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ABSTRACT 

This paper presents a comprehensive literature review focusing on the utilization of machine-learning (ML) and 

deep-learning (DL) methods for predicting and detecting Neurodevelopmental Disorders (NDDs), such as 

Intellectual Disability (ID), Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD), 

Dyslexia, among others. While existing reviews often lack detailed discussions on the specific ML algorithms, 

datasets and performance metrics employed in NDD prediction and detection, this study aims to address this gap 

by examining two primary aspects: prediction and detection. Objective: The objective of this study is to 

investigate the current state-of-the-art methodologies, challenges and future directions in leveraging ML and DL 

techniques for the prediction and detection of NDDs. It aims to categorize the literature based on these two 

major aspects and provide insights into the various approaches, datasets, parameters and performance 

measures used in previous research. Methodology: This review encompasses articles published in journals and 

conference proceedings indexed in Scopus from 2013 to 2023. The search employed terms such as "Predicting 

Neurodevelopmental Disorder" and/or "Detection of Disorder Using Machine Learning." The analysis focuses 

on identifying common ML and DL approaches, ensemble models, types of datasets utilized, as well as the 

parameters and performance metrics employed in NDD-prediction and detection studies. Results: The findings 

of this review shed light on prevalent ML and DL methodologies, the challenges encountered and potential 

avenues for future research aimed at enhancing services for the NDD community through improved prediction 

and detection techniques. 
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1. INTRODUCTION 

Neurodevelopmental Disorders (NDDs), as outlined in the DSM V Diagnostic and Statistical Manual 

by the American Psychiatric Association, encompass a range of conditions affecting the development 

of the central nervous system [1]. These conditions manifest in difficulties in behaviours, cognition, 

social interaction and emotional functioning. Included within NDDs are intellectual disability (ID), 

communication disorders, Autism Spectrum Disorder (ASD), Attention-Deficit/Hyperactivity Disorder 

(ADHD), neurodevelopmental motor disorders such as Tic Disorders and Specific Learning Disorders 

[2]. Despite the prevalence of NDDs, which affects roughly 17% of the general population, many 

individuals may remain undiagnosed. Factors contributing to NDDs include maternal and fetal 

genotype, early environmental influences and some causes that are still not fully understood. 

Particularly concerning is the rising prevalence of NDDs, with autism rates reported by the Centre for 

Disease Control and Prevalence (CDC) increasing from 1 in 150 children in 2000 to 1 in 36 presently, 

with around 40% of affected individuals also experiencing ADHD and other comorbidities [3]. NDDs 

represent a significant mental-health category with profound impacts on daily functioning, potentially 

jeopardizing the physical and mental well-being of affected individuals as they transition from 

childhood to adulthood. Given the increasing frequency of NDDs and their substantial impact, it is 

imperative to address the challenges associated with early identification and intervention. Developing 

a rapid, reliable and automated method for identifying early signs of mental-health issues is critical in 

this rapidly evolving world. 

Hence, we conduct a systematic review encompassing medical and computer-science literature on the 
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detection of NDD issues using machine-learning (AI) methodologies. This review spans articles 

published between 2013 and 2023 sourced from databases such as Scopus, IEEE Explore, PubMed 

and Web of Science (WOS). Utilizing the Preferred Reporting Items for Systematic Reviews and 

Meta- Analysis (PRISMA) methodology, we meticulously selected 81 articles from an initial pool of 

811. 

Our review highlights a notable research gap concerning the utilization of machine learning in 

interventions for neurodevelopmental disorders (NDDs), particularly in the domain of automated 

neuro-feedback. We also explore the machine learning techniques utilized in developing EEG-based 

detection methods for NDDs. Furthermore, we conduct a thorough examination of challenges outlined 

in existing literature and provide forward-looking recommendations. These recommendations 

encompass various facets, such as data-fusion techniques, integrating hybrid classification models, 

emphasizing the importance of publicly available datasets, addressing uncertainties in model 

predictions, enhancing model interpretability and devising strategies for hardware implementation. 

Essentially, our systematic review illuminates the current landscape of machine-learning applications 

in NDD detection and intervention, while also charting a course for future research aimed at bridging 

existing gaps and overcoming challenges. The objective of this review is to guide future researchers in 

adopting potential trends or models that can significantly enhance the diagnosis and detection of 

NDDs. 

Responding promptly to a diagnosis is crucial for minimizing the time required for intervention once a 

diagnosis is detected. Machine-learning techniques can assimilate and analyze integrated data from 

multiple sources, including population statistics, lifestyle factors and medical records to predict the 

occurrence and distribution of diagnoses within a specific area. Medical practitioners can utilize 

machine-learning methods to enhance the implementation of existing interventions and speed up in 

developing new interventions. For example, deep-learning algorithms can be employed to analyze 

extensive datasets comprising medical information gathered from hospitals. For example, clinical test 

data from patients diagnosed with mental health can be utilized as input for machine-learning models, 

enabling doctors to expedite diagnoses. This research endeavours to explore the current advancements, 

obstacles and prospective directions in leveraging machine-learning techniques for managing 

neurodevelopmental disorders, as outlined in the two previously mentioned categories. The study uses 

the same method of systematic review conducted by Rayner & Obit, 2021, the roles of machine 

learning methods in limiting the spread of deadly diseases. Thus, the work here is to conduct a 

comprehensive review of different methodologies, dataset types, parameters or variables, individual 

and ensemble models, performance metrics and approaches employed in prior studies [4]. 

We categorized all articles and conference papers based on Scopus Indexed – whether pertaining to 

prediction or detection strategies. This review's results center on frequently employed machine 

learning methods, obstacles encountered and future directions aimed at supporting intervention and 

therapy for neurodevelopmental disorders through both detection and prediction. The trend and 

distribution of objectives for machine learning and recent works for NDD detection are described in 

Figure 1. 

 

Figure 1. The trend and distribution of objectives for machine learning and recent works for 

NDD detection. 
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2. METHODOLOGY 

The purpose of this Systematic Literature Review (SLR) is to conduct a sequential process of 

PRISMA to make available research applicable to machine-learning approaches in assisting medical 

health diagnosing Neurodevelopment Disorders. Four primary stages of PRISMA are identified to be 

included in this SLR as shown in Figure 2. They are called: Identification, Screening, Eligibility and 

Inclusion [5]. 

2.1 Content Retrieval 

Apart from adhering to the PRISMA stages, this literature review underwent two distinct phases: 

planning and conducting. The initial phase is geared towards defining the prerequisites for a 

systematic review while mitigating potential researcher biases. It involves crafting a comprehensive 

review protocol, acting as a blueprint for conducting an unbiased review process. Key elements of this 

proposed review protocol in our study include delineating research questions, formulating a search 

strategy to pinpoint relevant studies, specifying inclusion and exclusion criteria, establishing a method 

for assessing study quality and extracting and synthesizing data, all of which will be detailed in the 

subsequent section. The planning phase involves crafting research questions centered on employing 

machine-learning techniques for predicting and detecting neurodevelopmental disorders, followed by 

setting up suitable search procedures to efficiently execute the research activities. During the 

conducting phase, several actions are taken, including setting predetermined selection criteria to 

pinpoint relevant studies and assessing their quality using the predefined quality-assessment procedure 

outlined in this study. This phase involves extracting information from the selected studies and 

conducting data synthesis to provide a succinct summary of the reviews. These processes are visually 

depicted in Figure 2, facilitating the incorporation of new information into the report in the future. 

 
 

 

 

 

 

 

Figure 2.  PRISMA method. 

2.1.1 Formulating Research Questions 

The research questions (RQs) were structured to define the study's boundaries from three distinct 

angles: population, intervention and outcomes [5]. From the population perspective, the focus is on the 

domains or functions affected by the intervention, such as detection, prediction and classification. 

These populations may relate to various aspects, including specific machine-learning methods or types 

of machine learning models and their applications. The intervention viewpoint centers on machine-

learning approaches addressing specific challenges, such as diagnosing, detecting and predicting 

Neurodevelopment Disorders. Lastly, the outcomes perspective concerns factors significant to 

practitioners, such as improved prediction accuracy, reduced diagnostic costs for specific disorders 

and shortened response time in detecting potentially severe disorders. All relevant outcomes must be 

explicitly stated. For instance, interventions may aim to enhance one aspect of NDD prediction 

without affecting another, such as improving reliability without increasing costs. The primary goal of 

this Systematic Literature Review (SLR) is to gather and scrutinize relevant evidence to tackle the 

defined research questions (RQs). Our motivation for undertaking this endeavor is to obtain responses 

to a series of seven RQs, aiming to gain deeper insights into key aspects of our research focus. This 

entails enhancing our comprehension of the roles played by machine-learning technologies in 

facilitating the prediction and detection of Neurodevelopment Disorders, as well as identifying 

research constraints to guide future-research directions. The RQs and their rationale are thoroughly 

elaborated in Table 1. 
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Table 1. Research questions. 

ID Research Question 

RQ1 What are the roles of machine-learning models in assisting in screening neurodevelopment disorders? 

RQ2  

 

RQ3 

RQ4 

RQ5 

RQ6 

RQ7  

What types of NDD datasets in previous works have been used to build the models? What types of parameters or variables have 
been used? 

What types of problems addressed using these models?  

Which individual models achieved the highest performance? 
What evaluation metrics and methods are employed to measure the performance of the machine-learning models? 

What types of ensemble methods are used in machine-learning models?  

What types of deep-learning approaches used in NDD Detection? 

2.1.2 Search Process 

In the identification stage, all publications up to Dec. 2023 were compiled from searches made in 

Scopus, IEEE Explore, PubMed and Web of Science (WOS) databases. The retrieval was performed 

for articles from journals and conference proceedings published from 2010 to 2023 using the 

following Boolean search expression: “Prediction” OR “Detection” OR “Classification” OR 

“Diagnosing” OR “Identification” AND “ADHD” OR “AUTISM” OR “DYSLEXIA” OR “Neuro 

Development Disorder” AND “Artificial Intelligence” OR “Machine Learning” OR “Deep Learning”. 

Only final papers were considered in this review. The inclusion and exclusion criteria are shown in 

Table 2. The search process is designed to thoroughly address all predefined research questions. This 

involves selecting appropriate digital libraries, setting a time frame for the published articles and 

defining the search keywords. We will explore six of the most popular and largest online digital 

libraries in computer science, along with the Medline digital library, which publishes peer-reviewed 

articles. These digital libraries are listed in Table 3.  

Table 2. Criteria of inclusion and exclusion. 
 

Criteria Inclusion Exclusion 

Type of Article Journal articles Others (Thesis, Handbook, Literature Review and 

Survey Paper) 

Language English Non-English 

Subjects Covered Computer Science, Neuroscience, Health 

Professional and Psychology. 

Multidisciplinary 

Year of Publications 2013-2023 < 2013 

Domain Mental Health Other Disorder or Comorbidities 

Mental  Neuro Development Disorder (ASD, ADHD, 

Dyslexia) 

Other neurodisorders 

Health  Listed in DSM-V (Schizophrenia, psychotic, bipolar, 

depression, …etc.) 

ML Models Traditional, Deep Learning and Ensemble Model Transfer Learning 

Dataset  Demographic, Medical, Observation & 

Behavioural Data 

Genetic Data 

Type  Facial Image Data 

 Eye-Tracking Data 

 EEG-based Data 

 Functional Magnetic Resonance Imaging 

Heart-rate Data 

Handwriting Data 

Speech Data 

 (BMRI) and Functional Magnetic  

  Resonance Imaging (FMRI) Data  

Table 3. Online digital libraries and number of studies screened and reviewed. 

No. Database URL Screened Eligible Inclusion 

1 Elsevier https://www.sciencedirect.com/ 68 14 7 

2 Springer https://link.springer.com/ 56 28 2 

3 IEEE eXplore https://ieeexplore.ieee.org/ 197 73 35 

4 MDPI https://www.mdpi.com/ 92 29 9 

5 Wiley https://onlinelibrary.wiley.com/ 12 5 2 

6 Medline (PubMed) https://pubmed.ncbi.nlm.nih.gov/ 82 37 26 

 TOTAL  507 186 81 

http://www.sciencedirect.com/
http://www.sciencedirect.com/
http://www.mdpi.com/
http://www.mdpi.com/
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Furthermore, we reviewed various independent relevant journals and conference proceedings in the 

field of artificial intelligence, as detailed in Table 3. The search is limited to articles published 

between 2013 and 2023. This time frame was chosen, because machine learning has been extensively 

applied to problems related to Neurodevelopment Disorder (NDD) since the 2010s. Table 4 lists the 

number of studies reviewed based on year (2013 - 2023). Therefore, this paper aims to systematically 

summarize artificial-intelligence methodologies, encompassing both machine-learning and deep-

learning techniques, applied in the prediction and detection in-response to neurodevelopmental 

disorders (NDDs). 

Table 4. Number of studies reviewed based on year (2013 - 2023). 

Year Studies 

2013 - 2017 

2018 

2019 

2020 

2021 

2022 

2023 

6 

3 

4 

9 

14 

29 

16 

  Total 81  

Table 5. Type of machine-learning problems and related studies. 
 

Problems Roles Related Studies 

Regression Predict [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], 

 Neurodevelopment [19], [20], [21], [22], [23] 

 Disorder  

Classification Detect [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], 

 Neurodevelopment [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], 

 Disorder [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], 

  [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], 

  [72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], 

  [84], [85], [86] 

2.2 Content Summarization 

Quantitative data was extracted from the chosen studies focusing on the research questions outlined 

and the findings are presented in Tables 5-12 and Figure 3. 

2.2.1 Roles of Machine-learning Model 

Predicting and detecting NDDs plays crucial roles in enhancing healthcare systems. The tasks 

primarily involve predicting NDDs or modeling disorder frequencies using regression methods. 

Conversely, machine learning models predominantly address classification problems in detecting 

NDD. Table 5 summarizes all studies focused on NDD prediction and detection. 

2.2.2 Type of Datasets and Parameters Used 

Table 6 summarizes structured data utilized for predicting and detecting the diagnosis of NDDs, as 

well as the number of studies conducted. From the collective findings of these studies, six sets of 

structured datasets were the most employed. Structured databases encompass Demographic Data, 

Medical Data, Observation & Behavioral Data, Visual Video Data, Meteorological Data, MRI 

(including BMRI and FMRI), face-expression data, eye-tracking data and EEG-based data. 

Demographic data includes information on Age, Gender, Race and Ethnicity. Medical data involves a 

systematic analysis of a child's conditions, incorporating parameters, such as head measurements, 

weight, height, signs and symptoms of the disorder and treatment information. Observation & 

Behavioral Data entail numerical representations obtained from responses, speech, cognitive abilities, 

quotient scores and questionnaire assessments, like M-CHART, Q-Chat, AQ-10, ADI-R and ADOS 

Screening, UCI repository, IQ score, NCHS survey data, SDS ASDTest, OBTest, UK’s National 

Health Service (NHS), PAAS India and Scale data Questionnaires from Germany Clinic. Some of the 

observation and behavioral subjects were captured in video for further investigation. Visual Video 

Data captures activities involving a child during intervention or therapy sessions, focusing on 
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parameters, such as movement, behavior, sensory perception, angle, direction and speed. Magnetic 

Resonance Imaging Data (BMRI and FMRI) aids in detecting and monitoring brain characteristics, 

particularly changes in blood flow. Some BMRI/FMRI datasets are publicly available through ABIDE 

(ADHD-200, Craddock 400 (CC400), …etc.). Common parameters for detection include normalized 

region volume, reduced corpus callosum volume and increased amygdala volume. Facial Image Data 

analyzes emotions through facial expressions, categorizing them as Happy, Sad, Angry or Neutral. 

Facial analysis employs an arousal- valence model to assess parameters, such as positive-active and 

negative-passive readings. These datasets can be collected through public databases, like Kaggle 

(KDEF dataset, …etc.). Finally, EEG-based Data, recorded via devices like BCI, captures spectral 

power of EEG signals, including Beta, Alpha, Theta, Gamma and Delta waves. Analysis often 

involves spectral, temporal, spatial or time-frequency features, revealing specific brain activities, 

ERPs, recurrences and transitional states. The EEG dataset is available in Dataport IEEE, …etc. Eye-

tracking Data collected through EyeGaze apps, Eye movement, Automatic retinal-image analysis 

(ARIA) monitors parameters, like retina movement and pupil size. 

2.3 Reporting of Review Findings 

The summary of findings in the review was derived from the selected studies, focusing on the defined 

research questions. The overall State-of-the-Art of Neurodevelopment Disorder Prediction and 

Detection is described in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. State-of-the-art of neurodevelopment disorder prediction and detection. 

2.3.1 Roles of Machine-learning Models 

This sub-section summarizes and discusses the findings of RQ1: What are the roles of machine- 

learning models in assisting in screening neurodevelopment disorders? The roles of machine-learning 
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models can be categorized into regression and classification. 

Table 6. Datasets and parameters used. 
 

Databases (Frequency) Features 

Demographic Data (18) 
Medical Observation & 

Behavioral Data (16) 

BMRI/FMRI Data (13) 
Facial Image Data (7)  

EEG-based Data (26) 

 
 

Eye Tracking Data (5) 

Age, Gender, Race, Ethnicity, Location 
Head measurements, Weight, Height, Response, Speech, Cognitive Ability, Quotients scores, 

Movement, Behavior, Sensory, Angle, Direction, Speed, …etc. 

Brain and Functional Magnetic Resonance Imaging: Changing in the blood flow within brain 
Facial features and expression that can be detect through facial emotion: Happy, Sad, Angry, Null 

EEG reading: Beta, Alpha, Theta, Gamma, Delta 

Other features (spectral, time, spatial or time-frequency features, activity, Event Related Potential (ERP),  

Recurrences, transition state) 

retina movement, pupil size 

2.3.2 Regression Problems for Detecting NDDs 

While logistic regression is commonly used for binary target variable datasets, it may not be accurate 

when the sample size is small. The connection between the predictors and a categorical response 

variable is modeled using logistic regression [58]. Regression problems are commonly addressed in 

the task of predicting or modeling the disorders as shown in Table 7. 

Table 7. Regression: Types of machine-learning approaches and individual models used. 

  

Models: Cubic Regression Model, Logistic Regression (LR), Polynomial Regression, Naïve-Bayes (NB), Random Forest (RF), K Nearest Neighbour (kNN), Convolution Neural 

Networks (CNN), Multi-Layer Perceptron (MLP), Scala Vector Classifier (SVC), RIPPER RIDOR Bagging AdaBoost CART, Rules Machine Learning (RML), C4.5 PRISM, Back 

Propaganda Neural Network (BPNN), Particle Swam Optimizer (PSO), Radial Basis Function (RBF). Additional Performance Matrix: Precision (PREC), Recall (REC), F1-
Score( F1-S), Confusion Matrix(CM), Specificity (SP), Sensitivity (SE), Area under Curve (AUC), Cohen Kappa (KP), Matthew Correlation Coefficient (MCC), False 
Discovery Rate (FDR), Cross Validation (CV), Negative Predictive Value (NPV), Positive Predictive Value (PPV), False Positive Value (FPV), Area under Receiver 
Operating Characteristic (AUROC) 
Note: ∗Belongs to the Neural Network family. 

For instance, Shilaskar et al. showed that logistic regression is the most accurate type of regression for 

autism, while the random forest is the most accurate type for dyslexia. However, given that the source 

data is highly biased and several performance indicators tend to zero, the results are not all that 

encouraging and their work needs to apply the Synthetic Minority Oversampling Technique (SMOTE) 

to handle imbalance data [7]. Besides, Thabtah et al. illuminated recent research that utilizes machine 

learning for ASD classification and investigated the utility of machine learning with Decision Tree and 

Random Forest for ASD prediction. They developed an ASDTest application to detect symptoms of 

ASD based on AQ-10 scoring data (cognitive, behavioral and social skill test) [15]-[16]. The results 

obtained using the Machine Learning with DT algorithm in WEKA were compared to the results 

obtained by other statistical models, such as Logistic Regression, showed superiority in detecting 

autistic traits over probabilistic classifiers derived by Naïve Bayes; however, the performance 

Study 
Model Best Model with Accuracy Additional Performance Metrics 

[6] LDA, Ensemble (SVM-RBF, GC, RBPNN), 

regression, Fuzzy sets, SVM+RBF 

Cubic Regression method+SVM+RBF 98% _ 

[7] LR, SVM Polynomial, SVM RBF, NB, DT, 

RF, XGB, RF 

LR 90.27%(ASD), RF 80.89% (Dyslexia) PCS 92.30%, REC 90%, AUC 91.60%, F1-S 91.13%, CV 

99.77% (ASD) 

PCS 83.56%, REC 77.21%, AUC 79.78%, F1-S 80.26%, 

CV 95.05% (Dyslexia) 

[8] DT, LR, RF LR +CNN 81% - 

[9] NB, LR, SVM LR 95.87% (Adolescent), LR 99.82% 

(Adult), SVM 97.82% (Toddler), SVM 

99.61% (Child) 

KP 91.74%, F1-S 95.90%, AUROC 99.00% (Adolescent) 

KP 99.59%, F1-S 99.90%, AUROC 99.80% (Adult) 

KP 94.87%, F1-S 97.80%, AUROC 99.70% (Toddler) 

KP 99.21%, F1-S 99.60%, AUROC 99.60% (Child) 

[10] LR, MLP, CNN ∗MLP+LR 81% PCS 77%, REC 78%, F1-S 76% 

[11] LR, SVM, polynomial regression, RF, MLP Polynomial Regression 92.6% PCS 91%, REC 89%, F1-S 92% 

[12] SVM, NB, DT, VGG16, DenseNet, AlexNet LR 97.15%, RF 82% - 

[13] LR, kNN, SVM, NB, DT, RF LR 98.11%, SVM 98.11%, kNN 96.22%, 

NB 96.22% 

F1-S, SP, SE 

[14] LR, MLP and SVC LR 82.26%, SVC + PSO 93.55% F1-S, SP, SE 

[16] NB, LR 
LR 94.23% (Adults), LR 99.85% 

(Adolescent), LR 97.94% (Child) 

SE 99.90%, SP 99.70% (Adults), SE 92.20%, SP 

92.68% (Adolescent), SE 98%, SP 97.35% (Child) 

[15] 
RIPPER RIDOR Bagging AdaBoost CART 

RML C4.5 PRISM 

RML LR-based 94.0% (Adult), 88% 

(Adolescent), 92% (Child) 

SE 94.00%, SP 97.00% (Adults), SE 87.00%, SP 

80.00% (Adolescent), SE 91.00%, SP 91.00% (Child) 

[23] PSO -RBF, PSO-BPNN ∗PSO+RBF 97% SE 90%, SP 89% 
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decreased when data collected through the application gets bigger [15]. Accordingly, the work on 

using regression models to detect NDDs seems to decrease in its suitability due to its inefficiency in 

handling big datasets. 

2.3.2.1 Classification Problems for Detecting NDDs 

Classification is a common task in supervised learning, utilized when predicting categorical outcomes 

and determining whether a given example belongs to a specific category or not. This is distinct from 

regression, which is employed for predicting continuous values. However, although it can help 

categorize results based on certain tasks, it may not be able to handle all complex tasks within a 

timeframe. Most classification problems address the task of detecting NDDs as shown in Table 6. For 

instance, Alice Jacob et al. focused on ADHD detection from Time-Frequency images (TFIs) to 

identify the frequency band with higher ADHD-related data resulting in the TFI-based CNN model 

and GLCM-based KNN classifier supported higher ADHD-related information at the theta band 

compared with the upper- beta and lower- gamma bands [24]. The results showed the best 

performance on specific features in a short timeframe, but not with bigger TFI. Wang et al. (2023) 

proposed a model of ICA-CNN and achieved an accuracy of 67%; however, the training dataset 

comprises only 168 observations, which is insufficient for thoroughly training the parameters [25]. On 

the other hand, Omar et al. (2023) in their work on LSTM-CNN model in detecting epilepsy which is 

common in ADHD’s children achieved a high accuracy of 97%. They also emphasized the 

significance of temporal dependencies in EEG signals, which reflect the connectivity and evolving 

state of the subject's cognition [26]. Due to the multi-dimensional and different datasets used in 

previous studies, there is an inconsistent affirmation stating which of the five bands has a significant 

effect on discriminating ADHD. In the U-Profile, resting-state power graph highlighted theta and beta 

best to detect ASD and ADHD [87], supported by Alim (2023) who indicated that signals less than 

30Hz or the first four sub-bands are significant [80]. On the other hand, Parashar (2021) pointed out 

that all bands from each regional cortex are significant. Furthermore, different feature selections cause 

mixed statements about which nodes affect ADHD the most. Holker (2022) mentioned only six nodes; 

namely, FP2 (right pre-frontal), O2 (right occipital), F7 (left frontal), F8 (right frontal), T7 (left 

temporal) and P8 (right post-temporal) are the most important nodes [74]. Chen (2018) agreed on that 

all nodes are equally important [49]. Previously, a classical ML-based classifier was used to identify 

ADHD by extracting the features manually. Although the contributions have already been proved, they 

cannot achieve multiple-class classification with automated feature extraction. Meanwhile, the 

identifiable EEG segments of ADHD are too long to limit the real-time ADHD detection. 

Furthermore, methods of extraction that involved complex time-series features have not been 

extensively explored for ADHD [32]. The Deep Neural Network Framework has more layers (more 

depth) and each layer adds complexity to the architecture while enabling the framework to process the 

inputs concisely for outputting the ideal solution. LSTM can be applied when there is a long series 

with a sequence prediction that’s required and some long- term dependency of data to go parallel with 

it. The CNN-LSTM framework proposed by Wang et al. (2022) incorporated features extracted by the 

CNN across various frequency bands and intricate ERP waveforms. However, despite this 

comprehensive feature set, the framework struggled to identify the ultimate key activities due to 

spatial feature-extraction problems [34]. 

2.3.3 Type of Datasets and Parameters Used 

This sub-section summarizes and discusses the findings of RQ2: What type of NDD datasets in 

previous works have been used to build the models? and RQ3: What type of parameters or variables 

have been used? Table 9 shows the type of neurodevelopment disorders, dataset sources and related 

studies working on the prediction and detection of NDD. 

There are different diagnosing way being performed to collect the datasets. Existing diagnostic tools to 

detect NDD include Clinical Observation, Statistical Evaluation, ML Classification, IOT/Robotics 

…etc. For instance, for ASD, most studies have used the Demographic, Medical, Facial Image Data, 

BMRI, Eye Tracking data, BMRI/FMRI and EEG data to perform the predictions and detections based 

on their representation stated in DSM-V. For structured datasets, the most frequently used databases 

include Observation and Behaviorial, BMRI/FMRI and EEG-based data. This is due to their 

availability on published well-known websites, like IEEE and Kaggle, for advanced research [87]. 
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Incorporating multiple sources of data can be useful if there is a lack of data availability to predict and 

detect NDD Disorder. For instance, the dynamics of certain disorders, (e.g., cerebral palsy, epilepsy, 

GDD) could be associated with other information (e.g. neuron-defect density, population density and 

mobility) and this information should be incorporated in the process of modeling the classification of 

NDDs to reduce the residual errors of the models [83]. 

2.3.4 Type of Problems Addressed by Machine-learning Models 

This sub-section summarizes and discusses the findings of RQ4: What types of problems are 

addressed using these models? and RQ5: Which models achieved the highest performance? Table 8 

tabulates and summarizes the regression problems and all the individual machine-learning models 

applied to achieve the objectives of each study. On the other hand, Table 9 tabulates and summarizes 

the classification problems and all the relevant individual machine-learning models applied to solve 

these classification problems. The best models and their performances for each study are also tabulated 

in these tables. The details of the findings are discussed in the next sub-section 2.3. Based on the 

results shown in Table 8 and Table 9, for time-series data, VAR and LSTM are the most common 

machine-learning algorithms used to perform detection and prediction [17], [18], [31], [32], [83], [85], 

[87]. On the other hand, the family of ANN, 𝑘𝑘NN, MLP and CNN algorithms are widely used in 

solving classification tasks [24], [30], [33]-[34], [36], [39], [47], [84]. 

Table 8. Classification: Types of machine-learning approaches and individual models used. 
 

Study Model Best Model with Accuracy Additional Performance Metrics 

[24] CNN, GLCMbased, KNN Time-Frequency image (TFIs) ∗Deep-CNN 99.75% PREC 96.33%, REC 96.74%, F1-S 96.54%, CM FN 
3.26% FP 3.75% 

[25] LR, SVM, RF, CNN ∗ICA+CNN 67% SP 89%, SE 42%, PREC 77%, AUC 0.65 

[26] EEGNet, DeepConvNet and ShallowConvNet ∗DeepConvNet (LSTM-CNN) 96% PREC 96%, REC 96%, F1-S 96%, KP 95.20%, MCC 
95.23%, Robustness Difference 39% 

[27] SVM, kNN, RF, DT, CNN SVM 88% - 

[28] GPC, RF, kNN, MLP, DT, LR GP-based 97.53% REC98.46%, PREC 96.92%, AUC 0.99 

[29] SVM, LR, NB, CNN, CNN+LSTM ∗CNN+LSTM 98.03% SP 98.97%, SE 99.25%, F1-S 99.13%, FDR 71% 
[30] SVM+RBF, expEEGNetwork-LSTM ∗expEEGNetwork-LSTM 99.06% and 98.68% F1-S 99.14% and 99.24%, MCC 98% 

[31] EEGNET, ConvNets, LSTM ∗LSTM 90.50% - 

[32] Graph FMRI, FCNet, fusion FMRI, Deep FMRI, SVM 
RFE 

SVM RFE 75% - 

[33] NLSVM, LR, RF, GNB, kNN, CNN ∗CNN+LR 95.83% PREC 100%, REC 92%, F1-S 96%, AUC 0.96 

[34] LSTM, LessCNN+LSTM, 
DeepCNN+LSTM,CNN+LSTM 

∗CNN 84.44% SE 85.39%, SP 80.57% 

[35] ANN, SVM, kNN, MPL, LR, RF, GPC LASSO+SVM 94.2% SE 93.3%, SP 90.2%, AUC 0.96 

[36] CNN, 4D CNN, 6D CNN ∗4D CNN 98.56%, *6D CNN 98.85% PREC 98.69%, REC 98.81%, F1-S 98.75% (4D CNN) 
PREC 98.75%, REC 99.25%, F1-S 99% (6D CNN) 

[37] VGGFace, ResNet50, VGG19, MobileNet (Xception) ∗MobileNet(Xception) 91% SP 94%, SE 88%, CM FN 26%, FP 14% 

[38] VGGFace, MobileNet, resNet50, VGG19 ∗MobileNet 97.60% PREC 97.50%, SE 97%, SP 97%, AUC 0.97 

[39] RF, LR, DNN, CNN resting state ∗CNN 97% CV 93-96% 

[40] CNN, VGG16, VGG19, ResNet50, ResNet101, 
ResNet152, AutoML 

∗AutoML 96% CV 94% 

[41] DSVM, DT, BDT, DNN ∗DNN 93.3% (AUC) AUC 0.97, SE 93.28%, SP 91.38%, CV NPV 94.46%, PPV 
90.06% 

[42] BQC, FF-NN, IF-SVM, kNN, LDA, SCNN, MBCNN, 
SVM-MLP, IPSO-NN, RF, SVM-RBF 

∗1DCNN 99.70%-99% PREC 98-99%, REC 98-99%, F1-S 98-99% 

[43] LR, kNN, SVM, NB, ALexNet, GoogleNet, SqueezeNet ∗CNN +LASSO (SqueezeNet) 88.33% PREC 83%, AUC 0.83, FPV 16% 

[44] NB, kNN, LR kNN 86% PREC 100%, REC 78% 

[45] kNN, SVM, MLPNN, LEDPatNet19 ∗LEDPatNet19 99.29% 
(Arousal 94.58%, Dominance 92.86% and 
Valance 94.44%) 

PREC 99.29%, REC 99.30, F1-S 99.29 (Arousal FC6) 
PREC 94.43%, REC 94.63%, F1-S 94.53% (Valance F7) 

[46] SVM, kNN, J48, Bagging, Stacking, AdaBoost, NB kNN 99.1% CV 98.6%-99.2% 

[47] MLP, RF, CNN ∗CNN 92.31% AUC 0.96 F1-S 91.54%, PREC 89.72%, REC 93.45% 
[48] SVMLinear, SVM+RBF, SVM+Grid,RF, RF+Grid SVM+Grid 97.42% PREC 96%, REC 91.4%, F1-S 93.4% 

[49] SVM, LR, NB, RF, DT, kNN DT and NB 79.71% AUROC 0.83, SP 96.4%, PPV 20.5%, SE 40% 

[50] rbio1.1 +kNN rbio1.1 +kNN 99.17% CV 

[51] CNN, VGG16 ∗VGG16 68.54% CV 

[52] LR, SVM, NB, kNN, ANN, CNN ∗CNN 96.88% SP 100%, SE 93.35% 
[53] SVM, kNN, RF, CNN *CNN 70.20% SP 61%, SE 77% CV 

[54] Stacked autoencoders, Stacked autoencoders+MLP ∗MLP 85.06% SE 81%, SP 89% 

[81] RF, SVM, DNN, CapsNet ∗CapsNets 71% SE 73%, SP 66% 

[55] MLPNN, DeepCNN ∗Deep CNN 98.48% PREC 97.48%, REC 97.47%, F1-S 97.47%, CV 99.06% 
[56] SVM, LDA, DT, RF, kNN+RKF kNN+RKF 88.37% SP 91.3%, SE 85%, AUC 0.88 

[57] SVM, SVM+RBF SVM+RBF 91.3% CV 

[58] kNN, Efficient Net, LR ANN 97% CV 

[59] LR, SVM, SVM+RBF SVM RBF 98.62% PREC 89%, REC 89%, F1-S 89%, CV 59.78% 

[82] SVM, RF, LR, 2CC3D ∗2CC3D 89% F-Score 89% 
[60] MLP + DISR, MLP + mRMR ∗MLP+DISR 93.65%, ∗MLP+ mRMR 92.28% Variance 0.7% 

[61] SVM SVM 59-66.3% SP 68%-87.7% SE 22.9%-55.6% 

Models: Gray level co-occurrence matrix (GLCM)-based, Long Short Term Memory (LSTM), Gaussian Processes (GP), Naïve-Bayes (NB), Locations of Sophie 

Germain's Primes on Ulam's Spiral-Based Features (LSGP-USFNet), Expert EEG Network (expEEGNetwork), Least Absolute Shrinkage and Selection Operator with 

Support Vector Machine (LASSO +SVM ), One Dimension Convolutional Neural Network (1D+CNN), extreme inception (Xception), Artificial Neural Network 

(ANN), LED Pattern Feature Extraction (LEDPatNet19), Back Propagation Neural Network (BPNN), Decision Tree (DT), Linear Regression (LR), 𝑘𝑘-Nearest 

Neighbour (𝑘𝑘-NN), Support Vector Machine RBF kernel (SVM+RBF), Support Vector Machine (SVM), GoogleNet, AlexNet, Residual Neural Network (RNN), 2 

Channel Convolutional 3 Deep Neural Network (2CC3D), Double Input Symmetrical Relevance (DISR), minimum Redundancy Maximum Relevance (mRMR), 

BQC: Bayesian quadratic classifier, FF-NN: Feed forward neural network, IF-SVM: Immune feature weighted SVM, QDA: Quadratic discriminant analysis, KNN: K 

nearest neighbor, SVM-RBF: SVM-radial basis function, SVM-RFE: SVM-Recursive Feature Elimination, Deep Belief Network (DBN), Decision Tree (BDT), Deep 

Support Vector Machine (DSVM). Additional Performance Matrix: Precision (PREC), Recall (REC), F1-Score( F1-S), Confusion Matrix(CM), Specificity (SP), 
Sensitivity (SE), Area under Curve (AUC), Cohen Kappa (KP), Matthew Correlation Coefficient (MCC), False Discovery Rate (FDR), Cross Validation (CV), 
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Negative Predictive Value (NPV), Positive Predictive Value (PPV), False Positive Value (FPV), Area under Receiver Operating Characteristic (AUROC). 

Note: ∗Belongs to the Neural Network family. 

Table 9. Disorders, database sources and studies. 
 

NDD Disorder Database Sources or Parameters 

ASD Demographic Data [12], [13], [15], [16], [19], [30], [52], [56], [67], [84] 
Medical Observation and Behavioral Data [9], [13], [15], [16], [40], [46], [49], [52], [69], [75] 
Eye Tracking Data [8], [10], [38], [41], [76] 
Facial Images Data [12], [37], [40], [47], [51], [58], [70], [72], [85]  
BMRI/FMRI Data [34], [39], [53], [54], [81], [82]  
EEG Data [71] 

ADHD Demographic Data [25], [61], [62], [78], [79] 
Medical Observation & Behavioral Data [25], [61], [62], [28], [35]  
Eye Tracking Data [11] 

BMRI/ FMRI Data [21], [22], [25], [32], [61], [62], [68], [78], [79], [86] 
EEG Data [6], [17], [18], [20], [23], [24], [25], [27], [28], [30], [31], [33], [35], [36], [42], [43], [44], [45], [50], [55], [57], [59], [60], 
[63], [64], [66], [73], [74], [80], [83], [84] 

Dyslexia Medical Observation & Behavioral Data [7], [48], [65]  
Eye Tracking Data [77] 
BMRI/FMRI Data [65]  
EEG Data[14], [27] 

Others EEG Data [26], [29], [87] 

(Please, refer to Table 6 and Figure 3) 

2.3.4.1 Approaches to Solve Regression Problems 

The approaches to solve regression problems in detecting and predicting the occurrence of NDDs can 

be divided into statistical and machine learning approaches. Based on the information tabulated in 

Table 9, for the statistical approaches, several models have been used to perform the detection and 

prediction of NDDs, including the Cubic Regression Model [6], LR [7], [8], [11]-[12], [14], [16], [45], 

[60], [64] and ANN [38]. In multivariate and time-series modeling, Cubic Regression combined with 

SVM-RBF by Delisle et al. (2023) outperformed the statistical approach MX-VAR model by 

Redondo. Based on the review, deep-learning algorithms have outperformed the statistical approaches 

in detecting and predicting the disorders with multi-vatraite approaches, such as, Locations of Sophie 

Germain’s Primes on Ulam’s Spiral-based (LSGP-USFNet) [17], mixed-effect functional-coefficient 

autoregressive (MX-FAR) [18], Single Photon Emission Computed Tomography (SPECT) [62], 

Variational Mode Decomposition and Hilbert Transform-based (VHERS) [63], Multi-layer Perceptron 

(MLP), Phase-transfer Entropy (PTE) [20], Deep Variational Autoencoder (DVAE), Attention 

Attribute-enhanced Network (AAEN), Metaheuristic Spatial Transformation (MST) , Graph Signal 

Processing (GSP), Graph Learning (GL), Meta-cognitive Neuro-fuzzy Inference System (McFIS) 

(International Conference on Cognitive Computing and Information Processings 1. 2015 Noida et al., 

n.d.), Local Binary Encoding Method (LBEM), Linear Discriminate Analysis (LDA) [51], Kernel 

Principal-component Analysis (KPCA) [68], [79]. 

2.3.4.2 Approaches to Solve Classification Problems 

Based on the information tabulated in Table 8, neural network methods have been found to be very 

effective in detecting NDDs. This review reports that the neural network-based methods have achieved 

27 best results out of 81 studies [24]-[26], [29]-[34], [36]-[43], [45],  [47], [51]-[55], [58], [60], [64]. 

These classification approaches use different methods of extraction and selection depending on the 

type of datasets represented for the purposes of their studies. Few researchers have used T-test and 

LASSO [28], [73], while few others used ICA and PCA to select the most discriminate features to 

optimize the multi-dimensional features within their datasets before being fed into their proposed 

models [20], [51]. Some authors applied the grid method to improve accuracy performance, such as 

Pralhad et al. (2021) who compared SVM and RF models using the grid method in dyslexia detection 

through Video on Observation and Behavioral datasets, resulting SVM using grid achieved the highest 

accuracy of 97.42% [48]. 

Various studies have investigated autism classification using diverse methodologies and datasets. For 

instance, Alsaade et al. (2022) evaluated deep-learning models' performance in detecting ASD via 

facial features, highlighting Xception's effectiveness [37]. Elshoky (2022) employed deep learning 

(VGG16), achieving a remarkable accuracy of approximately 96% compared to other deep-learning 

models, such as VGG19 and ResNet [40]. Kanhirakadavath and Chandran (2022) utilized eye-tracking 

datasets along with deep-learning models, while Kanhiraka, Rashid and Lin (2022) employed 

machine-learning techniques on eye-tracking data for early autism screening in children [41], [68]. 

Studies like Shilaskar et al. (2023) and Delisle-Rodriguez et al. (2023) utilized observation and 
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behavioral (AQ-10) datasets with supervised-learning models, noting SVM's superior performance 

[6]-[7]. In the area of medical research datasets, such as ABIDE and fMRI, were commonly used 

alongside machine-learning and deep-learning models, like MLP, NB, RF, CNN, ResNet and 

GoogleNet. Researchers like Attlah et al. and D.Wang et al. (2023) observed improved accuracies with 

their trained models compared to pre-trained ones [25]. Rabbi et al. (2021) compared various models, 

finding CNN to be highly accurate in detecting autism from facial images [47]. Ahmed et al. (2022) 

developed a web application using deep learning, achieving 95% accuracy with models like 

MobileNet [38]. Ahmed et al. (2022) adopted a deep transfer-learning approach, with MobileNet 

exhibiting the highest accuracy of 97% in detecting autism from children's facial images. Deep-

learning algorithms offer significant benefits over statistical methods when it comes to uncovering 

inherent patterns for prognosis or diagnosis in neuropsychiatry [29]. In recent decades, research in 

neuropsychiatric diagnosis using EEG has primarily centered on addressing the "multi-dimensional 

problem" of localizing the complex brain-activity measurements. EEG-based models have seen 

extensive research in investigating dysfunctions across various neuropsychiatric disorders such as 

depression, Alzheimer's disease, epilepsy, phobias, conduct disorder, schizophrenia and NDD. Often, 

these methods are combined with artificial intelligence or machine-learning approaches, as shown in 

Table 10. 

Table 10. Statistical methods used for classification and regression problems. 

 
[17] kNN, CNN, LSTM, SVM, NB, LSGP-USFNet LSGP-USFNet +SVM 97.5%-98.9% SE 90.57%-99.06%, PREC 91.45%-98.49%, F1-S 93.03%- 

98.77% 

[18] FAR, VAR MX-VAR 95% (fPDC) Mean fPDC 95% 

[62] SPECT, CAD, ML (Different Brain Region) SPECT+CAD+ML 80% (frontal cortex) F-Measure 79.95% 

[63] CNN, MLP, VHERS ELM VHERS 99.95% (delta) SE 100%, SP 99.89%, KP 99.9%, PREC 99.91%, F1-S 

99.9%, MCC 99.9% 

[64] MLP ∗MLP 90.01% (Trend) SE 90.55%, SP 89.84% 

[20] gECV+ANN+GA (PTE Brain Region) *ANN+gECV 89.7% PTE p<0.01 dPTE 0.5<dPTExy≤1 

[19] AAEN ∗AAEN 86.22% SE 44.45%-98.18% SP 66.66%-97.14% 

[22] McFIS+GA+ELM McFIS+GA+ELM (63 voxels taken from Top- 50 best 

binary solutions) 

PREC 92%, REC 90%, F1-S 90% 

[21] VA-Relief VA-Relief 98.04% - 

[78] Functional connectivity, resting state LDA 80.08% SE 80.7%, SP 79.47% 

[79] KPCA-SVM KPCA-SVM 81% - 

Models: Locations of Sophie Germain’s Primes on Ulam’s Spiral-Based (LSGP-USFNet). mixed-effects functional-coefficient autoregressive (MX-FAR), functional Partial 

Directed Coherence (fPDC), Single Photon Emission Computed Tomography (SPECT), Variational Mode Decomposition and Hilbert Transform-Based (VHERS), extreme 

learning machine(ELM), Multi-Layer Perceptron (MLP), Phase Transfer Entropy (PTE), Genetic Algorithm (GA), Global Effective Connectivity Vector (gECV), Deep 

Variational Autoencoder (DVAE), attention attribute-enhanced network (AAEN), Graph Signal Processing (GSP), Graph Learning (GL), Meta- Cognitive Neuro-Fuzzy Inference 

System (McFIS), Extreme Learning Model (ELM), linear discriminate analysis (LDA), kernel principal component analysis (KPCA). Additional Performance Metrics: Sensitivity 

(SE), Specificity(SP), Precision (PREC), Kohen’s kappa (KP), F1-Score (F1-S), Mathews Correlation Coefficient (MCC), Functional Partial Directed Coherence (f PDC), 

Multivariate Analysis Of Variance (MANOVA).  

Note: ∗Belongs to the Neural Network family. 

This line of inquiry offers considerable potential for revealing neural correlates of NDD, enhancing 

diagnostic methods and progressing treatment strategies. This entails employing sophisticated 

statistical techniques, like low-resolution electromagnetic tomography (LORETA), Phase Transfer 

Entropy (PTE), Variational Mode Decomposition and Hilbert Transform-Based (VHERS), 

optimization methods, among others, to overcome the inherent spatial resolution limitations of EEG 

[20], [63]. Furthermore, there was a drastic increasing amount of research conducted with EEG-based 

datasets. Studies and methods of feature extraction and selection are shown in Table 12. 

2.3.5 Assessment Measures and Methods 

This sub-section summarizes and discusses the findings of RQ6: What evaluation metrics and methods 

are employed to measure the performance of the machine-learning models? (e.g. Accuracy, Precision, 

Recall, F-Measure, ROC, AUC, Kappa) of the proposed machine learning algorithms for prediction 

and detection models? In most regression problems, all the proposed methods or algorithms are 

measured by using Autoregressive (VAR), mean, standard deviation (STD), mean functional partial 

directed coherence(fPDC), Root Mean Square Error (RMSE), t-test, two-way ANOVA analysis, 

average shortest path (d) and betweenness centrality (Cbetweenness), Friedman test, Nemenyi test, 10-

fold metrics (Recurrence, Determinism, Entropy, Laminarity, Trapping Time and Trend), permutation 

statistical test, VOXELS’COUNTS and high testing efficiency (fitness value), nested cross-validated 

accuracy and kappa score. On the other hand, Accuracy and ROC are mostly used for evaluating the 

performance of the classifiers proposed in those studies. In this paper, 27 out of 81 (33%) studies 

found that the individual models that belong to the neural-network family performed better when 

compared to other linear and non-linear methods. Tables 9 and 10 show that machine-learning models 

Study Model Best Model Additional Performance Metrics 
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achieved lower Mean Absolute Error (MAE) and Mean Squared Error (MSE) measurements compared 

to other statistical models (e.g. VAR and MX-VAR) [18]. However, for long-term trend, it can be 

observed from these tables that deep-learning approaches improve RMSE readings in non-linear 

models’ classification which achieved above 98% of accuracy [36], [44], [55]. As we have noticed, 

based on summaries stated in previous sub-sections, machine-learning approaches performed better 

than statistical approaches. Deep-learning and ensemble algorithms consistently exhibit a trend of 

achieving higher accuracy measurements [24], [55], 𝐹𝐹1 Score measurement [11]-[12], [28], [33], 

[53], [55], [59], [74], AUC [35], [41] and ROC measurement [67], [73], in comparison to other 

statistical and machine-learning models evaluated in this study. 

2.3.6 Ensemble Method 

This sub-section summarizes and discusses the findings of RQ7: What types of ensemble methods are 

used in machine-learning models? 

Various ensemble approaches have been introduced for predicting NDDs. Table 11 provides an 

overview of these methods used for predicting and detecting disorder outcomes, along with 

summarizing the evaluation techniques and metrics employed in ensemble learning. Further 

exploration is warranted to assess the potential of ensemble or hybrid models based on deep-learning 

techniques utilizing multi-source data, as they have demonstrated enhancements in base-model 

performance. An ensemble method refers to a strategy that employs multiple independent models or 

weak learners, which may be similar or diverse, to generate an output. Ensemble methods are typically 

classified into boosted trees, bagged trees, subspace kNN and stacked approaches [73]. Bagging 

involves employing homogeneous weak learners arranged independently in parallel and aggregating 

their predictions to determine the final output. 

Table 11. Ensemble methods used for classification problems. 

 

 
 

[65] MS-ROI XGBoost MS-ROI XGBoost 99.87% PREC 92.36%, REC 91.65%, SE 99.89%, SP 99.91% 

[74] ANN, RF, SVM RF 81.82% F1-S 81.79%, PREC 81.95%, REC 81.82% 

[66] SVM, RF, AdaBoost Adaboost 82% SE 75%, SP = 86% 

[73] Ensemble Ensemble 98.33% CF 

[67] Boosting, DT, NN, NB RF+SMOTE 98%(ROC) CF TPR 88% TNR 93% 

[75] SVM, RF, SMO RF 87% (ROC) TPR 88.5% 

[68] CDAE+AdaDT CDAE+AdaDT 90% (AUC) SE 76.92%, SP 73.08%, CF 

[76] DT, NB, kNN, SVM, Stacking Ensemble(stacking) 89.82% SE 89.21%, SP 90.31%, KP 0.33% 

[69] SVM, kNN, RF, NB, AdaBoost, SGD, 
CN2 
rule inducer 

SGD 99.6% (Adult), RF 97.2% (Adolescent) 
RF & SGD 99.7% (Toddler) 

F1-S, PREC & REC (90%-100%) 

[72] SVM, RF, LR, kNN, SVM+PSO SVM-PSO 95.6%, RF 90.45% - 

[70] DT, CNN, AdaBoost Adaboost 98.77% (Toddler), 97.20% (Child), 
93.89% (Adolescent), 98.36% (Adult) 

SE 99.39%, SP 99.39%, KP 97.10%, AUROC 99.98%, Logloss 
3.01% (Toddler),SE 98.40%, SP 98.46%, KP 94.41%, AUROC 
99.89%, Logloss 9.62% (Toddler) 
SE 97.50%, SP 98.33%, KP 89.37%, AUROC 98.61%, Logloss 
15.80% (Toddler),SE 99.30%, SP 96.11%, KP 96.02%, AUROC 
99.95%, Logloss 5.64% (Toddler) 

[71] RF, LR, Bagging, CNN RF 97% PREC 97%, REC 97%, F1-S 97% 

[77] kNN, kNN 53.4% MANOVA p-value<0.01 

Models: MS-ROI XGBoost, AdaBoost, Ensemble, Random Forest (RF), Random Forest Based (RF-based), Stochastic Gradient Descent (SGD), Partical Swam Optimization (PSO), 

Gradient Boosting Machine (GBM), Sequential Minimal Optimization (SMO), Convolutional Denoising Autoencoder (CDAE), Adaptive Boosting Decision Trees (AdaDT). 

Additional Performance Metrics: Precision (PREC), Recall (REC), Sensitivity(SE), Specificity(SP), Confusion Matrix(CF), True Positive Rate(TPR), True Negative Rate(TNR). 

For instance, in their study on classifying ASD versus control groups, M. Rakic and M. Cabezac 

combined data from functional and structural MRI and assessed it on a sizable multi-site dataset. Their 

quantitative analysis was conducted on 817 cases from the International Autism Brain Imaging Data 

Exchange I (ABIDE I) dataset, comprising 368 ASD patients and 449 control subjects. They achieved 

a classification accuracy of 85.06% with a standard deviation of 3.52% when employing an ensemble 

of classifiers. Combining information from both functional and structural sources resulted in 

significantly improved performance compared to using an individual pipeline [54]. Sangeetha et al. 

(2022) showed that ensemble methods, especially MS-ROI with XGBoost, are capable optimizing 

computational time in detecting dyslexia within smaller data sizes [65]. Hamedi et al. (2021) used the 

stacking method in detection for ASD with rs-MEG signals and achieved an accuracy of 89.82%, 

Study Dataset Best Model with Accuracy Additional Performance Metrics 
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showing that the left central (LC) of the brain can discriminate the ADHD group [76]. Thus, ensemble 

methods have proven to improve predictive performance using an individual model and multiple 

learning algorithms although they are time and space-consuming compared to other machine-learning 

models [67], [74], [76]. Efforts need to be directed towards harnessing the potential of ensemble 

methods in future-research endeavors, in order to bolster their applications for addressing various 

disorders. 

Table 12. Feature-extraction and machine-learning models from related EEG-based studies. 

 Features Extraction Features Selection ACC Model 

 

P
ap

er
  

3
F

D
 

 

P
S

O
 

 

IC
A

 

S
P

M
(M

S
P

) 

L
A

S
S

O
 

 

T
-T

es
t 

R
F

E
 

3
E

D
A

s 

 

V
M

D
-H

T
 

D
IS

R
m

R
M

R
 

B
an

d
sδ

 θ
/β

 

R
O

I 

R
ec

u
rr

en
ce

 

R
es

ti
n
g
 S

ta
te

 

C
h
an

g
in

g
 s

ta
te

 

E
R

P
 

P
C

A
 

T
im

e 
S

er
ie

s 

  

[60] ✔         ✔ ✔        93.65% MLP 

[23]  ✔         ✔        90% SVM (RBF) 

[57]           ✔  ✔ ✔     91.3% SVM (RBF) 

[55]           ✔     ✔   98.48% CNN (DCNN) 

[73] ✔    ✔  ✔    ✔        98.33 Ensemble 

[66]           ✔ ✔       84% Ensemble (Adaboost) 
[20]   ✔ ✔             ✔  98% ANN (dTF+ANN) 

[35]     ✔ ✔     ✔        94.2 SVM (LASSO) 

[36]    ✔       ✔        98.85% CNN (6D CNN) 
[33]           ✔        95.83% CNN (CNN+LR) 

[74]    ✔       ✔        81.82% RF 

[28]     ✔ ✔     ✔        97.53% SVM (GP-based) 
[30]        ✔   ✔        96.16% ANN (MEMD-GA-ANN) 

[80]           ✔      ✔  94% SVM (Gaussian) 

[63]         ✔  ✔        99.81% DNN+ELM (VHERS) 
[59] ✔          ✔        98% SVM (RBF) 

[55]    ✔       ✔        98.48% CNN 

[42]    ✔       ✔        98% DCNN 
[6]    ✔       ✔        81.37% SVM (RBF) 

[51]   ✔        ✔   ✔     85% CNN 

[50]           ✔       ✔ 99.17 SVM (RBF) kNN Bio 
and rbio 

[73] ✔          ✔        98.33% Ensemble (subspace) 

[45]    ✔       ✔        99.29% LEDNet (LEDPatNet19) 

[83]    ✔       ✔       ✔ 97.75% LSTM 

[24]    ✔       ✔        99.75% CNN (TFI-based) 

[34]    ✔       ✔   ✔    ✔ 98.23% CNN-LSTM 

[17]    ✔       ✔       ✔ 97.46% Gray-tones (LSGP-
USFNet) 

[26]   ✔        ✔       ✔ 96% CNN (DeepConvNet) 

[31] ✔          ✔       ✔ 90.50% LSTM 

Notes: 3FD: Higuchi, Katz and Petrosian fractal dimensions Largest Lyapunov Exponent (LLE),PSO: Partical Swam Optimization, ICA: Independent Component Analysis,SPM: 

Statistical Parametric Mapping applied multiple sparse priors (MSP) algorithm, LASSO: Least absolute shrinkage and selection operator,T-Test: T score = (difference between 

the group)/(difference within the groups),RFE: Recursive feature elimination,3EDAS: three multivariate EDAs (MEMD, MEWT and MVMD), VMD-HT: variational mode 

decomposition (VMD) and Hilbert transform (HT),DISR: Double Input Symmetrical Relevance (DISR),mRMR: minimum Redundancy Maximum Relevance, ROI: Region of 

Interest, ERP: Event Related Potential, PCA: Performance Component Analysis 

2.3.7 Deep Learning Method 

This sub-section summarizes and discusses the findings of RQ7: What types of deep-learning 

approaches are used in NDD detection? 

Within the emergence of machine learning, the most effective methods identified for predicting 

neurodevelopment disorders are predominantly associated with the neural-network family. The 

experimental results showed consistent performance improvements by the proposed deep-learning 

approaches over other representative linear and non-linear methods on multiple real-world datasets. 

These algorithms include the Long Short-Term Memory (LSTM) [30]-[32], [83], Convolutional 

Neural Network (CNN)[24], [27], [33], [34], [36], [39], [47], [55], Multi-layer Perceptron (MLP) [11], 

[14], [45], [60], [64], Neural Network [31], [34], [42]-[43], [47], [53], [55], Hybrid Neural Network 

(HNN) [30], [45], [81], [82] and combinations of statistic and deep-learning approaches. LSTM 

algorithms were shown to be superior in detecting ADHD, which supports long sequential data, like 

EEG [29], [31], [34]. A feature selection-based time-series modeling has been proposed for predicting 

future disorders [24], [26], [87]. The work proposed a multi-objective evolutionary algorithm to find 

the best neural-network algorithm (deep learning) for detection differences. Although the 

Convolutional Neural Network (CNN) is the best model when it comes to process image data, as it is 

capable to excel local features and is good in pattern recognition [47], it has limited effectiveness for 
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sequential data. For large datasets, training takes a long time to complete. In previous studies, Kaur et 

al. (2021), Moghaddari et al. (2020), Mafi & Radfar (2022), TaghiBeyglou et al. (2022) and Saini et 

al. (2022) have conducted their work on ADHD detection using CNN model [33], [36], [51], [55]. 

Moghaddari in his work to tackle the ERP fatigue problem using deep CNN achieved an accuracy of 

98.48%. Mafi & Radfar (2022) used 4D and 6D connectivity tensors as a convolutional neural network 

input, achieving an accuracy of 98.85%. While Taghibeyglou et al. (2022) achieved an accuracy of 

95.83% on their CNN+LR model, the framework suffers from a time-consuming training procedure, 

since the method focuses only on raw time series in both spatial and temporal domains. Furthermore, 

in the work of Saini et al. (2022) on the evaluation of their proposed architecture 1DCNN on three 

databases, the best accuracy was achieved on the database with few features compared to the database 

with more features [44]. Hence, an improved model is required to be able to overcome the limitation 

of CNN model in processing more features for ADHD detection. 

Long Short-Term Memory (LSTM) is a deep recurrent neural-network architecture utilized for the 

classification of time-series data, a crucial aspect of time-series analysis focusing on comprehending 

and predicting sequential data points over time [68]. Within deep learning, LSTM models are applied 

to regression analysis, addressing issues of non-linearity and data interdependence to enhance 

traditional regression models. These networks are trained to classify sequence data, leveraging 

LSTM's capability to retain information from previous inputs over extended periods. This 

characteristic renders LSTM particularly effective for handling sequences with prolonged 

dependencies, where earlier time steps significantly influence subsequent ones. Sharma & Singh 

(2023) in their novel approach on expEEGNetwork-LSTM achieved an accuracy of about 98.02% 

[30]. In other works, Huang et al. (2022) with their objectives to solve time window issues in deep 

learning, they achieved an accuracy of 90.50% with their LSTM model. One drawback of LSTM 

models is their computational intensity, requiring more processing time compared to alternative 

methods [31]. While LSTM models can achieve high accuracy, there remains room for improvement 

with certain datasets. Notably, LSTM overcomes the limitations of traditional RNNs by employing 

separate memory cells capable of storing long-term information independently of current inputs or 

outputs [30], [31], [34], [83]. This property enables LSTM to learn and retain long-term dependencies 

while mitigating issues like the vanishing or exploding-gradient problem. Another way to optimize the 

LSTM model is to use hyper-parameter optimization, which is a process that involves searching for 

the best combination of values for the parameters that control the behavior and performance of the 

model, such as the number of layers, units, epochs, learning rate or activation function like sigmoid, 

hyperbolic tangent and rectifier. 

A CNN-LSTM network on the other hand uses convolutional and LSTM layers to learn from the 

training data. Huang et al. (2022) and Zhang et al. (2023) showed that the proposed EEG-based LSTM 

networks can extract the varied temporal characteristics of high-resolution electrophysiological signals 

to differentiate between ADHD and NT children and bring new insights to facilitate the diagnosis of 

ADHD [26], [31]-[32] by leveraging LSTM’s ability to capture temporal dynamics and Convolutional 

Neural Network (CNN) capability to detect spatial patterns. The proposed method proved successful 

in enhancing EEG classification by outperforming existing models developed for similar EEG-based 

classification tasks. Wang et al. (2022) in their work with the LSTM-CNN model to process multiple 

frequency bands and complex ERP waveforms achieved an accuracy of 98.23% [25]. Somehow, this 

did not help the network find the final key activities. An improved deep-learning model that can 

extract more spatial feature information from multi-channel EEG signals could be employed to 

identify commonalities and sub-types [34]. Omar et al., 2022 in their work on detecting epilepsy 

applied Convolutional Neural Networks (CNNs) for extracting spatial features and Long Short-Term 

Memory (LSTM) for identifying temporal dependencies, achieving an accuracy of 96% focusing on 

scalability and efficiency. However, their result suggests that even models with fewer trainable 

parameters may still require many epochs or batch sizes to achieve optimal performance, highlighting 

the importance of careful model selection and hyper-parameter tuning [26]. 

Table 13 illustrates brief description of methods and techniques: their principles, advantages and 

limitations, in terms of each machine-learning model and technique used in this study. 
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Table 13. Description methods of each machine-learning model and technique used. 

Methods/Techniques Principles Advantages Limitations 

Logistic Regression  Linear model used for binary classification. 

 Predicts the probability of a binary 

outcome by applying the logistic (sigmoid) 

function to a linear combination of input 

features. 

 Coefficients can be 

interpreted to understand 

the relationship between 

features and the 

probability of the outcome 

 Computationally efficient 

with a closed-form 

solution. 

 Provides probability 

estimates for classification 

 Assumes a linear relationship 

between features and the log- 

odds of the outcome, which may 

not capture complex patterns 

 Requires proper feature scaling 

for optimal performance. 

 Best suited for binary outcomes, 

though variations exist for 

multiclass classification 

Decision Trees  Non-linear model that splits data into 

subsets based on feature values 

 Creates a tree-like structure where each 

internal node represents a feature (or 

attribute), each branch represents a decision 

rule and each leaf node represents an 

outcome. 

 Constructs the tree using criteria such as 

Gini impurity or information gain to make 

splits. 

 Easy to visualize and 

interpret decision rules 

 Handles both numerical and 

categorical data without 

scaling 

 Can model complex 

relationships through 

hierarchical splits 

 Prone to overfitting, especially 

with deep trees. 

 Small changes in data can lead to 

different tree structures 

 May create biased trees if some 

classes dominate 

Random Forest  Ensemble method using multiple decision 

trees 

 Aggregates predictions from multiple 

decision trees to improve accuracy and 

robustness 

 Builds a multitude of trees using 

bootstrapped samples and random feature 

subsets, then averages (regression) or votes 

(classification) to make the final prediction 

 Typically, more accurate 

than a single decision tree 

due to averaging and 

reducing variance 

 Less prone to overfitting 

compared to individual 

decision trees 

 Can provide insights into 

the importance of different 
features 

 Less interpretable compared to 

single decision trees 

 More computationally intensive, 

requiring more memory and 

processing power 

 Making predictions can be 

slower due to the need to 

aggregate results from multiple 

trees 

Support Vector 

Machine (SVM) 
 Supervised learning algorithm for 

classification and regression 

 Finds the hyperplane that best separates 

classes in a high-dimensional space. For 

regression, it finds the hyperplane that best 

fits the data within a specified margin of 

tolerance. Allows the algorithm to operate in 

higher-dimensional spaces using kernel 

functions (e.g., polynomial, RBF) 

 Works well in high- 

dimensional spaces and 

with a clear margin of 

separation 

 Especially effective in cases 

with a clear margin of 

separation 

 Can use different kernels 

for non-linear classification 

 Training can be time-consuming, 

especially with large datasets 

 Performance heavily depends on 

the choice of kernel and 

hyperparameters 

 May not perform well with very 

large datasets compared to other 

methods 

Multi-Layer 

Perceptron (MLP) 

 Type of artificial neural network with 

multiple layers of neurons. 

 Consists of an input layer, one or more 

hidden layers and an output layer. Uses 

non-linear activation functions (e.g., ReLU, 

sigmoid) to model complex relationships 

 Trained using backpropagation and gradient 

descent to minimize a loss function 

 Capable of modelling 

complex non-linear 

relationships 

 Can be used for various 

types of tasks, including 

classification, regression 

and more 

 Automatically learns 

features from raw data 

 Can be slow to train, especially 

with large networks and datasets 

 Prone to overfitting, especially 

with a large number of 

parameters 

 Performance can be sensitive to 

hyperparameters and network 

architecture 

Convolutional Neural 

Networks (CNN) 

 Specialized neural network for processing 

grid-like data (e.g., images). 

 Uses convolutional layers to automatically 

learn spatial hierarchies of features (edges, 

textures, etc.) and pooling layers to reduce 

dimensionality 

 Comprises convolutional layers, activation 

functions, pooling layers and fully 

connected layers 

 Automatically learns and 

extracts features from 

images or spatial data 

 Reduces the number of 

parameters and 

computational load through 

convolutional filters 

 Performs exceptionally well 

in tasks like image 

classification and object 
detection 

 Requires significant 

computational power and 

memory 

 Can be slow to train, especially 

with large networks 

 Typically needs large amounts of 

labelled data for effective 

training 

Recurrent Neural 

Network (RNN) 

 Neural network designed for processing 

sequential data 

 Uses loops to maintain a state across 

sequences, allowing it to handle temporal 

dependencies 

 Contains recurrent connections that process 

sequences one element at a time and update 

the internal state 

 Suitable for tasks involving 

sequential data, such as 

time series or text 

 Can maintain context over 

sequences to some extent 

 Struggles with long-term 

dependencies due to vanishing 

gradient issues 

 Difficult to train on long 

sequences; often requires more 

sophisticated architectures like 

LSTMs or GRUs 

 Can be computationally 

demanding, especially for long 
sequences 

Long Short-Term 

Memory (LSTM) 

 A type of Recurrent Neural Network (RNN) 

designed to handle long-term dependencies 

and sequential data 

 Uses gates (input, forget and output) to 

control the flow of information and manage 

long-term dependencies in sequences 

 Comprises LSTM cells that maintain a 

memory cell to remember information over 

long periods 

 Effectively captures long- 

term dependencies in 

sequential data 

 Mitigates the vanishing 

gradient problem common 

in traditional RNNs 

 Used in various 

applications like time series 

forecasting, language 

modelling and sequence 

prediction 

 Training can be resource- 

intensive due to the complexity 

of the model 

 More complex to understand and 

tune compared to simpler mod 

3. CONCLUSIONS 

Based on previous studies on Neurodevelopment Disorder, a summarization included in this review 

shows strengths, limitations and future directions for research on this domain. 

This literature review endeavors to identify and examine various methodologies, datasets, parameters, 

individual models, ensemble models, performance metrics and approaches utilized in prior research on 

employing machine-learning techniques to mitigate the escalation of Neurodevelopment Disorder. Six 
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online digital libraries were utilized to retrieve pertinent peer-reviewed articles, resulting in the 

selection of 81 studies published between 2013 and 2023. The primary objective of this systematic 

literature review (SLR) was to assess and curate all pertinent research studies concerning the detection 

and prediction of Neurodevelopment Disorder using machine learning, guided by the mentioned seven 

questions. The contributions of this paper can be summarized as follows: 

• Recognition of the improvement in predicting NDDs by leveraging diverse data sources. 

• Acknowledgement of the superior efficacy of neural-network algorithms over alternative 

linear and non-linear machine-learning approaches. 

• Validation of the efficacy of deep learning and hybrid methodologies, showcasing their 

superior performance and appropriateness in predicting and detecting ND Disorders. 

3.1 Significance, Limitations and Future Directions 

From this review, we have identified limitations that affect previous works on detection and prediction 

of Neurodevelopment Disorder using machine learning. Autism Spectrum Disorder (ASD) detection is 

well studied and achieved maximum performance and highlighted the strengths of signal fusion 

utilizing Signal-processing and Decision-making techniques. The review cautions that the focus on 

detecting ASD may overshadow research into other diseases, despite the promising results achieved in 

ASD studies. While signal-fusion techniques have been extensively explored, other 

Neurodevelopment Disorders (NDDs) have not received as much research attention. Sustainable ML 

models are suggested for future work to provide models with feature fusion able to merge different 

extracted features from various sources and compressed to a single layer before being fed into ML 

models. Therefore, fusing only important features and suppressing the others will reduce time 

complexity, thus improving the model’s performance. The limited research on signal fusion for NDDs 

is due in part to challenges in information technology and computer science. A new approach is 

needed to manage and integrate signals from multiple sensors using artificial intelligence to create a 

single, optimized feature for meaningful analysis. Although current cloud technologies, such as 

Google Colab and Kaggle, enable researchers to upload and test datasets, collaboration is often 

hindered by issues related to credentials and copyrights. Additionally, the limited number of 

investigations conducted on NDD prediction based on multi-source data underscores the potential for 

obtaining a more comprehensive understanding of the disorder by integrating such data sources. 

Analyzing the complex relationships among multi-source data can yield more robust modeling 

outcomes. To address this issue, researchers need to collaborate openly and be properly credited for 

their contributions. This would allow signal fusion for NDDs to receive the attention that it deserves 

and facilitate more effective investigations. 

These studies also explored multiple validations that prove the accuracy of each prediction. However, 

due to the limitations of public datasets, average testing can be performed to varying performances of 

ML and DL techniques. The analysis highlights that the limitations of publicly available datasets often 

undermine the effectiveness of machine-learning and deep-learning techniques. This restriction 

hampers thorough testing and leads to inconsistent performance results across different research 

studies. Some professionals may face challenges in sharing datasets online due to limited access to 

technology or varying levels of expertise. To bridge this gap and enhance research outcomes, greater 

collaboration between medical professionals and data scientists is essential. 

Future directions should be ready for the paradigm shift through the emerging technologies which 

require models in handling big datasets that allow fusion of features to be processed simultaneously. 

This study underscores the need for future research to embrace new technologies that can manage vast 

amounts of data. Current algorithms may struggle to handle the simultaneous integration of multiple 

features, which is crucial for enhancing detection and prediction accuracy. As the volume of data 

continues to grow, it is essential to develop technologies that can process large datasets while 

effectively merging various data characteristics. Advanced cloud solutions capable of intelligently 

integrating these features are needed. Approaches such as genetic algorithms, sentiment analysis and 

Large Language Models (LLMs) have made strides in this area, but further innovation is required to 

address the challenges of data integration. On the other hand, studies on ADHD detection have 

increased the research exposure, especially research related to neurons which acquired deeper feature 

explorations and sustainable approaches.  
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Despite the increasing number of studies on Attention Deficit Hyperactivity Disorder (ADHD), more 

research into its characteristics and the development of sustainable strategies is still needed. This 

suggests that, while some progress has been made, there remains a significant gap in understanding 

and managing ADHD through machine learning. To address this gap, clear guidelines on the 

application of machine learning and deep learning for ADHD are essential to enhance researchers' 

knowledge and comprehension. Researchers can access handbooks and other resources online, 

including detailed explanations on platforms like YouTube. Forums on GitHub, Kaggle and Ubuntu 

also provide opportunities for discussion. Additionally, platforms such as Medium.org and blogs 

featuring data science can help bridge the gap in understanding and treating ADHD using machine 

learning. 

There is also a need for further exploration of the capacity of deep-learning models or hybrid models 

in leveraging multi-source data, given their demonstrated ability to enhance the performance of base 

models. Although several studies have applied cross-fold validations and proven models to be 

powerful, models are tested on single datasets and are non-data driven. This research also highlights 

the fact that existing literature frequently lacks in-depth descriptions of specific machine-learning 

algorithms, datasets and performance indicators. When comparing the predictive and identification 

efficacy of various approaches, this discrepancy creates a challenge. Some approaches involved data 

augmentation or ablation approach to train the models. A new performance matrix is required to 

complement the current evaluation metrics, like accuracy, RMSE, Confusion Matrix and k-fold 

validation. The new performance metrics should be able to encompass the differences between models 

which applied different machine-learning algorithms, signal fusions and overfitting/underfitting 

regardless small/large capacity of data. 

Furthermore, to improve the uncertainty and explainability of proposed models, it is essential to 

explore publicly available datasets with diverse modalities. Enhancing model interpretability is crucial 

for industry professionals, as understanding how models generate predictions is vital for trust and 

effective use of these technologies. Approaches such as Explainable AI, Interpretable AI, Responsible 

AI and Generative AI provide valuable tools and frameworks to facilitate the understanding and 

interpretation of machine-learning predictions. Integrated with various Google products and services, 

these approaches help in troubleshooting and refining model performance while also aiding in 

comprehending how models function. Applying these methods to each testing model can address the 

challenge of model interpretability. 
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 ملخص البحث:

ددددد ا عددددد ااشددددد  ذا اتق خدددددزنااجددددد هتعه ا تقدددددذه الددددد مااجذةاشدددددلادبااتدددددلاةدددددزدعلاجاستخدددددزنااج دددددزتقلاتب ه

اجتصددددددكّالاجهادددددداا  خددددددز اد دددددد ااج ه عهدددددداااالآجددددددّالاجدددددد هتعه ااجتضخددددددااج مو دددددد اا دددددد باتزنااج هضددددددمها

ددددددددد اا   كدددددددددزمال دددددددددبطااج هادددددددددزط ا دددددددددذ الا ددددددددد بااا قا ددددددددداااج همف  اجتقعدددددددددّ الا ددددددددد باااطخا

لاجذي عخه دددددددخز الحخبلدددددددزمافخدددددددتاتف قدددددددبااجضبااتدددددددزنااجض دددددددما ب ا جددددددد ااج هقزةدددددددزنااج هفصدددددددخعخلا

ددددددباناا سا ااجض دددددد  ذدلا ددددددّاتمو دددددد  اج ماةزدخددددددزنااجدددددد هتعه االآجددددددّالدؤضم ددددددزنااجكخز ددددددزنالد ةه 

دددددبالددددد مااجفؤدددددم ا ااجتصدددددكّالاجهاددددداا  خدددددز الت دددددت الددددد مااجذهةاشدددددلا جددددد اا  ا ا ددددد باتزنااج هضدددددمه

ددددداما ضدددددزاتخدددددذ ااجذهةاشدددددلا جددددد ااجك دددددتا دددددّا  كدددددبات دددددزلناادددددز كخلاد فصدددددعخلالضدددددزااج هموهددددد الاجهاا

دددددددع ا جخدددددددواا ت دددددددزتااجتعضخدددددددلاتزجض خؤخدددددددزنالاج ه دددددددذهيزنالاتهؤزلدددددددزنااجك دددددددتا آخدددددددباددددددددزاتماه

تق خددددددزنااجدددددد هتعه االآجددددددّالاجدددددد هتعه ااجتضخدددددداا ددددددّاتمو دددددد اا دددددد باتزناااجض دددددد قكعخلاتادددددد  ااشدددددد  ذا 

ااجتصددددددكّالاجهادددددداا  خددددددزمالتخددددددذ ا جدددددد اتصدددددد خاااجذهةاشددددددزنااج ددددددزتقلاتكتددددددز اجعؤددددددز كخلا اج هضددددددمه

ااجتصددددددكّا لاجهادددددداا  خددددددز ا جدددددد ااز دددددد ااجبئخ ددددددخهخلااجض ض هعددددددخلا ددددددّاتموهدددددد اا دددددد باتزنااج هضددددددمه

ما جدددددددد ااجض خؤخددددددددزنالدؤضم ددددددددزنااجكخز ددددددددزنال ددددددددباناالآسا ااجه ددددددددّااج ه ددددددددب  اجض غخددددددددبانالد ةه

ااش  ذد خزااجذةاشزنااج زتقلافمنااجضم معم

ةدددددددددضع ااجضبااتدددددددددلااجذهةاشدددددددددزنااجض ادددددددددمة ا دددددددددّااجضؤددددددددد نالاجضددددددددد تضبانااجض  صصدددددددددلاا

مالاشدددددددد  ذد ا2023 جدددددددد ا ددددددددز اا2013 ددددددددّااجف ددددددددب ادددددددددلا ددددددددز ااScopusلاجضفخبشددددددددلا ددددددددّا

ااج تصددددددكّ الاجهادددددداا ددددددلااجضبااتددددددلادصدددددد ع زناجعك ددددددت اد دددددد  اتموهدددددد اا دددددد باتزنااج هضددددددمه

ااجتصددددددددكّ اتزشدددددددد  ذا ااجدددددددد هتعهاا دددددددد باتزنا دددددددد ااج ه عخدددددددد ا عدددددددد ات ذيددددددددذااج هضددددددددمه  االآجددددددددّمالة ه

تدددددل ال  ددددددماعادؤضم دددددزنااجكخز ددددددزن ا د خؤخدددددزنااجددددد هتعه االآجددددددّالاجددددد هتعه ااجتضخددددددا الاج هضدددددزانااجضؤض 

تزلإ دددددددز لا جددددددد ااجض غخدددددددبانالد ةدددددددباناا سا ااجض ددددددد  ذدلا دددددددّااجذةاشدددددددزنااج دددددددزتقلمالجقدددددددذا

دددددم ا عددددد ا   دددددباتق خدددددزنااجددددد هتعه االآجدددددّالاجددددد هتعه ااجتضخدددددااا  ادددددزةا  اا جقددددد    دددددزئرااجضبااتدددددلااجكه

ادخدددددلا جددددد الاج ه دددددذهيزنااجضبتك دددددلاتزجك دددددتا دددددّالددددد اااجضؤدددددزن  الاتهؤزلدددددزنااجك دددددتااجض ددددد قكعخلااجبه

ااجتصددددددكّ ادددددددلا ادددددد ات ددددددميبا ت  ددددددخلااج ددددددذدزنااجضقذ دددددددلا جدددددد ادؤ ضدددددد اا دددددد باتزنااج هضددددددمه

 اصزتخلاتخ ماا   باتزنا كباتق خزناتموه اٍل اااٍا  ك ماجبه زيلااجصه خلاجعض
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