
1

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 01, March 2025.

1. M. A. Mimi and H. Ng are with Faculty of Computing and Informatics, Multimedia University, 63100 Cyberjaya, Malaysia. Emails:

1221404218@student.mmu.edu.my and nghu@mmu.edu.my

2. T. T. V. Yap is with School of Mathematical and Computer Sciences, Heriot-Watt University Malaysia, 62200 Putrajaya, Malaysia.
Email: timothy.yap@hw.ac.uk

CURATING DATASETS TO ENHANCE SPYWARE

CLASSIFICATION

Mousumi Ahmed Mimi1, Hu Ng1 and Timothy Tzen Vun Yap2

(Received: 22-Jun.-2024, Revised: 26-Aug.-2024, Accepted: 14-Sep.-2024)

ABSTRACT

Current methods for spyware classification lack effectiveness as well-structured datasets are typically absent,

especially those with directionality properties in their set of features. In this particular research work, the

efficacy of directionality properties for classification is explored, through engineered features from those on

existing datasets. This study curates two datasets, Dataset A which includes features extracted from only single

directional packet flows and Dataset B which includes those from bi-directional packet flows. Classification with

these features is performed with selected classifiers, where SVM obtained the highest accuracy with 99.88% for

Dataset A, while the highest accuracy went to RF, DT and XGBoost for Dataset B with 99.24%. Comparing

these results with those from existing research work, the directional properties in these engineered features are

able to provide improvements in terms of accuracy in classifying these spywares.

KEYWORDS

Datasets curation, Feature engineering, Packet analysis, Spyware classification.

1. INTRODUCTION

Cybercrimes are increasing due to careless use of online applications and technologies [1]-[2]. Users

install various applications on their devices for different purposes, but many are not safe or secure as

some disguise themselves as normal applications, such as spyware [3]. Spyware, a malicious software,

is installed on the device, gathers sensitive information and transfers it to third parties without user

consent [4]. It’s very tricky and challenging to distinguish between spyware and legitimate

applications, as it disguises itself as a legitimate application [5]. While significant research has been

conducted on malware, the exploration of spyware has been overlooked. This creates a research gap

for further investigation of the classification methods. Current spyware-classification methods have

limitations in feature engineering based on directional properties, which hampers accurate

classification. The accuracy of existing spyware classification is often hindered due to inadequate

datasets and insufficient analysis for different classifiers, leading to overfit or underfit [6].

Additionally, users sometimes overlook security considerations when installing applications, creating

opportunities for hackers. Cybercriminals create clones of popular software on untrustworthy sites

with security vulnerabilities. Users carelessly install these cloned applications, allowing attackers to

gain access to sensitive information [7]. Thus, this study makes several key contributions to the field

of spyware classification.

1.1 Contribution

First, this study aims to enhance spyware classification by curating two new datasets. Dataset A

involves annotation based on single-direction packet flow, while Dataset B involves bi-directional

packet flow. Information about the packet flow is extracted from major static parameters, such as IP

pairs, ports and protocols.

Secondly, feature engineering is applied to form dynamic features from static parameters like Total

Forward (Fwd) Packet (Pkt), Total Backward (Bwd) Packet (Pkt), Flow Bytes per Second (Flow

Bytes/s), Flow Packets per Second (Flow Pkt/s), … etc., derived from the annotated datasets. The goal

is to identify significant features that can provide insights into the effectiveness of using packet-flow

information in curating datasets and classifying spyware.

2

"Curating Datasets to Enhance Spyware Classification", M. A. Mimi, H. Ng and T. T. V. Yap.

Third, exploring machine-learning (ML) models for spyware classification from the two datasets, with

the aim of improving accuracy. This involves applying Decision Tree (DT), Random Forest (RF),

Support Vector Machine (SVM), Naïve Bayes (NB) and Extreme Gradient Boosting (XGBoost) on

curated datasets. Comparative analyses of the models trained on these datasets are then conducted to

observe clustering patterns for the six different classes (five types of spyware with normal traffic)

within each dataset, examining the extent of overlap between them.

The methodologies and the findings offer valuable contributions for enhancing the capabilities of

Security Operation Center (SOC) system and Intrusion Detection System (IDS). The curated datasets,

based on directional properties, benefit IDS by providing more accurate and contextually rich data for

classifiers, that improves classification accuracy and reduces false positive rates for SOC environment.

The engineered dynamic features, such as Flow Bytes/s, Flow Pkt/s, enable real-time threat analysis,

allowing SOC and IDS to swiftly prioritize alerts for emerging threats. The validation of classification

models, including SVM, NB, XGBoost, DT and RF, offer SOCs proven tools for more accurate

spyware classification, which improves incident response reliability. Overall, the practical benefits of

this research, such as enhanced detection accuracy and improved anti-spyware tools, strengthen the

cybersecurity defences of SOCs, reducing the risk of unauthorized data access and privacy violations.

The remaining sections of the study are organized as follows: Section 2 provides a concise summary

of prior research on dataset collection, feature extraction and engineering. Section 3 outlines the

methodology, including details about dataset acquisition, spyware characteristics and data pre-

processing. In Section 4, the proposed method is explained in detail with a focus on packet-flow

direction and various approaches for curating Datasets A and B through feature engineering. This

section also covers detailed methods for curating Datasets A and B while comparing them to the raw

dataset. Section 5 discusses model construction, while Section 6 explores the results and their

discussion. Lastly, concluding thoughts are presented in Section 7 to wrap up the document.

2. RESEARCH BACKGROUND

2.1 Spyware Dataset Collection

Cybersecurity is a widely discussed research topic. Researchers have criticized and discussed

disciplines within cybersecurity, including spyware. Researchers have collected datasets to detect and

characterize spyware.

Qabalin et al. [8] collected a dataset of five different spyware types - Flexispy, Mobilespy, uMobix,

TheWispy and mSPY - by capturing packets using PCAPDroid [9]. Then, DT was applied to the

dataset, achieving 79% accuracy for binary classification and 77% for multi-class classification.

Conti et al. [10] used the ASAINT (A Spy App Identification System based on Network Traffic)

application to identify spyware apps and collected data. Packets were captured using Wireshark [11]

and then network traffic was manually analyzed to distinguish between spyware apps and normal

ones. The identified classes of spyware applications were cImg, cSms, mSpy and tSpy. Dropbox (DB)

[12] and Google Foto (GF) [13] photo uploads were considered as normal applications. Four steps

were applied: data collection, pre-processing, training and testing. The data distribution was adjusted

using the Synthetic Minority Over-Sampling Technique (SMOTE) during pre-processing. The

effectiveness of the datasets was assessed using RF, Linear Regression (LR) and K- Nearest

Neighbour (KNN) algorithms, with RF ultimately achieving the best F1-score of 0.85.

M. Naser and Q. A. Al-Haija [14] utilized the Android Spyware-2022 dataset [8] to identify Android

spyware, focusing on two out of five spyware classes: MobileSPY and FlexiSPY. After pre-processing

the data by removing null and duplicate entries, they analyzed Source IP, Destination IP, Source Port,

Destination Port, Duration and Protocol. The testing involved the application of a Fine Decision Tree

(FDT), resulting in a 98% accuracy rate.

Noetzold et al. [15] implemented integrated spyware to monitor workplace computers. Integrated

spyware represented the utilization of spyware techniques as a fundamental component within the

design and functionality of a workplace computer-monitoring solution. The spyware initially sent

harmful messages to a Twitter account developed using Python before being applied to the computer.

Then, this spyware computer was connected to the workplace computer through an Application

3

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 01, March 2025.

Programming Interface (API) gateway. Subsequently, hate messages were sent from the spyware

computer to the workplace one, triggering alerts generated by the API gateway which was connected

to a relational database for storing information. Data pre-processing involved the use of normalization

and classification techniques to differentiate between hateful and non-hateful speeches. Furthermore,

LR, SVM and NB algorithms were utilized to assess prediction validity. NB demonstrated superior

accuracy at 80%.

Pierazzi et al. [16] utilized the VirusTotal website [17] to collect spyware. Five types of spyware were

identified: HeHe, UaPush, AceCard, Pincer and USBCleaver. Twenty-five features were extracted

from each spyware, including file size, permission for sending short-message service, author

information, permission for checking phone state, permission to write messages and permission to

reboot the system, among others. The Ensemble Late Fusion (ELF) method identified these features as

crucial in distinguishing spyware from normal applications. This involved comparing the

characteristics of each feature with those of a normal application. Histograms were used to illustrate

the variance between spyware and regular applications. Differentiating spyware from normal

applications using RF with ELF resulted in an impressive F1-score of 0.96.

Mahesh et al. [18] utilized a Particle Swarm Optimization (PSO) algorithm with Artificial Neural

Network (ANN) to improve the prediction of spyware detection. A benchmarked dataset of malware

[19] was obtained for the study conducted by Kaggle [20]. Utilizing multi-objective PSO for data pre-

processing, the features were then scaled using standard scaling. Additionally, a multi-layer perceptron

was utilized along with the Jordan canonical form to remove less significant features and enhance

accuracy. The ANN model was finally used to predict the accuracy of the proposed method, achieving

an impressive 99% accuracy rate.

Zahan et al. [21] developed a benchmark dataset of malicious and benign software packages from

NPM and PyPI to enhance malware-detection tools. The dataset was compiled from existing malicious

databases and new malicious and neutral packages. They collected malicious packages from open-

source datasets and an internal Socket benchmark and curated a set of neutral packages using manual

annotation and automated scanning. The final MalwareBench dataset contained 20,792 samples, of

which 6,659 were malicious.

A comprehensive analysis of the search results obtained through the adopted keyword-search approach

has been conducted. The reviewed findings are summarized in Table 1.

Table 1. Summary of the reviewed literature in this area of study.

Author(s) Dataset Spyware Types ML Model Key Findings Strengths Weaknesses

Qabalin et al.

[8]

Android

Spyware-2022

Flexispy,

Mobilespy,

uMobix,

TheWispy,

mSPY

 DT Binary

classification

accuracy:

79.00%, Multi-

class: 77.00%

Network-traffic

analysis, dataset

available

Limited to

binary and

multi-class

classification,

lower multi-

class accuracy

Conti et al.

[10]

ASAINT

application,

Wireshark

cImg, cSms,

mSpy, tSpy

RF, LR, KNN Best F1-score

achieved by RF:

0.85

Effective use of

ASAINT

Manual

network-traffic

analysis

M. Naser and

Q. A. Al-Haija

[14]

Android

Spyware-2022

MobileSPY,

FlexiSPY

FDT Accuracy:

98.00%

High accuracy

with FDT

Limited to two

spyware classes

Noetzold et al.

[15]

Integrated

spyware for

workplace

monitoring

Not specified LR, SVM, NB NB demonstrated

superior

accuracy:

80.00%

Innovative use

of integrated

spyware

Focused on

workplace

computers, not

mobile spyware

Pierazzi et al.

[16]

VirusTotal

website

HeHe, UaPush,

AceCard,

Pincer,

USBCleaver

 ELF, RF F1-score: 0.96 High F1-score,

Effective

feature

extraction

Complex ELF

method

2.2 Feature Extraction and Engineering

Feature extraction transforms raw data into numerical features that retain the original information,

enabling effective processing and improved ML-model performance over direct application of

algorithms. Feature engineering, a crucial element in successful ML research, involves data

4

"Curating Datasets to Enhance Spyware Classification", M. A. Mimi, H. Ng and T. T. V. Yap.

presentation, refinement and pre-processing tasks. Poorly engineered features can adversely impact

model predictions.

Zhang et al. [22] developed a low-cost feature-extraction method for deep learning-based malware

detection. The approach involved monitoring API call behaviour, encoding heterogeneous information

into homogeneous features using feature hashing and applying gated convolutional neural networks

and Bi-Directional Long Short-Term Memory (Bi-LSTM) to capture sequential API call correlations.

This yielded a 98.80% area under the ROC curve.

Gibert et al. [23] described a feature-extraction process that combined hand-crafted features from

hexadecimal and assembly-language source codes, as well as deep features extracted using deep

learning architectures. The hand-crafted features included metadata, byte unigrams, entropy statistics,

Haralick features and local binary pattern features. The assembly-language features covered metadata,

opcode unigrams, register features, symbol frequency, pixel intensity, API function calls, data define

features, section features and miscellaneous features. Deep features were extracted from raw data,

including grayscale image-based features, entropy-based features, opcode N-gram features and byte

N-gram features. These features were then fused using an early fusion mechanism to create a joint

representation, which was used to train a Gradient Boosting (GB) model for malware classification,

achieving an accuracy of 99.81%.

Masabo et al. [24] developed a feature-engineering method to classify polymorphic malware (can

transform into various forms). The researchers collected a dataset of 5 malware classes (API, Crypto,

Locker, Zeus and Shadow brokers.), pre-processed the data and performed feature engineering to

identify 11 top features. These included static analysis of portable executable files, packing

techniques, file access and registry reading. The developed feature-engineering approach

outperformed traditional ML methods (GB), achieving a 94% accuracy.

Nawaz et al. [25] proposed a system to classify Android malware using the Drebin dataset [26]. Static

analysis focused on Android intents and permissions, while dynamic analysis utilized network

requests and API calls. Apktool [27] was used to decompile and decode the APK files. Feature

selection with Info Gain reduced the dimensionality of permissions, intents, API calls and network

features. These features were extracted from the APK components and used to train ML classifiers,

with RF and GB performing best on the permission features, achieving an F1-score of 0.98.

Jung et al. [28] utilized an APK file from the AndroZoo dataset [29], extracted information on API

calls and permissions and generated a feature vector for each application. They applied feature-

selection methods to choose the top 20 features from API calls and permissions. The authors then

employed RF and grid search to establish optimal hyperparameters and the best accuracy of 96.95%

was obtained using Gini importance with the RF model.

Low et al. [30] explored two feature-engineering methods, label encoding and evidence counting, for

malware detection. The study involved four main steps: data pre-processing, feature selection, model

construction and evaluation. Five malware classes (Advanced Persistent Threats (APT), Crypto, Zeus,

Locker and Shadow Brokers) were extracted from the dataset. During pre-processing, data integration,

cleaning and transformation were applied. Boruta was used for feature selection and several ML

models were constructed, with the optimal parameters identified through grid search. The dataset was

balanced using SMOTE. The results showed that RF provided better accuracy for label encoding at

91.34%, while LSTM achieved higher accuracy of 94.64% for evidence counting.

A comprehensive analysis of the search results obtained through the adopted keyword-search approach

has been conducted. The reviewed findings are summarized in Table 2.

3. METHODOLOGY

The dataset is initially prepared through pre-processing, organizing the data and converting it into a

Comma-Separated Values (CSV) format. Feature engineering is then conducted to choose significant

features for classification-model performance. Subsequently, classification models are constructed and

their results are recorded for evaluation purposes. Figure 1 illustrates the workflow of the

methodology.

5

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 01, March 2025.

Table 2. Summary of the reviewed literature in this area of study.

Author(s) Dataset Spyware/

Malware Types

Features and

Techniques

ML Model Performance Strengths Weaknesses

Zhang et
al. [22]

AV-TEST
2017

Various PE
malware

Feature extraction
using Cuckoo,

Feature hashing,

Multiple gated
CNNs, Bi-LSTM

Multiple
gated CNNs,

Bi-LSTM

AUC:
98.80%

Effective deep
learning for

malware

detection

Focused on
PE files, not

mobile apps

Gibert et

al. [23]

Not

specified

Malware (not

specified)

Hand-crafted and

deep features,
Fusion mechanism,

Joint representation

of features from
multiple modalities

XGBoost Accuracy:

99.81%

Comprehensive

feature
extraction from

multiple

sources

Complex and

time-
consuming

Masabo et

al. [24]

Malware

Training
Sets

API, Crypto,

Locker, Zeus,
Shadow brokers

Compute feature

importance for
feature engineering

KNN, Linear

Discriminant
Analysis

(LDA), GB

Accuracy:

94.00%

Focus on

polymorphic
malware

Limited

dataset,
feature-

engineering

complexity

Nawaz et

al. [25]

Drebin

dataset

Android malware Permissions and

intents extraction,

Network requests,
API calls,

RF, NB, GB,

Ada Boosting

F1 score:

0.98

High F1-scores

with RF and

GB

Dynamic-

analysis

complexity

Jung et al.

[28]

AndroZoo

dataset,

static
extraction

of API calls

Not specified

(general malware)

Gini importance-

based method

RF Accuracy:

96.95%

Effective

feature-

selection
methods

Complexity in

feature

extraction

Low et al.
[30]

Dataset
provided by

Ramili-

2016

Advanced
Persistent Threats

(APT), Crypto,

Zeus, Locker,

Shadow Brokers

Label encoding and
evidence counting

RF, DT,
KNN, SVM,

LSTM

Label
encoding:

91.34%,

Evidence

counting:

94.64%

High accuracy
with LSTM

High
computational

requirements

Figure 1. Methodology workflow.

3.1 Dataset Acquisition

The dataset used is called "Android Spyware-2022" [8]. The dataset was generated using PCAPDroid.

It is a data-collection tool that can be installed on the Android operating system. The data consisted of

five different spywares: FlexiSPY, MobileSPY, mSPY, TheWispy and uMobix; and one normal-

traffic class which represents normal-smartphone traffic. Each row in the PCAP file represents a single

packet. Analyzing the PCAP data involved extracting static information from each packet, such as

Source IP, Destination IP, Source Port, Destination Port, Protocol type, Flags information,

Acknowledgment Number and Message content. It also included recording Flow Duration (the time

taken for a packet to transfer from source to destination), Packet Header Length and Packet Full

Length. The information in the PCAP files is presented in Table 3.

6

"Curating Datasets to Enhance Spyware Classification", M. A. Mimi, H. Ng and T. T. V. Yap.

Table 3. Available information in PCAP files.

File Name (.pcap) Number of Packets System Name File Size (MB) Data Tag

Normal_Traffic 1,04,914 Smart Phone Normal

Traffic

78.81 Normal Traffic

FlexiSPY_Installation 19,793 FlexiSPY Inst 16.78 FlexiSPY Inst

FlexSPY_Traffic 35,433 FlexiSPY Traffic 22.32 FlexiSPY Traffic

Mspy Traffic- Part1 35,560 mSPY 25.94 mSPY Traffic

Mspy Traffic- Part2 20,537 mSPY 20.32 mSPY Traffic

mSPY Installation Process 12,976 mSPY 11.34 mSPY Inst

uMobix_Installation 17,312 uMobix 14.37 uMobix Inst

uMobix_Traffic 18,561 uMobix 16.28 uMobix Traffic

MobileSpy_Traffic 28,154 MobileSPY 12.76 MobileSPY Traffic

Mobilespy_Intallation_1 10,139 MobileSPY 8.41 MobileSPY Inst

TheWiSPY_Installation 58,223 TheWiSPY 53.24 TheWiSPY Inst

TheWISPY_Traffic 27,343 TheWiSPY 21.36 TheWiSPY Traffic

In this context, there are two packet types: "Installation" and "Traffic." The "Installation" type

represents traffic data captured during the spyware-installation process, while the "Traffic" type

represents spyware operation traffic data. Figure 2 illustrates the distribution of the six classes within

the dataset. It shows that all five spyware classes overlap with the normal-traffic class. Utilizing the

PCAP file information directly for classification may not be ideal, as features are not distinct for each

class. Therefore, there is a need to curate new datasets with more distinct features for each class. To

achieve this, prominent characteristics of each spyware must be identified and analyzed in the next

sub-section.

Figure 2. The distribution of the six classes.

3.2 Characteristics of Spyware Acquired from the Dataset

Table 4 presents a concise summary of each type of spyware. The Spying Scope represents different

monitoring channels. The Platform highlights the language and framework used to develop spyware.

The Upload represents how the data is transmitted to the Command and Control (C2C) server. Sniffing

identifies sniffing strategies.

Based on the observations in Table 4, it is noted that each spyware shares similar characteristics in

terms of spying scope, platform and sniffing features. This similarity will determine the next course of

action for adapting the data pre-processing method.

3.3 Data Pre-processing

The process of converting every individual PCAP file into CSV format is explained in Algorithms 1

and 2. Each PCAP file represents a sample that contains information related to the corresponding

spyware. Investigating the utilization of packet-flow direction in feature engineering is explored in the

following section to minimize class overlap.

7

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 01, March 2025.

Table 4. Characteristics of spyware acquired from the dataset.

Spyware Classes Spying Scope Platform Upload Sniffing

FlexiSPY a) Social-media applications

b) Keylogger

c) OS activity

d) Update history

e) Applications manifest

f) Phone calls

Java Periodic-based with

fixed time interval

Event-based

MobileSPY a) SIM Tracker

b) Social-media applications

c) Keylogger

d) OS activity

e) Update history.

f) Applications manifest

g) Phone calls

React Native, Java Non-adjustable

periodic

Event-based

TheWiSPY a) SIM Tracker

b) Social-media applications

c)Keylogger

d)OS activity

e) Phone calls

React Native, Java Adjustable periodic Event-based

mSPY a) Social-media applications

b) Keylogger

c) OS activity

d) Update history.

e) Applications manifest

e) Phone calls

Java Periodic-based with

fixed time interval

Event-based

uMobix a) Social-media applications

b) Keylogger

c) OS activity

d) Update history

e) Applications manifest

f) Phone calls

Java Adjustable periodic Adjustable

in terms of periodic

or event-based

4. FEATURE ENGINEERING

Firstly, when observing the direction of the packet flow, two directional properties are apparent:

single-direction and bi-directional. The direction of the packet flow is determined by the Source IP,

Destination IP and Protocol. In this case, static features are extracted from the PCAP file including

Source IP, Destination IP, Source Port, Destination Port, Protocol, Flow Duration and Packet Length.

The dynamic features include Total Forward Packets (Total Fwd Pkt), Total Backward Packets (Total

Bwd Pkt), Total Length of Forward Packets, Total Length of Backward Packets, Flow Bytes per

Second (bytes/s) and Flow Packets per Second (pkt/s), as well as the statistical values, such as

minimum, maximum, average and standard deviation values.

Total forward and backward packets, along with the total length of forward and backward packets, are

derived from the direction of packet flow and packet length. Additionally, flow bytes per second

(bytes/s) and flow packets per second (pkt/s) are obtained from the direction of packet flow, flow

duration and packet length.

After feature-engineering processes, the next step involves curating the two datasets: Dataset A and

Dataset B.

4.1 Method for Developing Dataset A

A single-direction packet flow is utilized to curate Dataset A. It examines the IP pairs and Protocol for

each row. When the Source IP, Destination IP and Protocol remain constant across two or more

consecutive rows, statical measures are calculated to form new features. The features are presented in

Table 5. These consecutive rows are combined into a single group, which represents a single-

directional packet flow. However, if the Source IP and Destination IP remain unchanged for

consecutive rows but the Protocol differs, they cannot be considered part of the same group. They will

be considered as part of a different packet flow.

8

"Curating Datasets to Enhance Spyware Classification", M. A. Mimi, H. Ng and T. T. V. Yap.

Table 5. Detail description of features after feature engineering.

Feature Name Feature-engineering Process

Source (Src) IP From PCAP file

Destination (Dst) IP From PCAP file

Src Port From PCAP file

Dst Port From PCAP file

Protocol From PCAP file

Flow Duration Subtract the current flow start time from the last flow end time.

Total Forward (Fwd) Packets Sum the forward packets.

Total Backward (Bwd) Packets Sum the backward packets

Total Length of Fwd Packet Sum the forward packet length

Total Length of Bwd Packet Sum the backward packet length

Fwd Packet Length Min Minimum forward packet length

Fwd Packet Length Max Maximum forward packet length

Fwd Packet Length Mean Average forward packet length per flow

Fwd Packet Length Std Standard deviation of forward packet length

Bwd Packet Length Min Minimum backward packet length

Bwd Packet Length Max Maximum backward packet length

Bwd Packet Length Mean Average backward packet length per flow

Bwd Packet Length Std Standard deviation of backward packet length

Flow Bytes/s Byte rate in a flow

Flow Pkt/s Packet rate in a flow

Algorithm 1: Generating Dataset A. Here, p represents the previous row and n represents the next row.

Algorithm 1: Dataset A

1. pcap = read (open (pcap file))

2. Require: ip, protocol

3. for row number in row do

4. if (p.IP pairs = = n.IP pairs && p.protocol = = n.protocol) then

5. calculate feature value

6. else

7. move to the next row

8. end if

9. end for

10. function writeCsv(data, outputFile):

11. processedData = processPcap(pcapFile)

12. writeCsv(processedData, outputFile)

4.2 Method for Developing Dataset B

For Dataset B, the process is like Dataset A (Sub-section 4.1) with the exception of utilizing a bi-

directional packet flow instead of a single-direction packet flow. Figure 3 illustrates this bi-directional

flow. The Source IP in Row-1 and Row-2 subsequently becomes the Destination IP in Row-3 and

Row-4. This process subsequently occurs also in Row-5. A similar process occurs for the Destination

IPs as well.

Algorithm 2: Dataset B

1. pcap = read (open (pcap file))

2. Require: ip, protocol

3. for row number in row do

4. if (p.source.ip ||p.destination.ip==n.source.ip||n.destination.ip && p.protocol== n.protocol) then

5. calculate feature value

6. else

7. move to the next row

8. end if

9. end for

10. function writeCsv(data, outputFile):

11. processedData = processPcap(pcapFile)

12. writeCsv(processedData, outputFile)

4.3 Comparison of the Datasets

After curating Datasets A and B, Dataset A consists of 3,928 rows and Dataset B comprises 2,573

rows, while the raw dataset contains a total of 386,963 rows. Tables 6, 7 and 8 present the features and

sample values for the raw dataset, Dataset A and Dataset B. It is important to note that while Table 8

9

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 01, March 2025.

includes features related to bi-directional packets, each feature is listed with respect to one source and

destination, which may obscure the indication of data-flow direction. To address this, Figure 3 in sub-

section 4.3 illustrates how the data-flow direction is represented in the datasets, enhancing the clarity

of the bi-directional packet features.

Figure 3. Bi-directional packet flow.

Table 6. Sample rows of the raw dataset.

Src IP

Dst IP

Protocol

Total

Fwd.

Packets

Total

Bwd.

Packets

Total

Length

of

Fwd.

Packet

Total

Length

of Bwd.

Packet

Fwd.

Packet

Length

Min.

Fwd.

Packet

Length

Max.

Fwd.

Packet

Length

Mean

Fwd.

Packet

Length

Std.

Bwd.

Packet

Length

Min.

Bwd.

Packet

Length

Max.

Bwd.

Packet

Length

Mean

Bwd.

Packet

Length

Std.

10.215.173.1 161.117.185.166 TCP 1 0 60 0 60 60 60 0 0 0 0 0

10.215.173.1 157.240.195.54 TCP 1 0 60 0 60 60 60 0 0 0 0 0

8.8.8.8 10.215.173.1 DNS 0 1 0 48 0 0 0 0 48 48 48 0

8.8.8.8 10.215.173.1 DNS 0 1 0 40 0 0 0 0 40 40 40 0

10.215.173.1 157.240.195.54 TCP 0 1 0 44 0 0 0 0 44 44 44 0

157.240.195.54 10.215.173.1 TCP 1 0 40 0 40 40 40 0 0 0 0 0

10.215.173.1 104.21.81.103 TLSv1.2 1 0 43 0 43 43 43 0 0 0 0 0

157.240.195.54 10.215.173.1 UDP 0 1 0 40 0 0 0 0 40 40 40 0

142.250.200.243 10.215.173.1 TLSv1.3 0 1 0 44 0 0 0 0 44 44 44 0

Table 7. Sample rows of Dataset A.

Src IP

Dst IP

Protocol

Total

Fwd.

Packets

Total

Bwd.

Packets

Total

Length

of Fwd.

Packet

Total

Length

of Bwd.

Packet

Fwd.

Packet

Length

Min.

Fwd.

Packet

Length

Max.

Fwd.

Packet

Length

Mean

Fwd.

Packet

Length

Std.

Bwd.

Packet

Length

Min.

Bwd.

Packet

Length

Max.

Bwd.

Packet

Length

Mean

Bwd.

Packet

Length

Std.

10.215.173.1 161.117.185.166 TCP 23 0 6976 0 88 1472 303.30 390.05 0 0 0.00 0.00

10.215.173.1 157.240.195.54 TCP 20 0 1880 0 88 152 94.00 15.10 0 0 0.00 0.00

161.117.185.166 10.215.173.1 TLSv1.2 0 2 0 176 0 0 0.00 0.00 88 88 88.00 0.00

10.215.173.1 10.215.173.2 DNS 38 0 21492 0 88 1548 565.58 586.28 0 0 0.00 0.00

10.215.173.2 10.215.173.1 DNS 0 65 0 11408 0 0 0.00 0.00 116 436 175.51 75.25

10.215.173.1 157.240.196.60 TCP 72 0 82640 0 88 1548 1147.78 564.12 0 0 0.00 0.00

10.215.173.1 157.240.196.60 TLSv1.3 1 0 116 0 116 116 116.00 0.00 0 0 0.00 0.00

10.215.173.1 10.215.173.2 UDP 48 0 7592 0 100 1424 158.17 187.85 0 0 0.00 0.00

10.215.173.1 172.217.171.206 TLSv1.3 2 0 252 0 112 140 126.00 14.00 0 0 0.00 0.00

Figures 4 and 5 provide a comparison of the Datasets A and B and their respective values. As shown

in Figure 2, there is an overlap in the values of all six classes within the raw dataset, making it

challenging to differentiate between distinct clusters. Conversely, Datasets A and B (depicted in

Figures 4 and 5) show minimal or no overlap among the classes, clearly distinguishing between them.

These visual representations encompassed all features and depicted the distribution of the six classes.

10

"Curating Datasets to Enhance Spyware Classification", M. A. Mimi, H. Ng and T. T. V. Yap.

Table 8. Sample rows of the Dataset B.

Src IP

Dst IP

Protocol

Total

Fwd.

Packets

Total

Bwd.

Packets

Total

Length

of Fwd.

Packet

Total

Length

of Bwd.

Packet

Fwd.

Packet

Length

Min.

Fwd.

Packet

Length

Max.

Fwd.

Packet

Length

Mean

Fwd.

Packet

Length

Std.

Bwd.

Packet

Length

Min.

Bwd.

Packet

Length

Max.

Bwd.

Packet

Length

Mean

Bwd.

Packet

Length

Std.

10.215.173.1 161.117.185.166 TCP 10 10 896 4484 88 96 89.60 3.20 88 1004 448.40 373.16

157.240.196.60 10.215.173.1 TCP 64 64 6100 79780 88 500 95.31 51.46 88 1548 1246.56 468.12

10.215.173.1 10.215.173.2 DNS 3 3 184 2800 56 64 61.33 3.77 44 1378 933.33 628.85

37.44.39.12 10.215.173.1 DNS 993 993 61816 1E+06 61 78 62.25 2.91 54 1378 1375.33 59.36

10.215.173.1 157.240.196.60 TCP 63 63 80404 7456 88 1548 1276.25 476.01 88 500 118.35 102.80

172.217.171.206 10.215.173.1 TLSv1.2 10 10 1580 8568 88 648 158.00 168.58 88 1548 856.80 628.06

74.125.206.188 10.215.173.1 TCP 14 14 2464 2748 88 488 176.00 135.51 88 736 196.29 170.65

10.215.173.1 74.125.206.188 TCP 13 13 1152 4080 88 96 88.62 2.13 108 488 313.85 144.58

10.215.173.1 10.215.173.2 UDP 22 22 3356 2520 124 320 152.55 40.96 104 124 114.55 4.76

Figure 4. Dataset A. Figure 5. Dataset B.

5. MODEL CONSTRUCTION

To assess whether a dataset is appropriate for a detection model, thorough testing and analysis are

crucial. The aim is to identify the most suitable ML model that aligns with the features of the curated

datasets. Through analyzing the confusion-matrix values from different ML models, valuable

information about the curated datasets’ efficiency and performance will be obtained, enabling well-

informed decisions regarding their use in detection tasks.

5.1 Classifiers

To determine the most suitable ML model, this study utilizes NB, XGBoost, RF, DT and SVM with

the Radial Basis Function (RBF) kernel. DTs are recognized for their simplicity and interpretability, as

they iteratively divide the data based on feature values to create a tree-like structure for classification.

They can effectively handle both numerical and categorical data, making them well-suited for datasets

with mixed-data types. RF improves upon DT by combining multiple trees, which enhances accuracy

and reduces overfitting. SVM with RBF kernel and employing the One- vs-Rest (OVR) strategy excels

in managing high-dimensional data by identifying optimal decision boundaries for classification. NB

is particularly effective for text and categorical data due to its reliance on independence between

features. Lastly, XGBoost combines gradient boosting with regularized learning to perform well in

diverse datasets as an ensemble model. This research applied these traditional methods because it

focused on feature engineering.

6. RESULTS AND DISCUSSION

6.1 Results

The study evaluated classification performance using various metrics and different training-testing

11

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 01, March 2025.

dataset splits. The 70-30 split yielded the best results, which were consistent across different

approaches and datasets, as illustrated in Tables 9 and 10. This consistency can be attributed to the

rigorous curation of the datasets, as described in sub-sections 4.1 and 4.2. The similar results

suggested the classification model's robustness across dataset configurations. A thorough review has

been conducted to ensure the accuracy and reliability of the dataset-preparation and model-evaluation

methods.

Table 9. Results for accuracy, precision, recall and F1-score for Dataset A.

ML Models Accuracy (%) Precision (%) Recall (%) F-1 Score (%)

DT 97.97 97.97 97.97 97.97

RF 97.97 97.97 97.97 97.97

XGBoost 96.38 96.43 96.38 96.39

SVM 99.88 99.88 99.88 99.88

NB 97.02 97.02 97.02 97.02

Table 10. Results for accuracy, precision, recall and F1-score for Dataset B.

ML Models Accuracy (%) Precision (%) Recall (%) F-1 Score (%)

DT 99.24 99.25 99.24 99.24

RF 99.24 99.25 99.24 99.24

XGBoost 99.24 99.25 99.24 99.24

SVM 99.12 99.12 99.12 99.12

NB 99.02 99.02 99.02 99.02

Figures from 6 to 9 show the difference in the evaluation metrics (including accuracy, precision, recall

and F1-score) between Datasets A and B. For Dataset A, SVM demonstrated superior performance in

accuracy, precision, recall and F1-score. Conversely, DT, RF and XGBoost exhibited better

performance on these metrics for Dataset B.

Figure 6. Evaluation of the accuracy of ML

models in the context of both Dataset A and

Dataset B.

Figure 7. Evaluation of the precision of ML

models in the context of both Dataset A and

Dataset B.

Figure 8. Evaluation of the recall of ML models

in the context of both Dataset A and Dataset B.

Figure 9. Evaluation of the F1-score of ML

models in the context of both Dataset A and

Dataset B.

12

"Curating Datasets to Enhance Spyware Classification", M. A. Mimi, H. Ng and T. T. V. Yap.

6.2 Discussion

The comparative evaluation aimed to enhance the classification of spyware. Table 11 presents a

comparison between the outcomes of earlier studies and those of this research, all utilized on the same

dataset. M. Naser and Q. A. Al-Haija [14] categorized two types of spyware: FlexiSPY and

MobileSPY, while [8] classified five varieties: FlexiSPY, MobileSPY, TheWiSPY mSPY and uMobix

without extracting new features from the datasets used in their research. Feature engineering involved

extracting new features based on packet-flow direction, IP pairs and Protocol information to improve

spyware classification by identifying five distinct classes.

Table 11. Comparison of classification accuracy.

Research Work ML Scheme Dataset Spyware Classes Accuracy

Qabalin et al. [8] DT Android Spyware-

2022 [8]

5 79.00%

M. Naser and Q. A. Al-

Haija [14]

FDT Android Spyware-

2022 [8]

2 98.00%

T. N. AlMasri and M. A.

N. AlDalaien. [31]

RF Android Spyware-

2022 [8]

5 92.00%

This Work SVM Dataset A 5 99.88%

RF, DT, XGBoost Dataset B 5 99.24%

After the curation process, both Datasets A and B showed improved performance compared to

previous studies in identifying spyware. M. Naser and Q. A. Al-Haija [14] achieved strong results in

spyware identification with only two spyware classes, but positive outcomes were achieved by

performing well across five different spyware classes. By having more classes, the model had to

comprehend more detailed patterns and characteristics associated with each type of spyware. This

higher level of detail enabled the model to better discriminate, leading to improved accuracy. Other

researchers utilized features directly from the raw dataset without considering directional properties,

while this research focused on features utilizing packet flow direction. This approach led to the

creation of more pertinent features related to different types of spyware behaviours.

The engineered features of curated Datasets A and B were highly effective, because they incorporated

directional properties. These properties facilitated a deeper understanding of network behaviour,

aiding in anomaly detection, optimization support and enhancing network analysis for modelling

objectives and spyware classification [32]. The data-flow direction enhanced anomaly detection and

network-performance optimization by mapping expected sequences, standard frequency, volume of

data transmissions and common paths taken by data packets. However, some of these features,

although characterized, are relatively trivial. The major contribution of this study is curating two new

datasets based on directional properties. Though both datasets have the same features, the values of

each feature for both datasets were different because of directional properties. Engineered features

included directional properties within the network data for in-depth insight into behavioural baselines,

protocol analysis, traffic volume, directionality and time-based patterns. Because of the complex

nature of spyware, this method was crucial. By understanding the data flow direction, accurate

behaviour modeling could distinguish between normal and suspicious activities with greater precision.

The detailed analysis of packet-flow direction and its impact on spyware classification is the novelty

of this study. Unlike previous studies, this study insights into data movement were provided by

directional properties, which helped identify unusual patterns that signify potential threats or

inefficiencies. Unusual data paths represented the potential threats, like exfiltration by spyware. The

model also identified network inefficiencies, such as sub-optimal routing or congestion. This novel

approach focuses on these directional properties, which provides the model clearer view of network

dynamics for early performance optimization and threat detection [33].

The derived features: Total Fwd Pkt and Total Bwd Pkt from IP pairs, Ports and Protocol; provided

valuable insights into the source and destination of network traffic with communication protocols (e.g.

TCP, UDP). This improved pattern recognition, device-connection analysis and anomaly detection in

both TCP and UDP traffics by identifying missing packets or abnormal activities (out-of-order

sequences) by recognizing predictable packet sequences during normal activities, such as connection

setup (SYN-ACK-ACK) during data transfer. Anomalies in UDP traffic included unexpected increases

in packet rate or unusually large packet sizes. Additionally, unusual patterns in destination ports were

13

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 01, March 2025.

observed, which could indicate a DDoS attack. Normal UDP packets consisted of independent,

sequenced packets typically used for real-time applications, such as DNS queries or streaming [34].

Metrics like packet-length statistics (minimum, maximum, mean and standard deviation) and flow

duration (Flow Bytes/s and Flow Pkt/s) were analyzed to understand the transmission rates and detect

anomalies (e.g. unusual packet sizes, irregular transmission rates and unexpected flow durations) in

network traffic. An unusually large maximum packet size could indicate data aggregation before

transmission, which might be normal for certain applications (e.g. video-streaming services, file-

transfer protocols, cloud-storage services and backup solutions), but suspicious for others. The average

packet size helped understand the typical packet load on the network. A sudden increase in the mean

packet size indicated bulk data transfers. Standard deviation measured the variability in packet sizes.

High variability suggested a mix of different types of traffic represented suspicious, while low

variability indicated uniform traffic represented normal. A higher Flow Bytes/s rate indicated a high-

volume data transfer, which could be legitimate (e.g. video-streaming) or suspicious (e.g. data

exfiltration). Packet-length statistics were effective for detecting anomalies by observing baseline

establishment, deviation detection and statistical methods [35]. These detail analyses helped identify

those unusual patterns which were crucial for maintaining network security and efficiency.

Combining packet-length statistics with flow duration provides detailed analysis encompassing short-

lived and long-lasting interactions. Flow metrics like Flow Bytes/s and Flow Pkt/s helped understand

data-transmission rates, aiding in identifying abnormal patterns. Integrating packet length statistics

with flow duration enables differentiation between short-lived spikes and sustained high-traffic

periods, enhancing the understanding of network-flow dynamics.

Traditional ML models incorporated directional properties into their feature sets to more accurately

distinguish between normal and anomalous behaviours. For instance, RF and DT benefited from the

added granularity in their decision-making processes, while SVM could better separate data points in

the feature space. NB, with its probabilistic approach, could more effectively categorize behaviours

based on the directional data. This improved recall and precision of anomaly detection, because the

algorithms were configured to recognize patterns specific to single-direction and bi-directional flows,

yielding more reliable and accurate classification with better detection of anomalies.

Anomaly identification techniques focussed on analyzing unique behaviours within bi-directional and

single-direction flows. Understanding the differences between these traffic patterns was important not

only for anomaly detection, but also efficient resource allocation. It helped improve tactics by adapting

feature sets specific to each type of flow. Targeted flow behaviours contributed to improving data-

classification accuracy by reducing false-negative and false-positive results. The model could more

precisely identify anomalies by focusing on each flow type's unique characteristics. Also, it reduced

false alarms, which improved precision. A higher recall rate for anomaly detection could be achieved

by analysing traffic patterns. A higher F1-score was achieved by the balanced improvement in both

precision value and recall value, which indicated better overall performance in anomaly detection [36].

By observing dynamic load balancing, fault prediction, forecasting of traffic, protocol routing and the

adaptive quality of service, these algorithms addressed bottlenecks and network inefficiencies. Those

ensured that the network operated smoothly. As a result, the need for significant processing resources

to solve problems after they occurred was reduced. For that reason, the overall processing time for

detecting anomalies was shortened, which improved the response time [37].

7. CONCLUSIONS

Engineering features based on the directional properties that captured detailed characteristics of

network-traffic behaviour. This enabled the model to identify specific patterns to bi-directional and

single-direction traffic, indicating various types of network threats or activities. The high F1-score,

recall, accuracy and precision achieved with these features demonstrated their effectiveness in

accurately classifying network traffic. These metrics also highlighted their importance in detecting

anomalies, which was important for ensuring the security and reliability of network infrastructure.

The investigation analyzed the impact of packet directionality on spyware classification. This was

done through the curation of datasets focusing on directional properties. A specific emphasis was

placed on IP pairs and Protocol. The analysis found that considering the directional properties

14

"Curating Datasets to Enhance Spyware Classification", M. A. Mimi, H. Ng and T. T. V. Yap.

significantly improved spyware classification. RF, NB, SVM, DT and XGBoost were constructed and

compared between the two curated datasets. The findings suggested that DT, RF and XGBoost

performed better for Dataset B, while SVM showed better performance for Dataset A. These ML

approaches demonstrated potential in spyware classification, but further improvements are needed to

enhance the model, so that future work should integrate more spyware types with larger number of

samples and explore advanced feature-selection and deep-learning techniques. The limited types of

spyware and the small number of samples in the dataset represent limitations, so expanding them

could improve detection mechanisms. Evaluating the model's performance in diverse real-world

scenarios and incorporating realistic benign-traffic data could enhance its ability to distinguish

between malicious and benign activities, providing a practical security solution. Integrating real-time

data processing and adaptive learning could also be valuable directions for future research.

ACKNOWLEDGEMENTS

This research is supported by TM Research & Development Grant (TM R&D), MMUE/220028.

REFERENCES

[1] T. Munusamy and T. Khodadi, "Building Cyber Resilience: Key Factors for Enhancing Organizational

Cyber Security," Journal of Informatics and Web Engineering, vol. 2, no. 2, pp. 59-71, 2023.

[2] M. Al-Hashedi, L.K. Soon, H. N. Goh, A. H. L. Lim and E. G. Siew, "Cyberbullying Detection Based

on Emotion," IEEE Access, vol. 11, pp. 53907-53918, 2023.

[3] R. Thangaveloo et al., "Datdroid: Dynamic Analysis Technique in Android Malware Detection," Int.

J. on Advanced Science, Engineering and Information Technology, vol. 10, no. 2, pp. 536-541, 2020.

[4] T.A.A. Abdullah, W. Ali, S. Malebary and A. A. Ahmed, "A Review of Cyber Security Challenges:

Attacks and Solutions for Internet of Things-based Smart Home," Int. J. of Computer Science and

Network Security, vol. 19, no. 9, pp. 139-146, 2019.

[5] A. S. Grillis, "What is Spyware?" [Online], Available: https://www.techtarget.com/

searchsecurity/definition/spyware, Dec. 12, 2023.

[6] S. S. Rawat and A. K. Mishra, "Review of Methods for Handling Class-imbalanced in Classification

Problems," arXiv preprint, arXiv: 2211.05456, 2022.

[7] M. Botacin et al., "On the Security of Application Installers and Online Software Repositories," Proc. of

the 17th Int. Conf. on Detection of Intrusions and Malware, and Vulnerability Assessment

(DIMVA2020), pp. 192-214, Lisbon, Portugal, 2020.

[8] M. K. Qabalin, M. Naser and M. Alkasassbeh, "Android Spyware Detection Using Machine Learning:

A Novel Dataset," Sensors, vol. 22, no. 15, pp. 5765-5790, 2022.

[9] Google Play, "PCAPdroid-Network Monitor Apps," [Online], Available: https://play.google.com/apps/,

Jan. 08, 2024.

[10] M. Conti, G. Rigoni and F. Toffalini, "ASAINT: A Spy App Identification System Based on Network

Traffic," Proc. of the 15th Int. Conference on Availability, Reliability and Security, Article no. 51, pp. 1-

8, DOI:10.1145/3407023.3407076, August 2020.

[11] WireShark, Go Deep, [Online], Available: https://www.wireshark.org/, Dec. 12, 2023.

[12] Google Play, "DroidBox Mikrotik Config Tool-Apps," [Online], Available: https://play.Google.com/

store/ apps, Dec. 12, 2023.

[13] Google, "Google Photos," [Online], Available: https://www.google.com/photos/about/, Jan. 08, 2024.

[14] M. Naser and Q. A. Al-Haija, "Spyware Identification for Android Systems Using Fine Trees,"

Information, vol. 14, no. 2, pp. 1-10, 2023.

[15] D. Noetzold et al., "Spyware Integrated with Prediction Models for Monitoring Corporate Computers,"

Preprints.org, vol. 1, DOI: 10.20944/preprints .202301.0580.v1, 2023.

[16] F. Pierazzi, R. Emilia, R and I. V. S. Subrahmanian, "A Data-driven Characterization of Modern

Android Spyware," ACM Transactions on Management Information Systems, vol. 11, pp. 1-38, 2020.

[17] VirusTotal-Home, [Online], Available: https://www.virustotal.com/gui/home/, Dec. 07, 2023.

[18] V. Mahesh and S. D. KA, "Detection and Prediction of Spyware for User Applications by

Interdisciplinary Approach," Proc. of 2020 Int. Conf. on Computational Intelligence for Smart Power

System and Sustainable Energy (CISPSSE), DOI: 10.1109/CISPSSE49931.2020.9212222, Keonjhar,

India, July 1-6, 2020.

[19] O. F. Catak, "API Call Based Malware Dataset," [Online], Available:

https://www.kaggle.com./datasets/ focatak/ malapi2019, Dec. 08, 2019.

[20] Kaggle, "Your Machine Learning and Data Science Community," [Online], Available:

https://www.kaggle.com/, Nov. 01, 2024.

[21] N. Zahan, P. Burckhardt, M. Lysenko, F. Aboukhadijeh and L. Williams, "MalwareBench: Malware

https://link.springer.com/book/10.1007/978-3-030-52683-2
https://dl.acm.org/journal/tmis

15

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 01, March 2025.

Samples Are Not Enough," Proc. of 2024 IEEE/ACM 21st Int. Conf. on Mining Software Repositories

(MSR), pp. 728-732, DOI: 10.1145/3643991.3644883, April 2024.

[22] Z. Zhang, P. Qi and W. Wang, "Dynamic Malware Analysis with Feature Engineering and Feature

Learning," Proc. of 34th AAAI Conf. on Artificial Intelligence (AAAI-20), pp. 1210-1217, April 2020.

[23] D. Gibert et al., "Fusing Feature Engineering and Deep Learning: A Case Study for Malware

Classification," Expert Systems with Applications, vol. 207, pp. 117957-117974, 2022.

[24] E. Masabo, K. S. Kaawaase, J. S. Otim, J. Ngubiri and D. Hanyurwimfura, "Improvement of Malware

Classification Using Hybrid Feature Engineering," SN Computer Science, vol. 1, pp. 1-14, 2020.

[25] A. Nawaz, "Feature Engineering Based on Hybrid Features for Malware Detection over Android

Framework," Turkish J. of Computer and Mathematics Education, vol. 12, no. 10, pp. 2856-2864, 2021.

[26] M. Humayun, N. Z. Jhanjhi and M. Z. Alamri, "Smart Secure and Energy Efficient Scheme for E-

Health Applications Using IoT: A Review," Int. J. of Computer Science and Network Security, vol. 20,

no. 4, pp. 55-74, 2020.

[27] Apktool, "Apktool," [Online], Available: https://apktool.org/, Dec. 01, 2024.

[28] J. Jung, J. Park, S. J. Cho, S. Han, M. Park and H. H. Cho, "Feature Engineering and Evaluation for

Android Malware Detection Scheme," J. of Internet Technology, vol. 22, no. 2, pp. 423-440, 2021.

[29] K. Allix et al., "AndroZoo: Collecting Millions of Android Apps for the Research Community," Proc.

of the 13th Int. Conf. on Mining Software Repositories (MSR), pp. 468-471, Austin, USA, May 2016.

[30] M. X. Low et al., "Comparison of Label Encoding and Evidence Counting for Malware Classification,"

Journal of System and Management Sciences, vol. 12, no. 6, pp. 17-30, 2022.

[31] T. N. AlMasri and M. A. N. AlDalaien, "Detecting Spyware in Android Devices Using Random

Forest," Proc. of the 2023 Int. Conf. on Advances in Comput. Research (ACR’23), pp. 294-315, 2023.

[32] N. Ben-Asher, S. Hutchinson and A. Oltramari, "Characterizing Network Behavior Features Using a

Cyber-security Ontology," Proc. of MILCOM 2016-2016 IEEE Military Communications Conf., pp.

758-763, Baltimore, USA, November 2016.

[33] S. Misra, M. Tan, M. Rezazad, M. R. Brust and N. M. Cheung, "Early Detection of Crossfire Attacks

Using Deep Learning," arXiv preprint, arXiv: 1801.00235, 2017.

[34] L. Zhou et al., "DDOS Attack Detection Using Packet Size Interval," Proc. of the 11th Int. Conf. on

Wireless Comm., Networking and Mobile Computing (WiCOM), pp. 1-7, Shanghai, China, 2015.

[35] A. Iorliam et al., "Flow Size Difference Can Make a Difference: Detecting Malicious TCP Network

Flows Based on Benford's Law," arXiv preprint, arXiv: 1609.04214, 2016.

[36] N. Davis, G. Raina and K. Jagannathan, "A Framework for End-to-End Deep Learning-based Anomaly

Detection in Transportation Networks," Transportation Research Interdisciplinary Perspectives, vol. 5,

pp. 100-112, 2020.

[37] M. Kuchnik et al., "Plumber: Diagnosing and Removing Performance Bottlenecks in Machine Learning

Data Pipelines," Proc. of Machine Learning and Systems, vol. 4, pp.33-51, 2022.

 ملخص البحث:

ررررر ر رررررُّق رق ت لررررر ر جّ رررررُّلرق ُّقف ررررر ر ت رتانرررررا ب قرتاعررررروم ربا رررررغ ر ررررر اعف قرى رررررإتفتقرررررُّرق ال

رررررررراخ ور،م ظرررررررر ت ر قرةد ررررررررج رهذفررررررررريفررررررررر. ررررررررفا ت رلاقرصئاّررررررررخ قرتقذرتانررررررررا ب قرتاعرررررررروم ر رص

رتانررررررا ب قرتاعرررررروم ريفررررررر ررررررفا ت رلاا ر ارررررربتُّم قرصئاّررررررخ قر رررررر اعفرفاشرررررركتسقرم رتيررررررر، قرررررررو ق

ريفررررررةدوجررررروم قرصئاّرررررخ قرن رررررراهتسرررررد فريُّ رررررترصئاّرررررخرللاخررررررن رررررر، ّرررررت ر قرلجرررررأرن ررررر

ر.تانررررررا ب قرتاعرررررروم رن رررررررن ترررررر ثقرم ظرررررر ترىلررررررعر سررررررقرد ر قرهذفرررررررلمررررررعتور.تانررررررا ب قرتاعرررررروم

رررررلاختسقرم رتيررررررصئاّرررررخرىلرررررعريوترررررحترAر عررررروم م ق ررررررتاقف ردتررررررن رررررراهص ر،ها رررررت رلاقر يرررررداحأرمز رح

رررررررتاقف ردترررررررن ررررررراهصررررررلاختسقرم رتيرررررررصئاّررررررخرىلررررررعرBر عرررررروم م قريوتررررررحترامرررررر ر ررررررئا ثرمز رح

رم رتتررررررررصئاّرررررررخ قركلرررررررترللاخررررررررن رررررررر ّرررررررت ر قر رررررررلمعرن رأرى رررررررإرةراشرررررررلإقررد رررررررتور.ها رررررررت رلاق

ر(SVM)ر رّررررررر ررقق رررررررحردقرررررررور. ّرررررررت ر قرتا ررررررر زرقوخرن ررررررررةراترررررررخ ر رعررررررروم رمقدختسرررررررا

رىلررررررعلأقر ق ررررررد ر قرتبررررررفذرن حررررررريفررررررر،%99.88رAرتانررررررا ب قر عرررررروم م ر ب رررررر ر ا رىلررررررعلأقر ق ررررررد ر ق

ر.%99.24ر(XGBoostرورDTرورRF)رتاف رّ ررى إرBرتانا ب قر عوم م ر ب ر ا

ررررر قرن ررررررافرررررُّ غرع ررررررثحرررررب قرقذفرررررريفرررررر حرررررُّتقم قر قررررريُّا ر قر نرررررراقم و رتا ررررر دأريفررررررةدرقو رررررقرلُّا

رقق ررررررحترنجرأراهنأشرررررررن رررررررتانررررررا ب قرتاعرررررروم ريفررررررر ررررررفا تلاقرصئاّررررررخ قرن رأرن ربررررررتر،عوضرررررروم ق

ر. لر ت ر قر قُّ ر ّتريفر ق رد ر قرث حرن رت را حت

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).ر

