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ABSTRACT 

Traditional active machine-learning (AML) methods employed in Record Linkage (RL) or Entity Resolution (ER) 

tasks often struggle with model stability, slow convergence and handling imbalanced data. Our study introduces 

a novel hybrid Active Machine Learning approach to address RL, overcoming the challenges of limited labeled 

data and imbalanced classes. By combining and balancing informativeness, which selects record pairs to reduce 

model uncertainty and representativeness, it is ensured that the chosen pairs reflect the overall dataset patterns. 

Our hybrid approach, called Hybrid Active Machine Learning for Imbalanced Record Linkage (HAML-IRL), 

demonstrates significant advancements. HAML-IRL achieves an average 12% improvement in F1-scores across 

eleven real- world datasets, including structured, textual and dirty data, when compared to state-of-the-art AML 

methods. Our approach also requires up to 60% - 85% fewer labeled samples depending on the datasets, 

accelerates model convergence and offers superior stability across iterations, making it a robust and efficient 

solution for real-world record-linkage tasks. 
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1. INTRODUCTION 

In the rapidly evolving field of digital data management, Record Linkage (RL)—also known as 

Duplicate Detection or Entity Resolution—has become increasingly vital for ensuring data integrity 

across a multitude of industries. As organizations continue to collect and utilize vast amounts of data 

from diverse sources, the need to accurately link records that refer to the same entity is paramount. 

This process of RL is critical for maintaining accurate and consistent data representations, which are 

foundational to effective data management, analytics and informed decision- making processes across 

various domains, such as healthcare, finance, e-commerce and government services [1]. At its core, 

RL involves the identification and merging of records from one or more datasets that correspond to the 

same real-world entity, despite potential variations in how the data is represented. This task, while 

conceptually straightforward, is often fraught with challenges due to issues, such as data-entry errors, 

incomplete records and the lack of unique identifiers across datasets. These challenges are further 

exacerbated in environments that rely heavily on machine learning-based RL methods, where the 

performance of the RL system is highly dependent on the availability and quality of labeled data [2]. 

The need for extensive labeled datasets to train machine-learning models poses significant obstacles, 

particularly in scenarios where labeled data is scarce or prohibitively expensive to obtain. This reliance 

on large volumes of labeled data often results in a bottleneck, slowing down the deployment and 

scalability of RL systems. In response to these challenges, the field has witnessed the emergence of 

Active Machine Learning (AML) as a promising approach to mitigate the data-dependency problem. 

AML is designed to enhance learning efficiency by actively selecting the most informative data points 

for labeling, thereby reducing the total amount of labeled data required to achieve high performance. 

This approach is particularly beneficial in situations where labeled data is sparse, expensive or time-

consuming to acquire. 

AML employs two primary strategies to optimize the learning process: informativeness and 

representativeness. Informativeness focuses on selecting data points that are expected to most 

significantly reduce the model’s uncertainty, thus accelerating the learning process by focusing on the 

most challenging cases. Representativeness, on the other hand, ensures that the selected data points are 
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reflective of the broader dataset, helping create a training set that is more generalizable and robust. 

However, traditional AML approaches often prioritize one of these strategies at the expense of the 

other, leading to observable deficits in performance. This trade-off can result in models that are either 

highly specialized but prone to overfitting or general but lacking in the ability to resolve complex or 

uncertain cases effectively. Moreover, these traditional AML methodologies frequently struggle with 

issues related to model instability and slow convergence, particularly in scenarios characterized by 

imbalanced data. In many RL tasks, the negative class (representing non-matching pairs) vastly 

outnumbers the positive class (representing matching pairs), which introduces a significant bias into 

the dataset. As noted by Christen [3], this imbalance can severely skew the learning process, leading to 

models that are biased towards predicting non-matches, thus resulting in sub-optimal performance 

outcomes. This challenge is further compounded by the iterative nature of AML, where each round of 

learning and querying may amplify the inherent biases present in the data. 

To address these challenges, we propose a novel Hybrid Active Machine-learning framework called 

HAML-IRL (Hybrid Active Machine-learning for Imbalanced Record Linkage), specifically crafted to 

tackle the dual challenges of limited labeled data and class imbalance in record-linkage (RL) tasks. 

HAML-IRL integrates a structured query strategy that systematically balances informativeness 

(exploitation) and representativeness (exploration). In particular, it employs a two-phase query-

selection process: first, prioritizing data points that reduce model uncertainty by focusing on regions 

close to the decision boundary and second, ensuring that the selected samples are representative of the 

overall data distribution by leveraging clustering-based techniques. This dual-phase approach 

minimizes the risk of overfitting to minority or majority classes, a common issue in imbalanced 

datasets, while maximizing the coverage of potential data patterns in the training space. Through an 

iterative learning process, HAML-IRL dynamically adapts its focus based on model performance at 

each stage, allowing the query strategy to evolve as the model becomes more accurate. Our approach 

leverages the strengths of both strategies while mitigating their respective weaknesses through an 

iterative learning process. The key contributions of this work are summarized as follows: 

 We introduce HAML-IRL, a novel Hybrid Active Machine-learning framework for record 

linkage, which integrates both informativeness and representativeness in its querying strategy. 

This ensures that the most informative and representative record pairs are selected, improving both 

the convergence speed and stability of the model. 

 We provide a theoretical foundation for the HAML-IRL framework, detailing the algorithm, its 

scoring mechanism and its iterative training process, which is robust against imbalanced datasets 

and cold-start scenarios. 

 We present an extensive experimental evaluation on eleven real-world datasets, including 

structured, textual and dirty datasets. Our results demonstrate that HAML-IRL achieves up to a 

12% improvement in F1-score over state-of-the-art AML methods and performs competitively 

with fully supervised models. 

 We validate the performance of HAML-IRL using statistical tests, including the Friedman and 

Nemenyi tests, to show that our method significantly outperforms other active learning strategies 

in handling imbalanced data. 

 We show that HAML-IRL reduces the labeling burden, requiring up to between 60% and 85% 

fewer labeled samples compared to traditional AML approaches, making it more efficient in real-

world scenarios where labeling costs are high. 

The paper is structured as follows: Section 2 reviews related work on active machine learning and 

class-imbalance issues. Section 3 outlines the theoretical foundations of our approach, detailing the 

HAML-IRL algorithm, its complexities and workflow. Section 4 covers the experimental evaluation, 

including setup, datasets and performance criteria. In Section 5, we present and analyze the results, 

comparing HAML-IRL with state-of-the-art methods and validating findings using the Friedman test. 

Section 6 concludes with key insights, future-research directions and broader implications. 

2. RELATED WORK 

Despite the advancements of machine learning, the deployment of supervised learning models is often 

hindered by the scarcity of labeled data. Addressing this challenge, transfer learning has emerged as a 

powerful technique, enabling the adaptation of pre-trained models to new tasks with minimal labeled 
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data [4]. Concurrently, active learning (AL) has proven to be an effective strategy for selectively 

querying the most informative samples for labeling, thereby enhancing model efficacy while 

minimizing the need for extensive data labeling [5]-[7]. In the specific domain of record linkage (RL) 

with supervised learning, the dependency on large, labeled datasets for training is a critical challenge. 

The process of manually annotating record pairs is both costly and time-consuming, presenting a 

significant barrier to the widespread adoption of RL models. Active Learning (AL) has been proposed 

as a solution to this challenge, offering a means to reduce the labeling burden by selectively 

identifying the most informative data points for annotation. This approach not only reduces the manual 

effort required, but also enhances the overall efficiency and accuracy of the RL process. Several 

studies have focused on the application of AL techniques to RL challenges, each contributing to the 

growing body of knowledge in this field. Primpeli et al. [8] introduced an unsupervised bootstrapping 

method that uses a minimal set of labeled data to iteratively identify and annotate informative record 

pairs. This method has shown promise in reducing the initial labeling effort while maintaining high 

accuracy. In parallel, research into uncertainty-based strategies for large-scale RL [9] has highlighted 

the potential of these approaches in identifying record pairs that present the most significant 

challenges to predictive models. These strategies have been particularly effective in scenarios where 

the labeled data is scarce and the models must make informed decisions under uncertainty. Interactive 

deduplication frameworks, as explored by Sarawagi [10] and adaptive, interactive training data-

selection mechanisms, as developed by Christen [3], have further expanded the applications of AL in 

RL. These frameworks allow for real-time interaction between the model and the human annotator, 

facilitating more efficient and accurate data-labeling processes. Additionally, initiatives, such as 

Active Atlas [11], which employs a decision-tree ensemble and the work by Meduri et al. [12] 

advocating for the use of random forests, have diversified the methodological approaches to RL, 

providing researchers and practitioners with a broader range of tools to address the complexities of 

record linkage. 

Recent advancements in the field have introduced innovative methods that push the boundaries of 

traditional RL techniques. ZeroER [13] presented a novel approach to RL that operates without the 

need for any labeled instances, significantly reducing the dependency on labeled data. DIAL [14], a 

deep Active Machine-learning (AML) strategy, represents a significant leap forward in matching 

disparate record representations. This method focuses on optimizing both recall during the initial 

clustering phase and precision in the subsequent matching task, achieving this through the unified 

learning of embeddings. However, all current approaches focus primarily on informativeness, often 

neglecting the representativeness of the queried samples. This oversight can lead to models that, while 

being trained on informative examples, may lack a comprehensive understanding of the data 

landscape, resulting in sub- optimal performance in real-world applications. Our proposed work seeks 

to bridge this gap by introducing a hybrid approach that integrates both informativeness and 

representativeness into the querying strategy. This methodology is designed to improve the efficiency 

and precision of RL tasks by providing the model with a holistic view of the data landscape. By 

challenging the model’s predictive boundaries and ensuring that the selected samples are not only 

informative, but also representative of the broader data distribution, our approach facilitates a more 

expedited and nuanced learning trajectory. This, in turn, reduces the reliance on extensive labeling 

efforts while enhancing the model’s ability to generalize to new, unseen data, ultimately advancing the 

state-of-the-art in record linkage. 

3. THEORETICAL FOUNDATIONS 

This section outlines the core of HAML-IRL framework, which is an active learning algorithm that 

integrates both representativity (exploration) and informativity (exploitation) in its query strategy. This 

dual approach is vital for addressing the complexities of the record-linkage problem, where it is crucial 

not only to identify and label challenging record pairs (exploitation), but also to ensure that the model 

learns from a diverse set of examples (exploration) to generalize well across different scenarios and 

handle imbalanced data. 

3.1 Algorithm Description 

The algorithm operates as follows: 

Algorithm 1 offers a structured approach to balance two critical aspects of active learning: 
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representativity (exploration) and informativity (exploitation), by using the following balancing 

mechanism: 

 Informativity (exploitation): The model computes uncertainty scores for each record pair in the 

unlabeled dataset LD. The uncertainty score quantifies how unsure the model is about the 

prediction of a particular record pair. Common methods to compute this include: 

o Entropy serves as a measure of the collective uncertainty spanning all potential class 

predictions for a record pair x, ascertained by the class probability distribution. Elevated 

entropy values signify heightened informativeness due to increased uncertainty. The entropy-

based informativeness is formalized as: 

𝐼𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑥) = − ∑ 𝑃(𝑦𝑖|𝑥)𝑙𝑜𝑔2 𝑃(𝑖 𝑦𝑖|𝑥)                                            (1) 

 

Algorithm 1. HAML-IRL algorithm 

1: Initialize: 

2: Set UD as the full unlabeled dataset of records 

3: Set LD as the initially labeled dataset 

4: Train initial model M on LD 

5: while budget for labeling is not exhausted do 

6: Calculate uncertainty scores for all record pairs in LD using model M 

7: Calculate representativity scores for all record pairs in LD 

8: Combine scores using a balance parameter α: 

9: for each record pair x in LD do 

10: Score(x) = α× Uncertainty(M, x)+(1 α) Representativity(D, x) 

11: end for 

12: Select record pair x∗ with the highest Score(x)  

13: Query label for x∗ and add (x∗, label) to LD  

14: Remove x∗ from 

LD 

15: Retrain model M on updated LD 

16: end while 

17: return the trained model M 
18: Optional: Return the expanded labeled dataset LD 

The least confident method prioritizes record pairs with minimal confidence in their most 

probable class prediction, operationalized as: 

ILeast_Con f ident (x) = 1 − P(y1|x)                                                    (2) 

for a record pair x. Here, P(y1|x) represents the likelihood of the most probable class, 

rendering scores closer to 1 indicative of higher uncertainty. This metric, varying between 0 

and 1, quantifies the informativeness based on classification confidence. 

These scores directly guide the exploitation aspect by prioritizing record pairs that, if labeled, 

are expected to provide the most information gain for the model. This directly targets 

improving the model’s performance on similar or challenging cases. 

 Representativity (exploration): Each record pair’s representativity score assesses how well it 

represents the underlying distribution of the dataset. Record pairs that are more central or typical 

of the dataset’s clusters will receive higher scores, as illustrated in Fig.1.One of most used 

methods is: 

o Density estimation: RDensity(x) measures a record pair’s alignment with the dataset’s overall 

characteristics, computed by averaging its similarity to all pairs in Ul. 

𝑅𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝑥) =
1

|𝑈𝑙|
∑ 𝑠𝑖𝑚(𝑥, 𝑥′)𝑥′∈𝑈𝑙                                                     (3) 

A greater RDensity(x) value signifies a record pair’s increased representativeness of the dataset’s 

broad features, thus informing the choice of pairs that embody the data’s diversity. The 

similarity function sim(x,𝑥′) employs measures such as Euclidean distance, Jaccard [15], 

Levenshtein [16] and Jaro-Winkler [17] for evaluation. 
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In our approach, we apply the Euclidean distance measure in conjunction with a weighted 

mean subtractive clustering approach [18] as indicated in Eq.4. Using this average distance 

measure relative to neighboring data points, each data point can be ranked by density. 

Referring again to Figure 1, Equation (4) enables us to identify points located in the denser 

(darker red) regions of the plot. This method is robust and adaptable to datasets with multiple 

columns, as it scales effectively across dimensions. 

𝑠𝑖𝑚(𝑥, 𝑥′) = 𝑒−𝛼‖𝑥−𝑥′‖
2

, 𝛼 =
4

𝑟2                                                       (4) 

 
 

 

 

 

 

 

 

 

 

Figure 1. A 2D density plot of data distribution. 

The density score at iteration k of the active learning process is calculated for each data point 

x based on the weighted mean subtractive clustering approach. Here, the Euclidean distance 

between x and other data points 𝑥′∈ Ul within a radius r is used to assess density. 

To avoid repeatedly labeling points within the same dense areas, the density ranking is 

recalculated each time new labels are added, facilitating further exploration of the data space. 

Once a data point has been labeled, the rank of other points in its dense neighborhood is 

reduced in future iterations. This is achieved by adjusting the density score for points within 

the radius of each labeled point, as shown in Equation (5). 

𝑠𝑖𝑚𝑘+1(𝑥) = 𝑠𝑖𝑚𝑘(𝑥) − 𝑠𝑖𝑚𝑘(𝑥𝑦)𝑒−𝛽‖𝑥−𝑥𝑦‖
2

, 𝛽 =
4

𝑟𝑦
2 , 𝑥𝑦 ∈ 𝐿𝐷, 𝑥 ≠ 𝑥𝑦                     (5) 

To update the density score at iteration k + 1 of the active learning process, we adjust it based 

on the labels LD from the previous iteration k for each data point x within a radius ry from 

each labeled point xy. 

This scoring promotes exploration by ensuring that the model receives training examples from 

across the data distribution, which helps prevent the model from being biased toward the 

characteristics of a few unrepresentative examples. 

After updating the density rank, we retrain the model and proceed to the next iteration of the 

active learning loop. In this iteration, the revised rank allows us to explore newly identified 

dense regions within the feature space, where we present fresh samples to the Oracle to 

acquire labels, as illustrated in Figure 2. 

 Balancing Exploration and Exploitation Score Combination: The algorithm uses a balance 

parameter α, which is a weighting factor between 0 and 1, to combine the informativity I and 

representativity R scores. The formula is as follows: 

Score(x) = α × I(M, x)+(1 − α)× R(D, x)                                    (6) 

The Score allows for a flexible balance between focusing on informative points (exploitation) 

and ensuring a diverse set of examples (exploration). Adjusting α: An α closer to 1 would 

prioritize record pairs that the model finds most uncertain, enhancing exploitation. An α closer 

to 0 would emphasize representativity, bolstering exploration. 
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Figure 2. Active ML process. 

 Iterative Learning Model Updates: After each selection, the queried label for the chosen record 

pair x is added to the labeled set L and the model M is retrained. This iterative refinement ensures 

that the model progressively improves, incorporating insights gained from both new and 

challenging examples and well- representative record pairs. 

3.2 Time Complexity 

At each iteration, the model M is retrained on the updated labeled dataset L. The time complexity of 

training depends on the type of model used. For instance, linear models may train in O(n.d) where n is 

the number of samples and d is the number of features. The computing of uncertainty for each record 

pair typically involves making a prediction with the model and then calculating a metric (e.g., entropy, 

least confident). If the model prediction takes O(d) per sample and computing the metric takes 

constant time, the overall complexity for this step is O(|𝑈𝐷|.d), where |𝑈𝐷| is the size of the dataset. 

Additionally, representativity calculation could involve distance computations from each record pair to 

cluster centroids or other points. If k is the number of clusters and d the number of dimensions and 

assuming basic Euclidean distance is used, the complexity is O(|𝑈𝐷|.k.d). Finally, Score Combination 

and Selection: Combining scores and selecting the maximum can be carried out in O(|𝑈𝐷|) after 

calculating the individual scores. 

Overall, the time complexity per iteration can be approximated as O(|𝑈𝐷|.d.max(k, 1))+ Time to train 

M. Since this is done for multiple iterations, the total complexity depends on the number of iterations, 

which can vary based on convergence criteria or the labeling budget. 

3.3 HAML-RL Workflow 

The workflow diagram provided in Fig. 3 outlines the process of HAML-IRL (Hybrid Active 

Machine-learning for Imbalanced Record Linkage), detailing the steps involved from pre-processing 

to the deployment of the model. Here’s a step-by-step explanation of each stage in the workflow. 

 

Figure 3. Workflow diagram. 
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3.3.1 Pre-processing Phase 

The process begins with two datasets, referred to as Data A and Data B, which contain records that 

need to be matched or linked. To ensure computational efficiency, we utilize datasets from the 

literature where blocking has already been applied to ensure a fair comparison with other methods. 

After blocking, the next step involves calculating the similarity between the filtered records in Data A 

and Data B. This step is crucial, as it helps identify potential matches between records from the two 

datasets. The similarity calculation may involve various algorithms or metrics designed to measure 

how closely two records resemble each other based on specific features or attributes. The results of the 

similarity calculations are then stored in what is referred to as "Futures Data." This dataset contains 

pairs of records along with their computed similarity scores, which will be used in the active learning 

phase. 

3.3.2 Active Learning Phase 

1) Unlabeled Dataset (UD): The active learning phase begins with an unlabeled dataset (UD). This 

dataset contains the pairs of records generated during the similarity calculation, but the pairs are 

not yet labeled as matches or non-matches. 

2) Selecting Record Pairs Using HAML-IRL: The core of the HAML-IRL process involves 

selecting record pairs from the unlabeled dataset. The selection process is guided by the HAML-

IRL strategy, which is designed to prioritize pairs that will be most informative for the learning 

process, especially in the context of imbalanced data. 

3) Asking Oracle: Once a pair of records is selected, the next step is to label the pair. This is done by 

querying oracle, which could be a human expert or a pre-existing labeled dataset, to determine 

whether the selected pair is a match or not. Oracle provides the true label for the record pair. 

4) Labeling: After querying oracle, the selected pair is labeled accordingly and added to the labeled 

dataset (LD). This labeled data will be used to train the model. 

5) Labeled Dataset (LD): The labeled dataset (LD) is continuously updated with new labeled pairs. 

As more pairs are labeled, the dataset grows, providing more training data for the model. 

6) Training the Initial Model: Using the labeled dataset, an initial model is trained. This model is a 

preliminary version that will be iteratively improved as more data is labeled and added to the 

dataset. 

7) Stop Condition: Number of Iterations: The process includes a stop condition based on the number 

of iterations. The model continues to select, label and train on new data until a pre-defined number 

of iterations are reached. 

8) Model Deployment: Once the stop condition is met, the model is considered trained and ready for 

deployment. The final model can then be used to perform record-linkage tasks on new, unseen 

data. 

4. EXPERIMENTAL EVALUATION 

This section evaluates the HAML-IRL algorithm detailed in Section 3, testing its effectiveness across 

diverse datasets (structured, textual, dirty). Utilizing established libraries and various datasets, we 

examine the algorithm performance, identifying strengths and improvement areas. These findings 

contribute to the discussion on AML in RL, highlighting algorithm applicability across data types. 

4.1 Datasets 

In this sub-section, we detail the ER-Magellan and EM-Primpeli datasets [8], [19] selected for 

evaluating HAML-IRL algorithm, ensuring a comprehensive assessment. These datasets span diverse 

domains, covering three specific areas of RL. Dataset specifics are provided in Table 1. 

4.2 Performance Measurement 

In RL, especially in scenarios with class imbalances, the F1−score is utilized as the metric for 

evaluating performance. Hand and Christen [20] characterized the F1−score as the harmonic mean of 

precision and recall.  
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The F1−score ranges from 0 to 1, with higher values denoting greater effectiveness, where the 

following rule represents the formula of F1–score. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 · 𝑇𝑃

2 ·  𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Table 1. Datasets employed in RL. Within this context, |𝐷𝑖| indicates the total number 

of products in each dataset, NA represents the number of attributes each product has. 

Additionally, Nl, Nlp and Nln refer to the total of labeled pairs, matching pairs and 

non-matching pairs, respectively, whether in training or testing datasets. CR denotes 

the class ratio. 
 

Structured data-set Textual data-sets Dirty data-sets 
 

D1 Amazon BeerAdvo Fodors iTunes Walmart  Abt Amazon  iTunes Walmart wdc wdc 

D2 Google RateBeer Zagat Amazon Amazon  Buy Google item  Amazon Amazon phones hdphone 

|D1| 1363 4345 533 6907 2554  1081 1114  6907 2554 51 51 

|D2| 3226 3000 331 55923 22074  1092 1291  55923 22074 448 444 

NA 3 4 6 8 5  3 4  8 5 18 14 

Nltrain 6874 268 567 321 6144  5743 6755  321 6144 1762 1163 

Nltest 2293 91 189 109 2049  1916 1687  109 2049 440 290 

Nlptrain 699 40 66 78 576  616 1041  78 576 206 180 

Nlptest 234 14 22 27 193  206 259  27 193 51 45 

Nlntrain 6175 228 501 243 5568  5127 5714  243 5568 1556 983 

Nlntest 2059 77 167 82 1856  1710 1428  82 1856 389 245 

CR 10.2% 15.0% 11.6% 24.4% 9.3%  10.7% 15.3%  24.4% 9.3% 11.6% 15.4% 

In this formula, True Positive (TP) is the number of record pairs correctly recognized as matching, 

False Positive (FP) is the number of record pairs wrongly recognized as matching and False Negative 

(FN) is the number of record pairs wrongly recognized as not matching. 

4.3 Feature-similarity Vector-construction for RL 

In our study, we address the RL challenge between two datasets, source and target, with the aligned 

schemata. We construct feature vectors for each entity pair by calculating similarity scores for the 

individual attributes. These similarity scores are computed using an array of metrics tailored to the 

data type: Levenshtein and Jaccard for strings; absolute difference for numeric attributes; and day, 

month and year differences for date attributes. In the case of string attributes exceeding an average 

length of six tokens, we incorporate cosine-similarity computations using the TF-IDF weighting. All 

calculated scores are normalized to the [0, 1] range and any missing values are assigned a score of -1 

to ensure their inclusion without compromising the integrity of the dataset. 

Table 2. Feature-similarity vector-construction example. 

source record S 

name kiki dimoula 

birthday 05.06.1931 

 

> 
 

 
 

target record T 

name kiki dimula 

birthday 1931-06 

 

record pair id S-T 

label true 

cosine_tfidf 0.73 

name_levenshtein 0.91 

name_jaccard 0.33 

name_relaxed_jaccard 1.00 

name_overlap 0.00 

name_containment 0.50 

birth_day_sim -1.00 

birth_month_sim 1.00 

birth_year_sim 1.00 
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5. EXPERIMENTAL RESULTS 

To comprehensively assess the efficacy of our hybrid model under various conditions, we performed a 

detailed series of experiments using the HAML-IRL algorithm in combination with traditional 

methods [8], [13], [21]-[26] applied to structured, textual and unclean datasets. Figures 4, 5 and 6 

depict the convergence and stability of these strategies, while Tables 3, 4 and 5 showcase their 

respective performances. Our experimental protocol included five independent trials without bootstrap 

sampling. The number of iterations was determined by the dataset sizes. Within the HAML IRL 

framework, we envisioned a scenario in which an unlabeled dataset LD contained all potential record 

pairs, beginning from an initially empty labeled set. Each iteration in this context corresponds to one 

manual labeling action. At every iteration, a Random Forest classifier is updated utilizing pairs from 

the labeled set. 

The HAML-IRL benchmarking outcome on structured datasets, as depicted in Table 3, offers 

compelling insights into the efficacy of AML model. Significantly, the HAML-IRL algorithm 

showcases a competitive advantage against state-of-the-art (SOA) AML and supervised-learning F1-

scores. This underscores the strategy’s potential in finely tuning the balance between exploration 

(representativeness) and exploitation (informativeness) for enhanced data-pairing tasks. In small 

datasets (i.e., BeerAdvo RateBeer), the HAML-IRL strategy has proven its ability to exceed the 

highest SOA AML F1-score. Furthermore, in analyzing the Fodors-Zagat dataset, the HAML-IRL 

achieves the maximum value of F1, comparable to those observed in SOA AML and supervised ML 

methodologies. In the context of large datasets like Amazon-Google, iTunes Amazon and Walmart-

Amazon, the HAML-IRL algorithm demonstrates also an exceptional performance, surpassing 

benchmarks set by current AML strategies and nearing the effectiveness of supervised ML models. 

This indicates that a clearly defined transition from exploration to exploitation, governed by a pre-

determined labeling budget, calibrates the training task, particularly when the dataset’s complexity or 

features are well understood beforehand. Also, this affirms HAML-IRL’s robust capability in 

navigating through the diverse challenges presented by structured datasets, leveraging its phased 

approach to maximize model accuracy and learning efficiency. 

Table 3. Comparative analysis on structured datasets. 

Database Strategy F1 AML-F1 Supervised-F1 

 Representativity 0.434   

Amazon-Google Informativity 0.375 0.480 [13] 0.561 [25] 

 HAML-IRL 0.510   

 Representativity 0.000   

BeerAdvo-RateBeer Informativity 0.738 0.359 [25] 0.875 [25] 

 HAML-IRL 0.779   

 Representativity 0.978   

Fodors-Zagat Informativity 0.975 1.0 [13] 1.0 [21]-[22] 

 HAML-IRL 1.0   

 Representativity 0.743   

iTunes-Amazon Informativity 0.882 0.498 [25] 0.923 [25] 

 HAML-IRL 0.882   

 Representativity 0.564   

Walmart-Amazon Informativity 0.550 0.644 [25] 0.678 [25] 

 HAML-IRL 0.649   

The data presented in Table 4, which evaluates HAML-IRL against various AML query strategies on 

textual datasets, provides valuable insights into the performance of different approaches in text RL 

tasks. The comparison of these strategies with top-performing supervised and semi-supervised F1-

scores illuminates subtle differences in their effectiveness, highlighting the critical role of strategy 

choice in fine-tuning AML models for text data. For the abt-buy dataset, the HAML-IRL algorithm 

demonstrates enhancements over purely density-based and uncertainty- based methods, as evidenced 

by its F1-score. This suggests that a well-structured balance between exploration and exploitation 

phases may be more advantageous in datasets characterized by dense and complex textual information. 
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Nonetheless, the HAML-IRL algorithm does not reach the SOA AML F1-score, pointing to 

opportunities for further improvements in managing the intricacies of textual datasets. In the case of 

the Amazon-Google dataset, the HAML-IRL performance exceeds leading AML F1-scores, 

underscoring its capacity to discern textual nuances and variations, particularly in datasets with wide-

ranging textual differences. Moreover, the results from HAML-IRL approach the efficacy of 

established supervised-learning methods in textual RL tasks. 

Table 4. Comparative analysis on textual datasets. 

Database Strategy F1 AML-F1 Supervised-F1 

Abt-Buy 

Representativity 0.309 

0.674 [8] 
0.818 [8] 

(0.628 [27]) 
Informativity 0.560 

HAML-IRL 0.679 

Amazon-Google 

Representativity 0.637 

0.480 [13] 
0.699 [8] 

(0.693 [23]) 
Informativity 0.468 

HAML-IRL 0.676 

The performance analysis of the HAML-IRL algorithm on datasets with numerous errors, as shown in 

Table 5, highlights both challenges and possibilities when using active machine-learning (AML) 

techniques on problematic data. This data often contains errors, inconsistencies and gaps. When 

comparing this algorithm to other leading methods in terms of F1-scores, we gain detailed 

understanding of how effective these techniques are when data quality is poor. In small dirty datasets 

(i.e., "wdc phones" and "wdc headphones"), the HAML-IRL algorithm performs very well, matching 

or even exceeding the SOA F1-scores for AML. This performance suggests that adaptive strategies 

that balance data exploration and the use of existing knowledge can adeptly handle the complications 

of flawed data. The HAML-IRL algorithm’s success in achieving high F1-scores demonstrates that a 

methodical approach, starting with broad data exploration followed by targeted use of known data, can 

effectively reveal important insights in datasets filled with noise. In large dirty datasets like ’iTunes-

Amazon’ and ’Walmart-Amazon’, the HAML-IRL algorithm also demonstrates exceptional 

performance, nearing the effectiveness of supervised machine-learning models, though not surpassing 

the benchmarks set by current AML strategies. These datasets, characterized by extensive errors, 

inconsistencies and missing values, present a significant challenge for any entity-resolution algorithm. 

The HAML-IRL algorithm’s near-benchmark performance highlights its robustness and adaptability in 

handling such complex and flawed data environments. The HAML-IRL algorithm’s ability to maintain 

high F1-scores in these large and error-prone datasets underscores the potential of hybrid active 

machine-learning techniques. By leveraging a methodical approach that combines broad exploratory 

data analysis with the strategic application of existing knowledge, the algorithm is able to navigate the 

intricacies of dirty data effectively. This approach allows for a nuanced understanding of the data’s 

structure and patterns, which in turn facilitates more accurate entity matching and resolution. 

Table 5. Comparative analysis on dirty datasets. 

Database Strategy F1 AML-F1  Supervised-F1 

iTunes-Amazon 

Representativity 0.300 

0.638 [8] 

 

Informativity 0.442 0.640 [25] 

HAML-IRL 0.511  

Walmart-Amazon 

Representativity 0.0 

0.513 [8] 

 

Informativity 0.232 0.452 [25] 

HAML-IRL 0.399  

WDC-phones 

Representativity 0.723 

0.544 [8] 
0.851 [8] 

(0.849 [24]) 
Informativity 0.527 

HAML-IRL 0.825 

WDC-headphones 

Representativity 0.899 

0.738 [8] 
0.966 [8] 

(0.940 [24]) 
Informativity 0.487 

HAML-IRL 0.945 
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For further understanding, Figures 4, 6 and 5 provide comprehensive comparisons of the HAML-IRL 

algorithm’s performance, particularly in addressing the initial cold-start problem, where no labeled 

data is available. These figures meticulously illustrate the algorithm’s efficacy across diverse dataset 

types, including structured, textual and dirty datasets. The hybrid framework is evaluated against both 

traditional active machine-learning (AML) approaches, such as Density and Uncertainty queries and 

the latest advancements in supervised methods. The figures chronicle the F1-scores at each iteration 

within our hybrid framework, using the F1-score as the primary metric for assessing performance 

throughout the analyses. In the initial stages of AML, ranging from 1% to 10% of the iterations and 

varying by dataset, our framework significantly outperforms traditional AML methods in developing 

superior predictive models across all dataset types. Also, HAML-IRL consistently produces higher-

quality prediction models compared to the two standard Active ML techniques for all datasets. 

Additionally, the stability of the HAML-IRL F1-scores increases after 10% of iterations and these 

scores begin to converge towards the performance levels observed in supervised machine learning. 

After 15% of the iterations, our method exhibits a remarkable enhancement in the stability of F1-

scores, which start to closely approximate those from supervised techniques. Consequently, within an 

AML framework constrained by labeling budgets, our approach demonstrates exceptional performance 

by consistently yielding satisfactory results, even if the process is halted at any given iteration. 

Drawing upon the empirical evidence provided by the preceding figures, it can be conclusively stated 

that the HAML-IRL algorithm outperforms traditional Active ML methodologies across all iterations 

within an Active ML context. Particularly in scenarios characterized by cold-start conditions, 

traditional strategies exhibited slower convergence rates and demonstrated unstable performance 

metrics. Thus, in an Active ML environment with budget constraints, especially when considering 

human annotations, our HAML-IRL solution surpasses other methods by reliably achieving 

satisfactory performance, even when the process is paused at any iteration. 

Figure 4. F1-score per AML iteration - structured datasets. 

Table 6 presents a comparative analysis of the F1-scores achieved by different active machine learning 

strategies, including our method, HAML-IRL, across various structured, dirty and textual record-

linkage datasets. This analysis provides critical insights into the effectiveness of each method in 

addressing the imbalanced record-linkage problem. Starting with the structured datasets, we observe 

that in the iTunes-Amazon dataset, both Uncertainty and HAML-IRL achieve an equal F1-score of 

0.882, demonstrating their effectiveness in this context. Other methods, such as Density with a score of 

0.743 and Zero-ER at 0.498, show relatively lower performance. Methods like UB-Otsus (0.646) and 

UB-Valley (0.689) also lag behind, indicating their limitations in handling this particular dataset. 
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Table 6. F1-score results across structured, dirty and textual datasets. 

 

Dataset Uncertainty   Density   Zero-ER [13]   UB-Elbow [8]      UB-Static [8] UB-Otsus [8]  UB-Valley [8]  HAML-IRL 

 Structured datasets  

iTunes-Amazon 0.882 0.743 0.498 0.678 0.655 0.646 0.689 0.882 

Walmart-Amazon 0.550 0.564 0.644 0.501 0.393 0.313 0.424 0.649 

BeerAdvo-rateBeer 0.738 0.000 0.359 0.000 0.481 0.675 0.675 0.779 

Amazon-Google 0.375 0.434 0.480 0.325 0.348 0.278 0.283 0.510 

Fodors-Zagat 0.975 0.978 1.00 0.964 0.483 0.578 0.737 1.00 

    Dirty datasets     

WDC-Phones 0.527 0.723 0.000 0.523 0.544 0.438 0.438 0.825 

WDC-Headphones 0.487 0.899 0.000 0.734 0.539 0.682 0.738 0.945 

iTunes-Amazon 0.442 0.300 0.104 0.473 0.638 0.619 0.632 0.511 

Walmart-Amazon 0.232 0.000 0.2 0.513 0.495 0.339 0.426 0.399 

    Textual datasets     

Abt-Buy 0.560 0.309 0.52 0.674 0.660 0.562 0.630 0.679 

Amazon-Google 0.468 0.637 0.472 0.588 0.441 0.600 0.602 0.676 

In the Walmart-Amazon dataset, HAML-IRL outperforms all other methods with an F1-score of 

0.649. This is particularly noteworthy as Zero-ER, a close competitor, scores 0.644. However, other 

methods like UB-Static and UB-Otsus perform poorly, with scores of 0.393 and 0.313, respectively, 

highlighting the challenges these methods face in this scenario. For the BeerAdvo-rateBeer dataset, 

HAML-IRL demonstrates superior performance with an F1-score of 0.779. Interestingly, Density and 

UB-Elbow fail completely, scoring 0, which underscores the challenges these methods face in this 

particular dataset. Uncertainty performs moderately well with a score of 0.738, but it still falls short of 

HAML IRL. In the Amazon-Google dataset, HAML IRL again leads with an F1-score of 0.510, 

surpassing all other methods. Zero-ER achieves 0.480 and Density comes close with 0.434, but the 

other methods, particularly UB-Otsus and UB-Valley, score much lower F1-scores around the 0.280 

mark, indicating their inefficacy in this scenario. The Fodors-Zagat dataset presents a unique case 

where both Zero-ER and HAML-IRL achieve perfect scores of 1.00, showcasing their exceptional 

ability to match records correctly in this dataset. Uncertainty and Density also perform well with 

scores close to 1.00, while the remaining methods, particularly UB-Static (0.483) and UB-Otsus 

(0.578), fall significantly behind. 

Figure 5. F1-score per AML iteration-dirty datasets. 

Moving on to the dirty datasets, HAML-IRL continues to demonstrate its strength. In the WDC-

Phones dataset, it significantly outperforms all other methods with an F1-score of 0.825. Density 
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follows with 0.723, but Zero-ER fails completely, scoring 0. The moderate performance of UB-Otsus 

and UB-Valley (both at 0.438) further emphasizes the superiority of HAML-IRL in handling dirty 

datasets. The WDC-Headphones dataset shows a similar trend, with HAML-IRL leading with an 

impressive score of 0.945. Density performs well with 0.899, while Zero- ER again fails, scoring 0. 

The other methods, UB-Valley and UB-Otsus, perform moderately, with scores in the 0.682-0.738 

range, but still, none come close to HAML-IRL’s performance. In the iTunes-Amazon (Dirty) dataset, 

HAML-IRL achieves an F1-score of 0.511, outperforming most methods except UB-Static (0.638) and 

UB-Otsus (0.619). Uncertainty scores 0.442, indicating moderate effectiveness, but the overall lower 

scores reflect the challenges posed by this dataset. For the Walmart-Amazon (Dirty) dataset, the 

performance of all methods, including HAML IRL (0.399), is relatively low, indicating the dataset’s 

complexity. Zero-ER performs slightly better with a score of 0.513, but overall, the low scores across 

the board suggest that this dataset is particularly challenging for record linkage. 

Figure 6. F1-score per AML iteration-textual datasets. 

In textual datasets, HAML-IRL continues to perform strongly. In the Abt-Buy dataset, it achieves the 

highest F1-score of 0.679, slightly outperforming UB-Elbow (0.674) and Zero-ER (0.52). In other 

methods, such as Context, particularly in scenarios characterized by cold-start conditions, traditional 

strategies exhibited slower convergence rates and demonstrated unstable performance metrics. Thus, 

in an Active ML environment with budget constraints, especially when considering human 

annotations, our HAML-IRL solution surpasses other methods by reliably achieving satisfactory 

performance, even when the process is paused at any iteration. Density with 0.309 shows less 

effectiveness, underscoring HAML-IRL’s superiority in this category. 

Finally, in the Amazon-Google (textual) dataset, HAML-IRL maintains its lead with an F1-score of 

0.676. Density follows with 0.637 and UB-Valley scores 0.602, while Zero-ER and UB-Static achieve 

moderate scores around 0.472-0.588, reflecting a closer competition in this dataset type. 

Overall, the results clearly demonstrate that HAML-IRL consistently outperforms the state-of-the-art 

active machine learning methods across structured, dirty and textual datasets. Its ability to achieve 

high F1-scores, especially in challenging datasets, underscores its robustness and effectiveness in 

addressing the imbalanced record-linkage problem. While other methods show varying degrees of 

success, HAML-IRL’s consistent performance across diverse datasets reaffirms its potential as a 

superior solution for this complex problem. 

The histogram provided in Fig. 7 illustrates the mean F1-scores of various active learning models 

across structured, dirty and textual datasets. The F1-score, as a key metric, combines precision and 

recall, offering a balanced measure of a model’s performance, particularly in scenarios where the class 

distribution is imbalanced. The uncertainty model shows a diverse range of performance across the 

different types of datasets. For structured datasets, it achieves a relatively high mean F1-score, 

indicating that the model is effective in these types of datasets, which are typically cleaner and more 

well-defined. However, the performance drops for dirty datasets, suggesting that the model struggles 

with noise and inconsistencies often present in such data. The performance in textual datasets is 

moderate, reflecting the model’s average ability to handle the complexities of text-based record 

linkage. 

In contrast, the Density model performs well across all dataset types, particularly in structured and 

textual datasets. The high mean F1-score in structured datasets shows that this model can effectively 
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utilize the dense regions of data to make accurate predictions. Although its performance in dirty 

datasets is slightly lower, it remains significant, indicating that the model can manage some level of 

noise and variability. Its strong performance in textual datasets further highlights its adaptability to 

different data types. 

 

 

 

 

 

 

 

 

Figure 7. The mean F1-score over structured, dirty and textual datasets. 

The Zero-ER model, however, exhibits poor performance, especially in dirty datasets, where its mean 

F1-score is nearly negligible. This suggests that Zero-ER is not well-suited to handle noise and 

inconsistencies, leading to poor precision and recall in these challenging scenarios. Even in structured 

datasets, where its performance is better, it remains subpar compared to other models, indicating 

limited applicability in well-defined data environments. Furthermore, the model does not fare well in 

textual datasets, reinforcing its limitations in handling more complex and unstructured data. 

The UB-Elbow model, on the other hand, shows a balanced performance across all dataset types. Its 

mean F1- score in structured datasets is decent, reflecting its ability to handle clear and organized data 

effectively. For dirty datasets, the performance is slightly better, suggesting some robustness to noise 

and inconsistencies. The model also performs adequately in textual datasets, indicating a certain level 

of versatility across different data types. 

Similarly, the UB-Static model shows strong performance in dirty datasets, achieving one of the 

higher mean F1-scores among the models. This indicates that UB-Static is particularly well-suited for 

dealing with noisy and inconsistent data, where other models might struggle. However, its 

performance in structured and textual datasets is moderate, suggesting that while it excels in handling 

variability, it may not be as effective in more structured or language-based data scenarios. 

Meanwhile, the UB-Otsus model displays a relatively balanced performance across all dataset types, 

though it is not the top performer in any particular category. The mean F1-scores indicate that it can 

handle a variety of data types moderately well, but it does not particularly excel in any of them. This 

suggests that UB-Otsus might be a good all-rounder for general applications, but may not be the best 

choice for datasets with specific challenges. 

The UB-Valley model shows strong performance in both dirty and textual datasets, with relatively 

high mean F1- scores. This suggests that UB-Valley is effective at managing both noise and 

complexities of text-based record linkage. Although its performance in structured datasets is also 

good, it is slightly lower than in the other two categories, indicating broad applicability across 

different types of data. 

Finally, the HAML-IRL model consistently performs the best across all dataset types, achieving the 

highest mean F1-scores in structured, dirty and textual datasets. This consistent top performance 

underscores HAML-IRL’s robustness and adaptability, making it the most effective model for 

handling a wide range of record-linkage scenarios. The high scores across different data types 

demonstrate the model’s ability to balance precision and recall effectively, even in challenging 

datasets, like dirty and textual datasets. 

Overall, the histogram provides a clear comparison of the mean F1-scores for different models across 
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structured, dirty and textual datasets. HAML-IRL emerges as the leading model, consistently 

achieving the highest mean F1- scores across all dataset types. This indicates its superior ability to 

handle both well-defined and complex, noisy data. While other models, such as UB-Valley and 

Density, also perform well in specific contexts, they do not match the overall effectiveness of HAML-

IRL. Models like Zero-ER, which perform poorly in more challenging datasets, highlight the 

importance of selecting the right model based on the specific characteristics of the data being used. 

5.1 Friedman Test 

Table 7. Ranking of HAML-IRL. 

 

In the subsequent analysis, we employ the Friedman test to evaluate the efficacy of the proposed 

approach on the ER-Magellan and EM-Primpeli datasets [8], [19]. 

The Friedman test, as initially proposed by Friedman [28], is a non-parametric statistical test devised 

to rank algorithms individually for each dataset. The algorithm demonstrating the best performance is 

assigned a rank of 1, the next best is assigned a rank of 2 and so on. In instances where there are ties, 

average ranks are allotted. 

Let the rank of the jth algorithm among k algorithms on the ith of N datasets be denoted as 𝑟𝑖
𝑗
. The 

Friedman test compares the mean ranks of these algorithms, expressed as 𝑅𝑗 =
1

𝑁
∑ 𝑟𝑖

𝑗
𝑖 . 

 
Under the null hypothesis, which posits that all algorithms are equivalent and thus their ranks Rj 

should be similar, the Friedman statistic is calculated as follows: 

𝜒𝐹
2 =

12𝑁

𝑘(𝑘 + 1)
[∑ 𝑅𝑗

2 −
𝑘(𝑘 + 1)2

4
𝑗

]. 

When both N and k are sufficiently large (typically, N > 10 and k > 5), this statistic follows a 

chi−square distribution with k−1 degrees of freedom.  

Iman and Davenport [29] observed that the Friedman 𝜒𝐹
2 statistic is overly conservative. They 

proposed an enhanced statistic: 

𝐹𝐹 =
(𝑁 − 1)𝜒𝐹

2

𝑁(𝑘 − 1) − 𝜒𝐹
2 

This improved statistic follows an F-distribution with k-1 and (k-1)(N-1) degrees of freedom. Critical 

values for this distribution can be found in statistical reference literature. 

If the null hypothesis is rejected, a post-hoc analysis is undertaken. The Nemenyi test [30] is utilized 

when all classifiers are compared against each other. The performance difference between two 

classifiers is deemed significant if the difference between the highest and the lowest average ranks 

exceeds the critical difference: 

𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘 + 1)

6𝑁
. 

Here, the critical value of qα is derived from the Studentized range statistic divided by √2. The 

hypotheses for the test are stated as follows: 
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 H0: There are no significant differences among the eight methods. 

 H1: There are significant differences among the eight methods. 

5.1.1 Application 

The histogram provided in Fig. 8 presents the mean ranking results of various active machine-learning 

models using the Friedman test. The models included in the comparison are HAML-IRL, UB-Valley, 

Density, UB-Elbow, Uncertainty, UB-Static, UB-Otsus and Zero-ER. The mean rank values across 

these models are indicative of their relative performance in handling the imbalanced record-linkage 

problem, with lower ranks suggesting better performance. The model HAML-IRL clearly outperforms 

the other models, as indicated by its superior ranking. 

This model achieves the lowest mean rank, signifying that it consistently performs better across the 

datasets included in the analysis. The results underscore HAML-IRL’s robustness and adaptability, 

making it the most effective model for overcoming the challenges posed by imbalanced record 

linkage. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The mean rank over all datasets. 

Following HAML-IRL, the UB-Valley and Density models are next in the ranking. Both of these 

models have relatively close mean ranks, suggesting that they are competitive in their performance. 

However, they still lag behind HAML-IRL, which suggests that while they may be effective, they do 

not match the comprehensive capabilities of HAML-IRL in dealing with the complexities of the 

datasets. 

UB-Elbow and Uncertainty models are ranked in the middle range. Their mean ranks indicate 

moderate effectiveness, where they perform reasonably well, but are not among the top contenders. 

The positioning of these models suggests that they may be more suitable for specific types of datasets, 

but lack the broad applicability and robustness demonstrated by HAML-IRL. 

On the lower end of the ranking spectrum, we find UB-Static, UB-Otsus and Zero-ER models. These 

models have the highest mean ranks, indicating that they are the least effective in handling the 

imbalanced record-linkage problem. Their poor performance in this analysis suggests that they may 

not be well-suited for tasks that require high accuracy in imbalanced scenarios. Zero-ER, in particular, 

appears to be the weakest model, as indicated by its position at the bottom of the ranking. 

Overall, the Friedman test’s ranking results, as depicted in the histogram, provide a clear indication of 

the relative effectiveness of the models under comparison. HAML-IRL stands out as the most effective 

model, consistently achieving the best rankings across the datasets. This outcome reflects its superior 

design and capability in addressing the imbalanced record-linkage problem. The other models, while 

showing varying degrees of effectiveness, do not reach the performance level of HAML-IRL, making 

it the preferred choice in this domain. In this study, we will compare k = 8 methods across N = 11 

datasets. The methods are ranked based on their F1-scores for each dataset. Table 7 presents the results 

of the rankings of the proposed approach. 

From the average ranking results of active learning methods across all datasets, presented in Table 7, 
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we obtain the results of the Friedman test, including the Chi-square statistic (χ2), p-value, F-

distribution (ℱ𝐹), critical difference CD and confidence interval (CI), as presented in Table 8. After 

carefully analyzing the table at a confidence level of 0.05 with degrees of freedom (7, 70), we observe 

that Fα=0.05(7, 70) = 2.143. Since the calculated F-value surpasses Fα and the p-value is less than 0.05, 

we reject the null hypothesis H0. The Friedman test, accompanied by its enhanced statistic, indicates 

significant differences among the eight active learning methods applied to 11 datasets, which 

encompass structured, dirty and textual data. Notably, our proposed approach outperforms the other 

algorithms when ranked by F1-score. 

Table 8. Friedman-test results. 

Approach χ2 P-value ℱℱ CD CI 

HAML-IRL 20.8030 0.003 3.7018 3.165 [0.514, 0.914] 

After the Nemenyi test we found that the critical value qα = 3.031 and the corresponding CD = 3.03. 

Since the difference between the best -and the worst- performing algorithm is already greater than that, 

we can conclude that the post-hoc test is powerful enough to detect any significant differences 

between the algorithms. The results from post-hoc tests are effectively conveyed through a clear 

graphical representation. We utilize Autorank [31] to generate a plot that visually represents the 

statistical analysis for a Critical Difference. Fig. 9 displays the results derived from the data in Table 7. 

The top line of the diagram illustrates the axis where the average ranks of methods are plotted. This 

axis is oriented so that the lowest (best) ranks are on the right side, indicating that methods positioned 

further to the right are considered superior. 

 
 

 

 

 

 

 

Figure 9. Comparison of all methods against each other using the Nemenyi test. 

6. CONCLUSION 

This research introduces a novel hybrid active machine-learning framework to address the challenge of 

scarce labeled data in record linkage. By balancing representativity and informativity, the framework 

first ensures broad data coverage, then focuses on refining the model with the most informative 

samples. The experiments on various datasets show that our framework outperforms traditional active 

learning methods and often rivals fully supervised models, especially in cold-start scenarios. The 

results demonstrate the framework’s effectiveness in producing high- quality models with limited 

labeled data, offering a strategic solution for optimizing learning in record linkage. 
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 ملخص البحث:

ااااا ر اااااترق  لااااا  ل ر ااااا ر    علُّمااااا ر عاااااللتع ترقظ اااااررق  للاااااترق للاااااررتُ  لااااا رطااااارر    اااااديرق للّ تكُااااالطّرق ال

رغلدرق مل قزن .ق بللنل رق للغع برععىر لك ٍ رتلم ر

طرُ بلكااااادقطر عاااااللتع ترقظ اااااررق  للاااااترق   ااااال  ر  اااااُّ رق للغع ااااابر نُّاااااُّلهرطااااارر ااااايةرق   اااااا رق ب للااااا رنلآل ااااال

اااااترق  لااااا  ل رغلااااادرق ملااااا قزز.ر مااااالتلر  ااااا رعااااا ر دمااااا رق للااااال ر  ااااا ق ر تل ااااا ر ععاااااىر لاااااكع ر   

مّااااال رطاااااررق  لآاااااله ر ااااا ر دقعااااال ر زرتت كااااا رق  ااااا  ق رق مخلااااال  ر ااااا ر ااااا رق  لااااا  ل ر لّعلااااا رق  ل

اااااا  ل رلأل اااااا رق نماااااال رق ملباااااامو  رطاااااارر  م عاااااا رق بللناااااال .ر اااااااُّر ّلاااااا رنلآل  اااااالرق   اااااال ر ق  ل

ااااااادق رق  ق ر ّل نااااااا طررق مّلااااااادترتاااااااا  قٍ ر ع   ااااااا رٍ  ملل تااااااادرق ااااااا ق   رطاااااااررر ااااااا ر لاااااااءر قال

ر   لل رق م ض عرع ُّرتابلّدرععىر  م عل ر للنلٍ ر  رق تل ترق  ّلّر.

ر ااااا رغلااااادةر ااااا رق تل ااااال ر85%ر ر60 ااااالرملااااادق تر ااااال رر م لااااالمرنلآل  ااااالرق مّلااااادتر  اااااى %ر اااااا ل

طر ق م سااااا    رقعلمااااال قطرععاااااىر  م عااااا رق بللنااااال ررق للاااااررماُبلااااا رععل ااااال.ر  ااااايقرم تااااا ر  ااااادرنلآل ااااال

ر لكع ر   ترق  ل  ل رغلدرق مل قزز. طر رطتلللاطر   ل ر لل ل
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