in noise changes than the linear schedule and cosine schedule, which helps the stability of training and 

avoids instability of training caused by sudden noise changes.  

𝛽𝑡 = 𝛽0 + (𝛽𝑇 − 𝛽0)(
𝑡

𝑇
)𝑝 (10) 

As Equation (10) shows, let 𝛽  be the parameter to control the noise level, where 𝛽 ranges form 𝛽0 to 𝛽𝑇,

t and T denote the current step and max step. By adjusting the power parameter 𝑝, the growth rate of 𝛽 

can be controlled, thereby affecting the smoothness of the cumulative product of  𝛼𝑡̅̅ ̅ . 𝑝  is the

hyperparameter to adjust the smoothness of function. 𝑝 = 2 is default setting during training, which is 

experimentally workable. Figure 4 shows that this noise schedule is smoother than the linear strategy 

and cosine strategy at the beginning and end of training. 

Figure 4. Compassion between different noise schedules. 
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3.4 Theoretical Analysis 

In comparison to the conventional DDPM model, the methodology presented in this study offers 

enhanced capabilities in several key areas. Initially, the wavelet packet transform is capable of 

decomposing an image into sub-images of varying frequencies and directions, thereby encompassing 

the multi-scale characteristics of the original image. Moreover, it enables the separation of high-

frequency and low-frequency components within an image, thereby facilitating the processing of these 

components in isolation and the reduction of blurring effects in the generated image. During the 

diffusion process, the model is capable of processing sub-images of varying frequencies in a manner 

that preserves and restores details and coarse information in a more optimal manner. In addition, the 

wavelet packet transform enables the separation of different image features, thereby enhancing the 

model's resilience to noise and other disturbances. Sub-images of varying frequency bands can be 

processed independently during the diffusion process, reducing mutual interference between different 

frequency bands. This improves the stability and quality of the generated image. Furthermore, 

polynomial noise schedule ensures a smoother way to add noise to each sub-image, which will contribute 

to the stability of model training. 

4. EXPERIMENTS

The proposed model is evaluated with 200-epoch training on two distinct datasets: SOCOFing and 

NIST4 which are mentioned before. During the experiment, the architecture is based on U-Net included 

two attention blocks with a learning rate of 0.0001, 𝛽 ranging from 0.0004 to 0.02 and a maximum step 

𝑇 of 1000. Finally, images with a resolution of 64×64 are generated. 

4.1 Datasets 

The Sokoto Coventry Fingerprint Dataset (SOCOFing) is a biometric fingerprint database created for 

academic-research purposes. This dataset comprises 6,000 fingerprint images with a resolution of 

96×103 pixels, captured from 600 subjects of African descent. Each image is accompanied by a set of 

attributes, including gender, hand and finger name labels, as well as a sub-set of altered fingerprint 

images. This experiment employs all 6,000 real fingerprint images as training data. 

NIST Special Database 4 (NIST 4) is a tool for evaluating fingerprint systems and contains 2000 8-bit 

grayscale fingerprint pairs, totaling 4000 images with 512×512 resolution. The database may be 

employed for the purposes of algorithm development, system training and testing. The experiment 

utilizes all 4,000 images as training data. 

4.2 Progressive Generation 

First, to verify the effectiveness of the proposed model, a sample was taken every 100 steps at 𝑇=1000 

and 10 images were generated to observe the reverse diffusion process. As shown in Figure 5, which 

illustrates the reverse process of the proposed model, the image starts with noise, then evolves to the 

fingerprint outline and finally to a recognizable fingerprint texture. This result is indicative of the 

effectiveness of the model proposed in this research. 

Figure 5. The reverse process of the proposed model. 
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4.3 Results of Quality Evaluation 

In the quality assessment, this sub-section firstly employs the Frechet Inception Distance (FID) [29] and 

Inception Score (IS) [30] as evaluation metrics on both SOCOFing and NIST4. FID and IS are two of 

the most commonly used metrics for evaluating the quality of images generated by generative models. 

Both require the utilization of pre-trained Inception v3 networks. The following models are employed 

for comparative purposes: DDPM (Vanilla) [14], DDPM (Wavelet) [25] and FingerGAN [12]. The 

results are presented in Table 1. 

Table 1. The comparison between different models on IS and FID. 

Model 
SOCOFing NIST4 

FID IS FID IS 

DDPM(Vanilla) [14] 64.61 2.26 −
+0.16 62.71 2.69 −

+0.19

DDPM (Wavelet) [25] 62.96 2.33 −
+0.11 60.53 2.73 −

+0.21

FingerGAN [12] 70.35 2.12 −
+0.14 69.21 2.33 −

+0.12

Proposed Model 61.64 2.42 −
+0.13 59.65 2.72 −

+0.11

Table 1 demonstrates that the proposed model outperforms the other three models in terms of both FID 

and IS in the majority of scenarios. Nevertheless, the IS of DDPM (Wavlet) is marginally superior to 

the proposed model on the NIST4 dataset. This indicates that the proposed model is capable of 

generating high-quality and diverse results. Furthermore, this sub-section presents a comparative 

analysis of the images generated by all models, as illustrated in Figures 6 and 7. The data represented 

by the labels 1, 2, 3, 4, 5 in Figures 6 and 7 is real data, data generated by FingerGAN, data generated 

by DDPM, data generated by DDPM (wavelet) and data generated by the proposed model, respectively. 

In terms of visual quality, the four models demonstrate satisfactory performance on SOCOFing. 

However, the results produced by Finger GAN are not sufficiently diverse and the model proposed in 

this paper is more effective at generating fingerprint texture and structure. Furthermore, given the high 

resolution of the NIST4 original data, reaching at 512×512 resolution, it is not evident that there is a 

discernible visual difference between the four models at the resolution of 64×64. 

(1)   (2)                          (3)                            (4)     (5)  

Figure 6. The generated results from each model on SOCOFing. 

(1)   (2)                           (3)                            (4)               (5)          

Figure 7. The generated results from each model on NIST4. 

In addition, as both FID and IS depend on the pretrained model, this sub-section also employs SSIM 

and MS-SSIM to assess the performance of the model. SSIM (Structural Similarity Index) is an index 

that gauges the similarity of two images. It considers the image's brightness, contrast and structure. MS-

SSIM (Multi-scale SSIM) is an extension of SSIM that assesses the structural similarity of images at 

different scales. For the SOCOFing dataset, the generated original images were resized to 64×64 24-bit 

width. For the NIST4 data set, the generated original images were resized to 64×64 8-bit width. Finally, 
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the Average SSIM and Average MS-SSIM were calculated, as shown in Table 2. 

As can be seen from Table 2, in general, the value of MS-SSIM is lower than that of SSIM. This 

discrepancy may be attributed to the fact that MS-SSIM considers the structural similarity of images at 

multiple scales, thereby providing a more comprehensive image-quality assessment. It can be observed 

that the proposed model exhibits better performance in both SSIM and MS-SSIM, particularly in SSIM 

on NIST4, where its score is considerably higher than those of other models. This may indicate that the 

proposed model is more adept at maintaining image quality. In addition, The MS-SSIM metric also 

demonstrates that the proposed model exhibits certain advantages when dealing with scenes involving 

image scaling or multi-scale characteristics. 

Table 2. The comparison between different models on SSIM and MS-SSIM. 

Model 
SOCOFing NIST4 

SSIM MS- SSIM SSIM MS- SSIM 

DDPM(Vanilla) [14] 0.239 0.215 0.441 0.281 

DDPM (Wavelet) [25] 0.261 0.227 0.452 0.262 

FingerGAN [12] 0.227 0.203 0.346 0.272 

Proposed Model 0.253 0.239 0.495 0.295 

4.4 Ablation Study 

In order to ascertain the effect of each modification to the model on its overall performance, an ablation 

study is conducted in this sub-section. The present study proposes the utilization of the Wavelet Packet 

Transformation (WPT) technique to decompose the original data into a number of sub-bands. Prior 

research has demonstrated that the application of wavelet transformation has resulted in a more stable 

training process. Wavelet packet transformation (WPT) is an extension of wavelet transformation (WT) 

offering a more detailed frequency decomposition. In comparison to WT, WPT further decomposes all 

components (including low-frequency and high-frequency) at each decomposition level, thus facilitating 

the extraction of more accurate features, which in turn improves the stability and quality of image 

generation. By training at 200 epochs, the loss changes between vanilla DDPM and the DDPM with 

WPT are shown in Figure 8. Obviously, these two models converge at approximately 20 epochs, but the 

loss of vanilla DDPM fluctuates. In contrast, the loss of DDPM with WPT is more stable.  

Figure 8. Loss comparison between DDPM and DDPM with WPT. 

According to Table 3, the proposed improvements have led to an enhancement in the model performance, 

with WPT exhibiting the most notable improvement. Although the contribution of Polynomial noise 

schedule is not as great as that of WPT, it is demonstrably superior to the original linear schedule. 

Table 3. The ablation study of each component. 

Model 
SOCOFing NIST4 

FID IS FID IS 

DDPM (Linear) 64.61 2.26 −
+0.16 62.71 2.69 −

+0.19

DDPM (Linear +WPT) 61.77 2.37 −
+0.21 60.22 2.71 −

+0.13

DDPM (Polynomial) 63.89 2.29 −
+0.14 61.98 2.70 −

+0.14

DDPM (Polynomial +WPT) 61.64 2.42 −
+0.13 59.65 2.72 −

+0.11
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5. CONCLUSION AND FUTURE RESEARCH

This study proposes an improved version of DDPM for the task of fingerprint generation. Firstly, 

wavelet packet transform is used during training, which allows the model to better extract data features 

on different sub-bands. Secondly, a better noise schedule is developed to make noise addition smoother 

during the training process. The results of the experiments demonstrate that the proposed model exhibits 

superior performance compared to previous models. Nevertheless, the inference time remains 

comparable to that of the original DDPM, which represents a potential avenue for future research. 

Besides, the current equipment limits the resolution of the images generated by this model to 64×64, so 

the objective is to apply this model to a higher resolution in the future. It would be beneficial to explore 

the potential of this model for generating text and video as well. 
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ملخص البحث:

تتتتتتتي قع دنب  ناة تتتتتتت  تتتتتتتّقع ديةتتتتتتتقل    تتتتتتت  د تتتتتتتب ةد  دن   شّ تستتتتتتتبية تقنياتتتتتتت  تصياتتتتتتتقع تلىاتتتتتتت  لش

تتتتتتتت ائ دعحبّتتتتتتتقن  ن  ب تتتتتتتتق  دنصتتتتتتتق     تتتتتتتت  GANsدنب يقفستتتتتتتا    ال ّميتتتتتتتم دنيّ  إزدنتتتتتتتت  (. وحتتتتتتتتة تق

تتتتتت ا    تتتتتتي قع فتتتتتت  دن ة تتتتتتة لتتتتتت DDPMدنض  ( ّ  تتتتتتُ ّىتتتتتتتل  فق  اتتتتتت ا لتتتتتت  انتتتتتت  دني تتتتتت   لتتتتتت  دن  

ض ح.  دنس ايق   هقعل ع  اّق فاّق  ب   ق لقنبي ُّ  ودن  

تتتتت    صتتتتت      تتتتت  تصياتتتتت    ( نب ناتتتتتة DDPMفتتتتت  هتتتتتند دنيعتتتتتول   ّتتتتتم    تتتتت  تعتتتتت  ل  ّتتتتت ائ  لعس 

تتتتتتلش  تتتتتت ش  فل اتتتتتت  ليعق تتتتتتقع  ّقع ديةتتتتتتقل . ولقنبعة تتتتتتةل فك  تتتتتتُ  تتتتتتب   ت  اتتتتتت  دشّ تتتتتت  ص إنتتتتتت  ة   ّ ن

تتتتتت ش  دنّ    تتتتتتقع   ( دنبتتتتتت  WPTتلدُّد تتتتتت   فل اتتتتتت   ل ب  تتتتتت ل وانتتتتتت  لق تتتتتتب ةد   ل صتتتتتت  تع  تتتتتتم ح 

ستتتتتتتبل   ا لتتتتتتتنن  DDPMت  تتتتتتتم تصياتتتتتتت    ( ت ّتتتتتتتم  يتتتتتتتة لستتتتتتتب ً ّىتتتتتتتتل لع  اتتتتتتت ا وت ّتتتتتتتا ال ل 

 قلتتتتتم . لتتتتت   قحاتتتتت  ّختتتتتلًل تتتتتت   د تتتتتب ةد  تصياتتتتت    ة تتتتتةص  ن ب  خّتتتتتق ي دنياق تتتتتقع   تتتتت   عتتتتت   د اتتتتتق  

تتتتتت ا ل لعاتتتتتتو ت تتتتتت    ّ اتتتتتت   تتتتتت ا  نبعتتتتتتم  لعتتتتتتم  دع تتتتتتبلدتا ا  دن ع اتتتتتت  نّ قن تتتتتت  دنض  لتتتتتت  دنض 

م ل  دنض  ا  ّىتل     .  دنب  قل 

تتتتتّقع ديةتتتتتقل  ّ  شّ ّ  تتتتتقع دنياق تتتتتقع دنّب   صتتتتت  ليش و تتتتتة للهيتتتتتم دنب  تتتتتق م    تتتتت   تتتتتةد  لتتتتت  لش  

تتتتتقا تتتتت ائ دنّصبتتتتتلح فتتتتت  هتتتتتند دنيعتتتتتو  ب تتتتت       تتتتت   تتتتتةد  لتتتتت  دنيّ  ئ دنّ تتتتتقلو  دنتتتتت د دص فتتتتت  دنيّ 
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