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ABSTRACT 

This article introduces a novel approach that integrates the ElGamal and RSA algorithms to advance the 

security and efficiency of public-key cryptosystems. By combining these two established asymmetric-key 

algorithms, our method leverages their individual strengths and addresses the limitations of traditional systems, 

particularly in relation to the integer-factorization and discrete-logarithm problems. The application of 

Gaussian integers enhances the robustness of both encryption and digital signature processes, offering a more 

secure cryptographic framework. Our study involves a comprehensive analysis of the integrated algorithms, 

including practical implementations and extensive cryptanalytic evaluations focused on the integer-factorization 

and discrete-logarithm challenges. Quantitative assessments are provided to evaluate the effectiveness and 

computational efficiency of the proposed system. While key generation is slightly slower compared to using RSA 

or ElGamal individually, our approach delivers comparable performance in encryption and decryption, with 

notable improvements in robustness and versatility. In contrast to existing research predominantly focused on 

optical-image processing, our work extends the scope to a broader range of applications, enhancing both 

theoretical insights and practical implementations of cryptographic schemes. Future research will focus on 

optimizing key generation, exploring integration with existing security frameworks and evaluating performance 

in diverse real-world scenarios to further refine and validate the proposed approach. 
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1. INTRODUCTION

Cryptography, an intricate fusion of art and science, has long been fundamental to ensuring secure 

communication throughout human history. From early simple ciphers to today’s sophisticated digital-

encryption techniques, the field has continually adapted to meet increasing demands for data security. 

In the contemporary digital era, where massive volumes of information are exchanged and stored 

globally, the urgency for robust and adaptable encryption solutions has never been greater. Public-key 

cryptography represents a significant breakthrough, revolutionizing security protocols with its dual-

key system: a public key for encryption and a private key for decryption. This innovative approach 

allows for secure communication even when the encryption method is known, relying on the 

mathematical intricacies of cryptographic processes to maintain confidentiality and trust. For further 

details, see [4][8][11][21][25][36] and the references therein. 

As computational power advances and cyber-threats become more sophisticated, the field of public-

key cryptography continues to evolve. Recent research has made significant strides in several key 

areas. Extensions of classical systems, such as RSA, ElGamal and Rabin, have been explored through 

their application in Gaussian integers and finite fields, enhancing their security and resilience against 

attacks [6]-[7], [13]-[15]. Hybrid encryption systems, like the one introduced by Kuppuswamy et al. 

[24], combine public and private-key algorithms to enhance security and authentication. Novel hybrid 

algorithms, including the HRSA proposed by Panda et al. [28], use multiple prime numbers to 

complicate factorization, while Iswari et al. [22] and Ahmed et al. [3] have combined RSA with 

ElGamal and integrated integer factorization with discrete logarithms to improve efficiency and 

security. Additionally, Adeniyi et al. [2] have focused on integrating RSA and ElGamal with hash 

functions to bolster data integrity through enhanced digital signatures. Meanwhile, numerous studies 

have addressed public-key cryptosystems’ application in optical-image processing, tackling specific 
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challenges and opportunities in this specialized field [5][19][21][29][36]. These contributions advance 

security measures, but are often confined to particular applications. 

The novelty of our research lies in the innovative integration of RSA and ElGamal algorithms, which 

are traditionally viewed as distinct entities in cryptographic practice. By strategically merging these 

two algorithms, we have developed a combined RSA-ElGamal public-key cryptosystem that harnesses 

their individual strengths while mitigating their respective weaknesses. This novel approach not only 

enhances the overall security of the system, but also provides a versatile framework adaptable to 

various cryptographic functions, including encryption, decryption and digital signatures. Our work is 

distinguished by a thorough analysis of the mathematical foundations of this new approach, rigorous 

cryptographic evaluations and a comprehensive comparative study. These elements collectively 

advance the field of cryptography, offering deeper insights and new possibilities for future 

developments in secure communication protocols. 

The structure of this paper is as follows: Section 1 introduces the research objectives and context. 

Section 2 provides an overview of the essential mathematical concepts relevant to our work. In Section 

3, we present our public-key generation, encryption and decryption algorithms, supported by formal 

proofs and numerical examples. Section 4 introduces our combined RSA-ElGamal algorithms and 

ElGamal digital-signature scheme, detailing key generation, signature creation and verification 

processes. Section 5 focuses on the security analysis of our combined RSA-ElGamal cryptosystem, 

evaluating its efficiency and comparing it with classical RSA and ElGamal schemes. This section also 

includes a comparative complexity analysis, offering insights into the computational costs and 

advantages of our proposed system. 

2. PRELIMINARIES

In this section, we provide a concise overview of the mathematical concepts required for our work. For 

additional details, please refer to [9], [10] and [25]. 

2.1 Arithmetic in Z 

In algebra, it is widely known that if we consider a group G and an element g within that group, the 

order of g, represented as,|𝑔| refers to the smallest positive integer t for which gt≡e. Furthermore, if 

there exists an element g  in a group G such that G can be generated entirely by g, denoted as 𝐺 =
〈𝑔〉 = {𝑔𝑛|𝑛 ∈ 𝑍},  we say that G is a cyclic group and g is known as the generator of G, where the

order of g is equal to  the order of G (i.e., |𝑔| = |𝐺| ). Euler’s phi function, represented as ϕ(n), denotes 

the count of positive integers that are both relatively prime to n and less than n. Additionally, the set of 

ϕ(n) integers that are relatively prime to n and do not contain different elements congruent to each 

other modulo n is referred to as a reduced residue system modulo n, denoted as Un. This set Un is 

cyclic if and only if n takes on the values 2, 4, pk or 2pk, where p is an odd prime and k≥ 1. For more 

information, we refer to [9] and the references therein. 

Theorem 2.1 [25] (Euler’s Theorem) If n is a positive integer and a is an integer relatively prime 

to n, then aϕ(n) ≡ 1(mod n). 

Theorem 2.2 [25] (Fermat’s Theorem) Let a be a positive integer and p be any prime number. If 

p doesn’t divide a, then ap−1 ≡ 1(mod p). 

2.2 Arithmetic in Z[i] 

The domain of Gaussian integers is the subring |𝑍𝑖| = {𝑥 + 𝑖𝑦|𝑎, 𝑏 ∈ 𝑍 𝑎𝑛𝑑 𝑖2 = −1}. It is well

known   that Z[i] is an Euclidean domain of norm N(z) = x2 + y2. Let γ be a Gaussian integer. If γ 

divides 1, then γ is called a unit. As γ is a unit, we call γα an associate of the Gaussian integer α. An 

element γ ∈ Z[i]    is said to be a unit if and only if N(γ) = 1. This implies that the only units in Z[i] are 

1, -1, i and –i. If a non-zero non-unit Gaussian integer π is divisible only by units and associates, then 

it is called a Gaussian prime. The only Gaussian primes are 1±i, those Gaussian integers π such that 

𝑁(𝜋) = 𝜋𝜋̅ which is a natural prime number of the form 4k + 1 and those natural prime numbers of 

the form 4k + 3. For more information, see [10], [20] and [27]. 
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Definition 2.1 [10] The complete residue system modulo β ∈ Z[i] is the set A(β) = {z | z ∈ ⟨β⟩}. 

Theorem 2.3 [10] Suppose that γ and β are any two non-zero relatively prime Gaussian integers. 

Then, A(γβ) = {s + rγ : s ∈ A(γ), r ∈ A(β)}. 

Theorem 2.4 [10] For any positive integer n, if we consider α =1+i, p as a Gaussian prime in the form 

4k + 3 and π as a Gaussian prime where 𝑁(𝜋) = 𝜋𝜋̅ is a natural prime number q in the form 4k + 1, 

then the complete residue systems modulo prime powers in Z[i] are given as follows: 

1. A(α2n) = {x + iy : 0 ≤ x ≤ 2n − 1, 0 ≤ y ≤ 2n − 1} and it has an order of 22n.

2. A(α2n+1) = {x + iy : 0 ≤ x ≤ 2n+1 − 1, 0 ≤ y ≤ 2n − 1} and it has an order of 22n+1.

3. A(pn) = {x + iy : 0 ≤ x ≤ pn − 1, 0 ≤ y ≤ pn − 1} and it has an order of p2n.

4. A(πn) = {x : 0 ≤ x ≤ qn − 1} and it has an order of qn.

Theorem 2.5 [10] For any positive integer n, if we consider α =1+i, p as a Gaussian prime in the form 

4k + 3 and π as a Gaussian prime where 𝑁(𝜋) = 𝜋𝜋̅ is a natural prime number q in the form 4k + 1, 

then the reduced residue systems modulo prime powers in Z[i] are given as follows: 

1. R(αn)={x + iy ∈ A(αn) : x≢y(mod 2)} and it has an order of ϕ(αn) = 2n – 2n-1.

2. R(pn)={x + iy ∈ A(pn): gcd(x, p)∼1 or gcd(y, p)∼1}and it has an order of ϕ(pn)=p2n−2(p2 − 1).

3. R(πn)={x ∈ A(πn): gcd(x, q)∼1} and it has an order of ϕ(πn) = qn−1(q − 1).

Remark 2.1 [10] Let β be a Gaussian integer, then the factor ring of Z[i] modulo 〈𝛽〉 is the set of all 

cosets  of 〈𝛽〉 denoted  by Gβ or  Z[i]/ 〈𝛽〉.  Its elements are the equivalence classes of the form [x+iy] 

= (x+iy)+〈𝛽〉. The operations are defined by [α]+[γ] = [α + γ] and [α][γ] = [αγ], for every α, γ∈ 

Z[i]/ 〈𝛽〉. Note that the order of a factor ring modulo 〈𝛽〉 is equal to the number of elements in A(β). Gβ

is a complete residue system modulo β and of order q(β). In addition, the units form a group under 

multiplication, denoted by U(β) or 𝐺𝛽
∗, which is the reduced residue system modulo β.

Definition 2.2  [10]  Let  β  be  a  Gaussian  integer,  then  the  order  of  𝐺𝛽
∗   is  defined  as  ϕ(β),

which  is  the extension of Euler’s phi function to be the domain of Gaussian integers Z[i]. 

Theorem 2.6 [10] G∗
β   is cyclic if and only if β is of the form α, α2, α3, πn, p, απn or αp.

Theorem 2.7 [10] Suppose that η = β1β2 is a composite Gaussian integer such that both β1 and β2 are 

odd prime integers of the form 4k1 + 3 and 4k2 + 3, respectively. Then, the complete residue system 

modulo η is the set Gη = {x + iy : 0 ≤ x ≤ β1β2 − 1, 0 ≤ y ≤ β1β2 − 1}. 

2.3 Classical RSA Public-key Cryptosystem 

The RSA public-key cryptosystem is widely recognized as one of the most prominent 

cryptographic systems, initially introduced by Ronald Rivest, Adi Shamir and Leonard Adleman 

in 1977 (refer to [32]). The security of RSA is rooted in two fundamental problems: the integer-

factorization problem and the RSA problem. The integer-factorization problem involves finding 

the prime factorization of a positive integer 𝑛 = 𝑝1
𝑒1𝑝2

𝑒2 … 𝑝𝑘
𝑒𝑘, where pi’s are distinct primes and

ei ≥ 1. On the other hand, the RSA problem entails finding an integer m that serves as the eth root 

of c modulo a composite integer n. In this scenario, n is a product of two distinct odd primes p 

and q and e is a positive integer satisfying gcd(e, (p-1)(q-1))=1. It is widely acknowledged that 

while the integer-factorization problem and the RSA problem share similarities, this resemblance 

has not been formally proven yet (see [8] and [25]). 

The RSA cryptosystem operates through the following steps: Entity A generates two large, 

distinct random primes, p and q (approximately of the same size). They compute n = pq and ϕ(n) 

= (p-1)(q-1) and then choose a random integer e such that 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1. Entity 

A also computes the multiplicative inverse of e modulo ϕ(n) and obtains the value d. The resulting 

public key is denoted as (n, e), while the private key is denoted as (p, q, d). To encrypt a plaintext 

m ∈ Zn, entity B employs the public key (n, e) to compute the ciphertext c ≡ me (mod n) and 

transmits it to entity A. Subsequently, entity A utilizes the private key d to recover the original 

plaintext by computing m ≡ cd (mod n). 
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2.4 Classical ElGamal Public-key Cryptosystem 

The ElGamal public-key cryptosystem, introduced by Taher ElGamal in 1985 (refer to [12]), 

stands as a widely adopted and robust cryptographic technique. Its security is fundamentally 

based on the discrete logarithm problem (DLP), which poses the challenge of finding an integer k 

within the range of 0≤k≤p-1, such that αk≡β(mod p), with p denoting a prime, α serving as a 

generator of 𝑍𝑝
∗  and β representing an element in 𝑍𝑝

∗ .

The ElGamal cryptosystem unfolds as follows: Entity A initiates the process by generating a large 

random prime integer p, along with a generator α of the multiplicative cyclic group 𝑍𝑝
∗ .

Subsequently, a random integer a is selected, adhering to the condition 1≤a≤p-2. Entity A then 

computes αa(mod p). The resulting public key is represented as (p, α, αa), while the private key 

remains as a. 

To encrypt a plaintext m∈ Zp, entity B proceeds by choosing another random integer k, satisfying 

1≤k≤p-2. Subsequently, γ≡αk(mod p) and δ≡m(αa)k(mod p) are computed. The resulting ciphertext

is then given by c = (γ, δ). Finally, for the decryption and recovery of the plaintext, entity A applies the 

private key a to compute γp−1−a(mod p), from which the original message m is obtained as m = 

(γ−a).δ(mod p). 

2.5 RSA and ElGamal Digital Signatures 

Let’s define some notations before discussing the RSA and ElGamal signature algorithms, 

including key generation, signature and verification algorithms (refer to [25]). 

2.5.1 Prerequisite Notations 

1. M (Message Space): This represents a collection of elements to which a signer can attach

a digital signature. 

2. MS (Signing Space): It refers to a collection of components on which the signature

transformations are applied. 

3. S (Signature Space): It denotes a collection of items in M that are associated with

messages. These components establish a link between the signer and the message. 

4. R (Redundancy Function): It represents a one-to-one mapping from M to MS. It is

important that R is not multiplicative, meaning that R(ab)≠R(a)R(b) for all pairs of 

relatively prime elements a and b in M. 

5. MR: It refers to the image of R.

6. R−1: It represents the inverse of R and maps elements from MR back to M.

7. h (Hash Function): It is a one-way function with its domain defined as M .

8. Mh (Hash Value Space): If h : M → Mh, then Mh is a sub-set of MS.

2.5.2 Hash Function 

The hash function [25] is a fundamental cryptographic tool widely employed in protocols. It 

generates a hash value denoted as 𝑚̃= h(m), a concise, fixed-length bit string used to represent a 

specific message (e.g. fingerprints). To ensure the security of the hash function, three 

fundamental properties must be satisfied: 

1. Preimage Resistance (or the one-way property): This ensures computing the original

message m given that the hash value m is computationally infeasible. 

2. Weak Collision Resistance: A form of pre-image resistance, making it computationally

infeasible to find two distinct messages m1≠ m2 that produce the same hash values; i.e., 

m1 = m2. 

3. Collision Resistance: It ensures it’s challenging to find two distinct inputs m1≠ m2 that

hash to the same value; i.e., h(m1) = h(m2). 

Thus, it’s crucial to highlight that when dealing with the hash-value representation of a message, 

both signature generation and verification operate on the hash value itself rather than the original 

message. Moreover, digital signatures are broadly categorized into two main types. 
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2.5.3 Digital Signature 

There are two types of digital signatures 

1. Digital signature with an appendix: This type of signature requires the original message as

an input during the verification process. It utilizes cryptographic hash functions instead of 

custom redundancy functions, making it less vulnerable to existential forgery attacks. One 

example of this method is the ElGamal signature, introduced by Taher ElGamal in 1985. 

It is a digital-signature scheme that relies on the discrete-logarithm problem (DLP). It is a 

probabilistic algorithm used to generate digital signatures for messages of any length. The 

scheme requires a hash function, denoted as h, which maps messages to integers modulo a 

large prime number p. It is described as follows: Entity B signs the message m∈Zp by selecting 

a random secret integer k, such that 1≤k≤p-2 with gcd(k, p-1) = 1. Then, entity B computes 

r≡ αk(mod p), k−1(mod p-1) and s≡ k−1 (h(m)-ar) (mod(p-1)). The signature is (r, s). Now, 

entity A verifies B’s signature by verifying that 1≤r≤p-1, otherwise the signature is rejected. 

Then, entity A computes v1 ≡ (αa)rrs(mod p) and v2 ≡αh(m)(mod p). The signature is 

accepted if and only if v1 = v2. For further information, please see [25]. 

2. Digital signature with message recovery: Unlike the previous type, this method does not need

the original message for the verification process. The original message can be extracted from 

the signature. The RSA signature is an example of a technique that provides digital signatures 

with message recovery. It was introduced in 1978 and it is the most commonly used digital-

signature system in practice since its verification process is fast and easy. Its security is also 

based on the integer-factorization problem. It is described as follows: Entity B signs a message 

m ∈ M by computing 𝑚̃= R(m), where m ∈ [0, n − 1] and computes the signature 𝑠 ≡ 𝑚̃𝑑(mod

n). Now, entity A verifies B’s signature by computing 𝑚̃≡ se (mod n), which should be in MR 

and recovers m = R−1(m). For further information, please see [25]. 

Remark 2.2 We will employ the hash function h(m) = m3 with a specified modulus depending on 

the cryptographic context. In the  case  of  ElGamal  encryption,  we  take  mod p,  where  p  is  a 

prime,  while in RSA encryption, we take mod n, where n is a composite integer. This hash 

function is chosen for multiple reasons. Firstly, it maintains pre-image resistance, making it 

computationally difficult to find any pre-image m given 𝑚̃, such that h(m) ≡ 𝑚̃ mod modulus. 

Secondly, it upholds second preimage resistance since, given a pre-image m1, it is 

computationally infeasible to generate another distinct preimage m2 such that h(m1) ≡ h(m2) mod 

modulus and m1≠m2. Thirdly, it preserves collision resistance, making it computationally 

impracticable to discover any two distinct inputs m1 and m2 where m1≠m2 and h(m1) ≡ h(m2) mod 

modulus. 

3. COMBINED RSA-ELGAMAL ALGORITHMS AND ELGAMAL CRYPTOSYSTEM

In this section, we present a novel combined RSA-ElGamal public-key encryption scheme that 

combines the RSA and ElGamal encryption schemes. We provide the algorithms for public-key 

generation, encrypion and decryption, along with accompanying proofs. Additionally, we 

illustrate the concepts with a numerical example. 

3.1 Methodology 

The ElGamal public-key cryptosystem relies on the discrete-logarithm problem, while the 

strength of the RSA public key cryptosystem lies in the difficulty of the integer-factoring 

problem. In this proposal, we present a novel algorithm that combines both RSA and ElGamal 

public-key cryptosystems. To achieve this, we first implement a modified ElGamal scheme using 

Gaussian integers and then utilize the RSA scheme in the domain of Gaussian integers.  

Here is a brief overview of the process: We start by generating a large prime number p along with 

a generator α for the group 𝐺𝑝
∗. Next, we select a random positive integer a<p2-1 and compute

αa(mod p). Following that, we choose two Gaussian primes q and r and find their product η= qr. 

Subsequently, we select a random integer e and using the extended Euclidean algorithm, we 

determine its unique inverse d∈Gη, ensuring that gcd(e, ϕ(η))=1 and 1<e, d<ϕ(η). The resulting 

public key is given by (p, α, αa, η, e) and the private key is represented as (a, q, r, d). 
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To encrypt a message m ∈ Gp, we randomly choose a positive integer k< p2 −1 and compute the 

ciphertext c ≡ Me(mod η), where M = γ + δi with γ ≡ αk and δ ≡ m(αa)k, which are elements in Gp. 

For the decryption of the sent ciphertext c, we utilize the private keys a and d to recover the 

original message. This is achieved by computing 

𝑚 = [((𝑅𝑒(𝑐𝑑𝑚𝑜𝑑 𝜂))
𝑞(𝑝)−1−𝑎

(𝑚𝑜𝑑𝑝)) . (𝐼𝑚(𝑐𝑑𝑚𝑜𝑑𝜂)(𝑚𝑜𝑑𝑝)))] (𝑚𝑜𝑑𝜂).                  (1)

3.1.1 Choice of the Gaussian Primes 

In the following discussion, we will present an analysis of the primes p, q and r that will be 

selected in our novel approach. Initially, ElGamal scheme will be applied within the complete 

residue system Gp, which is defined as mentioned in Theorems 2.4 and 2.7 as follows: 

1. If p is any natural prime integer, then Gp = Zp.

2. If p is a Gaussian prime such that p𝑝 is a natural prime of the form 4k+1, then 𝐺𝑝 =
{𝑥: 0 ≤ 𝑥 ≤ 𝑝𝑝 − 1} and it has an order of q(p) = p𝑝. 

3. If p is a Gaussian prime of the form 4k+3, then 𝐺𝑃 = {𝑥 + 𝑖𝑦: 0 ≪ 𝑥 ≤ 𝑝 − 1,0 ≤ 𝑦 ≤
𝑝 − 1} and it has an order of q(p) = p2. 

For the sake of simplicity, we can utilize the initial implementation. Nevertheless, we shall 

employ the third implementation. 

Second, the RSA scheme will be implemented in the complete residue system Gη such that η is a 

product of two Gaussian primes q and r; i.e., η = qr, where we have three possible cases: 

1. If q = π1 and r = π2, where π1𝜋1̅̅ ̅ and π2𝜋2̅̅̅̅  are two prime integers of the form 4k + 1, then

the complete residue system modulo η is 𝐺𝜂 = {𝑥 + 𝑞𝑦 ∶ 𝑥 ∈ 𝐺𝑞 , 𝑦 ∈ 𝐺𝑟} and of order

q(η) = qr. But, this case will be neglected due to its similarity to the classical settings. 

2. If q = π1 is a Gaussian prime such that π1𝜋1̅̅ ̅ is a prime integer of the form 4k + 1 and r is a

prime integer of the form 4k + 3, then the factorization of η = π1r which has the form x+ yi 

could be easily solved by simply finding the gcd(x, y) which will be equal to r. Hence, this 

case will be also neglected, since our aim is to ensure the infeasibility of the factorization 

of η. 

3. If q and r are both Gaussian primes of the form 4k + 3, then the complete residue system

modulo η is 𝐺𝜂 = {𝑥 + 𝑞𝑦: 𝑥 ∈ 𝐺𝑞 , 𝑦 ∈ 𝐺𝑟} and of order q(η) = q2r2, which is huge enough

to enhance the security   of our approach compared to that of the classical one. Hence, this 

case will be chosen, since it is the best choice for the new implementation of the RSA 

scheme. 

Thus, to provide a clearer justification: when using Gaussian primes of the form 4k + 3 for both q 

and r, the order of Gη is q(η) = q2r2, meaning that the message space is not just doubled, but 

squared. This increase in size is crucial, because it exponentially expands the variety of possible 

plaintexts, making brute-force attacks, including exhaustive search methods, computationally 

infeasible. The complexity of deciphering the original message from the ciphertext becomes 

exponentially harder, requiring much more effort than in classical RSA systems with the same 

prime numbers. 

Moreover, by increasing the size of the message space, the number of possible combinations of 

plaintexts grows exponentially. This means that any adversary attempting to recover the plaintext 

would face a significantly more difficult task, as the size of the problem space grows much larger. 

Traditional algorithms for factorization or solving the discrete-logarithm problem become less 

effective, further strengthening the cryptographic security of our approach. 

3.1.2 Choice of Plaintext m 

The plaintext, denoted as m∈Gp, can be expressed in two possible forms. The first form is m=x 

+iy, where both x, y ∈ Zp and y≢ 0 (mod p). The second form is m = x, where x ∈ Zp.

3.2 Combined RSA-ElGamal Algorithms and ElGamal Public-key Scheme 

In the subsequent sub-sections, we present a comprehensive explanation of our novel concept for 
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the "Combined RSA-ElGamal public-key cryptosystem." We elucidate the procedures for key 

generation, encryption and decryption in the following manner: 

Algorithm 3.1 Key generation for the combined RSA-ElGamal public-key scheme by entity A. 

1. Generate three distinct large random odd prime integers p, q and r of the form 4k+3 and

approximately the same size. 

2. Find a generator α of 𝐺𝑝
∗.

3. Select a random integer a, such that 2≤a ≤p2 -2 and then compute αa(mod p).

4. Compute η = qr and ϕη = (q2-1)(r2-1).

5. Select a random integer e such that 1 < e < ϕη and gcd(e, ϕη) = 1.

6. Use the extended Euclidean division algorithm to compute d, such that ed≡1(mod ϕη).

7. The public key is (p, α, αa, η, e) and the private key is (a, q, r, d).

Algorithm 3.2 Combined RSA-ElGamal public-key encryption by entity B. 

1. Obtain A’s public key (p, α, αa, η, e).

2. Choose a random integer k, such that 2≤k≤p2-2.
3. Compute the ciphertext c≡Me(mod η), where M =γ+δi, γ≡αk(mod p) and δ≡m(αa)k(mod p).

4. Send the ciphertext c to entity A.

Algorithm 3.3 Combined RSA-ElGamal public-key decryption. 

By using the private keys a and d, entity A recovers the plaintext m such that: 

m ≡
 
(Re(cd mod η))p2−1−a(mod p)

 
(Im(cd mod η))(mod p) (mod η).

Theorem 3.1 The original message m is recovered by reducing 

[((𝑅𝑒(𝑐𝑑𝑚𝑜𝑑 𝜂))
𝑝2−1−𝑎

(𝑚𝑜𝑑 𝑝)) . (𝐼𝑚(𝑐𝑑𝑚𝑜𝑑 𝜂)(𝑚𝑜𝑑 𝑝))] (𝑚𝑜𝑑 𝜂).

Proof 3.1 Consider the Gaussian integer m′ ∈ Gp such that 

𝑚′ ≡ [((𝑅𝑒(𝑐𝑑𝑚𝑜𝑑𝜂))
𝑝2−1−𝑎

(𝑚𝑜𝑑 𝑝)) . (𝐼𝑚(𝑐𝑑𝑚𝑜𝑑 𝜂)(𝑚𝑜𝑑 𝑝))] (𝑚𝑜𝑑𝜂)               (2)

Since ed≡1(mod ϕ(η)), then there exists an integer k′, such that ed =1 +k′ϕ(η). Hence, there are 

two cases: 

1. Suppose that the gcd(M, q)=1. Then, by using the modified Euler’s theorem to the domain

of Gaussian integers, we have Mϕ(η)≡1(mod η). After raising both sides of the congruence 

to the power of k′ and then multiplying them by M. We get, 

M 1+k′ϕ(η) ≡ Med ≡ cd(mod η) ≡ M (mod η).  (3) 

2. Suppose that gcd(M, q) = q. Then, we have M ≡ 0(mod q). Hence, 𝑀𝑘′(𝑞2−1)(𝑟2−1) ≡

0(𝑚𝑜𝑑 𝑞). After  multiplying  both  sides  by  M,  we  get  𝑀1+𝑘′(𝑞2−1)(𝑟2−1) ≡

0(𝑚𝑜𝑑 𝑞) and  hence, 𝑀1+𝑘′∅(η) ≡ 𝑀𝑒𝑑 ≡ 𝑐𝑑 ≡ 0(𝑚𝑜𝑑 𝑞), since M ≡ 0(mod q). Then,

cd ≡ M (mod q). By the same argument, we also get cd ≡ M (mod r). Since q and r are two 

distinct Gaussian primes, we obtain that cd ≡ M (mod η). 

Hence, for any Gaussian integer M, we have cd ≡ M (mod η).Therefore, 

𝑚′ ≡ [((𝑅𝑒(𝑐𝑑𝑚𝑜𝑑 𝜂))
𝑝2−1−𝑎

(𝑚𝑜𝑑 𝑝)) . (𝐼𝑚(𝑐𝑑𝑚𝑜𝑑 𝜂)(𝑚𝑜𝑑 𝑝))] (𝑚𝑜𝑑 𝜂)

≡ [((𝑅𝑒(𝑀))
𝑝2−1−𝑎

(𝑚𝑜𝑑 𝑝)) . (𝐼𝑚(𝑀)(𝑚𝑜𝑑 𝑝))] (𝑚𝑜𝑑 𝜂)    (4) 

But, M = γ + δi. Then, 

𝑚′ ≡ [(𝛾𝑝2−1−𝑎(𝑚𝑜𝑑 𝑝)) . (𝛿(𝑚𝑜𝑑 𝑝))] (𝑚𝑜𝑑 𝜂) ≡ [(𝛼−𝑎𝑘(𝑚𝑜𝑑 𝑝)). (𝛿(𝑚𝑜𝑑 𝑝))](𝑚𝑜𝑑 𝜂)

≡[𝛼−𝑎𝑘. 𝑚. 𝛼𝑎𝑘(mod 𝑝)](mod 𝜂)  ≡  𝑚(mod 𝑞𝑟). (5)
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Example 3.1 (Combined RSA-ElGamal public-key scheme) Entity A generates the keys as 

follows: If p = 3,  and  α = 2  is  a  generator  of  𝐺3
∗,  then  entity  A  chooses  the  private  key  a

= 2  and computes  αa = 1(mod 3). Also, if q = 7 and r = 11, then entity A computes η = 77 and 

ϕ(η) = 5760. After that, entity   A chooses e = 971 and by using the extended Euclidean division 

algorithm, finds d = 611 such that ed≡1(mod ϕ(η)). The public-key is (3, 2, 1, 77, 971) and the 

private key is (2, 7, 11, 611). Now entity B encrypts the message m = 2 by selecting a random 

integer k = 6 and computing γ ≡ 1(mod 3) and δ ≡ 2(mod 3). Then, entity B assumes that M =1+2i 

and computes c =1−24i. Entity B then sends c to entity A, which decrypts and recovers the 

message m by computing m ≡ [((Re(cd mod η))p2-a-1(mod p)). (Im(cd mod η)(mod p))](mod η) ≡ 2. 

3.3 Security of the Proposed Combined RSA-ElGamal Cryptosystem 

As the new proposed scheme combines elements of both the modified ElGamal and RSA 

schemes, each relying on distinct mathematical problems (the discrete-logarithm problem and the 

integer-factorization problem, respectively), the security of our combined RSA-ElGamal public-

key scheme is predicated on both of these cryptographic challenges. To decrypt a message 

encrypted using this new scheme, one must first solve the integer-factorization problem, followed 

by solving the discrete-logarithm problem to obtain the plaintext. Consequently, the time required 

to compromise the new proposed scheme is influenced by the hacking times of both classical 

ElGamal and RSA schemes, as demonstrated in the comparative study outlined in Section 5. 

Additionally, the new scheme implements RSA in the domain of Gaussian integers by generating 

two odd primes, designated as q and r, in the form of 4k + 3. This choice results in the complete 

residue system A(η) containing q2r2 elements, as opposed to just qr elements in the classical 

scheme. Moreover, if we implement the ElGamal in the domain of Gaussian integers modulo a 

Gaussian prime p of the form 4k + 3, the cyclic group 𝐺𝑝
∗ has p2-1 elements and the private key a

can range from 2 to p2-1. In contrast, the cyclic group of the classical scheme, 𝑍𝑝
∗ , has p-1

elements and the private key a can range from 2 to p-1. Consequently, with equivalent effort to 

that in classical settings, our new scheme offers an expanded set of choices for plaintext and 

private keys by more than the square of the choices in the classical case. This extension bolsters 

the security provided by the new proposed scheme without necessitating any additional efforts.  

4. COMBINED RSA-ELGAMAL SIGNATURE SCHEME

In this section, we introduce our proposed signature called the combined RSA-ElGamal signature 

scheme, where the key generation, signature and verification algorithms are given with proofs 

and a numerical example. 

4.1 Description of the Combined RSA-ElGamal Signature 

The concept behind our proposed signature arises from the necessity to enhance the security of 

our cryptosystem. Our signature approach combines elements from the classical ElGamal 

signature and the modified RSA signature within the domain of Gaussian integers. Its security is 

dependent on both the discrete-logarithmic and integer-factorization problems. In our proposed 

signature scheme, the message space, denoted as M, is represented by Zp, while the ciphertext 

signing and signature spaces are all denoted as Gη. The redundancy function, denoted as R : Zp → 

Gη, can be made public and the hash function, denoted as h : M → Zp, is selected in a manner 

such that p represents a large prime number. 

The procedure is as follows:  Firstly, a natural prime integer p is chosen, along with a generator α 

for 𝑍𝑝
∗ . Then, a random positive integer a is selected such that a < p-1 and αa(mod p) is computed.

In the next step, two Gaussian primes, q and r, are chosen in the form 4k + 3 and their product η = 

qr is determined. Following this, a random integer e is selected and its unique (up to associates) 

inverse d∈Gη is calculated using the extended Euclidean algorithm, satisfying gcd (e, ϕ(η)) = 1 

and 1<e, d<ϕ(η). The public key comprises (p, α, αa, η, e), while the private key comprises (a, q, 

r, d). To sign a message m∈ Zp, a random positive integer k is chosen such that k<p-1 and ς is 

computed as ς≡zd(mod η), where z = r′ + si =R(𝑚̃),  with  r′≡ αk(mod p),  and  s≡ 

k−1(𝑚̃ −ar′)(mod p-1). To verify the signature ς and recover the original message m, z is 

calculated as z≡ςe(mod η), where it should belong to MR and 𝑚̃ is recovered such that  𝑚̃=R−1(z). 
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Finally, h(m), v1 and v2 are computed so that h(m) ≡ks+ar′(mod p-1), v1≡yRe(z). Re(z)Im(z)(mod p), 

where 1≤Re(z)≤p-1 and v2≡αh(m)(mod p). The signature is accepted if v1 = v2. 

The aforementioned description is presented in a step-by-step manner in the following algorithms. 

Algorithm 4.1 Key generation for the combined RSA-ElGamal signature scheme: 

1. Generate a random large odd prime p and a generator α of 𝑍𝑝
∗ and choose a random integer a,

where 1 ≤ a ≤ p−2. 

2. Compute y ≡ αa(mod p).

3. Generate two large, distinct odd primes, q and r, each of roughly the same size.

4. Compute η = qr and ϕ(η) = (q2-1)(r2-1).
5. Select a random integer e such that 1≤e≤ϕ(η) with gcd(e, ϕ(η)) = 1.
6. Use the extended Euclidean algorithm to compute the unique integer d, such that ed≡1(mod

ϕ(η)). 

7. The public key is (p, α, y, η, e) and the private key is (a, q, r, d).

Algorithm 4.2 Combined RSA-ElGamal signature generation by entity B. 

1. Select a random secret integer k, such that 1≤k≤p-2 with gcd(k, p-1) = 1.

2. Compute r′≡αk(mod p), k−1(mod p-1),h(m) =𝑚̃= m3 (mod p) and s≡k−1(𝑚̃ −ar′)(mod p-1).

3. Take z = r′ + si = R(𝑚̃ ) and compute ς≡zd(mod η).

4. B’s signature for m is ς.

Algorithm 4.3 Combined RSA-ElGamal verification by entity A. 

1. Obtain B’s authentic public key (p, α, y, η, e).

2. Compute z≡ςe(mod η).

3. Verify that z∈MR, if not, reject the signature.

4. Recover 𝑚̃ = R−1(z).

5. Verify that 1≤Re(z)≤p-1, if not, reject the signature.

6. Compute v1≡yRe(z). Re(z)
Im(z)

(mod p) and v2≡αh(m)(mod p). 

7. Accept signature if v1 = v2.

Theorem 4.1 The signature verification method works. 

Proof 4.1 Let ς ≡ zd(mod η) such that z = r′ + si. Since ed ≡ 1(mod ϕ(η)), we have had ςe ≡ 

zed ≡ z(mod η).  Then, R−1(z) = R−1(R(𝑚̃
 
)) =𝑚̃= h(m).  Hence,  s ≡ k−1(h(m) − ar′)(mod p − 1). 

Multiply both sides by k, ks ≡ h(m) − ar′(mod p − 1). Then, h(m) ≡ ks + ar′(mod p − 1). 

Hence, αh(m) ≡ 𝛼𝑎𝑟′+𝑘𝑠≡ (𝛼𝑎)𝑟′
. 𝑟𝑠′

≡𝑦𝑟′
. 𝑟𝑠′

. Therefore, v1 = v2.

Theorem 4.2  The  redundancy  function  R(𝑚̃)=r′+si =αk + i  [𝑘 − 1(𝑚̃ − 𝑎𝑟′)(mod(𝑝 − 1)) ] is 

a  1 – 1 mapping from M to MS. 

Proof 4.2 Suppose  that  R(𝑚̃1) = R(𝑚̃2)  such  that  R(𝑚̃1) =αk + i [𝑘−1(𝑚̃1  −  𝑎𝑟′)(mod(𝑝 −
1))]

 
∈ Gη and R (𝑚̃2) = αk +i

 
[𝑘−1(𝑚̃1  −  𝑎𝑟′)(mod(𝑝 −  1))]

 
∈ Gη. Then,

αk + i [𝑘−1(𝑚̃1  −  𝑎𝑟′)(mod(𝑝 −  1))] = 𝛼𝑘 + 𝑖[𝑘−1(𝑚̃2 − 𝑎𝑟′)(𝑚𝑜𝑑(𝑝 − 1))]. (6)

Thus, 

𝑖[𝑘−1(𝑚̃1 − 𝑎𝑟′)(𝑚𝑜𝑑(𝑝 − 1))] = 𝑖[𝑘−1(𝑚̃2 − 𝑎𝑟′)(𝑚𝑜𝑑(𝑝 − 1))]. (7) 

Multiplying  both  sides  by  (ik),  we  get  𝑚̃1 − 𝑎𝑟′(𝑚𝑜𝑑(𝑝 − 1))= 𝑚̃2 − 𝑎𝑟′(𝑚𝑜𝑑(𝑝 −

1)), which  implies  that 𝑚̃1 = 𝑚̃2.

Theorem 4.3 The redundancy function R(𝑚̃) =r′+si=αk+i[k−1(𝑚̃-ar′)(mod(p-1))] is not multiplicative. 

Proof 4.3 It is clear that 

𝑅(𝑚̃1). 𝑅(𝑚̃2) = (𝛼𝑘 + 𝑖 [𝑘−1(𝑚̃1  −  𝑎𝑟′)(mod(𝑝 −  1))]). (𝛼𝑘 + 𝑖[𝑘−1(𝑚̃2 − 𝑎𝑟′)(𝑚𝑜𝑑(𝑝 − 1))]= 

[𝛼2𝑘 + 𝑖𝛼𝑘𝑘−1(𝑚̃1 + 𝑚̃2 − 2𝑎𝑟′) − 𝑘−2(𝑚̃1 − 𝑎𝑟′)(𝑚̃2 − 𝑎𝑟′)] (𝑚𝑜𝑑(𝑝 − 1))                   (8)

But, 𝑅(𝑚̃1𝑚̃2) = 𝛼𝑘 + 𝑖[𝑘−1(𝑚̃1𝑚̃2) − 𝑎𝑟′)(𝑚𝑜𝑑(𝑝 − 1))].Therefore, R is not multiplicative.
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Example 4.1 (Combined RSA-ElGamal Signature) Entity B generates the keys as follows: If 

p=61 and α=33 is a generator of Z∗
61. Then, entity B chooses the private key a=58 and computes 

y≡ 3358(mod 61) ≡27. After that, entity B selects q=9871 and r=5107 and computes both 

η=50411197 and ϕ(η)=2541288659454720. Entity B chooses e=1844480063626867 and solves 

ed≡1844480063626867. d≡1(mod 50411197), yielding d=993514318001083. Hence, the public-

key is: (p=61, α=33, αa =27, η=50411197, e =1844480063626867) and the private key is (a = 58, q 

= 9871, r = 5107, d = 993514318001083). Assume that the hash function is h(m) = 𝑚̃=m3. To 

sign a message m=42, entity B selects a random integer k=7 and computes r′≡337(mod 61)≡38, 

k−1 mod(p-1)≡43 and 𝑚̃=74088. Finally, entity B computes s≡34(71884)(mod60)≡34 and 

assumes z=38+34i to compute ς≡23812157-23285899i. As a result, the signature for m is ς. 

Now, to verify the signature, entity A first computes z=38+34i, then computes 

m̃=R−1(z)=74088 ∈ MR.  After that, entity A computes v1≡52, h(m)=74088 and v2≡52. Entity A 

accepts the signature since v1 = v2. 

5. COMPARATIVE STUDY

In this section, we undertake a comparative analysis to position our novel cryptosystem against 

existing methodologies. 

5.1 Security Evaluation and Comparative Analysis 

In this study, we evaluate the security of our novel cryptographic scheme through assessments of 

attack, encryption and decryption times, supported by numerical simulations to measure its 

efficacy. Experimental investigations were conducted using an ALIENWARE laptop, specifically 

the Alienware 15 R4 model, equipped with an Intel(R) Core(TM) i7-8750H CPU, 16384MB 

RAM and BIOS version 1.20.0 (UEFI type). The laptop’s robust specifications, including 

compatibility with Windows 11 Pro 64-bit, DirectX 12 and UEFI BIOS, along with features like 

Miracast Support and Microsoft Graphics Hybrid Compatibility, make it well-suited for 

computationally intensive experiments. Following this experimental setup, we perform a 

comparative analysis involving traditional RSA and ElGamal schemes alongside our novel hybrid 

approach, followed by a discussion of the identified strengths and weaknesses of our proposed 

cryptosystem. 

5.2 Data Collection and Cryptanalysis 

In this study, we employed Mathematica 10 to implement the algorithms for key generation, 

encryption, decryption and cryptanalysis of our new scheme. The prime numbers p, q and r were 

randomly selected from nineteen distinct intervals. These intervals, numbered from 1 to 19, 

encompass the ranges 101 to 1038 for both q and r and 101 to 1011 for p. 

Due to the computational limitations of our current hardware, we were unable to explore higher 

exponents beyond 1038. Our personal computer, despite its capabilities, was unable to efficiently 

handle the larger key sizes required for more advanced cryptanalysis. In future work, we plan to 

leverage high-performance computing resources or cloud platforms to extend our analysis to 

larger primes, which will allow for a more thorough evaluation of the scheme’s performance and 

security with larger key sizes. 

5.2.1 Key Generation 

It has been observed that the total time needed for key generation in the new scheme is roughly 

equal to the sum of the individual times required for generating RSA and ElGamal keys. 

5.2.2 Encryption and Decryption 

Regarding the encryption processes, the time slots required for all three cryptosystems are 

approximately the same, which is very significant, because our proposed cryptosystem does not 

require excessive durations to be done compared to the classical ones. The same applies to the 

decryption process. 
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5.2.3 Hacking Time Results 

Hacking time denotes the period taken by an unauthorized entity to successfully decrypt or 

compromise the security of the combined RSA-ElGamal public-key cryptosystem under 

consideration. In our manuscript, this temporal measure is quantified in seconds and serves as a 

crucial metric for evaluating the system’s resistance to potential breaches. The subsequent table 

(Table 1) provides comprehensive results for Hacking Time (HT) in seconds across each 

cryptosystem, delineating the time necessary to solve either the integer-factorization problem or 

the discrete-logarithm problem. 

The first column of the table represents the data sizes, which are expressed as the ith power of 10, 

ranging from 101 to 1019. These values correspond to bit lengths ranging from approximately 4 

bits (for 101) to approximately 63 bits (for 1019). The y-axis signifies the hacking time measured 

in seconds. 

The table provides insights into the key-generation time for RSA, ElGamal and the proposed 

combined RSA-ElGamal scheme, elucidating the temporal dynamics of each cryptographic 

system across diverse data sizes. This analysis highlights that the key-generation time of the 

combined RSA-ElGamal scheme is the sum of the times required to generate keys for both RSA 

and ElGamal. This detailed examination underscores the performance attributes of the proposed 

cryptographic methodology and its implications for practical applications. 

In addition, the figures presented below visually portray the obtained results, providing a 

graphical representation of the hacking time (HT) needed to initiate an attack on each 

cryptosystem, measured in seconds. This hacking time pertains to the duration taken to resolve 

either the integer-factorization problem or the discrete-logarithm problem. 

Table 1. Time required (in seconds) to compromise RSA, ElGamal and the Combined RSA-

ElGamal scheme through hacking attempts. This figure illustrates the comparative performance 

of each encryption scheme based on its respective vulnerability to attacks. 

Data Size RSA ElGamal Combined RSA-ElGamal Scheme 

1 0 0 0 
2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

6 0 0.015 0.016 

7 0 0.015 0.016 

8 0.031 0.109 0.125 

9 0.047 0.015 0.062 

10 0.14 0.032 0.172 

11 0.297 0.86 1.125 

12 2.797 2.36 5.157 

13 5.359 10.5 16.25 

14 11.016 6.89 18.047 

15 60.922 117.016 168.5 

16 307.61 213.563 519.218 

17 661.328 8826.2 9737.52 

18 2635.02 23808.9 26482.3 

19 10993.7 71228.1 82294 

5.2.4 Observations 

The analysis of Figures 1, 2 and 3 reveals an interesting observation regarding the impact of data size 

on the time required to attack the combined RSA-ElGamal scheme in comparison to the classical RSA 

and ElGamal schemes. Initially, when the data size is relatively small, there is no noticeable 

difference between the three schemes. However, as the data sizes increase, significant differences 

arise, with the time required to attack the combined RSA-ElGamal scheme surpassing that of the 

RSA and ElGamal schemes by several thousands of seconds. Furthermore, Figure 4 provides  
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Figure 1. Comparison of performance and efficiency between the classical RSA and ElGamal 

cryptosystems and the innovative combined RSA-ElGamal cryptosystem, with data sizes ranging 

from 101 to 1015 (approximately 4 to 50 bits). This figure illustrates how each system performs across 

different data sizes. 

Figure 2. Comparison of performance and efficiency of the classical RSA and ElGamal 

cryptosystems versus the innovative combined RSA-ElGamal cryptosystem across data sizes ranging 

from 101 to 1019 (approximately 4 to 67 bits). 

Figure 3. Comparison of performance and efficiency of the classical RSA and ElGamal 

cryptosystems with the innovative combined RSA-ElGamal cryptosystem across data sizes 

ranging from 1016 to 1019 (approximately 54 to 64 bits). 
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Figure 4. Analysis of the combined RSA-ElGamal algorithm’s hacking time (HT) compared to the 

combined hacking time of the classical RSA and ElGamal algorithms. This figure illustrates the 

performance differences between the combined RSA-ElGamal approach and the sum of individual 

classical algorithms’ hacking times. 

additional insight, demonstrating that the attacking time of the new scheme is notably greater 

and equivalent to the cumulative attacking times of the classical RSA and ElGamal 

cryptosystems combined. Based on this evidence, we can deduce that the combined RSA-

ElGamal scheme offers enhanced security compared to both the classical RSA and ElGamal 

schemes. In summary, the analysis showcases the advantage of the combined RSA-ElGamal 

scheme, highlighting its resistance to attacks as the data size grows larger. The substantial 

increase in attacking time for    the combined RSA-ElGamal scheme, compared to the classical 

RSA and ElGamal schemes, suggests its heightened level of security and reinforces its 

suitability for cryptographic applications. 

5.3 Complexity Analysis 

In the following sub-sections, we provide a comparative analysis of the complexity of the RSA, 

ElGamal and the proposed combined RSA-ElGamal scheme algorithms. Time complexity of an 

algorithm is commonly expressed using the asymptotic notation of O(n), which is determined by 

counting the number of basic operations performed during the algorithm’s execution, such as 

addition, subtraction, multiplication and division. The space complexity of a cryptographic 

algorithm refers to the amount of memory required for the algorithm to run, relative to the length 

of its input. Space complexity depends on the size of the input. When considering the maximum 

complexity for a given input size, it is referred to as worst-case complexity. Conversely, when 

considering the average complexity across all inputs of a given size, it is known as the expected 

complexity. 

5.3.1 Complexity of the RSA Scheme 

Complexity of key generation: To generate the key, the complexity of selecting random primes p and 

q and computing their product n = pq is either 𝑂(𝑙𝑜𝑔2
2𝑝) using the Fermat’s primality test or

𝑂(𝑙𝑜𝑔2
3𝑝) using the Miller-Rabin test. Computing n=pq in the domain of natural integers, Z, has a

complexity of O(log2 p log2q)≈ 𝑂(𝑙𝑜𝑔2
2𝑝) since  p < q. Computing  Euler’s  totient  function ϕ(n) =

(p-1)(q-1) has a complexity of O(log2 p log2q) )≈ 𝑂(𝑙𝑜𝑔2
2𝑝), since p < q. The complexity of selecting a

random number e such that 0<e<ϕ(n) with (e, ϕ(n)) = 1 using Euclidean division is O (𝑙𝑜𝑔2
3 ϕ(n))

≈ O (𝑙𝑜𝑔2
3 pq)

 
≈ O (𝑙𝑜𝑔2

3 n). Thus, the overall time complexity of the key-generation process is O

(𝑙𝑜𝑔2
3 n).

Complexity of the encryption process: The complexity of computing c=me(mod n) is O(𝑙𝑜𝑔2
3 n),

since the size of e is proportional to that of n. 

Complexity of the encryption process: The complexity of computing m=cd(mod n) is O(𝑙𝑜𝑔2
3 n),

since the size of e is proportional to that of n. 
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5.3.2 Complexity of ElGamal Scheme 

Complexity of key generation: Selecting a random prime number p has a complexity of either 

𝑂(𝑙𝑜𝑔2
2𝑝) if the Fermat’s primality test is used or 𝑂(𝑙𝑜𝑔2

3𝑝) if the Miller-Rabin test is used.

Selecting a value k between 2 and p − 2 has a complexity of O(log2 p). Finding a generator α of the 

multiplicative group 𝑍𝑝
∗has a complexity of 𝑂(𝑙𝑜𝑔2

2𝑝). Computing αa(mod p) has a complexity of

𝑂(𝑙𝑜𝑔2
3𝑝). The overall complexity of key generation is determined to be 𝑂(𝑙𝑜𝑔2

3𝑝).

Complexity of the encryption process: Computing 𝛾 ≡ 𝛼𝑘(𝑚𝑜𝑑 𝑝) has a complexity of 𝑂(𝑙𝑜𝑔2
3𝑝).

Computing 𝑑 ≡ (𝛼𝑘𝑚)(𝑚𝑜𝑑 𝑝) has a complexity of 𝑂(𝑙𝑜𝑔2
2𝑝). The overall complexity of the

encryption process is 𝑂(𝑙𝑜𝑔2
3𝑝).

Complexity of the decryption process: Computing   𝛾𝑝−𝑎−1 ≡ 𝛼−𝑎𝑘(𝑚𝑜𝑑 𝑝) using the extended

Euclidean algorithm has a complexity of 𝑂(𝑙𝑜𝑔2
3𝑝). Computing 𝑚 ≡ 𝛼−𝑎𝑘𝛿(𝑚𝑜𝑑 𝑝) has a

complexity of 𝑂(𝑙𝑜𝑔2
2𝑝).  The overall complexity of the decryption process is 𝑂(𝑙𝑜𝑔2

3𝑝).

5.3.3 Complexity of the Combined RSA-ElGamal Scheme 

Key-generation Complexity: Picking random primes p, q and r has a complexity of 𝑂(𝑙𝑜𝑔2
2𝑝) if the

Fermat’s primality test is used or 𝑂(𝑙𝑜𝑔2
3𝑝) if the Miller-Rabin test is used. Selecting a value k such

that 2≤ 𝑘 ≤ 𝑝2 − 1 has a complexity of 𝑂(2𝑙𝑜𝑔2𝑝). Finding a generator 𝛼 of the group 𝐺𝑝
∗ has a

complexity of 𝑂(𝑙𝑜𝑔2
2𝑝2) using a specific algorithm. Computing αa (mod p) has a complexity of

𝑂(𝑙𝑜𝑔2
3𝑝). Computing ϕ(η) = (𝑞2− 1)(𝑟2 − 1) has a complexity of 𝑂(𝑙𝑜𝑔2

4𝑝). Selecting a value e

such that 1 ≤ e ≤ ϕ(η) and gcd(e, ϕ(η)) = 1  has  a  complexity  of  𝑂(𝑙𝑜𝑔2
3𝜂). Computing d ≡ e−1

(mod ϕ(η))  has  a complexity of 𝑂(𝑙𝑜𝑔2
3 ϕ(η)) = 𝑂(𝑙𝑜𝑔2

3𝜂2) using the extended Euclidean algorithm.

Hence, the overall complexity of key generation is 𝑂(𝑙𝑜𝑔2
4𝑞).

Encryption-process Complexity: Computing γ ≡ αk(mod p) has a complexity of 𝑂(𝑙𝑜𝑔2
3𝑝).

Computing δ ≡ (αkm) (mod p) has a complexity of 𝑂(𝑙𝑜𝑔2
3𝑝). Computing c ≡ (γ + δi)e (mod η) has a

complexity of 𝑂(𝑙𝑜𝑔2
3𝜂). Hence, the overall complexity of the message-encryption process is

𝑂(𝑙𝑜𝑔2
3𝑝).

Decryption-process Complexity: Computing M ≡ cd (mod η) has a complexity of 𝑂(𝑙𝑜𝑔2
3𝜂).

Computing 𝑓 ≡ 𝑅𝑒(𝑀)𝑝2−𝑎−1(mod p) has a complexity of 𝑂(𝑙𝑜𝑔2
2𝑝). Computing h ≡ Im(M )

(mod p) has a complexity of O(log2 p). Computing t ≡ fh (mod η) has a complexity of 𝑂(𝑙𝑜𝑔2
2𝜂)η).

Hence, the overall complexity of the message-decryption process is 𝑂(𝑙𝑜𝑔2
3𝜂).

In summary, our analysis has thoroughly examined the computational complexities inherent in three 

prominent cryptographic schemes: RSA, ElGamal and the combined RSA-ElGamal schemes. We 

assessed these complexities in terms of key generation, encryption and decryption operations. For 

RSA, the key generation, encryption and decryption exhibit a time complexity of approximately 

𝑂(𝑙𝑜𝑔2
3𝑛), leveraging efficient key generation, but demanding multiple modular exponentiations for

encryption and decryption. Conversely, ElGamal scheme demonstrates a similar time complexity of 

𝑂(𝑙𝑜𝑔2
3𝑝) for key generation, encryption and decryption, excelling in key generation and encryption

processes while requiring an additional modular exponentiation during decryption. The combined 

RSA-ElGamal scheme combines the strengths of both RSA and ElGamal schemes, featuring key 

generation complexity of 𝑂(𝑙𝑜𝑔2
4𝑝)and encryption complexity of 𝑂(𝑙𝑜𝑔2

3𝑝), akin to ElGamal scheme.

However, decryption complexity increases to 𝑂(𝑙𝑜𝑔2
3𝜂), reflecting a slight trade-off for the inclusion

of RSA’s capabilities. In conclusion, the combined RSA-ElGamal scheme offers a balanced approach, 

leveraging RSA’s advantages in key management alongside ElGamal’s encryption efficiency, with the 

choice of scheme dependent on specific security needs and computational considerations. 

5.4 Real-world Applicability 

5.4.1 Impact of Key Generation on Overall Performance 

The combined RSA-ElGamal scheme presents a balance between enhanced security and 

computational efficiency. As discussed in our analysis, the key-generation process for this novel 

scheme is inherently more complex and time-intensive compared to the individual RSA or ElGamal 
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schemes. This complexity arises from the need to generate and manage three distinct prime numbers 

and perform additional arithmetic operations within the domain of Gaussian integers. 

In practical applications, the extended key-generation time can affect the performance of systems that 

rely on frequent key rotations or require rapid key creation. For instance, in scenarios such as secure 

communications or real-time applications where keys are generated dynamically, the increased key-

generation time might impact the system responsiveness. To address this issue, future research could 

explore optimizing key-generation processes or leveraging parallel-computing techniques to reduce 

the required time. 

5.4.2 Integration into Existing Security Frameworks 

The combined RSA-ElGamal scheme can be integrated into existing security frameworks with 

minimal disruption. Its dual-layer approach enhances security while requiring only minor adjustments 

to the existing cryptographic infrastructure. Key points include: 

1. Backward Compatibility: The combined RSA-ElGamal scheme can be deployed alongside

existing RSA or ElGamal systems, facilitating gradual adoption. This allows organizations to 

apply the new approach to new applications or incrementally transition from older systems. 

2. Modular Integration: The architecture of the combined RSA-ElGamal scheme supports

modular integration into existing security frameworks. It can be incorporated into established 

protocols, such as TLS or VPNs, either as a replacement or a complement to existing 

encryption algorithms, thereby enhancing security without necessitating an overhaul of the 

entire system. 

3. Adaptability for Specific Use Cases: The flexibility in the combined RSA-ElGamal

scheme’s parameter choices enables customization for specific security needs. For example, in 

environments with stringent security requirements, the scheme’s enhanced resistance to 

attacks can be particularly advantageous. 

4. Compatibility with Modern Hardware: Given that the computational demands of the new

scheme are manageable with current hardware, it can be effectively utilized in both software-

based and hardware-accelerated cryptographic systems. 

In summary, while the combined RSA-ElGamal scheme introduces additional computational 

overhead, it offers significant security benefits that can be applied to various real-world scenarios. By 

carefully considering the impact of key generation and thoughtfully integrating the scheme into 

existing frameworks, its advantages can be maximized and potential performance challenges can be 

mitigated. 

5.5 Practical Limitations 

5.5.1 Increased Computation Time 

While the theoretical analysis of computational complexities provides a foundation, practical 

implementations often encounter additional challenges. The combined RSA-ElGamal scheme, due to 

its combined use of RSA and ElGamal schemes, involves complex operations that can impact 

performance: 

1. Key Generation: The key-generation process for the combined RSA-ElGamal scheme

requires generating three primes and performing additional arithmetic operations within the 

domain of Gaussian integers. This complexity can lead to significantly longer key generation 

times compared to RSA and ElGamal schemes individually. This extended time might affect 

systems that require frequent key updates or rapid key generation, such as secure-

communication systems and real-time applications. 

2. Encryption and Decryption: Although the encryption process for the combined RSA-

ElGamal scheme shows comparable time requirements to traditional methods, the combined 

computational steps from both RSA and ElGamal schemes can lead to longer processing times 

in practical scenarios. For instance, the combined RSA-ElGamal scheme involves modular 

exponentiations and additional arithmetic operations that could contribute to a slower overall 

encryption and decryption process. 
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5.5.2 Memory Requirements 

The combined RSA-ElGamal scheme’s increased complexity also impacts memory usage: 

1. Storage for Intermediate Results: The computations involved in key generation and

encrypttion/decryption require storing intermediate results, which can increase memory usage. 

For instance, handling large integers and matrices in Gaussian-integer arithmetics can lead to 

higher memory demands compared to simpler encryption schemes. 

2. Ciphertext Size: As discussed, the new scheme may result in ciphertexts that are larger due to

the inclusion of both real and imaginary components. This increase in ciphertext size can 

impact storage requirements and bandwidth, particularly in systems with limited resources. 

5.5.3 Mitigation Strategies 

To address these practical limitations, several strategies can be considered: 

1. Algorithm Optimization: Future research could focus on optimizing the combined RSA-

ElGamal scheme’s algorithm to reduce computation time and memory usage. 

2. Hardware Acceleration: Implementing hardware acceleration for cryptographic operations

could help manage the increased computational load and memory requirements, making the 

scheme more feasible for practical applications. 

3. Efficient Storage Solutions: Exploring efficient storage and management solutions for

intermediate results and ciphertexts could help mitigate memory overhead. 

5.5.4 Advantages and Disadvantages 

Advantages: The combined RSA-ElGamal scheme offers several significant advantages: 

1. Integration of RSA and ElGamal Schemes: By combining RSA and ElGamal encryption

schemes, the new approach delivers a dual-layered security solution. The first layer leverages 

the discrete-logarithm problem, while the second layer relies on the integer-factorization 

problem. This combination creates a robust encryption framework similar to a double onion 

routing shield. 

2. Smooth Implementation: Implementing the combined RSA-ElGamal scheme requires no

additional effort beyond what is expected with traditional encryption schemes. The transition 

to the new approach can be smoothly achieved without introducing added complexities or 

burdensome requirements. 

3. Expanded Parameter Range: With computational efforts comparable to traditional

encryption methods, the combined RSA-ElGamal scheme allows for a broader selection of 

plaintexts and private keys. In fact, the number of available options exceeds the square of 

those in classical encryption settings, offering increased flexibility for customized-encryption 

processes. 

4. Efficient Encryption and Decryption: The combined RSA-ElGamal scheme maintains

comparable time requirements for encryption and decryption processes relative to traditional 

encryption methods. No extra time is required for these operations, ensuring that the new 

approach remains efficient and practical. 

5. Enhanced Security: The combined RSA-ElGamal scheme significantly increases resistance

to attacks compared to traditional encryption methods. The time required for an attacker to 

compromise the combined RSA-ElGamal scheme is substantially greater than or equal to the 

combined time needed to break both underlying classical encryption schemes. 

Disadvantages: Despite its strengths, the combined RSA-ElGamal scheme has a few drawbacks that 

must be considered: 

1. Increased Ciphertext Length: In certain cases, the ciphertext generated by the combined

RSA-ElGamal scheme may be twice the length of the original message. This occurs when the 

plaintext is real, resulting in a complex-number ciphertext that includes both real and 

imaginary components. The increased ciphertext length may impact storage requirements or 

communication bandwidth, which is an important consideration in resource-constrained 
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environments. 

2. Computational Overhead: The combined RSA-ElGamal scheme involves extensive

computations, particularly when dealing with large logarithmic calculations. This 

computational burden can result in longer processing times, potentially affecting the feasibility 

of encryption processes, especially when handling large datasets. The algorithm may perform 

sluggishly when encrypting extensive data on a single machine, necessitating optimization or 

the use of distributed-computing strategies. 

3. Slower Key Generation: Key generation in the combined RSA-ElGamal scheme is slower

compared to RSA and ElGamal schemes. This is because the combined RSA-ElGamal scheme 

requires the generation of three primes (as opposed to one in ElGamal or two in RSA) and 

additional computations. Moreover, arithmetic operations within the domain of Gaussian 

integers add further computational requirements, depending on the specific forms of the 

selected Gaussian primes. As a result, key generation in the combined RSA-ElGamal scheme 

demands more time and more computational resources. 

Therefore, the proposed combined RSA-ElGamal encryption scheme combines the strengths of RSA 

and ElGamal schemes while avoiding excessive implementation complexities. However, careful 

consideration of the potential expansion of ciphertext length, computational overhead and slower key-

generation processes is essential. These factors should be evaluated to determine the suitability of the 

combined RSA-ElGamal scheme for various cryptographic applications, taking into account the 

specific requirements and constraints of the intended use cases. 

6. CONCLUSION

In summary, our investigation into the combined RSA-ElGamal scheme highlights its effectiveness in 

striking a balance between enhanced security and computational efficiency. Despite the inherent 

complexity in key generation compared to standalone RSA or ElGamal schemes, the new approach 

delivers significant security benefits that warrant this added complexity. When compared to other 

advanced cryptographic methods, such as elliptic curve cryptography (ECC) and lattice-based 

cryptography, the combined RSA- ElGamal scheme presents a distinctive combination of security 

advantages and practical utility. 

Our study emphasizes the theoretical robustness of this new approach. Future work will focus on 

several key areas to further enhance and validate the scheme. We plan to provide a comprehensive 

analysis of the cryptanalysis methods used, including specific algorithms and their implementations. 

We will also include comparative studies with recent cryptographic techniques to contextualize our 

results and demonstrate the scheme’s relative efficacy. Additionally, optimizing key generation 

processes, evaluating performance in various real-world scenarios and integrating the combined RSA-

ElGamal scheme with existing security frameworks will be pivotal. Exploring variants and extensions 

of the combined RSA-ElGamal scheme will offer deeper insights into its practical advantages and 

limitations, guiding its future development and application. 
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ملخص البحث:

ددددددد ووRSAتقُددددددد الورددددددديةو مبتكدددددددعوبين خدددددددع وب   ددددددد   وت  ددددددد و دددددددخ و ب ت بخدددددددعو و ب ت بخدددددددعو م    

دددددد و ددددددخ و ددددددع ووبدددددد و دددددد  و م    م حسددددددخ وفبددددددنظوو نلتخددددددعوفال ددددددعو م اةددددددخخ وا جو م خددددددنتخ و م نبا

ون اق يدددددنوت  ددددد و دددددخ و   ددددد خن  و بددددد واقدددددننو مقدددددبا وو محددددد اوبددددد و مخدددددب ت بخ خ و م دددددينبتتخ قو دددددعظا

تددددددعو بلددددددد   و و خ ددددددنوا  تددددددد و  ةدددددد تعول بب  ددددددع  دددددد  او دددددد،و بال دددددددعو م قتخ اددددددعقوو خناا اقددددددننو مفا

ددددددحخحعولتدددددد و و مصا ددددددحخحعووبةدددددد تعو متابّددددددنتااسو م  دددددد ا  ووا  دددددد و  دددددد خ  لوفلدددددد   وّددددددنو     مصا

وفناددددد وفبنادددددن و ول ددددد   ك ددددد،قوبدددددب ا   و ندددددنت   ووت فددددد ا وت زادددددزوب نادددددعول تخدددددنجو م اةدددددخخ وو م ابكخددددد و م ا

و  ت  دددددد ينوتحتددددددخ  وزددددددنب  ومتخددددددب ت بخ خ و متا ددددددخ وادددددد ساو م  دددددد و خين ددددددنقو مدددددد و نادددددد وت  خقددددددنج 

سو نم ين خدددددعو م    ددددد  و ددددد،ورددددديةو م ات  دددددعوبددددد و ووتقخخ دددددنجوبال دددددعو م اةدددددخخ و ما ددددد،وتصُددددد ل ل تخدددددع 

دددددددحخحعووبةددددددد تعو متابّدددددددنتااسو تدددددددعو بلددددددد   و مصا  م  نخدددددددزولتددددددد و م احددددددد اانجو م   ااتدددددددعو ددددددد،ول بب 

وه دددددددختلن ووح  دددددددق م ولنلدددددددياوم و  ب دددددددو تدددددددلوفبكدددددددبتموج ون دددددددخخقتوء   ددددددد وساوتدددددددوكمينددددددد م  ددددددد ا  و

و عخ نسحم 

وعخددددددددب ت ب ووفوRSAوعخددددددددب ت ب ول  خ  ددددددددن وع واددددددددتنقبوأ دددددددد فو ختنخدددددددد م و خددددددددمبتوظننددددددددون دددددددديخ  

دددددد  وم  وعمدددددد   وو خخةدددددد اوم و، ددددددو  وخادددددد وء و  فو لددددددوس وي وتددددددوعحدددددد  ق م وعخدددددد ني م وظاوع ددددددوق   خددددددا و تددددددلو   

دددددد تو، ددددددماو وى  ددددددفوجن دددددد ت و، ددددددوعن نةدددددد م وع ددددددلاب و بددددددوس دددددد م و تددددددلوو  خخةدددددد اوم  و تددددددلوزنا

دددددددم وع دددددددمن ب و خخةددددددد اوم وع دددددددلافوقن ددددددداو خ دددددددبتو تدددددددلو وُ ددددددد توني  ددددددد ت وظاوع دددددددوقعخئبفدددددددم وتب وص 

و تاددددد   م وي لدددددياوم و ادددددن م و خسدددددحتو مددددد وكمي دددددوع وخلن دددددوق ادددددنفوجنقدددددخ  تو مددددد و، دددددك اوم و خدددددكب اوم و

و ، ددددددددك اوم و خددددددددكب اوم وو خخةدددددددد اوم وع ددددددددلابوعخددددددددت  م وجنقددددددددخ   اوم و اب ددددددددتووع دددددددد ت اوم وعبضددددددددب  

دددددددو،ت ق سددددددد م وثحددددددد م وظاوفو نياومدددددددن و ا  دددددددم و و خدددددددمبتو تدددددددلوزناو خ دددددددوع ددددددد ت م وعبضدددددددببو ب وح 

وع دددددئنقم و  ددددد م و نُدددددفُوو، دددددوح  دددددق م ولنلدددددياوم وجبددددد وفنةددددد    ووقع وخدددددمنابو ادددددنفوق و  ددددد و ختنخددددد م 

وكمددددداوو؛،قدددددخقحم وسمن دددددم و بدددددوج ونرباتنيخ دددددو اوظدددددو، دددددوء  ب وسخخدددددقتووقع دددددلاب وظنبدددددأ وعقدددددتاو   م 

 وو ه لن او بو ق وح لوم ووح  ق م ولنلياوم وء  فو خسحتو   وفو ب
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