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ABSTRACT 

This  paper  presents  a  novel  framework  to  enhance  Evidential  Collaborative  Filtering  (ECF),  a  critical 

Recommender System (RS) designed for sensitive domains like healthcare and target tracking. The focus is on 

refining how user-rating imperfections are handled, particularly in managing conflicting preferences during 

neighborhood selection to boost recommendation quality. The newly proposed ECF architecture integrates a 

two-probabilities-focused approach with an advanced conflict-management technique, employing Deng relative 

entropy and the Best Worst Method. This allows for assigning more accurate reliability weights to each user, 

improving preference selection and rating prediction in ECF. Experimental evaluations on Movielens-100K and 

Flixster datasets show that our framework surpasses baselines in prediction error, precision, recall and F-score. 
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1. INTRODUCTION

Recommender systems (RSs) have been categorized in the literature into three main approaches; 

namely, content-based filtering (CBF) [1], collaborative filtering (CF) [2], and hybrid filtering [3]. 

CBF provides recommendations based on user profiles, which are generally difficult to acquire. On the 

other hand, CF generates recommendations by using the preferences of the most similar users. Hybrid 

filtering is a combination of both CBF and CF. Compared to CBF, CF has made significant progress 

due to the ease with which real-world information about users’ preferences on items may be obtained 

[4]. 

Collaborative filtering is a leading approach in RS, based on the idea that our purchase decisions are 

usually influenced by our similar neighbors. Sparsity is a key challenge in CF, representing the 

proportion of missing ratings to the overall rating-matrix size. In CF, the subjective nature of user 

ratings and their intrinsic sparsity not only increase the uncertainty, but also affect the trustworthiness 

of the recommendation outputs [5]-[6]. Evidential Collaborative Filtering (ECF) is a sub-class of CF 

that addresses the sparsity issue by handling the inherent uncertainty in RS under the framework of 

Dempster-Shafer Theory (DST), also called evidence theory [7]-[8]. ECF can be categorized into three 

main types [9]: ECF using evidential fusion to combine multi-source information, ECF offering soft 

ratings and ECF providing evidential predictions. 

This paper primarily focuses on a specific type of ECF that utilizes soft rating systems. This ECF 

addresses the limitations of traditional hard-rating scores in capturing user preferences, which can 

sometimes be an inadequate representation [10]. For instance, consider a user who rates two items, i1 

and i2, with scores of 3 and 4, respectively. If this user wants to rate a third item, i3, as better than i1, 

but not as good as i2, standard rating scales might not accurately reflect this nuanced preference. The 

ECF framework discussed here allows for more flexible user ratings, like a range of {4,5}, to better 

capture these subtle preferences. Essentially, this branch of ECF is designed to account for the 

subjective and sometimes imprecise nature of user preferences [11]. 

Imperfections and conflicts in user preferences negatively affect the trustworthiness and effectiveness 

of ECF systems [5]. These imperfections can arise due to several factors, including uncertainty, 

ambiguity and contradictions in user feedback. Existing ECF frameworks rely mainly on the use of 
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Dempster’s combination rule (DCR) in combining users’ preferences [9]. Nguyen and Huynh explored 

the fusion of information in RS using DST, as detailed in [12]. They concluded that DCR is ineffective 

for combining user ratings due to its weakness to handle highly conflicting mass functions [13]. 

Recently, Belmessous et al. [9] highlighted shortcomings in the existing ECF framework, which often 

overlooks the importance of managing these conflicting preferences through advanced techniques. 

This paper addresses this gap by proposing a novel framework that integrates recent advancements in 

DST to better manage conflict, thereby enhancing the overall performance of ECF systems. 

Research on ECF has provided limited solutions for managing conflicting user preferences [9], falling 

behind in the ongoing advancements within DST research. DST is continually evolving to tackle 

challenges related to dealing with highly conflicting information [13]. Many studies in ECF overlook 

the discounting factor, which is key in DST for determining the reliability of user ratings. Nguyen and 

Huynh [12] have explored the integration of information in RS, highlighting the difficulty in 

combining mass functions that are highly conflicting. In RS, it’s quite common to encounter users 

giving completely opposite ratings to the same item, which leads to frequent conflicts in mass 

combination. 

Although DST research is continually proposing new solutions for conflict management [14], ECF has 

not fully capitalized on these advancements. The ongoing challenge in DST of effectively combining 

highly conflicting evidence remains a significant issue. This gap in ECF [15]-[16], where advanced 

DST conflict-management proposals are underutilized, is a key focus of this paper. We intend to 

bridge this gap by incorporating recent solutions for conflict management [17] into ECF systems to 

enhance their performance. 

This paper presents the following key contributions: 

 Introduction of a novel framework designed to manage imperfections in users’ preferences

throughout the decision-making process in ECF; 

 Proposition of a new neighbourhood-selection strategy in ECF, utilizing optimal discounting

weights; 

 Proposition of an efficient method for preference-prediction estimation in ECF.

The remainder of this article is structured as follows: In Section 2, we provide a summary of the 

theoretical concepts underlying our new approach. We then outline our proposed framework and its 

main components in Section 3. Section 4 describes our experimental design and presents the obtained 

results. Section 5 includes a discussion of our findings, strengths and limitations. The article concludes 

with Section 6, where we summarize our work and suggest areas for future research. 

2. BACKGROUND AND RELATED WORK

In this section, we explore foundational theories and contributions important to our study, with a 

particular focus on the Dempster-Shafer Theory (DST) and conflict management. Initially, we 

introduce DST, known for its ability to manage uncertainty and make decisions based on evidence. 

This theory is valuable in decision-making, where the quality of information is crucial. Subsequently, 

we discuss the metrics used to evaluate conflict within this theoretical framework. Additionally, we 

explore the conflict-management methodology based on discounting optimal weights and present the 

related research on ECF offering soft ratings. 

2.1 Dempster-Shafer Theory 

The Dempster-Shafer theory is a flexible method for modeling uncertainty that does not require 

assigning a probability to every element in a set. The DST was introduced by Arthur P.Dempster in the 

context of statistical inference [18], and it was further developed by his student Shafer [19]. 

DST is founded on a number of concepts, including: the frame of discernment, the mass function 

also called basic probability assignment (BPA) and Dempster’s combination rule. Concerning the 

frame of discernment Θ, it is a finite set representing the problem domain. All propositions of interest 

are defined by elements in 2Θ. A BPA is defined as a mapping 𝑚(. )∈ [0, 1] that meets the following

properties: 

𝑚(∅) = 0                   ∅: 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦 𝑠𝑒𝑡 
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∑ 𝑚(𝐻) = 1         𝐻: 𝑎 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 Θ.

𝐻∈2Θ

 

The quantity m(H) can be interpreted as a measure of the belief that is committed exactly to H, 

given the available evidence. All subsets H∈2Θ having a positive mass are considered as focal

elements of m(.). Concerning the Dempster’s combination rule, it is an operation that permits to 

combine evidence from multiple independent sources under the same frame of discernment. Let m1 

and m2 be the two BPAs associated with two independent sources of evidence. H1 and H2 are the 

focal elements of m1 and m2, respectively. The resulting mass function m is the combination of m1 

and m2 and is noted by m = m1⊕m2. The Dempster’s combination rule (DCR) is defined by 

Equations 1 and 2, where mDS is the result of Dempster’s combination. 

𝑚𝐷𝑆(𝐻) =
𝑚12(𝐻)

1−𝑚12(∅)
 (1) 

where, 

𝑚12(𝐻) = ∑ 𝑚1(𝐻1)𝑚2(𝐻2)𝐻1,𝐻2∈2
Θ

𝐻1∩𝐻2=𝐻

     (2) 

The body of evidence in DST encompasses all BPAs from independent sources, serving as the 

aggregate evidence for decision-making. It forms the basis for applying Dempster’s combination rule, 

enabling the synthesis of evidence across the problem domain. 

In the DST framework, decision criteria can include:  the maximum of the belief Bel(H), which 

indicates the comprehensive support that evidence lends to a hypothesis H; the maximum of the 

plausibility Pl(H), reflecting the extent to which evidence does not contradict H; or the pignistic 

probability BetP(H) [20], which provides a practical way to make decisions under uncertainty by 

balancing the evidence supporting different hypotheses. The relationship between belief and 

plausibility is illustrated in Figure 1.  

Figure 1. Relationship between belief and plausibility. 

Another important tool in the DST framework is the discounting factor proposed by Shafer [19]. The 

factor α is considered as a discounting rate permitting to control the reliability of the BPA. When α is 

set to 1, the BPA is deemed fully reliable; conversely, an α value of 0 signifies that the BPA is entirely 

unreliable. The discounting of the BPA m(·) is defined as follow: 

{
𝑚′(𝐻) = 𝛼.𝑚(𝐻),           ∀𝐻 ∈ 2Θ, 𝐻 ≠ Θ

𝑚′(Θ) = (1 − α) + α.m(Θ)
} (3) 

with 𝑚′(. ) representing the unreliable source.

2.2 Conflict Metrics in Dempster-Shafer Theory 

In scenarios where Dempster’s combination rule is applied to fuse evidence from multiple sources, it’s 

possible to reach counter-intuitive conclusions, especially when the evidence conflicts significantly 

[13], [21]. Consistently, there are novel propositions being introduced for conflict metrics to enhance 

the accuracy of assessing conflict levels of evidence. Consider two BPAs, m1 and m2, defined under 

the Frame of Discernment (FoD) 𝐻 = {𝐻1, 𝐻2, … , 𝐻𝑖, … , 𝐻𝑛}. Some representative metrics for

evaluating conflict are summarized in Table 1. 

In  Jousselme  et  al.’s  distance  equation, 𝑚̂1 and 𝑚̂2 represent  the  vector  forms  of  the  basic

probability assignments 𝑚1 and 𝑚2, respectively and 𝐷̅ is the Jaccard matrix between all pairwise
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propositions in m1 and m2. An increased distance in this measure indicates a higher level of conflict 

among the evidence. Similarly, in Song et al.’s correlation-coefficient equation, 𝑚̂1 = 𝑚1. 𝐷 and 𝑚̂2 =

𝑚2. 𝐷 are used, where D is the Jaccard matrix applicable to all propositions in m1 and m2. In Jiang’s

correlation-coefficient equation, 𝐻𝑖 and 𝐻𝑗 serve as focal elements within the power concentration of

the frame and their relationship is quantified through a modulus calculation that involves the 

intersection and union of 𝐻𝑖 and 𝐻𝑗.

Table 1. Summary of some representative conflict metrics for DST. 

These methods provide different approaches to understand and quantify the level of agreement or 

conflict between various BPAs, each with its unique application and implications for decision-making. 

2.3 Conflict Management by Considering the Optimal Discounting Weights Using the 

BWM Method 

This sub-section introduces the conflict-management method by considering the optimal discounting 

weights based on the Best-Worst Method (BWM) [26] to manage evidential conflict in DST. This 

recent methodology involves selecting the best and worst BPAs to calculate discount weights 

effectively before the fusion process. The detailed steps of this method are outlined as follows: 

1) Evidential distance-matrix establishment: an evidential distance matrix is calculated using

Jousselme’s distance measure to evaluate the distances between each pair of evidence, helping 

identify the relative degrees of conflict. 

2) Determination of worst and best BPAs:

 The worst BPA, represents the maximum contribution to overall system conflict.

 The best BPA is determined based on its relative distance to the worst BPA.

3) Preference calculation for best and worst BPAs: Fei and Deng [27] introduced a new metric

called Deng relative entropy to measure the discrepancy between BPAs. Deng relative 

entropy, as described by formula 4, is specifically designed for mass functions in the context 

of DST. 

𝑟(𝑚1 ‖𝑚2) = ∑ 𝑚1(𝐿𝑖)𝑙𝑜𝑔
𝑚1(𝐿𝑖)

𝑚2(𝐿𝑖)
𝑖       (4) 

Deng relative entropy calculates the average logarithmic difference between two BPAs, m1 

and m2, thus providing a measure of the informational divergence between them. 

Establishing preference vectors for the best and worst BPAs: by utilizing Deng relative 

entropy, the preference vector for the best BPA, denoted by mB, relative to other BPAs is 

calculated as follows: 

𝑀𝐵 = (𝜎(𝑚𝐵‖𝑚1), 𝜎(𝑚𝐵‖𝑚2), … , 𝜎(𝑚𝐵‖𝑚𝑛))                                        (5) 

where 𝜎(𝑚𝐵‖𝑚𝑗) quantifies the relative preference of the best BPA 𝑚𝐵 over other BPA j. It is

defined such that 𝜎(𝑚𝐵‖𝑚𝐵) = 1, indicating the highest self-preference. Similarly, the

preference vector for the worst BPA, 𝑚𝑊 in relation to other BPAs is given by:

Metric Name Equation 

Jousselme et al.’s evidence distance d [22] 

𝑑(𝑚1, 𝑚2) = √
1

2
(𝑚̂1 − 𝑚̂2)

𝑇𝐷̅(𝑚̂1 − 𝑚̂2)

Song et al.’s correlation coefficient cor [23] 𝐾𝑐𝑜𝑟(𝑚1, 𝑚2) = 1 − 𝑐𝑜𝑟(𝑚1, 𝑚2),

𝑐𝑜𝑟(𝑚1, 𝑚2) =
〈𝑚̂1, 𝑚̂2〉

‖𝑚̂1. 𝑚̂2‖

Jiang’s correlation coefficient kr [24] 
𝑘𝑟(𝑚1, 𝑚2) = 1 −∑ ∑ 𝑚1(𝐻𝑖)

2|𝑛|

𝑗=1

2|𝑛|

𝑖=1
𝑚2(𝐻𝑗)

|𝐻𝑖 ∩ 𝐻𝑗|

|𝐻𝑖 ∪ 𝐻𝑗|

Xiao et al.’s correlation coefficient 

ECC [25] 
𝑘𝐸𝐶𝐶(𝑚1, 𝑚2) = 1 − 𝐸𝐶𝐶(𝑚1, 𝑚2)) = 1 − [

〈𝑚̂1, 𝑚̂2〉

‖𝑚̂1. 𝑚̂2‖
]

2



20

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 01, March 2025. 

𝑀𝑊 = (𝜎(𝑚1‖𝑚𝑊), 𝜎(𝑚2‖𝑚𝑊), … , 𝜎(𝑚𝑛‖𝑚𝑊))
𝑇      (6) 

In this vector, 𝜎(𝑚𝐵𝑖‖𝑚𝑊) measures the preference of each BPA mi over the worst BPA 𝑚𝑊.

This measurement also adheres to the condition 𝜎(𝑚𝑊‖𝑚𝑊) = 1, reflecting maximum self-

preference and its role as the most conflict-contributing BPA. 

4) Finding the optimal weights for BPAs:

In this phase, optimal weights (𝑤̃1, 𝑤̃2, … , 𝑤̃𝑛) are determined to refine the evidential

contributions more effectively. The Consistency Ratio (CR) ζ∗ plays an essential role in this

process by measuring the consistency of these weights, which is pivotal for evaluating the 

pairwise comparison’s efficacy.  Divergences in the expected proportional relationships, such 

as when 
𝑤𝐵

𝑤𝑗
≠ 𝜎 (𝑚𝐵‖𝑚𝑗) or 

𝑤𝑗

𝑤𝑊
≠ 𝜎 (𝑚𝐵𝑗‖𝑚𝑊), necessitate a re-evaluation of CR to ensure

the reliability of the weight assignments. 

𝑚𝑖𝑛𝑚𝑎𝑥𝑗 {|
𝑤𝐵
𝑤𝑗
−𝑚𝐵𝑗| , |

𝑤𝑗

𝑤𝑊
−𝑚𝑗𝑊|}

𝑠. 𝑡.

{

∑ 𝑤𝑗 = 1
𝑚𝑖𝑛𝜁

𝑗
𝑤𝑗≥𝑜

𝑗={1,2,…,𝑛} }

⇒ 𝑠. 𝑡.

{

|
𝑤𝐵

𝑤𝑗
− 𝜎(𝑚𝐵‖𝑚𝑗| ≤ 𝜉

|
𝑤𝑗

𝑤𝑊
− 𝜎(𝑚𝑗‖𝑚𝑊| ≤ 𝜉

∑ 𝑤𝑗 = 1𝑗

𝑤𝑗 ≥ 0

𝑗 = {1,2,… , 𝑛}

    (7) 

Therefore, the optimal weights (𝑤̃1, 𝑤̃2, … , 𝑤̃𝑛) and CR (ζ∗) of BPAs could be calculated.

Meanwhile, the CR can be defined as follows: 

𝜂𝐶𝑅 =
𝜁∗

𝑚𝑎𝑥{𝜁}
     (8) 

5) Discounting and fusion: optimal weights obtained from the previous steps are used to discount

the BPAs before fusion using the DCR. 

This conflict-management methodology [17] ensures the reliability of the optimal weights by 

employing a consistency ratio for reference comparisons, guaranteeing that each piece of evidence 

contributes appropriately to the final fused result. 

2.4 Related Work on Evidential Collaborative Filtering Offering Soft Ratings 

The pioneering effort in the area of ECF that introduces soft preferences in RS was initiated by 

Wickramarathne et al. [28]. This approach leverages the DST to effectively handle uncertainties in 

user preferences for a CF system. Emphasizing prediction accuracy, this evidential RS design accepts 

higher computational demands. Its sophisticated nature makes it suitable for critical and advanced 

applications, including those in medical and healthcare services and security-threat evaluations. 

Subsequently, Nguyen expanded on this foundation by developing an evidential RS that incorporates 

soft ratings, drawing inspiration from Wickramarathne et al. [28], and tackling the issue of data 

sparsity by leveraging community context under the DST framework [11]. Nguyen and Huynh further 

enhanced this system by integrating the reliability of predicted ratings, acknowledging their inherent 

imprecision compared to real ratings, to refine the recommendations [29]. Later, Nguyen aimed at 

reducing computational load by proposing an optimization that prioritizes the combination of focal 

elements with the top two probabilities within their sets [10]. 

Furthermore, Nguyen et al. extended the application of their ECF to incorporate social-media 

platforms [30]. In this context, user ratings and community preferences gathered from social networks 

are represented as mass functions. These are then combined according to Dempster’s rule of 

combination. Moreover, Nguyen and Huynh introduced an innovative approach for combining 

evidence in their system as described in [29] through [31]. Their technique focuses on discarding focal 

elements with negligible probabilities, considered as noise in the fusion of information, thereby 

enhancing the efficiency of computations without sacrificing data integrity. In addition, their research 
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in [12] delves into optimizing evidence combination for DST-based RS. This study establishes the 

essential parameters for crafting a combination operator that aligns with the requisites of DST-based 

RS. Within this framework, Nguyen and Huynh unveiled new strategies for executing mixed 

combinations, showcasing their commitment to refining the DST-based RS. 

Nguyen’s 2017 study [15] introduced an innovative BPA combination approach named the "Two-

probabilities focused-combination method". This method permits to combine belief masses with 

significant conflicts and offers the advantage of decreased computational time. Although the proposed 

method is not stable due to the fact that it is non-associative, indicating that the order of inputs can 

influence the results, the sequence in which inputs are combined has an impact on the outcome. 

Further, Nguyen and Huynh tackled the challenges of data sparsity and the cold-start problem in [32] 

through an ECF that incorporates soft ratings alongside community preferences. They also proposed a 

novel approach for assessing user-user similarity, prioritizing provided over predicted ratings, within a 

similar system [33]. Dong et al. followed up with a different strategy in [34], introducing the modified 

rigid coarsening method based on hierarchical decomposition to simplify the frame of discernment in 

the combination process. Lastly, Bahri et al. presented ECFAR in [16], a rule-based CF system that 

leverages the DST, marking another contribution to the field. 

3. METHODOLOGY

This study presents a novel framework, Conflict-Aware Evidential Collaborative Filtering (CA-ECF), 

which integrates an advanced conflict-management methodology from recent research [17] into a 

classical ECF framework [15]. This methodology, aimed to managing evidential conflict within DST, 

optimizes weights for BPAs using the BWM, as elaborated in sub-section 2.3. 

To ensure clarity and consistency of mathematical notations throughout our proposition, we have 

defined all the used variables and notations in Table 2. 

Table 2. Notations’ table. 

Symbol Description 

RMN Rating matrix with M and N representing the total number of users and items, respectively. 

Here, M corresponds to the set of users U = {U1 , U2 , . . . , UM } and N corresponds to the set of 

items I = {I1 , I2 , . . . , IN }. 

R̂M N Dense User-Item rating matrix. 

Θ Set of preference levels, denoted by Θ = {θ1 , θ2 , ..., θL}, where L is the number of the available 
preferences. 

ri,k Rating of user Ui on item Ik. 

C Set of concepts within the contextual data, denoted by C = {C1 , C2 , . . . , CP }, where P is the total 
number of concepts. Each concept Cp, with 1 ≤ p ≤ P , can consist of at most Qp groups, 
indicating that Cp = {Gp,1 , Gp,2 , . . . , Gp,Qp }. 

gp(Ui) Groups within concept Cp that user Ui is interested in. 

gq(Ik) Groups within concept Cq that item Ik is associated with. 

Gp,q The intersection of user and item interest groups associated with concept Cp. 

mi,k BPA corresponding to a rating ri,k . 

⊎ Two-probabilities focused combination. 

d(Ui , Uj) Jousselme’s distance measure between users Ui and Uj. 

s(Ui , Uj) Similarity score between users Ui and Uj. 

mB, mW Best and worst BPAs. 

σ(m1∥m2) Deng relative entropy measuring the conflict between two BPAs m1 and m2. 

MB, MW Vectors representing the preference of the best BPA and worst BPA over other BPAs using the 

Deng relative entropy. 

NUi Set of k closest neighbors for user Ui. 

knni,k Set of neighbors of user Ui that have rated the target item Ik. 

ξ Optimization variable used to minimize the optimal weights. 

wi Weight assigned to the ith BPA, used in the discounting and fusion processes. 

rˆik Predicted rating. 
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The proposed CA-ECF framework represents an advanced version of the classical ECF, with its main 

characteristics detailed in [10][15][28]. CA-ECF innovates by using conflict in user preferences to 

identify the most similar neighbors. It then adjusts their influence in making predictions based on their 

optimal weights. The architecture of the proposed framework is depicted in Figure 2. 

Figure 2. The proposed CA-ECF framework. 

The CA-ECF framework, similar to classical ECF, follows five distinct steps, as illustrated in Figure 2. 

Initially, the unrated entries within the rating matrix RMN are calculated using contextual information C 

in order to construct a dense rating matrix 𝑅̂MN.  Subsequently, user-user similarities s(Ui, Uj)  are

calculated using both provided and predicted ratings in 𝑅̂MN . For each active user Ui, a neighborhood

set knni,k is selected and the user’s rating for each item is estimated based on the combined ratings from 

these selected neighbors. Following this, the estimated ratings for all unrated items are systematically 

ranked and the most appropriate items are chosen for recommendations to the active user. 

In classical ECF, neighborhood sets knni,k for each unrated item Ik are determined based on similarity 

scores si,j, which must meet or exceed a specific threshold. This traditional approach, however, does 

not provide a mechanism to assess the reliability of the selected neighbors. In contrast, the CA-ECF 

framework selects neighborhood sets based on their corresponding optimal discounting weights. These 

weights are then utilized to discount the BPAs during the prediction step, thereby refining the accuracy 

of the recommendations. 

In the following sub-sections, we will explore each step of the CA-ECF recommendation process in 

detail. 

3.1 Constructing Dense User-item Rating Matrix 

In the classical ECF architecture, each user evaluation is represented as a BPA (m) that spans the 

evaluation space Θ, enabling it to capture a wide range of user preferences, for instance: uncertain and 

ambiguous data. The first step of the CA-ECF framework is to predict all the unrated entries ri,k of the 

user-item matrix using contextual data C in order to mitigate the sparsity issue of CF. Contextual data 

consists of a set of concepts 𝐶 = {𝐶1, 𝐶2, … , 𝐶𝑃}, where each concept p encompasses a set of groups

Gp. Both CA-ECF and ECF consider that users who share an interest in a particular group will also 

have similar choices with respect to that group. The group preference is defined as follows: 

• First, consider a concept Cp. For each group Gp,q that intersects with Gp(Ui), which is the

users’ group of interest and gq(Ik), the items’ group of interest, it is assumed that the group’s 

overall preference for item Ik within Gp,q reflects the specific group preference of user Ui for 

item Ik within the same group. Therefore, the concept preference of user Ui for item Ik related 
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to concept Cp is the result of the combination of all the group preferences, represented as two-

probabilities focused-mass functions. 

• Second, the overall context preferences are computed as the combination of all concept

preferences for the target item, represented as two-probabilities focused-mass functions. 

• Finally, the unrated entry ri,k is replaced by the context preference of user Ui for item Ik. If the

context information does not allow for making conclusions on the concept preference, then the 

unrated entry is determined by aggregating the ratings from users who have rated item Ik. 

At this stage, all the user-item matrix entries 𝑅̂𝑀𝑁 are given (provided and predicted) and they all will

be used in the subsequent steps. 

3.2 Computing User-User Similarity 

In contrast to the classical ECF systems, in the CA-ECF we propose to evaluate the similarity between 

users using Jousselme’s distance [22], a decision that directly supports the used conflict-management 

approach [17]. 

𝑑(𝑈𝑖 , 𝑈𝑗) = √
1

2
(𝑚̂𝑖 − 𝑚̂𝑗)

𝑇𝐷̅(𝑚̂𝑖 − 𝑚̂𝑗)  (9) 

Since ratings have two sources (provided and predicted), we discount the predicted ratings [29]. 

𝑠(𝑈𝑖, 𝑈𝑗)= ∑ 𝜇(𝑥𝑖,𝑘, 𝑥𝑗,𝑘) ∗𝑘=1 𝑑(𝑈𝑖,𝑈𝑗)       (10) 

where 𝜇(𝑥𝑖,𝑘 , 𝑥𝑗,𝑘) is calculated as follows:

𝜇(𝑥𝑖,𝑘, 𝑥𝑗,𝑘) = 1 − 𝑤1(𝑥𝑖,𝑘 + 𝑥𝑗,𝑘) − 𝑤2𝑥𝑖,𝑘 , 𝑥𝑗,𝑘

where w1 and w2 are the reliability coefficients [29]. 

User-user similarities are stored as a matrix. The lower the value of 𝑠(𝑈𝑖 , 𝑈𝑗) the more similar user 𝑈𝑖
is to user 𝑈𝑗.

3.3 Neighborhood Selection 

Consider a target user-item pair, (Ui, Ik). We select a set of the k closest neighbors for Ui, denoted by 

NUi, by following four steps, as outlined below: 

1) Define best and worst BPA: in order to define those two BPAs, we first define the set of

neighbors that have rated the target item Ik, following the equation below: 

knni,k = {Uj ∈ U | Ik ∈ R(Uj)} (11) 

Then, we set best BPA as the target user 𝑚𝐵 = 𝑚𝑈𝑖 . Additionally, the worst BPA can be

determined using the best BPA. The exact definition is provided as follows: 

mW = max s (mB , mi)  (12) 

i 

2) Compute Deng’s relative entropy (best/ others) and (others/ worst): Deng relative entropy is

given by the following equation: 

𝜎 = (𝑚1 ‖𝑚2) = ∑ 𝑚1(𝐿𝑖)𝑙𝑜𝑔
𝑚1(𝐿𝑖)

𝑚2(𝐿𝑖)
𝑖   (13) 

At this stage, in order to compute the reliability factors, two vectors need to be calculated 

using the knni,k set of users. 

MB = (σ (mB∥m1) , σ (mB∥m2) , . . . , σ (mB∥mn))                                      (14) 

which describes the preference of the best BPA mB over the other BPAs and 

MW = (σ (m1∥mW ) , σ (m2∥mW ) , . . . , σ (mn∥mW ))T               (15) 

which describes the preference of BPAs mi over the worst BPA. 

Determining optimal-reliability factors: this step involves determining the optimal weights for 

BPAs to improve the process of discounting evidence. The consistency ratio (Equation 8) is 

crucial in this step, as it assesses the consistency of these weights. This step follows a 

constrained-optimization approach, as formulated in Equation 7, to establish the weights 
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accurately, relying on BWM. By solving an optimization problem that includes non-linear 

constraints, the optimal weights for the evidence are obtained. 

Select k-nearest neighbors: the selection of neighborhoods is based on reliability factors. We 

order all members within knni,k in descending order according to their reliability factors, 

denoted by wi. Then, the top K members from this ordered list are chosen to form the 

neighborhood set NUi. 

3.4 Ratings’ Estimation 

Rating estimation for each unrated item Ik by an active user Ui is computed using the ratings from the 

user’s neighborhood. Ratings are first adjusted by their respective discounting weights according to 

Equation 3. Then, the two-probabilities-focused method is used to fuse the evidence to obtain the final 

fusion result. The steps for preference aggregation are outlined in Algorithm . 

Algorithm 1. Preference aggregation for rating estimation in CA-ECF.  

1:   procedure EstimateRating(Ui , Ik , Neighborhoods NUi) 

2: Initialize r̃ i,k ← 0 ▷ Initialize the estimated rating for item Ik

3: for each neighbor Uj ∈ NUi   do

4: rj,k ← rating of Uj on Ik 

5: wi,j ← discounting weight 

6: r̃ j,k ← discounted BPA according to Equation 3 

7: r̃ i,k ← r̃ i,k ⊎ r̃ j,k                                            ▷ Fusion of discounted BPAs

8:  end for 

9:  output the estimated rating r̃ i,k 

10:  end procedure 

This algorithm synthesizes the weighted contributions of a user’s neighbors to predict unrated items. 

By applying discounting weights, which are optimized during the neighborhood-selection phase, the 

reliability of each contribution is assessed, ensuring that the final-rating estimation for rˆi,k is not only a 

reflection of collective-neighborhood opinion, but also of its credibility and relevance to user Ui’s 

preferences. 

3.5 Recommendation 

Notably, ECF systems can produce both hard (rating as singleton) and soft (rating as sub-sets) 

recommendations. For a hard recommendation, the pignistic-probability method is employed to select 

the item with the highest likelihood as the preferred choice. Conversely, for a soft recommendation, 

the system adopts a maximum-belief strategy with an overlapping interval approach (maxBL) [15], 

[35]. This method selects an item based on its belief being greater than the plausibility of any 

alternative, ensuring that a decision can still be made when a direct class label is absent by favoring a 

composite class label that combines the most believable item with those of higher plausibility. 

4. EXPERIMENTS AND RESULTS

Our experiments were performed on Movielens-100K [36], and Flixster [11] datasets. The 

MovieLens-100K dataset consists of 943 users who have provided 100,000 ratings for 1,682 movies. 

The ratings are given on a five-point scale, represented as Θ = {1,2,3,4,5}. Each user in this dataset 

has rated at least 20 movies. On the other hand, Flixster dataset includes 535,013 ratings from 3,827 

users for 1,210 movies. The rating scale in this dataset is composed of ten possible scores, denoted as 

Θ = {0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0}. Each user has provided at least 15 ratings. 

Moreover, in Movielens-100K, the information used to categorize users is the genre, which has 19 

values. 

C1 = {G1,1, G1,2, . . . , G1,19} = {Unknown, Adventure, Action, Animation, Children’s, Comedy, Drama, 

Documentary, Crime, Musical, Film-Noir, Fantasy, Horror, Western, Sci-Fi, Romance, Thriller, War, 
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Mystery}. 

𝑚𝑖,𝑘 = {𝛼𝑖,𝑘(1 −𝛼𝑖,𝑘)   𝑓𝑜𝑟 𝐴 = 𝜃𝑙

𝑚𝑖,𝑘 =

{

𝛼𝑖,𝑘(1 − 𝛼𝑖,𝑘), 𝑓𝑜𝑟 𝐴 = 𝜃𝑙
𝛼𝑖,𝑘𝜎𝑖,𝑘 ,                          𝑓𝑜𝑟 𝐴 = 𝐵; 

1 − 𝛼𝑖,𝑘               𝑓𝑜𝑟𝐴 = Θ;

0,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

with 𝐵 = {

(𝜃1, 𝜃2),        𝑖𝑓 𝑙 = 1;
(𝜃𝐿−1, 𝜃𝐿),    𝑖𝑓 𝑙 = 𝐿

(𝜃𝑙−1, 𝜃𝑙 , 𝜃𝑙+1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(16) 

Movielens-100K was transformed into an evidential dataset using Equation 16 as proposed in [15], 

where 𝛼𝑖,𝑘 ∈ [0, 1] and 𝜎𝑖,𝑘 are trust actor and dispersion factor, respectively. Also, given the absence

of specific information regarding the genres that a user prefers, it is presumed that a user’s interest 

spans all genres associated with any item having been rated. 

In the Flixster dataset, every hard rating ri,k was converted into a soft rating mi,k using the Dempster-

Shafer modeling function [11], as explained below: 

𝑚𝑖,𝑘(𝐴) =

{

𝛼𝑖,𝑘(1 − 𝜎𝑖,𝑘), 𝑓𝑜𝑟 𝐴 = {𝜃𝑙};
3

5
𝛼𝑖,𝑘𝜎𝑖,𝑘,  𝑓𝑜𝑟 𝐴 = 𝐵;

2

5
𝛼𝑖,𝑘𝜎𝑖,𝑘 ,  𝑓𝑜𝑟 𝐴 = 𝐶;

1 − 𝛼𝑖,𝑘,  𝑓𝑜𝑟 𝐴 = Θ;

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

       (17) 

where 𝐵 = {

(𝜃1, 𝜃2),              𝑖𝑓 𝑙 = 1;

(𝜃𝐿−1, 𝜃𝐿),         𝑖𝑓 𝑙 = 𝐿;

(𝜃𝑙−1, 𝜃𝑙 , 𝜃𝑙+1),     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;
      and 𝐶 =

{

{𝜃1, 𝜃2, 𝜃3},  𝑖𝑓 𝑙 = 1;
{𝜃1, 𝜃2, 𝜃3, 𝜃4},  𝑖𝑓 𝑙 = 2;

{𝜃𝐿−3, 𝜃𝐿−2, 𝜃𝐿−1, 𝜃𝐿},  𝑖𝑓 𝑙 = 𝐿 − 1;
{𝜃𝐿−2, 𝜃𝐿−1, 𝜃𝐿},  𝑖𝑓 𝑙 = 𝐿;

{𝜃𝑙−2, 𝜃𝑙−1, 𝜃𝑙 , 𝜃𝑙+1, 𝜃𝑙+2},  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

 

The available genres in Flixster dataset are as follows: 

Genre = {Drama, Comedy, Action & Adventure, Television, Mystery & Suspense, Horror, 

Science Fiction & Fantasy, Kids & Family, Art House & International, Romance, Classics, 

Musical & Performing Arts, Anime & Manga, Animation, Western, Documentary, Special Interest, 

Sports & Fitness, Cult Movies}. 

It’s important to highlight that the selection of parameters within these systems is primarily influenced 

by the outcomes analyzed and reported in the published literature [10], [15]. 

In our study, the choice of baseline for comparison is carefully considered within the context of ECF 

offering soft ratings, where diversity in baseline methods is limited. Specifically, we have selected the 

two- probability-focused ECF [15] as our baseline. This ECF variant has not only performed well in 

prior studies, but also exceeds the performance of earlier baselines, making it a pertinent choice for 

comparative analysis. The two-probability-focused ECF represents a more advanced iteration, 

reflecting both the evolution that addresses conflicting preferences in ECF [9] and the state-of-the-art 

in ECF research. 

Additionally, a 10-fold cross-validation approach was adopted for the experiments. Initially, the 

ratings within the dataset were divided into 10 distinct folds, with each fold comprising a random 

selection of 10% of each user’s ratings. The experimental process was repeated ten times; during each 

iteration, one fold was designated as the test dataset, while the other ratings were utilized for training 

purposes. The mean outcomes from these ten iterations are detailed in the subsequent part of this 

section. 

In the field of ECF offering soft ratings, researchers have developed new evaluation methods capable 

of assessing their performance. These include DS-MAE, DS-Precision, DS-Recall and DS-Fscore [9], 

[15], [28]. Let 𝑟̂𝑖,𝑘be the final estimated rating for user Ui and item Ik and 𝐵𝑝̂𝑖,𝑘 represent the pignistic-

probability distribution of the mass function 𝑟̂𝑖,𝑘. The selected evaluation metrics are defined as

follows: 
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𝐷𝑆 −𝑀𝐴𝐸(𝜃𝑗) =
1

|𝐷𝑗|
∑ 𝐵𝑝𝑖,𝑘̂(𝜃𝑙)|𝜃𝑗 − 𝜃𝑖|

(𝑖,𝑘)∈𝐷𝑗,𝜃𝑙∈Θ

𝐷𝑆 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝜃𝑗) =
𝑇𝑃(𝜃𝑗)

𝑇𝑃(𝜃𝑗) + 𝐹𝑃(𝜃𝑗)

𝐷𝑆 − 𝑅𝑒𝑐𝑎𝑙𝑙 (𝜃𝑗) =
𝑇𝑃(𝜃𝑗)

𝑇𝑃(𝜃𝑗) + 𝐹𝑁(𝜃𝑗)

𝐷𝑆 − 𝐹𝑖(𝜃𝑗) =
(𝑖2 + 1)(𝐷𝑆 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝜃𝑗) (𝐷𝑆 − 𝑅𝑒𝑐𝑎𝑙𝑙 (𝜃𝑗))

𝑖2(𝐷𝑆 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝜃𝑗) + (𝐷𝑆 − 𝑅𝑒𝑐𝑎𝑙𝑙 (𝜃𝑗))

where Dj is the test set identifying user-item pairs whose true evaluation is θj ∈ Θ and: 

𝑇𝑃(𝜃𝑗) = ∑ 𝐵𝑝𝑖,𝑘̂
(𝑖,𝑘)∈𝐷𝑗

(𝜃𝑗)

𝐹𝑃(𝜃𝑗) = ∑ 𝐵𝑝𝑖,𝑘̂
(𝑖,𝑘)∈𝐷𝑗,𝑗≠1

(𝜃𝑙) 

𝐹𝑁(𝜃𝑗) = ∑ 𝐵𝑝𝑖,𝑘̂
(𝑖,𝑘)∈𝐷𝑗

(𝜃𝑙) 

4.1 Results for Movielens-100K Dataset 

Tables 3 and 4 provide a comprehensive comparison of the CA-ECF and baseline method across various 

rating values, assessing their performance through hard metrics, such as MAE, precision, recall and F- 

score and soft metrics, such as DS-MAE, DS-precision, DS-recall and DS-F-score. The CA-ECF 

method demonstrates superior precision and recall in both soft and hard recommendations, particularly 

notable in the middle rating values, where it significantly outperforms the baseline. This trend is 

consistent across the precision and F-score metrics as well, with CA-ECF showing enhanced 

accuracy. 

Table 3. Comparison in hard decisions for CA-ECF and baseline on Movielens-100K dataset. 

CA-ECF 

MAE 2.4011 1.5072 0.7286 0.3495 1.0153 0.8326 

Precision 0.182 0.2208 0.3221 0.3935 0.4648 0.3752 

Recall 0.0177 0.0912 0.3167 0.6657 0.1863 0.3828 

F-score 0.0322 0.129 0.3193 0.4946 0.2659 0.3789 

Baseline 

MAE 2.4075 1.5087 0.7382 0.369 1.0157 0.8343 

Precision 0.177 0.2242 0.3206 0.3919 0.4484 0.3641 

Recall 0.0152 0.0924 0.3158 0.6642 0.1851 0.3718 

F-score 0.0649 0.1434 0.3175 0.4923 0.2592 0.3468 

Table 4. Comparison in soft decisions for CA-ECF and baseline on Movielens-100K dataset. 

DS-Metrics Rating value 
Global 

1 2 3 4 5 

CA-ECF 

DS-MAE 2.4057 1.4897 0.7337 0.3702 1.0159 0.8243 

DS-Precision 0.1756 0.2380 0.3191 0.3916 0.4452 0.36015 

DS-Recall 0.0159 0.0962 0.3177 0.6612 0.1787 0.3722 

DS-F-score 0.0292 0.1370 0.3184 0.4919 0.2550 0.3315 

Baseline 

DS-MAE 2.4066 1.4918 0.7344 0.3713 1.0175 0.8327 

DS-Precision 0.1749 0.2300 0.3175 0.3908 0.4462 0.3609 

DS-Recall 0.0156 0.0949 0.3164 0.6605 0.1815 0.3702 

DS-F-score 0.0267 0.1329 0.3161 0.4903 0.2560 0.3315 

Metrics 
1 2 

Rating value 

4 3 5 
Global 
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Figure 3. Overall MAE for CA-ECF versus baseline on Movielens-100K dataset. 

In Figure 3, the data comparing CA-ECF and baseline across varying values of K reveal that both 

recommendation frameworks show an improvement in DS-MAE as the number of neighbors increases up 

to K = 20, beyond which the improvement in error rates stabilizes. CA-ECF consistently performs better 

than baseline at lower values of K, indicating its superior efficiency in scenarios with fewer neighbors. 

Both methods reach their optimal performance around K = 20. This indicates that increasing K beyond 20 

offers no significant benefit, possibly leading to over-specialization and unnecessary computational 

overhead. 

In Figure 4, both CA-ECF and baseline show a trend where the DS-MAE values generally decrease as K 

increases from 5 to 20. Around K = 20, both CA-ECF and baseline achieve their minimum DS-MAE 

values, indicating an optimal point for the Movielens dataset. Post this point, both frameworks stabilize, 

with slight fluctuations in DS-MAE values, suggesting that increasing K beyond this point does not 

significantly enhance the accuracy. CA-ECF appears to be more robust at lower neighborhood sizes, 

which could be advantageous in scenarios where the data is sparse or when it is computationally preferable 

to consider fewer neighbors. 

Figure 4. Overall DS-MAE for CA-ECF versus baseline on Movielens-100K dataset. 

4.2 Results for Flixster Dataset 

Based on the presented data from the hard and soft decision comparisons between CA-ECF and the 

baseline on the Flixster dataset, several insights emerge. As shown in Table 5, for hard decisions, CA-ECF 

exhibits consistently lower MAE across all rating values compared to the baseline, showcasing its superior 

accuracy in prediction. Notably, the global MAE for CA-ECF stands at 0.8281, which is lower than the 

baseline’s 0.8503, underscoring the enhanced precision of CA-ECF in handling diverse rating scales from 

0.5 to 5.0. 
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Table 5. Comparison in hard decisions for CA-ECF and baseline on Flixster dataset. 

Metrics 
Rating value 

Global 
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

CA-ECF 

MAE 3.2204 2.6843 2.1821 1.7530 1.2887 0.7529 0.4068 0.1341 0.5169 0.9056 0.8281 

Precision 0.8790 0 0 0.1857 0.2727 0.2283 0.1976 0.2091 0.1769 0.3856 0.2860 

Recall 0.0252 0 0 0.0017 0.0036 0.0703 0.1489 0.7767 0.0287 0.0852 0.3160 

F-score 0.0489 0 0 0.0033 0.0071 0.1074 0.1698 0.3294 0.0493 0.1395 0.3002

Baseline 

MAE 3.2708 2.7865 2.3006 1.7741 1.3163 0.7806 0.4204 0.1360 0.5264 0.9081 0.8503 
Precision 0.8521 0 0 0.1697 0.2435 0.1975 0.1886 0.2150 0.1747 0.3921 0.2404 

Recall 0.0242 0 0 0.0015 0.0031 0.0652 0.1478 0.7812 0.0280 0.0867 0.3114 

F-score 0.0470 0 0 0.0029 0.0061 0.0980 0.1657 0.3371 0.0482 0.1420 0.2713

Similarly, in the soft-decision results of Table 6, CA-ECF maintains its edge over the baseline, with a 

global DS-MAE of 0.8190 against the baseline’s 0.8381. This precision is further reflected in the metrics 

of DS-Precision, DS-Recall and DS-F-score, where CA-ECF consistently outperforms the baseline across 

most rating values, particularly in the mid to high range. These metrics confirm the robustness of CA- 

ECF in synthesizing evidential data to produce reliable and nuanced recommendations, highlighting its 

applicability in systems where user preferences are particularly conflicting. In the Flixster dataset, ratings 

of 1.0 and 1.5 are significantly less frequent compared to higher ratings. Consequently, the columns for 

ratings 1.0 and 1.5 in the comparison tables sometimes show values as zero, indicating sparse data in these 

categories. 

Table 6. Comparison in soft decisions for CA-ECF and baseline on Flixster dataset. 

DS-Metrics 
Rating value 

Global 
0.5 1.0 1.5 2.0 2.5  3.0 3.5 4.0 4.5 5.0 

CA-ECF 

DS-MAE 3.2137 2.6702 2.1787  1.7467  1.2861  0.7491 0.4002 0.1291 0.5126 0.9014 0.8190 
DS-Precision 0.8702 0 0  0.1767  0.2543  0.2056 0.1998 0.2165 0.2036 0.3891 0.2561 
DS-Recall 0.0282 0 0  0.0018  0.0045  0.0710 0.1502 0.7689 0.0312 0.0821 0.3189 
DS-F-score 0.0546 0 0  0.0035  0.0088  0.1055 0.1714 0.3378 0.0541 0.1355 0.2840 

Baseline 

DS-MAE 3.2360 2.7653 2.2781 1.7482 1.2909 0.7665 0.4187 0.1322 0.5202 0.9061 0.8381 
DS-Precision 0.8562 0 0 0.1710 0.2435 0.1998 0.1906 0.2172 0.1872 0.3987 0.2468 
DS-Recall 0.0253 0 0 0.0016 0.0037 0.0667 0.1491 0.7851 0.0290 0.0892 0.3114 

DS-F-score 0.0491 0 0 0.0031 0.0072 0.1000 0.1673 0.3402 0.0502 0.1457 0.2753 

Figure 5 depicts the MAE performance of CA-ECF and the baseline across varying neighborhood sizes 

(K) on the Flixster dataset. For CA-ECF, there is a consistent enhancement in performance across all K

values, showcasing its robustness in managing different neighborhood sizes effectively. In contrast, the 

baseline exhibits a reduction in MAE as the number of neighbors increases, reaching a plateau at K = 35. 

Beyond this point, no significant gains are observed, indicating that larger neighborhoods do not further 

contribute to accuracy improvements. This data highlights CA-ECF’s superior efficiency, particularly 

notable at smaller neighborhood sizes. 

Figure 5. Overall MAE for CA-ECF versus baseline on Flixster dataset. 
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Figure 6 demonstrates the performance trend of CA-ECF and the baseline as the number of neighbors (K) 

increases within the Flixster dataset. Both frameworks exhibit distinct performance trends. CA-ECF 

demonstrates stable performance with consistently low DS-MAE values across all K values. In contrast, 

the baseline framework shows a decrease in DS-MAE from K = 5 to K = 15, suggesting that accuracy 

improves with a larger neighborhood up to this point. At K = 15, the baseline reaches its lowest DS- MAE, 

indicating an optimal balance between neighborhood size and predictive accuracy. Beyond K = 15, the 

baseline exhibits negligible improvements and slight fluctuations in DS-MAE, signaling that further 

increases in K do not yield substantial benefits and may lead to diminishing returns.  

Figure 6. Overall MAE for CA-ECF versus baseline on Flixster dataset. 

5. DISCUSSION

In the evaluation of the CA-ECF framework, our experiments reveal that the framework demonstrates 

notably improved performance for rating values that exhibit higher density within the dataset. This 

enhanced performance can be attributed to the framework’s use of reliability factors that judiciously 

discount ratings. By adjusting the influence of these ratings in the evidential fusion step, the framework 

not only refines the prediction accuracy, but also effectively manages the inherent uncertainty associated 

with sparse data. Such a mechanism ensures that the contributions of the neighbors are weighted, which is 

particularly crucial in sparse datasets where every rating can significantly influence the outcome. This 

approach underscores the ability of CA-ECF to deliver more reliable and precise recommendations by 

effectively capturing and utilizing the underlying patterns in user-item interactions. 

However, the CA-ECF framework introduces additional computational complexities, primarily from the 

calculation of Deng’s relative entropy and the optimization of reliability factors. The computation of 

Deng’s relative entropy within the neighborhood set knni,k presents a quadratic complexity, O(k2), where k 

represents the number of neighbors who have rated the target item. Further complexity arises during the 

optimization step to determine optimal reliability factors, potentially extending to O(k3) depending on the 

algorithm used. In contrast, classical ECF methodologies typically involve linear operations based on 

similarity scores, resulting in a lower overall time complexity of O(n). Thus, while the CA-ECF 

framework incurs a higher computational cost, it leverages this complexity to enhance the accuracy and 

reliability of recommendations, which is particularly advantageous in applications where the quality of 

recommendations is critical. 

6. CONCLUSIONS

This research introduces a novel Conflict-Aware Evidential Collaborative Filtering framework that 

significantly advances the management of conflicts in user ratings. By integrating a two-probabilities-

focused approach with the advanced conflict-resolution technique based on the Best Worst Method, the 

framework refines the weighting of user preferences. This precision in handling ratings leads to 

discernibly improved performance across key metrics, including DS-MAE, DS-precision, DS-recall and 

DS-F-score, outperforming existing methodologies. While our framework enhances recommendation 

accuracy and reliability, especially in handling uncertain, imprecise or incomplete user preferences, it 

introduces complexities related to its computational demands. The detailed calculations required by 
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Dempster-Shafer theory, along with those needed to optimize reliability factors, can lead to increased 

computational time, potentially limiting its immediate practicality in real-world scenarios. Looking 

forward, we plan to explore the potential of distributed computing and Monte Carlo approximations to 

manage the computational overhead effectively. These techniques aim to reduce the computational 

intensity while maintaining accuracy, offering scalable solutions for large datasets. We are also keen on 

investigating alternative fusion rules that can further enhance the framework’s ability to handle conflicts. 

These steps are aimed at extending the scalability and practicality of our framework. 
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 البحث: ملخص

اتّعاوددددددمَتا ا إددددددلّاَ اه ددددد لتاَ اه ي  لددددددتاَ تإدددددا ذ ار دددددد اَ   هددددددت ا التددددد ا تقدددددذه الددددددطااَ عملدددددتارادددددديم 

ددددد لتا لييدددددتاَ  ه تا اتصدددددي  اَ  إهيصدددددت اتثددددد اَ مه ل دددددي تا،  ه تي تات دددددتس يتثهددددد ا ودددددي اتعًدددددلتااخيصدددددتي

ا تاعُّعاَ لذَفا غلملتي.

اَ ول لدددددتاَ هاددددد ا دددددراراددددديماَ  تددددد اَ تقادددددم الاددددد ات ددددد لت   اه يتددددد اتدددددعاَ اه   دددددل  اابهدددددياَيدددددا ُّايمكه

اتدددددددّاخلددددددد ار َم اات دددددددلي َ تا دددددددتا هً دددددددعا،اددددددد ا ا بلي  اتإدددددددالذتلّاَ هاددددددد اتعدددددددات الاددددددد اتعَا 

ددددددعَم ا   دددددد ابّ لددددددتات إددددددلّا ددددددع  اات ددددددلي َ اه   ددددددل  اَ تا فدددددد اان دددددديضاَ اقدددددديضات   ددددددل  اَ ص 

لت.  ً اَ اهع

ا الادددددد اَخاتددددددي لّا تق لددددددتاتاقذهتددددددتا  اضلي ددددددلإ َم اَ اهايصتددددددعاَ  هوددددددي اَ تقاددددددم ابددددددلّا هددددددتاالددددددي  ا

ددددددالذ  ا   دددددد العددددددمااَ تددددددماَ هددددددطصاتددددددّا دددددد   اتل ددددددل ا     ا اتّإ  ااكثددددددما لهددددددتتا ودددددد ه تعنعللددددددتا

ا  دددددد اَ صددددددعا .ا َ صددددددذيمّابي ددددددطها-(اَ  هإددددددعلتا اميقددددددتا َ ف دددددد Dengَصددددددالذَ ااميقددددددتا  كماا ه

ار  اَ   ت. ّاتّاَ،اليماَ اه   ل  اف ا وي اَ اه   لتاَ اه ي  لتاَ تإا ذ  اي إه 

اتدددددّاتصتعلدددددي اَ علي دددددي  ا بله ددددد اَ  هادددددي تاا هددددد ا تددددد هاتصميدددددماراددددديماَ  تددددد اَ تقادددددم الاددددد الدددددذ ا

اتدددددّاااّّدددددماَ  تددددد اَ تعددددديبهتاَ دددددعَم  افددددد اا بلدددددي اَ تعادددددع  ا   ددددد اايا دددددعه اّ لاددددد اتصتعلدددددتا

عطا غلما   اتّاتقييلساَ  َض.اا ال ذاتقيم ا ات هياتّاخل ا،ط اَ اهعلُّعا َ ذهلتا َ  ه
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