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ABSTRACT 

Malaria detection through cell-image analysis is essential for early diagnosis and effective treatment, as timely 

detection can significantly reduce the risk of severe health complications. However, this process raises 

substantial privacy concerns due to the sensitivity of medical data. This study presents a U-Net model combined 

with k-anonymity to enhance data security while maintaining high accuracy. The model features a custom 

Spatial Attention mechanism for improved segmentation performance and incorporates advanced techniques to 

focus on critical image features. K-Anonymity adds controlled noise to protect data privacy by obfuscating 

sensitive information. The model achieved a validation accuracy of 99.60%, a Dice score of 99.61%, a precision 

of 99.42%, a recall of 99.96% and an F1-score of 99.69% on malaria cell images. When applied to the Cactus 

dataset,    a real dataset, in agriculture, it achieved an accuracy of 98.58%, an F1-score of 98.44%, a Dice score 

of 95.08%, a Precision of 98.04% and a Recall of 98.86%, demonstrating its strong generalization capability. 

These results highlight the effectiveness of integrating privacy-preserving techniques with advanced neural-

network architectures, improving both security and performance in diverse image-analysis applications. 
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1. INTRODUCTION 

Malaria remains a major global health challenge, causing millions of death cases every year, especially 

in tropical and sub-tropical areas [1]-[2]. The World Health Organization estimates that there were 

around 249 million malaria cases worldwide in 2022 [3], resulting in over 600,000 deaths, primarily 

among vulnerable populations (Figure 1). The early and accurate detection of malaria is crucial for 

effective treatment   and disease control [4]. However, traditional diagnostic methods, like 

microscopy, are time-consuming and require skilled personnel, often causing delays in diagnosis and 

treatment [5]-[6]. 

Image segmentation is widely acknowledged as a crucial and fundamental task in image analysis [7]-

[8]. It serves as the initial step in extracting significant information from images. The main goal of 

image segmentation is to divide an image into distinct segments, which allows for easier 

representation of objects and measurement of features. The accuracy of feature measurement is greatly 

affected by the quality of segmentation, emphasizing its importance in various medical imaging 

applications. The automation of medical-image segmentation plays a vital role in disease diagnosis, 

pathology localization, anatomical-structure study, treatment planning and integration with computer-

assisted surgical systems [9]. 

Machine learning (ML) and deep learning (DL) have become integral solutions across various 

domains [10], particularly in healthcare, where they are leveraged for tasks, such as diagnosis, 

treatment planning and patient monitoring. These technologies enable the analysis of vast datasets, 

allowing for real-time insights that can significantly enhance healthcare outcomes. In recent years, DL 

techniques, specifically convolutional neural networks (CNNs) [11], have revolutionized medical-

image analysis [12]-[13], providing advanced capabilities for automating disease detection and 

improving diagnostic accuracy [14]-[15]. 

Among the various architectures developed for biomedical-image segmentation, U-Net has gained 

prominence due to its ability to effectively capture detailed information [16]-[18]. Its encoder-decoder 

mailto:hcinighazala@fstsbz.u-kairouan.tn
mailto:imen.jdey@fstsbz.u-kairouan.tn


86 

"Privacy-aware Malaria Detection: U-Net Model with K-Anonymity for Confidential Image Analysis", G. Hcini and I. Jdey. 

  
structure enables precise segmentation of malaria parasites in blood smears [19], thereby facilitating 

rapid and accurate diagnosis. However, despite its effectiveness, the U-Net model sometimes struggles 

to distinguish fine details in complex images, which is crucial for accurate parasite detection. To 

improve the segmentation performance, this paper introduces a spatial-attention mechanism into the 

U-Net architecture. The spatial-attention mechanism allows the model to focus on relevant regions of 

the image, thereby enhancing its ability to discern subtle features and improving the overall detection 

accuracy [20]-[21]. 

 

 

 

 

 

 

 

Figure 1. Malaria report: number of deaths and number of cases (2019-2022). 

In addition to enhancing detection capabilities, integrating artificial intelligence in healthcare also 

brings up significant privacy concerns regarding handling sensitive patient data [22]. As healthcare 

data continues to become more digitized, it becomes crucial to maintain the confidentiality and 

security of patient information [23]. To address these concerns, this paper introduces a new approach 

that combines the enhanced U-Net model with k-anonymity techniques. This approach establishes a 

privacy-aware framework for malaria detection. K-anonymity is a well-established method for 

preserving privacy [24], as it ensures that individual data points cannot be distinguished from at least 

k-1 other data points [25]. This protects patient identities while allowing the model to learn from the 

data effectively. 

K-anonymity plays a crucial role in mitigating re-identification risks, making it effective in reducing 

the likelihood of identifying individuals within anonymized datasets. This enhances privacy protection 

when sharing sensitive health information, which is increasingly demanded by researchers and 

regulatory bodies. The method enables the safe sharing of personal health data, facilitating 

advancements in medical research while striving to protect individual privacy. El Emam and Dankar 

[26] proposed significant improvements to traditional k-anonymity methodologies, suggesting 

modifications that better balance privacy protection with data utility. Their study indicates that a 

hypothesis-testing approach offers superior control over re- identification risks compared to baseline 

k-anonymity, thereby minimizing unnecessary data distortions. This advancement underscores the 

importance of adapting existing frameworks to meet the evolving demands of data sharing in 

healthcare while maintaining robust privacy safeguards. 

The main contributions of our study are: 

1) It developed a U-Net model combined with k-anonymity technique to enhance data privacy 

while maintaining high accuracy for malaria cell-image segmentation. 

2) It incorporated a custom spatial-attention mechanism into the U-Net model to improve 

segmentation performance and focus on critical image features. 

3) It demonstrated generalization capability by applying our proposed model to the Cactus 

dataset, a real dataset, from agriculture. 

The paper is organized into four main sections: Related Works, Materials and Methods, Results and 

Discussion and Conclusion. The Related Works section reviews the literature on malaria detection 

with DL. The Materials and Methods section outlines the dataset, pre-processing steps, the architecture 

of the spatial attention-enhanced U-Net model and the implementation of k-anonymity. The Results 

and Discussion section presents experimental findings, analyzes the impact of the attention mechanism 

and evaluates the effectiveness of the privacy approach. Finally, the Conclusion section summarizes 

key findings and suggests future-research directions. 
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2. RELATED WORKS 

Recent advancements in malaria cell-image segmentation have significantly improved diagnostic 

capabilities. Traditional methods laid the groundwork, but the field has evolved by adopting advanced 

techniques that enhance accuracy and reliability. The following review explores key recent studies that 

have pushed the boundaries of automated malaria detection, showcasing the progress and innovations 

in this critical area of medical imaging. 

The proposed approach in [27] involves creating an automated system for malaria detection using a 

decision-tree classifier. The methodology includes pre-processing blood smear images through 

segmentation with the Canny edge detector and feature extraction using Hu Moments. The data is 

normalized to ensure consistency. The decision-tree classifier, trained and validated with 5-fold cross-

validation, achieved an accuracy of 77.32%, a precision of 77.31%, a recall of 77.37% and an F1-score 

of 77.48%. This approach highlights the effectiveness of Hu Moments and decision-tree classification 

for distinguishing malaria- infected from uninfected images, offering potential improvements in 

diagnostic accuracy and efficiency in clinical settings. Future work should explore advanced 

techniques and real-time image acquisition to enhance practical applicability. 

In [28], the authors proposed a hybrid model combining Capsule Neural Networks (CapsNet) with 

CNNs for malaria detection from blood smear microscopic images. The approach involved processing 

and enhancing images through rotation before feeding them into the hybrid CapsNet model. Optimized 

with a learning rate of 0.07 and a batch size of 20, the model demonstrated significant improvements 

over traditional methods. The hybrid CapsNet model achieved a detection rate of 99%, an accuracy of 

99.08% and a False Acceptance Rate (FAR) of 0.97%, surpassing the DSCN-Net model, which 

recorded a detection rate of 98%, an accuracy of 97.2% and an FAR of 0.99%. This method 

underscored the enhanced efficacy of the hybrid CapsNet model in malaria detection. 

The main contribution of [29] is the application of the U-Net architecture for accurate Plasmodium 

segmentation in thin blood smear images. The study demonstrates U-Net’s effectiveness in this 

biomedical-imaging task and compares three loss functions—mean squared error, binary cross-entropy 

and Huber loss. The results reveal that Huber loss achieves the best performance metrics, with an F1-

score of 92.97%, a positive predictive value (PPV) of 0.9715, a sensitivity (SE) of 89.57% and a 

relative segmentation accuracy (RSA) of 90.96%. These findings highlight Huber loss’s ability to 

enhance segmentation accuracy and reliability for malaria diagnosis. 

The proposed method, in [30] introduces an automated system for detecting malaria parasites in 

microscopic blood images. It uses bilateral filtering to enhance image quality by removing noise, 

followed by adaptive thresholding and morphological image processing to identify malaria parasites 

within individual cells. Tested on the NIH Malaria dataset, this approach achieved a detection 

accuracy exceeding 91%, outperforming existing methods. This algorithm provides a reliable and 

efficient tool for pathologists and hematologists, aiding in the accurate and timely detection of malaria. 

The proposed method in [31] focuses on enhancing the analysis of malaria by automating the 

identification of parasitized red blood cells. It compares the performance of various models; Support 

Vector Machines (SVM), XG-Boost and neural networks, demonstrating that CNNs offer superior 

results. In experiments involving 13,750 parasitized and 13,750 non-parasitized samples, CNNs 

achieved an accuracy rate of 97%, outperforming SVMs (94%), XG-Boost (90%) and traditional 

neural networks (80%). This DL approach provides a highly accurate and robust solution for detecting 

malaria, significantly improving decision-making in medical diagnostics. 

In [32], the proposed method involves training various object detection neural networks; YOLOv5x, 

Faster R-CNN, SSD and RetinaNet, on a dataset of 2,571 labeled thick blood smear images for 

detecting Plasmodium parasites. YOLOv5x demonstrated a high performance with a precision of 

92.10%, recall of 93.50%, an F-score of 92.79% and mAP0.5 of 94.40% for detecting leukocytes, 

early and mature Plasmodium trophozoites. Attention modules were also tested, but showed no 

significant improvement over YOLOv5x. To further enhance the diagnostic process, a 3D-printed 

robotic system was designed for automating optical microscopy, enabling auto-focusing and slide 

tracking. Integrated into the iMAGING smartphone application, this system provides fully automated 

malaria diagnostics, including the ability to determine Plasmodium infection and parasite levels in 

Giemsa-stained thick blood smear samples. 
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In [33], the authors proposed a novel semantic segmentation neural-network architecture for rapid 

malaria detection. This method quickly generates classification masks that indicate the position, shape 

and type of detected elements in blood samples. Addressing the challenges of manual diagnosis, the 

approach uses light microscope imagery to classify cells into three categories: healthy, malaria-

infected and background. The generated masks, which can be color-coded for better visualization, 

facilitate semi-automatic disease recognition while leaving the final diagnosis to specialists. The 

system demonstrated a high recognition accuracy of 96.65% with minimal computational demands, 

thus enhancing diagnostic speed and reducing misclassification rates by providing valuable additional 

information to healthcare providers [33]. 

The main contribution of [34] is the development of RBCNet, a novel pipeline for red blood-cell 

detection in blood smear microscopy images. RBCNet integrates a dual DL architecture: a U-Net for 

initial cell-cluster segmentation and a Faster R-CNN for refined detection of small cell objects. This 

approach, based on cell clustering rather than region proposals, enhances robustness to cell 

fragmentation and scalability for fine-scale structures. Tested on nearly 200,000 labeled cells from 

malaria smears, RBCNet achieved over 97% detection accuracy. The pipeline significantly improves 

detection precision and reduces false alarms, marking a crucial step toward automated malaria 

diagnosis. 

Maqsood, A. et al. [35] proposed a custom CNN-based architecture consisting of 5 convolutional 

layers, 5 max-pooling layers and 2 fully connected layers. Augmentation techniques were employed to 

enhance the features of red blood cells before training the model. The model was evaluated using the 

NIH malaria benchmark dataset. 

In [36], the authors modified the YOLOv4 architecture by layer pruning and backbone replacement to 

improve its efficiency and accuracy in detecting malaria-infected cells. By strategically removing 

residual blocks from layers C3 to C5 and replacing the CSP-DarkNet53 backbone with a shallower 

ResNet50 network, the study successfully created a lighter model that maintains a strong performance. 

Chaudhry, H. et al. proposed a DL approach that not only classifies the malaria parasite type, but also 

identifies the life-cycle stage of the infected cell. The proposed architecture is more than twenty times 

lighter than the widely used Dense Convolutional Network (DenseNet) and contains less than 0.4 

million parameters, making it a suitable option for mobile applications in economically disadvantaged 

regions for malaria detection [37]. 

In the context of evaluating image-segmentation models, several key metrics are commonly used to 

measure performance comprehensively. Accuracy is frequently used to assess the overall correctness 

of model predictions (Equation 1). Specificity refers to the proportion of true negative predictions 

among all actual negatives (Equation 2). Precision and Recall are critical for understanding the 

model’s performance in distinguishing between classes, focusing on the accuracy of positive 

predictions and recall highlighting the model’s ability to identify all positive instances (Equations 3, 

4). The F1-score is a balanced metric by combining precision and recall, providing a single measure 

that considers both false positives and false negatives (Equation 5). In image segmentation, the Dice 

coefficient is a popular metric for evaluating the overlap between predicted and true masks, offering 

insights into the model’s segmentation accuracy (Equation 6). These metrics collectively contribute to 

a robust evaluation framework, ensuring a well- rounded assessment of model performance across 

different tasks [38]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                                                                  (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
(𝑇𝑁)

(𝑇𝑁+𝐹𝑁)
                                                                      (2) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑅𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                                                        (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
                                                                      (4) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                     (5) 

𝐷𝑖𝑐𝑒 =
2.|𝐴∩𝐵|

|𝐴|+|𝐵|
                                                                                      (6) 
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where: 

• TP (True Positive), TN (True Negative), FP (False Positive) and FN (False Negative). 

• |𝐴| is the total number of elements in the predicted segmentation. 

• |𝐵| is the total number of elements in the ground-truth segmentation. 

• |𝐴 ∩ 𝐵|is the number of elements in the intersection of the predicted and ground-truth 

segmentations. 

Table 1. Summary of recent related works in malaria segmentation. 

Study Year Method Dataset Performance 

 

[27] 

 

2024 

 

Decision Tree 

 

27,558 images 
Accuracy = 77.32% 

Precision = 77.31% 

Recall = 77.37% 

F-score = 77.48% 

[28] 2024 CapsNet 27,558 images 

Detection rate = 99% 

Accuracy = 99.08% 

FAR = 0.97% 

 

[29] 

 

2019 

 

U-Net 

 

30 images 

F1-score = 92.97% 

PPV = 97.15% 

Sensitivity = 89.57% 

Accuracy= 90.9% 

 

[30] 

 

2020 

 

Bilateral Filtering+Image 

Processing 

 

27,558 images 

Precision = 92.97% 

Specificity = 97.15% 

Recall = 89.57% 

Accuracy = 90.9% 

F1-score = 91.53% 

[31] 2022 CNN 27,558 images Accuracy = 97% 

 

[32] 

 

2023 

 

YOLOv5x 

 

2571 images 
Precision = 92.10% 

Recall = 93.50% 

F-score = 92.79% 

mAP0.5 = 94.40% 

[33] 2023 Semantic Segmentation CNN 80,000 cells Accuracy = 99.66% 

 

[34] 

 

2020 

 

RBCNet (U-Net+Faster R-

CNN) 

 

965 images 
Accuracy = 97% 

F1-Measure = 97.76% 

Precision = 97.51% 

Recall = 98.07% 

 

[35] 

 

2021 

 

CNN 

 

27,558 images 

Specificity = 97.78% 

Sensitivity = 96.33% 

Precision = 96.82% 

Accuracy = 96.82% 

F1-Score = 96.82% 

[36] 2024 Modifed YOLOv4 A=210 images,  

B=472 images 

mAP=90.07% 

[37] 2024 DL Approach 

MP-IDB = 229 images, 

IML-Malaria = 345 images,  

MD-2019 = 883 images 

Accuracy = 99% 

Accuracy = 92% 

Accuracy = 82% 

3. MATERIALS AND METHODS 

The research methodology (Figure 2) outlines the systematic approach taken in this study to address 

malaria detection through image segmentation, starting with a thorough problem analysis that 

identifies key challenges and establishes research objectives, inspired by related recent works. 

Following this, the methodology details the data collection and pre-processing steps, where images are 

sourced from Kaggle, a benchmark dataset, resized, normalized and prepared for training, alongside 

the generation of dummy masks for segmentation. The core of the methodology involves the design 

and implementation of a U- Net model enhanced with a spatial-attention mechanism and K-anonymity 

for privacy preservation, culminating in a rigorous evaluation phase that assesses the model’s 

performance using metrics, such as accuracy, precision, recall and F1-score, ensuring its effectiveness 

in real-world applications. 
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Figure 2. Research methodology overview. 

3.1 Dataset 

The dataset provided by the National Institutes of Health (NIH) includes publicly accessible images   

of peripheral blood smears from individuals, featuring both healthy subjects and those diagnosed with 

malaria. These images were collected at the Lister Hill National Center for Biomedical 

Communications, using Giemsa-stained blood samples from 150 patients infected with Plasmodium 

falciparum and 50 healthy individuals. The dataset comprises 27,558 images, with an equal 

distribution of infected and healthy cells, https://www.kaggle.com/datasets/iarunava/cell-images-for-

detecting-malaria, (Figure 3). 

 

 

 

 

 

Figure 3. Dataset. 

3.2 Data Pre-processing 

The dataset used in our study consists of images representing both parasitized and uninfected cells. 

Each image is resized to a uniform dimension of 64x64 pixels and the pixel values are normalized to 

a range between 0 and 1, ensuring consistency and comparability in the input data. To facilitate 

training and evaluation, the dataset is divided into training and testing sub-sets, with 20% of the data 

reserved for testing to accurately assess the performance of our proposed architecture. For the 

segmentation task, binary masks are generated using a thresholding approach. The images are first 

converted into grayscale and a specific threshold is applied to create the masks, which serve as 

ground truth during the segmentation process. 

3.3 K-Anonymity Method 

Before delving into the details of the U-Net architecture, it is crucial to discuss the application of the 

k- anonymity method to the dataset. K-anonymity is a privacy-preserving technique used to protect 

sensitive information in datasets by ensuring that each record is indistinguishable from at least k-1 

other records. 

In this study, k-anonymity is applied to the cell images to safeguard the privacy of the individuals 

represented in the dataset. The function takes the dataset of cell images and a parameter k, which 
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determines the level of anonymity. It generates random noise with a uniform distribution between  

-0.1 and 0.1, with the same shape as the input images. The noise is then added to the original images 

and the resulting values are clipped to ensure that they remain within the valid pixel-value range of 0 

to 1. 

By adding random noise to the images, the k-anonymity method ensures that any identifying 

information related to the individuals in the dataset is obscured. This approach effectively "hides" 

each individual’s data among at least k-1 other records, making it difficult for malicious parties to 

trace sensitive information back to specific individuals. 

The application of k-anonymity is critical in medical and biological research, where maintaining the 

confidentiality of patient data is crucial. By implementing this method, researchers can conduct their 

analysis while adhering to ethical standards and protecting the privacy of the individuals involved in 

their studies. After applying k-anonymity, the noisy images are used as input to the U-Net model for 

the segmentation task. The model architecture is designed to maintain the utility of the data while 

respecting the privacy constraints imposed by the k-anonymity method. 

3.4 Model Architecture 

The U-Net model (Figure 4) with spatial attention is constructed to perform image-segmentation 

tasks effectively. It comprises three main components: the encoder, the bottleneck and the decoder. 

Each of these components plays a crucial role in processing the input images and generating the 

output masks. 

 

 

 

 

 

 

 

 

Figure 4.  U-Net architecture. 

3.4.1 Encoder 

The encoder is responsible for capturing features from the input images through a series of 

convolutional and max-pooling operations. The architecture is structured as follows: 

1) Convolutional Layers: The encoder begins with a series of convolutional layers that apply 

filters to the input images. For instance, the first block consists of two convolutional layers, 

each with 64 filters (3x3 kernel size) and Rectified Linear Unit (ReLU) activation. These 

layers help extract low-level features, such as edges and textures. 

2) Max-Pooling Layers: Following the convolutional layers, a max-pooling layer (2x2 pooling 

size) is applied. This operation reduces the spatial dimensions of the feature maps, effectively 

down-sampling the input and allowing the model to focus on more abstract representations as 

it progresses deeper into the network. 

3) Repeated Blocks: The encoder consists of multiple blocks, each progressively increasing the 

number of filters (128, 256 and 512) while maintaining the same structure of two 

convolutional layers followed by a max-pooling layer. This hierarchical structure enables the 

model to learn increasingly complex features at different resolutions. 

3.4.2 Bottleneck 

The bottleneck serves as the crucial transition between the encoder and the decoder, effectively 
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capturing the most salient features from the down-sampled representations. It consists of two deep 

convolutional layers, each equipped with 1024 filters. These layers operate on the most compressed 

feature maps, enabling the model to learn high-level representations that encapsulate essential 

information from the input images. This design allows for a more efficient encoding of the data, 

ensuring that vital characteristics are preserved for subsequent decoding. 

3.4.3 Decoder 

The decoder is designed to reconstruct the output segmentation masks from the encoded features. It 

mirrors the encoder’s structure and includes the following components: 

1) Up-sampling Layers: Each decoding block begins with an up-sampling layer that increases the 

spatial dimensions of the feature maps. This step effectively reverses the down-sampling 

performed in the encoder. 

2) Skip Connections: After up-sampling, the decoder concatenates the up-sampled features with 

the corresponding features from the encoder. This skip connection allows the model to retain 

spatial information lost during down-sampling, enhancing the reconstruction accuracy. 

3) Spatial Attention Layers: The primary objective of the Spatial Attention Mask (SAM) is to 

create an attention mask that enhances the accuracy of feature extraction from a feature map. 

This process involves three sequential steps. The first step is down-sampling, where the 

dimensions of the feature map are reduced. This is achieved by applying average-pooling and 

max-pooling operations along the channel axis, followed by concatenation of the results to 

form a compact feature descriptor. Next, this descriptor is processed through a convolutional 

layer with a 7×7 filter size, using padding to preserve the spatial dimensions. In the final step, 

the output from the convolutional layer is passed through a sigmoid activation function, which 

scales the values to a range between 0 and 1, resulting in the attention mask. To enhance the 

features further, an element-wise multiplication is performed between the original feature map 

and the generated attention mask, effectively emphasizing the most informative pixels while 

diminishing less relevant ones (Figure 5). 

 

 

 

 

 

 

 

Figure 5. Spatial-attention mechanism. 

The attention map highlights the most relevant spatial regions by multiplying them element-
wise with the input features, effectively guiding the model to focus on important areas during 
the reconstruction process. 

4) Repeated Blocks: The decoder continues with additional blocks, each consisting of two 
convolutional layers (with 512, 256 and 128 filters, respectively), followed by an up-
sampling layer and a spatial-attention layer. This structure allows for a detailed 
reconstruction of the output mask. 

5) Output Layer: Finally, a convolutional layer with a single filter and sigmoid activation is 

applied to the output of the last decoding block. This layer generates the final segmentation 

mask, providing a binary output that indicates the presence or absence of the target features. 

Figure 6 illustrates the U-Net model enhanced with a spatial-attention mechanism integrated into the 

decoding path. The architecture includes an encoder consisting of four convolutional blocks, a 

central bottleneck block and a decoder with four convolutional blocks. The spatial-attention 

mechanism is applied after each convolutional layer in the decoder blocks to emphasize important 

regions of the input images. This mechanism helps in improving the segmentation accuracy by 
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focusing on the most relevant features in the image. The final output layer generates the segmented 

output based on the attention- enhanced feature maps. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Proposed model: U-Net architecture with spatial-attention mechanism (SAM). 

Table 2 summarizes the hyper-parameter values used in the U-Net model for malaria detection. 

These values were selected after extensive testing and empirical evaluation to optimize the model’s 

performance. The careful tuning of these hyper-parameters is crucial for achieving effective 

segmentation and ensuring robust results across different datasets. 

Table 2. Hyper-parameter summary for our proposed model. 

Hyper-parameter Value 

Batch Size 

Learning Rate  

Number of Epochs 

16 

0.001 

10 

Convolutional Filter Sizes 

Layer 1 

Layer 2 

Layer 3 

Layer 4  

Bottleneck Layer 

64 filters (3x3) 

128 filters (3x3) 

256 filters (3x3) 

512 filters (3x3) 

1024 filters (3x3) 

Activation Function  

Pooling Dropout Rate 
ReLU 

Max-pooling (2x2) 0.2 

Spatial-attention Layer 

Convolution Kernel Size  

Number of Filters 

Activation Function 

 

7x7  

1 

Sigmoid 

K-Anonymity Parameters 

Noise Level 

Number of Neighbors (k) 

0.1 

3 

4. RESULTS AND DISCUSSION 

The segmentation results demonstrate the effectiveness of the proposed approach in accurately 

identifying and delineating malaria-infected cells from microscopic blood smear images (Figure 7). 

The input image shows a representative field of view containing both infected and uninfected red 

blood cells. The true mask serves as the ground truth for infected cell regions. The predicted mask, 

generated by the segmentation model, closely matches the true mask, indicating a high degree of 

accuracy in identifying the infected cells. By comparing the predicted segmentation to the true mask, 
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the model achieves a Dice score of 99.61%, confirming its ability to locate and segment malaria-

infected cells precisely. These results suggest that the proposed approach can serve as a reliable tool 

for automated malaria diagnosis, potentially aiding healthcare workers in resource-limited settings, 

where access to expert microscopy is limited. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Segmentation results: Input image with k-anonymity, true mask and predicted mask. 

The accuracy and loss curves (Figures 8, 9) demonstrate the model’s performance over training 

epochs. The accuracy curve shows a consistent upward trend, indicating that the model is effectively 

learning and improving its predictions. Simultaneously, the loss curve exhibits a downward 

trajectory, reflecting a reduction in prediction error. Together, these curves suggest that the model is 

successfully optimizing its performance, achieving high accuracy while minimizing loss. This 

correlation between accuracy and loss indicates a well-trained model capable of generalizing well to 

unseen data. 

  
 

Figure 8. Accuracy curve. Figure 9. Loss curve. 

This study introduces several significant contributions to the field of medical-image segmentation, 

specifically for malaria-cell detection. Our approach integrates multiple advanced techniques to 

enhance both the accuracy of segmentation and the privacy of sensitive data. 

4.1 Enhanced U-Net Architecture with Spatial-attention Mechanism 

One of the primary contributions of this study is the development of a U-Net architecture enhanced 

with a spatial-attention mechanism. The incorporation of this mechanism enables the model to focus 

on the most relevant regions of the input images, improving the extraction of critical features and 
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thus enhancing segmentation performance. This attention mechanism allows the network to 

dynamically emphasize important areas while suppressing less relevant information, leading to more 

precise and reliable segmentation results. The empirical performance improvements observed 

validate the effectiveness of this approach in addressing complex medical-imaging tasks. 

4.2 Privacy Preservation through K-Anonymity 

In addition to architectural improvements, we have incorporated k-anonymity to address privacy 

concerns associated with medical data. By adding random noise to the images, k-anonymity ensures 

that individual identities remain confidential, effectively protecting patient privacy while 

maintaining the integrity of the dataset. This technique demonstrates our commitment to ethical 

considerations in data handling and supports the deployment of ML models in sensitive healthcare 

environments without compromising data security. 

4.3 Generalization Capability 

In recent studies, the generalization capability of deep-learning models has been increasingly 

recognized as a crucial factor in their effectiveness across various domains [39]. This sub-section 

discusses the successful application of a model initially trained on malaria-cell images to a newly 

introduced real Cactus-disease dataset, which has not yet been published. The dataset comprises 343 

images of healthy cacti and 285 images of diseased cacti. The results demonstrate the model’s ability 

to generalize and perform effectively in the agricultural domain. 

The model architecture originally designed for analyzing malaria cell images was adapted to address 

the challenges posed by the Cactus-disease dataset. The U-Net model, known for its efficacy in 

image-segmentation tasks, was employed to identify and classify diseases affecting cactus plants. 

The training process involved using the Cactus-disease dataset included a diverse set of images, 

depicting healthy and diseased cactus specimens. 

The successful application of the model to the Cactus-disease dataset illustrates its generalization 

capability, showcasing how insights gained from one biological domain (malaria-cell images) can be 

effectively transferred to another (cactus diseases). This cross-domain application not only highlights 

the versatility of DL models, but also emphasizes their potential in agricultural practices, where 

timely and accurate disease detection is critical for crop management (Figure 10). 

 

 

 

 

 

 

Figure 10. Segmentation results for the second dataset in agriculture domain. 

The evaluation metrics for the Cactus-disease detection model are as follows: the F1-score is 

98.44%, indicating a strong balance between precision and recall; the Dice score is 95.08%, 

reflecting the model’s accuracy in segmenting the diseased areas; the Precision is 98.04%, 

demonstrating the model’s effectiveness in minimizing false positives; and the Recall is 98.86%, 

highlighting the model’s ability to identify diseased cacti correctly. These results underscore the 

model’s high performance in accurately detecting cactus diseases (Figure 11). 

4.4 Comprehensive Evaluation and Validation 

The study includes a thorough evaluation of the model’s performance using a range of metrics, such 

as accuracy, precision, recall and F1-score. This comprehensive assessment provides a robust 

understanding of the model’s capabilities and potential for real-world applications. The positive 

results from these evaluations further strengthen the validity of our proposed method. 
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Figure 11. Accuracy and loss curves for Cactus dataset. 

Table 3. Comparison of different methods based on performance, privacy and generalization. 

Method Dataset Performance Privacy Generalization 

 

Decision Tree 

 

27,558 images 
Accuracy = 77.32% 

Precision = 77.31% 

Recall = 77.37% 

F-score = 77.48% 

 

x 

 

x 

CapsNet 27,558 images 

Detection rate = 99% 

Accuracy = 99.08% 

FAR = 0.97% 
x x 

 

U-Net 

 

30 images 

F1-score = 92.97 

PPV = 97.15% 

Sensitivity = 89.57% 

Accuracy = 90.9% 

 

x 

 

x 

 

Bilateral Filtering 

+ Image Processing 

 

27,558 images 

Precision = 92.97% 

Specificity = 97.15% 

Recall = 89.57% 

Accuracy = 90.9% 

F1-score = 91.53% 

 

x 

 

x 

CNN 27,558 images Accuracy = 97% x x 

 

YOLOv5x 

 

2,571 images 
Precision = 92.10% 

Recall = 93.50% 

F-score = 92.79% 

mAP0.5 = 94.40% 

 

x 

 

x 

Semantic Segmentation 

CNN 

80,000 cells Accuracy = 99.66% x x 

 

U-Net + Faster R- CNN 

 

965 images 
Accuracy = 97% 

F1-Measure = 97.76% 

Precision = 97.51% 

Recall = 98.07% 

 

x 

 

x 

 

CNN 

 

27,558 images 

Specificity = 97.78% 

Sensitivity = 96.33% 

Precision = 96.82% 

Accuracy = 96.82% 

F1- Score = 96.82% 

 

x 

 

x 

Modified YOLOv4 A=210 images, 

B=472 images 

mAP=90.07% x x 

DL Approach MP-IDB=229 images,  

IML-Malaria=345 images, 

MD-2019= 883 images 

Accuracy = 99% 

Accuracy = 92% 

Accuracy = 82% 

x x 

 

Proposed Method 

 

27,558 images 
Accuracy = 99.60% 

Dice Score = 99.61% 
Precision = 99.42% 

Recall = 99.96% 
F1-score = 99.69% 

 

✓ 

 

✓ 
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4.4.1 Limitations 

In our work on Kaggle, we have encountered limitations related to computational resources, 

particularly when using central-processing units (CPUs) for our tasks. Although Kaggle provides a 

robust environment with access to graphical-processing units (GPUs), reliance on CPUs can result in 

slower processing times, hindering our ability to efficiently test and iterate on models. The 

platform’s current restrictions, such as the cap on GPU usage at thirty hours per week, also require 

us to strategically manage our computational tasks to maximize efficiency. This necessitates 

optimizing our code and pre-processing steps to alleviate the burden on CPU resources. 

Consequently, while we can leverage Kaggle’s capabilities for our projects, these resource 

limitations demand careful planning and execution to achieve our objectives effectively. 

4.4.2 Advantages and Disadvantages 

The integration of our proposed approach combines advanced malaria-detection techniques, 

resulting in several significant advantages. First, the model achieves a high diagnostic accuracy, with 

a validation accuracy of 99.60% and a Dice score of 99.61%, ensuring reliable malaria detection. 

Furthermore, it improves data privacy by using the k-anonymity technique, which protects sensitive 

medical information and minimizes the risk of re-identification, thus ensuring compliance with 

privacy regulations. Moreover, the approach exhibits improved segmentation performance through a 

customized spatial-attention mechanism that focuses on critical image features, leading to better 

results. It also demonstrates a strong generalization ability, achieving an accuracy of 98.58% on the 

Cactus dataset, a real-world image dataset, indicating its adaptability beyond malaria detection. 

Automating diagnostic processes reduces the workload of healthcare professionals by streamlining 

the analysis of cellular images, enabling more efficient patient care. Finally, early and accurate 

diagnosis through this approach can significantly reduce the risk of serious health complications 

associated with malaria, contributing to improved health outcomes. 

One notable disadvantage of this study is the manual selection of hyper-parameters for the U-Net 

model, which demands significant time and effort to identify optimal values. This process involves 

extensive testing and experimentation, making it time-consuming and potentially subjective. 

Consequently, the chosen hyper-parameters may not represent the best possible configuration for all 

datasets. 

5. CONCLUSION 

In this study, we presented a novel approach to malaria detection through cell-image segmentation 

using a U-Net architecture enhanced with a custom spatial-attention mechanism and K-anonymity 

for privacy preservation. The model demonstrated an exceptional performance on the malaria-cell 

image dataset, achieving a high validation accuracy, as well as high Dice score and precision. These 

results underscore the effectiveness of integrating advanced neural-network architectures with 

privacy-preserving techniques, addressing both the need for accurate disease detection and 

safeguarding sensitive patient data. 

Furthermore, the model’s generalization capability was validated through its application to a real 

Cactus-disease dataset, where it maintained a strong performance. This indicates the potential for 

cross-domain applications of the model, paving the way for its use in various agricultural and 

medical-imaging tasks. While the study achieved significant results, it also highlighted the 

challenges associated with manual hyper-parameter selection, which can be time-consuming and 

subjective. Future work should focus on automating this process to enhance model efficiency and 

adaptability. 

Overall, this research contributes to the development of secure and reliable diagnostic tools in both 

medical and agricultural fields, promoting the integration of privacy-aware methodologies in 

machine-learning applications. 

Future research could focus on several approaches to further enhance the effectiveness and 

applicability of the proposed model. For instance, employing automated hyper-parameter 

optimization methods, like grid search or Bayesian optimization, could refine the tuning process and 

boost the model performance. 
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 ملخص البحث:

دددددد  نددددددت  عل صيددددددي نددددددت اسيددددددّ خيص دددددد   دددددد ص  ع  يددددددي   ددددددس     ي دددددد ي  عص ْ دددددد     يعُددددددشْ  عن ا

 علبنْددددددس   ععدددددد ظ  ع عدْدددددي ف  اددددددس   سبْ  عن دددددد  خدددددد   ع  دددددد   عل ي دددددد  يلُن دُددددد ُ  ب ي  دْددددد   ددددددت 

هددددددسأ  علنددددددد عح خ  دددددد ط نصددددددد  خيددددددشيْي   خدددددددسخب    ددددددياس مُدددددددش ط ُ  ددددددين ي     دددددددس       بْ 

 ي   ع ب ح بيع ص   ح بنب  مني  ح  علعص  

خقددددددشاْ هددددددسأ  عشصْ  ددددددح  ل  اددددددي   ب نددددددس   يس ندددددد   عُ ص  دددددد ح  ي   دْددددد   عن دددددد  نددددددت ه يددددددح 

 دددديب ا بدددددي   عددددد  ا ددددد    ددددد   عي ددددي  نصددددد    دْددددح نيع دددددح   يعلددددد   علددددسي ف  دددددت  اددددد  خينددددد ت  س

دددددلت خينددددد صل  يع لدددددش نصددددد  خق  دددددي   ز  خ ا     ء   ت    ع لْددددد  ظ  علق دددددسض بنع دددددح  خ ا ددددد     قشْ دددددح   ئدددددح  عص 

ددددددلي   عيي ددددددلح   ب  دددددد  هي   ْ ددددددي نددددددشاُ  عن دددددد  نددددددت  ع  يددددددح خ   ددددددلْ  ت عص سْك ددددددز نصدددددد   عنْ 

سْيْ   عي ي     ح  ح  علعص  ي   عينْي   نص    

ددددددشم  ع لْدددددد  ظ  ددددددس    س  ءل  با  عددددددشم خق دددددد ل  ع لْدددددد  ظ  علق ددددددسض ب دددددديء  نصدددددد    ل نددددددح   ددددددت   ْ  

ّ  60 99بش دْددددح  بص ددددد     يدددددي  عل صيدددددي ص       ددددديئد ا دْددددش  ن دددددش خ سيبددددد  نصددددد  ُ ددددد  %   ن دددددش خ ب ددددد

%ل  س دددددس  عدْددددسط يع ددددد  58 98 عصْدددددبيْصل بص ددددد    ْ ددددد   بدددددي      ب ي دددددي    نصددددد    ل ندددددح    ع لْددددد  ظ  

  ع قْ ددددد ل  عددددد   بْ  ع لْددددد  ظ     ددددديئدُ    ني  دددددح خعلددددد ل  ع لْددددد  ظ ع  ُ بعدددددّ خددددد    دددددي      عدددددشْ      خ ددددد سُ 

 ع يص ددددد    خددددد  خ ب قدددددي      ْ ندددددح   ُ نددددد  م  س  ء     صخ دددددي     س ددددديب    لددددد  بددددد ت خينددددد ت  ي    علق دددددسض  

ص     عص   
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