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ABSTRACT 

Current methods for spyware classification lack effectiveness as well-structured datasets are typically absent, 

especially those with directionality properties in their set of features. In this particular research work, the 

efficacy of directionality properties for classification is explored, through engineered features from those on 

existing datasets. This study curates two datasets, Dataset A which includes features extracted from only single 

directional packet flows and Dataset B which includes those from bi-directional packet flows. Classification with 

these features is performed with selected classifiers, where SVM obtained the highest accuracy with 99.88% for 

Dataset A, while the highest accuracy went to RF, DT and XGBoost for Dataset B with 99.24%. Comparing 

these results with those from existing research work, the directional properties in these engineered features are 

able to provide improvements in terms of accuracy in classifying these spywares. 
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1. INTRODUCTION 

Cybercrimes are increasing due to careless use of online applications and technologies [1]-[2]. Users 

install various applications on their devices for different purposes, but many are not safe or secure as 

some disguise themselves as normal applications, such as spyware [3]. Spyware, a malicious software, 

is installed on the device, gathers sensitive information and transfers it to third parties without user 

consent [4]. It’s very tricky and challenging to distinguish between spyware and legitimate 

applications, as it disguises itself as a legitimate application [5]. While significant research has been 

conducted on malware, the exploration of spyware has been overlooked. This creates a research gap 

for further investigation of the classification methods. Current spyware-classification methods have 

limitations in feature engineering based on directional properties, which hampers accurate 

classification. The accuracy of existing spyware classification is often hindered due to inadequate 

datasets and insufficient analysis for different classifiers, leading to overfit or underfit [6]. 

Additionally, users sometimes overlook security considerations when installing applications, creating 

opportunities for hackers. Cybercriminals create clones of popular software on untrustworthy sites 

with security vulnerabilities. Users carelessly install these cloned applications, allowing attackers to 

gain access to sensitive information [7]. Thus, this study makes several key contributions to the field 

of spyware classification. 

1.1 Contribution 

First, this study aims to enhance spyware classification by curating two new datasets. Dataset A 

involves annotation based on single-direction packet flow, while Dataset B involves bi-directional 

packet flow. Information about the packet flow is extracted from major static parameters, such as IP 

pairs, ports and protocols.  

Secondly, feature engineering is applied to form dynamic features from static parameters like Total 

Forward (Fwd) Packet (Pkt), Total Backward (Bwd) Packet (Pkt), Flow Bytes per Second (Flow 

Bytes/s), Flow Packets per Second (Flow Pkt/s), … etc., derived from the annotated datasets. The goal 

is to identify significant features that can provide insights into the effectiveness of using packet-flow 

information in curating datasets and classifying spyware. 
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Third, exploring machine-learning (ML) models for spyware classification from the two datasets, with 

the aim of improving accuracy. This involves applying Decision Tree (DT), Random Forest (RF), 

Support Vector Machine (SVM), Naïve Bayes (NB) and Extreme Gradient Boosting (XGBoost) on 

curated datasets. Comparative analyses of the models trained on these datasets are then conducted to 

observe clustering patterns for the six different classes (five types of spyware with normal traffic) 

within each dataset, examining the extent of overlap between them. 

The methodologies and the findings offer valuable contributions for enhancing the capabilities of 

Security Operation Center (SOC) system and Intrusion Detection System (IDS). The curated datasets, 

based on directional properties, benefit IDS by providing more accurate and contextually rich data for 

classifiers, that improves classification accuracy and reduces false positive rates for SOC environment. 

The engineered dynamic features, such as Flow Bytes/s, Flow Pkt/s, enable real-time threat analysis, 

allowing SOC and IDS to swiftly prioritize alerts for emerging threats. The validation of classification 

models, including SVM, NB, XGBoost, DT and RF, offer SOCs proven tools for more accurate 

spyware classification, which improves incident response reliability. Overall, the practical benefits of 

this research, such as enhanced detection accuracy and improved anti-spyware tools, strengthen the 

cybersecurity defences of SOCs, reducing the risk of unauthorized data access and privacy violations. 

The remaining sections of the study are organized as follows: Section 2 provides a concise summary 

of prior research on dataset collection, feature extraction and engineering. Section 3 outlines the 

methodology, including details about dataset acquisition, spyware characteristics and data pre-

processing. In Section 4, the proposed method is explained in detail with a focus on packet-flow 

direction and various approaches for curating Datasets A and B through feature engineering. This 

section also covers detailed methods for curating Datasets A and B while comparing them to the raw 

dataset. Section 5 discusses model construction, while Section 6 explores the results and their 

discussion. Lastly, concluding thoughts are presented in Section 7 to wrap up the document. 

2. RESEARCH BACKGROUND 

2.1 Spyware Dataset Collection 

Cybersecurity is a widely discussed research topic. Researchers have criticized and discussed 

disciplines within cybersecurity, including spyware. Researchers have collected datasets to detect and 

characterize spyware. 

Qabalin et al. [8] collected a dataset of five different spyware types - Flexispy, Mobilespy, uMobix, 

TheWispy and mSPY - by capturing packets using PCAPDroid [9]. Then, DT was applied to the 

dataset, achieving 79% accuracy for binary classification and 77% for multi-class classification. 

Conti et al. [10] used the ASAINT (A Spy App Identification System based on Network Traffic) 

application to identify spyware apps and collected data. Packets were captured using Wireshark [11] 

and then network traffic was manually analyzed to distinguish between spyware apps and normal 

ones. The identified classes of spyware applications were cImg, cSms, mSpy and tSpy. Dropbox (DB) 

[12] and Google Foto (GF) [13] photo uploads were considered as normal applications. Four steps 

were applied: data collection, pre-processing, training and testing. The data distribution was adjusted 

using the Synthetic Minority Over-Sampling Technique (SMOTE) during pre-processing. The 

effectiveness of the datasets was assessed using RF, Linear Regression (LR) and K- Nearest 

Neighbour (KNN) algorithms, with RF ultimately achieving the best F1-score of 0.85. 

M. Naser and Q. A. Al-Haija [14] utilized the Android Spyware-2022 dataset [8] to identify Android 

spyware, focusing on two out of five spyware classes: MobileSPY and FlexiSPY. After pre-processing 

the data by removing null and duplicate entries, they analyzed Source IP, Destination IP, Source Port, 

Destination Port, Duration and Protocol. The testing involved the application of a Fine Decision Tree 

(FDT), resulting in a 98% accuracy rate.  

Noetzold et al. [15] implemented integrated spyware to monitor workplace computers. Integrated 

spyware represented the utilization of spyware techniques as a fundamental component within the 

design and functionality of a workplace computer-monitoring solution. The spyware initially sent 

harmful messages to a Twitter account developed using Python before being applied to the computer. 

Then, this spyware computer was connected to the workplace computer through an Application 
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Programming Interface (API) gateway. Subsequently, hate messages were sent from the spyware 

computer to the workplace one, triggering alerts generated by the API gateway which was connected 

to a relational database for storing information. Data pre-processing involved the use of normalization 

and classification techniques to differentiate between hateful and non-hateful speeches. Furthermore, 

LR, SVM and NB algorithms were utilized to assess prediction validity. NB demonstrated superior 

accuracy at 80%. 

Pierazzi et al. [16] utilized the VirusTotal website [17] to collect spyware. Five types of spyware were 

identified: HeHe, UaPush, AceCard, Pincer and USBCleaver. Twenty-five features were extracted 

from each spyware, including file size, permission for sending short-message service, author 

information, permission for checking phone state, permission to write messages and permission to 

reboot the system, among others. The Ensemble Late Fusion (ELF) method identified these features as 

crucial in distinguishing spyware from normal applications. This involved comparing the 

characteristics of each feature with those of a normal application. Histograms were used to illustrate 

the variance between spyware and regular applications. Differentiating spyware from normal 

applications using RF with ELF resulted in an impressive F1-score of 0.96. 

Mahesh et al. [18] utilized a Particle Swarm Optimization (PSO) algorithm with Artificial Neural 

Network (ANN) to improve the prediction of spyware detection. A benchmarked dataset of malware 

[19] was obtained for the study conducted by Kaggle [20]. Utilizing multi-objective PSO for data pre-

processing, the features were then scaled using standard scaling. Additionally, a multi-layer perceptron 

was utilized along with the Jordan canonical form to remove less significant features and enhance 

accuracy. The ANN model was finally used to predict the accuracy of the proposed method, achieving 

an impressive 99% accuracy rate. 

Zahan et al. [21] developed a benchmark dataset of malicious and benign software packages from 

NPM and PyPI to enhance malware-detection tools. The dataset was compiled from existing malicious 

databases and new malicious and neutral packages. They collected malicious packages from open-

source datasets and an internal Socket benchmark and curated a set of neutral packages using manual 

annotation and automated scanning. The final MalwareBench dataset contained 20,792 samples, of 

which 6,659 were malicious. 

A comprehensive analysis of the search results obtained through the adopted keyword-search approach 

has been conducted. The reviewed findings are summarized in Table 1. 

Table 1. Summary of the reviewed literature in this area of study. 

Author(s) Dataset Spyware Types ML Model Key Findings Strengths Weaknesses 

Qabalin et al. 

[8] 

Android 

Spyware-2022  

Flexispy, 

Mobilespy, 

uMobix, 

TheWispy, 

mSPY 

 DT Binary 

classification 

accuracy: 

79.00%, Multi-

class: 77.00% 

Network-traffic 

analysis, dataset 

available 

Limited to 

binary and 

multi-class 

classification, 

lower multi-

class accuracy 

Conti et al. 

[10] 

ASAINT 

application, 

Wireshark 

cImg, cSms, 

mSpy, tSpy 

RF, LR, KNN Best F1-score 

achieved by RF: 

0.85 

Effective use of 

ASAINT 

Manual 

network-traffic 

analysis 

M. Naser and 

Q. A. Al-Haija 

[14] 

Android 

Spyware-2022  

MobileSPY, 

FlexiSPY 

FDT Accuracy: 

98.00% 

High accuracy 

with FDT 

Limited to two 

spyware classes 

Noetzold et al. 

[15] 

Integrated 

spyware for 

workplace 

monitoring 

Not specified  LR, SVM, NB NB demonstrated 

superior 

accuracy: 

80.00% 

Innovative use 

of integrated 

spyware 

Focused on 

workplace 

computers, not 

mobile spyware 

Pierazzi et al. 

[16] 

VirusTotal 

website 

HeHe, UaPush, 

AceCard, 

Pincer, 

USBCleaver 

 ELF, RF F1-score: 0.96 High F1-score, 

Effective 

feature 

extraction 

Complex ELF 

method 

2.2 Feature Extraction and Engineering 

Feature extraction transforms raw data into numerical features that retain the original information, 

enabling effective processing and improved ML-model performance over direct application of 

algorithms. Feature engineering, a crucial element in successful ML research, involves data 
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presentation, refinement and pre-processing tasks. Poorly engineered features can adversely impact 

model predictions. 

Zhang et al. [22] developed a low-cost feature-extraction method for deep learning-based malware 

detection. The approach involved monitoring API call behaviour, encoding heterogeneous information 

into homogeneous features using feature hashing and applying gated convolutional neural networks 

and Bi-Directional Long Short-Term Memory (Bi-LSTM) to capture sequential API call correlations. 

This yielded a 98.80% area under the ROC curve. 

Gibert et al. [23] described a feature-extraction process that combined hand-crafted features from 

hexadecimal and assembly-language source codes, as well as deep features extracted using deep 

learning architectures. The hand-crafted features included metadata, byte unigrams, entropy statistics, 

Haralick features and local binary pattern features. The assembly-language features covered metadata, 

opcode unigrams, register features, symbol frequency, pixel intensity, API function calls, data define 

features, section features and miscellaneous features. Deep features were extracted from raw data, 

including grayscale image-based features, entropy-based features, opcode N-gram features and byte 

N-gram features. These features were then fused using an early fusion mechanism to create a joint 

representation, which was used to train a Gradient Boosting (GB) model for malware classification, 

achieving an accuracy of 99.81%. 

Masabo et al. [24] developed a feature-engineering method to classify polymorphic malware (can 

transform into various forms). The researchers collected a dataset of 5 malware classes (API, Crypto, 

Locker, Zeus and Shadow brokers.), pre-processed the data and performed feature engineering to 

identify 11 top features. These included static analysis of portable executable files, packing 

techniques, file access and registry reading. The developed feature-engineering approach 

outperformed traditional ML methods (GB), achieving a 94% accuracy. 

Nawaz et al. [25] proposed a system to classify Android malware using the Drebin dataset [26]. Static 

analysis focused on Android intents and permissions, while dynamic analysis utilized network 

requests and API calls. Apktool [27] was used to decompile and decode the APK files. Feature 

selection with Info Gain reduced the dimensionality of permissions, intents, API calls and network 

features. These features were extracted from the APK components and used to train ML classifiers, 

with RF and GB performing best on the permission features, achieving an F1-score of 0.98. 

Jung et al. [28] utilized an APK file from the AndroZoo dataset [29], extracted information on API 

calls and permissions and generated a feature vector for each application. They applied feature-

selection methods to choose the top 20 features from API calls and permissions. The authors then 

employed RF and grid search to establish optimal hyperparameters and the best accuracy of 96.95% 

was obtained using Gini importance with the RF model. 

Low et al. [30] explored two feature-engineering methods, label encoding and evidence counting, for 

malware detection. The study involved four main steps: data pre-processing, feature selection, model 

construction and evaluation. Five malware classes (Advanced Persistent Threats (APT), Crypto, Zeus, 

Locker and Shadow Brokers) were extracted from the dataset. During pre-processing, data integration, 

cleaning and transformation were applied. Boruta was used for feature selection and several ML 

models were constructed, with the optimal parameters identified through grid search. The dataset was 

balanced using SMOTE. The results showed that RF provided better accuracy for label encoding at 

91.34%, while LSTM achieved higher accuracy of 94.64% for evidence counting. 

A comprehensive analysis of the search results obtained through the adopted keyword-search approach 

has been conducted. The reviewed findings are summarized in Table 2. 

3. METHODOLOGY 

The dataset is initially prepared through pre-processing, organizing the data and converting it into a 

Comma-Separated Values (CSV) format. Feature engineering is then conducted to choose significant 

features for classification-model performance. Subsequently, classification models are constructed and 

their results are recorded for evaluation purposes. Figure 1 illustrates the workflow of the 

methodology. 
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Table 2. Summary of the reviewed literature in this area of study. 

Author(s) Dataset Spyware/ 

Malware Types 

Features and 

Techniques 

 

ML Model Performance  Strengths Weaknesses 

Zhang et 
al. [22] 

AV-TEST 
2017 

Various PE 
malware 

Feature extraction 
using Cuckoo, 

Feature hashing, 

Multiple gated 
CNNs, Bi-LSTM 

Multiple 
gated CNNs, 

Bi-LSTM 

AUC: 
98.80% 

Effective deep 
learning for 

malware 

detection 

Focused on 
PE files, not 

mobile apps 

Gibert et 

al. [23] 

Not 

specified 

Malware (not 

specified) 

Hand-crafted and 

deep features, 
Fusion mechanism, 

Joint representation 

of features from 
multiple modalities 

  

XGBoost Accuracy: 

99.81% 

Comprehensive 

feature 
extraction from 

multiple 

sources 

Complex and 

time-
consuming 

Masabo et 

al. [24] 

Malware 

Training 
Sets 

API, Crypto, 

Locker, Zeus, 
Shadow brokers 

Compute feature 

importance for 
feature engineering  

KNN, Linear 

Discriminant  
Analysis 

(LDA), GB 

Accuracy: 

94.00% 

Focus on 

polymorphic 
malware 

Limited 

dataset, 
feature-

engineering 

complexity 

Nawaz et 

al. [25] 

Drebin 

dataset 

Android malware Permissions and 

intents extraction, 

Network requests, 
API calls,  

RF, NB, GB, 

Ada Boosting 

F1 score: 

0.98 

High F1-scores 

with RF and 

GB 

Dynamic-

analysis 

complexity 

Jung et al. 

[28] 

AndroZoo 

dataset, 

static 
extraction 

of API calls 

Not specified 

(general malware) 

Gini importance-

based method 

RF Accuracy: 

96.95% 

Effective 

feature-

selection 
methods 

Complexity in 

feature 

extraction 

Low et al. 
[30] 

Dataset 
provided by 

Ramili-

2016 

Advanced 
Persistent Threats 

(APT), Crypto, 

Zeus, Locker, 

Shadow Brokers 

Label encoding and 
evidence counting  

RF, DT, 
KNN, SVM, 

LSTM 

Label 
encoding: 

91.34%, 

Evidence 

counting: 

94.64% 

High accuracy 
with LSTM 

High 
computational 

requirements 

 

 

Figure 1.  Methodology workflow. 

3.1 Dataset Acquisition 

The dataset used is called "Android Spyware-2022" [8]. The dataset was generated using PCAPDroid. 

It is a data-collection tool that can be installed on the Android operating system. The data consisted of 

five different spywares: FlexiSPY, MobileSPY, mSPY, TheWispy and uMobix; and one normal-

traffic class which represents normal-smartphone traffic. Each row in the PCAP file represents a single 

packet. Analyzing the PCAP data involved extracting static information from each packet, such as 

Source IP, Destination IP, Source Port, Destination Port, Protocol type, Flags information, 

Acknowledgment Number and Message content. It also included recording Flow Duration (the time 

taken for a packet to transfer from source to destination), Packet Header Length and Packet Full 

Length. The information in the PCAP files is presented in Table 3. 
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Table 3.  Available information in PCAP files. 

File Name (.pcap) Number of Packets System Name File Size (MB) Data Tag 

Normal_Traffic 1,04,914 Smart Phone Normal 

Traffic  

78.81  Normal Traffic  

FlexiSPY_Installation 19,793  FlexiSPY Inst 16.78 FlexiSPY Inst 

FlexSPY_Traffic 35,433  FlexiSPY Traffic 22.32 FlexiSPY Traffic 

Mspy Traffic- Part1 35,560  mSPY 25.94 mSPY Traffic 

Mspy Traffic- Part2 20,537  mSPY 20.32 mSPY Traffic 

mSPY Installation Process 12,976  mSPY 11.34 mSPY Inst 

uMobix_Installation 17,312  uMobix 14.37 uMobix Inst 

uMobix_Traffic 18,561  uMobix 16.28 uMobix Traffic 

MobileSpy_Traffic 28,154  MobileSPY 12.76 MobileSPY Traffic 

Mobilespy_Intallation_1 10,139  MobileSPY 8.41 MobileSPY Inst 

TheWiSPY_Installation 58,223  TheWiSPY 53.24 TheWiSPY Inst 

TheWISPY_Traffic 27,343  TheWiSPY 21.36 TheWiSPY Traffic 

In this context, there are two packet types: "Installation" and "Traffic." The "Installation" type 

represents traffic data captured during the spyware-installation process, while the "Traffic" type 

represents spyware operation traffic data. Figure 2 illustrates the distribution of the six classes within 

the dataset. It shows that all five spyware classes overlap with the normal-traffic class. Utilizing the 

PCAP file information directly for classification may not be ideal, as features are not distinct for each 

class. Therefore, there is a need to curate new datasets with more distinct features for each class. To 

achieve this, prominent characteristics of each spyware must be identified and analyzed in the next 

sub-section. 

 
Figure 2.  The distribution of the six classes. 

3.2 Characteristics of Spyware Acquired from the Dataset 

Table 4 presents a concise summary of each type of spyware. The Spying Scope represents different 

monitoring channels. The Platform highlights the language and framework used to develop spyware. 

The Upload represents how the data is transmitted to the Command and Control (C2C) server. Sniffing 

identifies sniffing strategies. 

Based on the observations in Table 4, it is noted that each spyware shares similar characteristics in 

terms of spying scope, platform and sniffing features. This similarity will determine the next course of 

action for adapting the data pre-processing method. 

3.3 Data Pre-processing 

The process of converting every individual PCAP file into CSV format is explained in Algorithms 1 

and 2. Each PCAP file represents a sample that contains information related to the corresponding 

spyware. Investigating the utilization of packet-flow direction in feature engineering is explored in the 

following section to minimize class overlap. 
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Table 4.  Characteristics of spyware acquired from the dataset. 

Spyware Classes Spying Scope Platform Upload Sniffing 

FlexiSPY a) Social-media applications 

b) Keylogger 

c) OS activity 

d) Update history 

e) Applications manifest 

f) Phone calls 

Java Periodic-based with 

fixed time interval 

Event-based 

MobileSPY a) SIM Tracker 

b) Social-media applications 

c) Keylogger 

d) OS activity 

e) Update history. 

f) Applications manifest 

g) Phone calls 

React Native, Java Non-adjustable 

periodic 

Event-based 

TheWiSPY a) SIM Tracker 

b) Social-media applications 

c)Keylogger 

d)OS activity 

e) Phone calls 

React Native, Java Adjustable periodic Event-based 

mSPY a) Social-media applications 

b) Keylogger 

c) OS activity 

d) Update history. 

e) Applications manifest 

e) Phone calls 

Java Periodic-based with 

fixed time interval 

Event-based 

uMobix a) Social-media applications 

b) Keylogger 

c) OS activity 

d) Update history 

e) Applications manifest 

f) Phone calls 

Java Adjustable periodic Adjustable 

in terms of periodic 

or event-based 

4.  FEATURE ENGINEERING 

Firstly, when observing the direction of the packet flow, two directional properties are apparent: 

single-direction and bi-directional. The direction of the packet flow is determined by the Source IP, 

Destination IP and Protocol. In this case, static features are extracted from the PCAP file including 

Source IP, Destination IP, Source Port, Destination Port, Protocol, Flow Duration and Packet Length.  

The dynamic features include Total Forward Packets (Total Fwd Pkt), Total Backward Packets (Total 

Bwd Pkt), Total Length of Forward Packets, Total Length of Backward Packets, Flow Bytes per 

Second (bytes/s) and Flow Packets per Second (pkt/s), as well as the statistical values, such as 

minimum, maximum, average and standard deviation values. 

Total forward and backward packets, along with the total length of forward and backward packets, are 

derived from the direction of packet flow and packet length. Additionally, flow bytes per second 

(bytes/s) and flow packets per second (pkt/s) are obtained from the direction of packet flow, flow 

duration and packet length. 

After feature-engineering processes, the next step involves curating the two datasets: Dataset A and 

Dataset B. 

4.1 Method for Developing Dataset A 

A single-direction packet flow is utilized to curate Dataset A. It examines the IP pairs and Protocol for 

each row. When the Source IP, Destination IP and Protocol remain constant across two or more 

consecutive rows, statical measures are calculated to form new features. The features are presented in 

Table 5. These consecutive rows are combined into a single group, which represents a single-

directional packet flow. However, if the Source IP and Destination IP remain unchanged for 

consecutive rows but the Protocol differs, they cannot be considered part of the same group. They will 

be considered as part of a different packet flow.  
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Table 5.  Detail description of features after feature engineering. 

Feature Name Feature-engineering Process 

Source (Src) IP From PCAP file 

Destination (Dst) IP From PCAP file 

Src Port From PCAP file 

Dst Port From PCAP file 

Protocol From PCAP file 

Flow Duration Subtract the current flow start time from the last flow end time. 

Total Forward (Fwd) Packets Sum the forward packets. 

Total Backward (Bwd) Packets Sum the backward packets 

Total Length of Fwd Packet Sum the forward packet length 

Total Length of Bwd Packet Sum the backward packet length 

Fwd Packet Length Min Minimum forward packet length 

Fwd Packet Length Max Maximum forward packet length 

Fwd Packet Length Mean Average forward packet length per flow 

Fwd Packet Length Std Standard deviation of forward packet length 

Bwd Packet Length Min Minimum backward packet length 

Bwd Packet Length Max Maximum backward packet length 

Bwd Packet Length Mean Average backward packet length per flow 

Bwd Packet Length Std Standard deviation of backward packet length 

Flow Bytes/s Byte rate in a flow 

Flow Pkt/s Packet rate in a flow 

Algorithm 1: Generating Dataset A. Here, p represents the previous row and n represents the next row. 

Algorithm 1: Dataset A 

1. pcap = read (open ( pcap file)) 

2. Require: ip, protocol 

3. for row number in row do 

4.           if (p.IP pairs = = n.IP pairs && p.protocol = = n.protocol) then 

5.             calculate feature value 

6.           else 

7.              move to the next row 

8.           end if 

9. end for 

10. function writeCsv(data, outputFile): 

11. processedData = processPcap(pcapFile) 

12. writeCsv(processedData, outputFile) 

4.2 Method for Developing Dataset B 

For Dataset B, the process is like Dataset A (Sub-section 4.1) with the exception of utilizing a bi-

directional packet flow instead of a single-direction packet flow. Figure 3 illustrates this bi-directional 

flow. The Source IP in Row-1 and Row-2 subsequently becomes the Destination IP in Row-3 and 

Row-4. This process subsequently occurs also in Row-5. A similar process occurs for the Destination 

IPs as well.  

Algorithm 2: Dataset B 

1. pcap = read (open ( pcap file)) 

2. Require: ip, protocol 

3. for row number in row do 

4.     if (p.source.ip ||p.destination.ip==n.source.ip||n.destination.ip && p.protocol== n.protocol) then 

5.                 calculate feature value 

6.     else 

7.                  move to the next row 

8.     end if 

9. end for 

10. function writeCsv(data, outputFile): 

11. processedData = processPcap(pcapFile) 

12. writeCsv(processedData, outputFile) 

4.3 Comparison of the Datasets 

After curating Datasets A and B, Dataset A consists of 3,928 rows and Dataset B comprises 2,573 

rows, while the raw dataset contains a total of 386,963 rows. Tables 6, 7 and 8 present the features and 

sample values for the raw dataset, Dataset A and Dataset B. It is important to note that while Table 8 
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includes features related to bi-directional packets, each feature is listed with respect to one source and 

destination, which may obscure the indication of data-flow direction. To address this, Figure 3 in sub-

section 4.3 illustrates how the data-flow direction is represented in the datasets, enhancing the clarity 

of the bi-directional packet features. 

 
Figure 3. Bi-directional packet flow. 

Table 6. Sample rows of the raw dataset. 

 

 
 

 
Src IP 

 

 
 

 
Dst IP 

 

 
 

 
Protocol 

 

Total 

Fwd. 

Packets 

 

Total 

Bwd. 

Packets 

Total 

Length 

of 

Fwd. 

Packet 

Total 

Length 

of Bwd. 

Packet 

Fwd. 

Packet 

Length 

Min. 

Fwd. 

Packet 

Length 

Max. 

Fwd. 

Packet 

Length 

Mean 

Fwd. 

Packet 

Length 

Std. 

Bwd. 

Packet 

Length 

Min. 

Bwd. 

Packet 

Length 

Max. 

Bwd. 

Packet 

Length 

Mean 

Bwd. 

Packet 

Length 

Std. 

10.215.173.1 161.117.185.166 TCP 1 0 60 0 60 60 60 0 0 0 0 0 

10.215.173.1 157.240.195.54 TCP 1 0 60 0 60 60 60 0 0 0 0 0 

8.8.8.8 10.215.173.1 DNS 0 1 0 48 0 0 0 0 48 48 48 0 

8.8.8.8 10.215.173.1 DNS 0 1 0 40 0 0 0 0 40 40 40 0 

10.215.173.1 157.240.195.54 TCP 0 1 0 44 0 0 0 0 44 44 44 0 

157.240.195.54 10.215.173.1 TCP 1 0 40 0 40 40 40 0 0 0 0 0 

10.215.173.1 104.21.81.103 TLSv1.2 1 0 43 0 43 43 43 0 0 0 0 0 

157.240.195.54 10.215.173.1 UDP 0 1 0 40 0 0 0 0 40 40 40 0 

142.250.200.243 10.215.173.1 TLSv1.3 0 1 0 44 0 0 0 0 44 44 44 0 

Table 7.  Sample rows of Dataset A. 
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Std. 

Bwd. 

Packet 

Length 

Min. 

Bwd. 

Packet 

Length 

Max. 

Bwd. 

Packet 

Length 

Mean 

Bwd. 

Packet 

Length 

Std. 

10.215.173.1 161.117.185.166 TCP 23 0 6976 0 88 1472 303.30 390.05 0 0 0.00 0.00 

10.215.173.1 157.240.195.54 TCP 20 0 1880 0 88 152 94.00 15.10 0 0 0.00 0.00 

161.117.185.166 10.215.173.1 TLSv1.2 0 2 0 176 0 0 0.00 0.00 88 88 88.00 0.00 

10.215.173.1 10.215.173.2 DNS 38 0 21492 0 88 1548 565.58 586.28 0 0 0.00 0.00 

10.215.173.2 10.215.173.1 DNS 0 65 0 11408 0 0 0.00 0.00 116 436 175.51 75.25 

10.215.173.1 157.240.196.60 TCP 72 0 82640 0 88 1548 1147.78 564.12 0 0 0.00 0.00 

10.215.173.1 157.240.196.60 TLSv1.3 1 0 116 0 116 116 116.00 0.00 0 0 0.00 0.00 

10.215.173.1 10.215.173.2 UDP 48 0 7592 0 100 1424 158.17 187.85 0 0 0.00 0.00 

10.215.173.1 172.217.171.206 TLSv1.3 2 0 252 0 112 140 126.00 14.00 0 0 0.00 0.00 

Figures 4 and 5 provide a comparison of the Datasets A and B and their respective values. As shown 

in Figure 2, there is an overlap in the values of all six classes within the raw dataset, making it 

challenging to differentiate between distinct clusters. Conversely, Datasets A and B (depicted in 

Figures 4 and 5) show minimal or no overlap among the classes, clearly distinguishing between them. 

These visual representations encompassed all features and depicted the distribution of the six classes. 
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Table 8.  Sample rows of the Dataset B. 
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Packet 
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Packet 
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Packet 
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10.215.173.1 161.117.185.166 TCP 10 10 896 4484 88 96 89.60 3.20 88 1004 448.40 373.16 

157.240.196.60 10.215.173.1 TCP 64 64 6100 79780 88 500 95.31 51.46 88 1548 1246.56 468.12 

10.215.173.1 10.215.173.2 DNS 3 3 184 2800 56 64 61.33 3.77 44 1378 933.33 628.85 

37.44.39.12 10.215.173.1 DNS 993 993 61816 1E+06 61 78 62.25 2.91 54 1378 1375.33 59.36 

10.215.173.1 157.240.196.60 TCP 63 63 80404 7456 88 1548 1276.25 476.01 88 500 118.35 102.80 

172.217.171.206 10.215.173.1 TLSv1.2 10 10 1580 8568 88 648 158.00 168.58 88 1548 856.80 628.06 

74.125.206.188 10.215.173.1 TCP 14 14 2464 2748 88 488 176.00 135.51 88 736 196.29 170.65 

10.215.173.1 74.125.206.188 TCP 13 13 1152 4080 88 96 88.62 2.13 108 488 313.85 144.58 

10.215.173.1 10.215.173.2 UDP 22 22 3356 2520 124 320 152.55 40.96 104 124 114.55 4.76 

 

  
Figure 4. Dataset A. Figure 5. Dataset B. 

5.  MODEL CONSTRUCTION 

To assess whether a dataset is appropriate for a detection model, thorough testing and analysis are 

crucial. The aim is to identify the most suitable ML model that aligns with the features of the curated 

datasets. Through analyzing the confusion-matrix values from different ML models, valuable 

information about the curated datasets’ efficiency and performance will be obtained, enabling well-

informed decisions regarding their use in detection tasks. 

5.1 Classifiers 

To determine the most suitable ML model, this study utilizes NB, XGBoost, RF, DT and SVM with 

the Radial Basis Function (RBF) kernel. DTs are recognized for their simplicity and interpretability, as 

they iteratively divide the data based on feature values to create a tree-like structure for classification. 

They can effectively handle both numerical and categorical data, making them well-suited for datasets 

with mixed-data types. RF improves upon DT by combining multiple trees, which enhances accuracy 

and reduces overfitting. SVM with RBF kernel and employing the One- vs-Rest (OVR) strategy excels 

in managing high-dimensional data by identifying optimal decision boundaries for classification. NB 

is particularly effective for text and categorical data due to its reliance on independence between 

features. Lastly, XGBoost combines gradient boosting with regularized learning to perform well in 

diverse datasets as an ensemble model. This research applied these traditional methods because it 

focused on feature engineering. 

6. RESULTS AND DISCUSSION  

6.1 Results 

The study evaluated classification performance using various metrics and different training-testing 
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dataset splits. The 70-30 split yielded the best results, which were consistent across different 

approaches and datasets, as illustrated in Tables 9 and 10. This consistency can be attributed to the 

rigorous curation of the datasets, as described in sub-sections 4.1 and 4.2. The similar results 

suggested the classification model's robustness across dataset configurations. A thorough review has 

been conducted to ensure the accuracy and reliability of the dataset-preparation and model-evaluation 

methods. 

Table 9.  Results for accuracy, precision, recall and F1-score for Dataset A. 

ML Models Accuracy (%) Precision (%) Recall (%) F-1 Score (%) 

DT 97.97 97.97 97.97 97.97 

RF 97.97 97.97 97.97 97.97 

XGBoost 96.38 96.43 96.38 96.39 

SVM 99.88 99.88 99.88 99.88 

NB 97.02 97.02 97.02 97.02 

Table 10.  Results for accuracy, precision, recall and F1-score for Dataset B. 

ML Models Accuracy (%) Precision (%) Recall (%) F-1 Score (%) 

DT 99.24 99.25 99.24 99.24 

RF 99.24 99.25 99.24 99.24 

XGBoost 99.24 99.25 99.24 99.24 

SVM 99.12 99.12 99.12 99.12 

NB 99.02 99.02 99.02 99.02 

Figures from 6 to 9 show the difference in the evaluation metrics (including accuracy, precision, recall 

and F1-score) between Datasets A and B. For Dataset A, SVM demonstrated superior performance in 

accuracy, precision, recall and F1-score. Conversely, DT, RF and XGBoost exhibited better 

performance on these metrics for Dataset B. 

  
Figure 6. Evaluation of the accuracy of ML 

models in the context of both Dataset A and 

Dataset B. 

Figure 7. Evaluation of the precision of ML 

models in the context of both Dataset A and 

Dataset B. 

  
Figure 8. Evaluation of the recall of ML models 

in the context of both Dataset A and Dataset B. 

Figure 9. Evaluation of the F1-score of ML 

models in the context of both Dataset A and 

Dataset B. 
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6.2 Discussion 

The comparative evaluation aimed to enhance the classification of spyware. Table 11 presents a 

comparison between the outcomes of earlier studies and those of this research, all utilized on the same 

dataset. M. Naser and Q. A. Al-Haija [14] categorized two types of spyware: FlexiSPY and 

MobileSPY, while [8] classified five varieties: FlexiSPY, MobileSPY, TheWiSPY mSPY and uMobix 

without extracting new features from the datasets used in their research. Feature engineering involved 

extracting new features based on packet-flow direction, IP pairs and Protocol information to improve 

spyware classification by identifying five distinct classes. 

Table 11.  Comparison of classification accuracy. 

Research Work ML Scheme Dataset Spyware Classes Accuracy 

Qabalin et al. [8] DT Android Spyware-

2022 [8] 

5 79.00% 

M. Naser and Q. A. Al-

Haija [14] 

FDT Android Spyware-

2022 [8] 

2 98.00% 

T. N. AlMasri and M. A. 

N. AlDalaien. [31] 

RF Android Spyware-

2022 [8] 

5 92.00% 

This Work SVM  Dataset A 5 99.88% 

RF, DT, XGBoost  Dataset B 5 99.24% 

After the curation process, both Datasets A and B showed improved performance compared to 

previous studies in identifying spyware. M. Naser and Q. A. Al-Haija [14] achieved strong results in 

spyware identification with only two spyware classes, but positive outcomes were achieved by 

performing well across five different spyware classes. By having more classes, the model had to 

comprehend more detailed patterns and characteristics associated with each type of spyware. This 

higher level of detail enabled the model to better discriminate, leading to improved accuracy. Other 

researchers utilized features directly from the raw dataset without considering directional properties, 

while this research focused on features utilizing packet flow direction. This approach led to the 

creation of more pertinent features related to different types of spyware behaviours.  

The engineered features of curated Datasets A and B were highly effective, because they incorporated 

directional properties. These properties facilitated a deeper understanding of network behaviour, 

aiding in anomaly detection, optimization support and enhancing network analysis for modelling 

objectives and spyware classification [32]. The data-flow direction enhanced anomaly detection and 

network-performance optimization by mapping expected sequences, standard frequency, volume of 

data transmissions and common paths taken by data packets. However, some of these features, 

although characterized, are relatively trivial. The major contribution of this study is curating two new 

datasets based on directional properties. Though both datasets have the same features, the values of 

each feature for both datasets were different because of directional properties. Engineered features 

included directional properties within the network data for in-depth insight into behavioural baselines, 

protocol analysis, traffic volume, directionality and time-based patterns. Because of the complex 

nature of spyware, this method was crucial. By understanding the data flow direction, accurate 

behaviour modeling could distinguish between normal and suspicious activities with greater precision. 

The detailed analysis of packet-flow direction and its impact on spyware classification is the novelty 

of this study. Unlike previous studies, this study insights into data movement were provided by 

directional properties, which helped identify unusual patterns that signify potential threats or 

inefficiencies. Unusual data paths represented the potential threats, like exfiltration by spyware. The 

model also identified network inefficiencies, such as sub-optimal routing or congestion. This novel 

approach focuses on these directional properties, which provides the model clearer view of network 

dynamics for early performance optimization and threat detection [33]. 

The derived features: Total Fwd Pkt and Total Bwd Pkt from IP pairs, Ports and Protocol; provided 

valuable insights into the source and destination of network traffic with communication protocols (e.g. 

TCP, UDP). This improved pattern recognition, device-connection analysis and anomaly detection in 

both TCP and UDP traffics by identifying missing packets or abnormal activities (out-of-order 

sequences) by recognizing predictable packet sequences during normal activities, such as connection 

setup (SYN-ACK-ACK) during data transfer. Anomalies in UDP traffic included unexpected increases 

in packet rate or unusually large packet sizes. Additionally, unusual patterns in destination ports were 
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observed, which could indicate a DDoS attack. Normal UDP packets consisted of independent, 

sequenced packets typically used for real-time applications, such as DNS queries or streaming [34]. 

Metrics like packet-length statistics (minimum, maximum, mean and standard deviation) and flow 

duration (Flow Bytes/s and Flow Pkt/s) were analyzed to understand the transmission rates and detect 

anomalies (e.g. unusual packet sizes, irregular transmission rates and unexpected flow durations) in 

network traffic. An unusually large maximum packet size could indicate data aggregation before 

transmission, which might be normal for certain applications (e.g. video-streaming services, file-

transfer protocols, cloud-storage services and backup solutions), but suspicious for others. The average 

packet size helped understand the typical packet load on the network. A sudden increase in the mean 

packet size indicated bulk data transfers. Standard deviation measured the variability in packet sizes. 

High variability suggested a mix of different types of traffic represented suspicious, while low 

variability indicated uniform traffic represented normal. A higher Flow Bytes/s rate indicated a high-

volume data transfer, which could be legitimate (e.g. video-streaming) or suspicious (e.g. data 

exfiltration). Packet-length statistics were effective for detecting anomalies by observing baseline 

establishment, deviation detection and statistical methods [35]. These detail analyses helped identify 

those unusual patterns which were crucial for maintaining network security and efficiency. 

Combining packet-length statistics with flow duration provides detailed analysis encompassing short-

lived and long-lasting interactions. Flow metrics like Flow Bytes/s and Flow Pkt/s helped understand 

data-transmission rates, aiding in identifying abnormal patterns. Integrating packet length statistics 

with flow duration enables differentiation between short-lived spikes and sustained high-traffic 

periods, enhancing the understanding of network-flow dynamics. 

Traditional ML models incorporated directional properties into their feature sets to more accurately 

distinguish between normal and anomalous behaviours. For instance, RF and DT benefited from the 

added granularity in their decision-making processes, while SVM could better separate data points in 

the feature space. NB, with its probabilistic approach, could more effectively categorize behaviours 

based on the directional data. This improved recall and precision of anomaly detection, because the 

algorithms were configured to recognize patterns specific to single-direction and bi-directional flows, 

yielding more reliable and accurate classification with better detection of anomalies.  

Anomaly identification techniques focussed on analyzing unique behaviours within bi-directional and 

single-direction flows. Understanding the differences between these traffic patterns was important not 

only for anomaly detection, but also efficient resource allocation. It helped improve tactics by adapting 

feature sets specific to each type of flow. Targeted flow behaviours contributed to improving data-

classification accuracy by reducing false-negative and false-positive results. The model could more 

precisely identify anomalies by focusing on each flow type's unique characteristics. Also, it reduced 

false alarms, which improved precision. A higher recall rate for anomaly detection could be achieved 

by analysing traffic patterns. A higher F1-score was achieved by the balanced improvement in both 

precision value and recall value, which indicated better overall performance in anomaly detection [36]. 

By observing dynamic load balancing, fault prediction, forecasting of traffic, protocol routing and the 

adaptive quality of service, these algorithms addressed bottlenecks and network inefficiencies. Those 

ensured that the network operated smoothly. As a result, the need for significant processing resources 

to solve problems after they occurred was reduced. For that reason, the overall processing time for 

detecting anomalies was shortened, which improved the response time [37]. 

7. CONCLUSIONS 

Engineering features based on the directional properties that captured detailed characteristics of 

network-traffic behaviour. This enabled the model to identify specific patterns to bi-directional and 

single-direction traffic, indicating various types of network threats or activities. The high F1-score, 

recall, accuracy and precision achieved with these features demonstrated their effectiveness in 

accurately classifying network traffic. These metrics also highlighted their importance in detecting 

anomalies, which was important for ensuring the security and reliability of network infrastructure. 

The investigation analyzed the impact of packet directionality on spyware classification. This was 

done through the curation of datasets focusing on directional properties. A specific emphasis was 

placed on IP pairs and Protocol. The analysis found that considering the directional properties 
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significantly improved spyware classification. RF, NB, SVM, DT and XGBoost were constructed and 

compared between the two curated datasets. The findings suggested that DT, RF and XGBoost 

performed better for Dataset B, while SVM showed better performance for Dataset A. These ML 

approaches demonstrated potential in spyware classification, but further improvements are needed to 

enhance the model, so that future work should integrate more spyware types with larger number of 

samples and explore advanced feature-selection and deep-learning techniques. The limited types of 

spyware and the small number of samples in the dataset represent limitations, so expanding them 

could improve detection mechanisms. Evaluating the model's performance in diverse real-world 

scenarios and incorporating realistic benign-traffic data could enhance its ability to distinguish 

between malicious and benign activities, providing a practical security solution. Integrating real-time 

data processing and adaptive learning could also be valuable directions for future research. 
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 ملخص البحث:

ررررر   ر رررررُّق  رق ت   لررررر ر جّ رررررُّلرق ُّقف ررررر ر ت رتانرررررا ب قرتاعررررروم  ربا رررررغ ر  ررررر اعف قرى رررررإتفتقرررررُّرق ال

رررررررراخ ور،م ظرررررررر ت ر قرةد ررررررررج رهذفررررررررريفررررررررر.  ررررررررفا ت رلاقرصئاّررررررررخ قرتقذرتانررررررررا ب قرتاعرررررررروم  ر  رص 

رتانررررررا ب قرتاعرررررروم  ريفررررررر  ررررررفا ت رلاا ر ارررررربتُّم قرصئاّررررررخ قر  رررررر اعفرفاشرررررركتسقرم رتيررررررر، قرررررررو ق

ريفررررررةدوجررررروم قرصئاّرررررخ قرن رررررراهتسرررررد فريُّ رررررترصئاّرررررخرللاخررررررن رررررر،   ّرررررت ر قرلجرررررأرن ررررر

ر.تانررررررا ب قرتاعرررررروم  رن رررررررن ترررررر ثقرم ظرررررر ترىلررررررعر سررررررقرد ر قرهذفرررررررلمررررررعتور.تانررررررا ب قرتاعرررررروم  

رررررلاختسقرم رتيررررررصئاّرررررخرىلرررررعريوترررررحترAر عررررروم م ق ررررررتاقف ردتررررررن رررررراهص  ر،ها رررررت رلاقر يرررررداحأرمز رح 

رررررررتاقف ردترررررررن ررررررراهصررررررلاختسقرم رتيرررررررصئاّررررررخرىلررررررعرBر عرررررروم م قريوتررررررحترامرررررر    ر  ررررررئا ثرمز رح 

رم رتتررررررررصئاّرررررررخ قركلرررررررترللاخررررررررن رررررررر   ّرررررررت ر قر  رررررررلمعرن رأرى رررررررإرةراشرررررررلإقررد رررررررتور.ها رررررررت رلاق

ر(SVM)ر    رّررررررر ررقق رررررررحردقرررررررور.   ّرررررررت ر قرتا ررررررر زرقوخرن ررررررررةراترررررررخ ر  رعررررررروم  رمقدختسرررررررا 

رىلررررررعلأقر ق ررررررد ر قرتبررررررفذرن حررررررريفررررررر،%99.88رAرتانررررررا ب قر عرررررروم م ر ب رررررر  ر ا رىلررررررعلأقر ق ررررررد ر ق

ر.%99.24ر(XGBoostرورDTرورRF)رتاف   رّ  ررى إرBرتانا ب قر عوم م ر ب   ر ا 

ررررر قرن ررررررافرررررُّ غرع ررررررثحرررررب قرقذفرررررريفرررررر حرررررُّتقم قر قررررريُّا ر قر نرررررراقم و رتا ررررر دأريفررررررةدرقو رررررقرلُّا 

رقق ررررررحترنجرأراهنأشرررررررن رررررررتانررررررا ب قرتاعرررررروم  ريفررررررر  ررررررفا تلاقرصئاّررررررخ قرن رأرن  ربررررررتر،عوضرررررروم ق

ر.  لر ت ر قر  قُّ ر   ّتريفر ق رد ر قرث حرن رت را   حت
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