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ABSTRACT 

This study evaluates the effectiveness of Vision Transformers (ViTs) and hybrid deep-learning architectures for 

diabetic retinopathy (DR)  classification,  addressing  the  challenge  of  inter-stage  ambiguity in traditional 

systems. While convolutional neural networks (CNNs) such as ResNet50 excel at localized feature extraction in 

retinal images, ViTs offer superior global contextual modeling. To synergize these strengths, we propose a 

hybrid architecture integrating ResNet50’s granular feature extraction with ViTs’ global relational reasoning.  
Three models are designed and evaluated:  (1) an auto-tuned ResNet50, (2) a hyperparameter-optimized ViT 

and (3) a hybrid model combining both architectures. To reduce ambiguity between neighboring stages, we 

simplified the traditional five-stage classification into three clinically relevant categories: no DR, early DR 

(mild/moderate) and advanced DR (severe/proliferative). Trained and validated on the APTOS dataset, the 

ResNet50 model achieves precision scores of 93.0% (No DR), 82.0% (Early DR) and 86.0% (Advanced DR). 

The standalone ViT demonstrates relative improvements, attaining 98.0%, 91.0% and 93.0%, respectively. The 

hybrid model surpasses both, achieving 98.0% average precision across all classes, with gains of +7.0% (early 

DR) and +5.0% (advanced DR) over the standalone ViT. The proposed hybrid model achieved an impressive 

value of 99.5% on all metrics (accuracy, precision and recall) for identifying DR (binary classification) and a 

value of 98.3% for 3-stage classification. It was also concluded that the proposed method achieved better 

performance in DR detection and classification compared to conventional CNN and other state-of-the-art 

methods. The proposed hybrid approach significantly reduces confusion between classes, demonstrating its 

potential for accurate classification of the different stages of DR. 
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1. INTRODUCTION 

Diabetic retinopathy (DR) is a disease that affects the blood vessels of the retina and can result in 

blindness. It is a serious complication in diabetic patients [1]-[2]. DDR is identified by the emergence 

of several types of lesions on the retina. The lesions include microaneurysms (MAs), hemorrhages 

(HMs) and soft and hard exudates (EXs) [3]. Positive RD is split into several stages. (1) 

Microaneurysms indicate the mild phase, (2) Moderate stage reveals a stage where blood vessels begin 

to lose their ability to transport, (3) Severe stage includes blood vessel obstructions and (4) 

Proliferative stage represent the advanced phases of RD, as shown in Figure 1. 

According to the International Diabetes Federation [4], there are around 537 million diabetics, with 

this figure anticipated to increase to 643 millions by 2030 and 783 millions by 2045. Furthermore, 

most individuals with diabetes remain undiagnosed for DR, because this disease is often asymptomatic 

until an advanced stage [5]. In order to diagnose and treat DR, regular retinal screening is essential for 

diabetic patients. Classification issues associated with DR can be divided into two categories: binary 

classification and five-class classification. Binary classification focuses on distinguishing between sick 

and healthy retinas in color fundus images, as established by [6]-[8]. Conversely, five-class 

classification methodologies strive to categorize images into five distinct classes: Class 0- no DR, 

Class 1- mild DR, Class 2- moderate DR, Class 3- severe DR and Class 4 -proliferative DR [9]-[10], 

as resumed in Figure 1. Manual examination   of retinal images is carried out using traditional methods 

to detect the presence of DR, which requires experienced and professional ophthalmologists. In 
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addition, there is a high probability of misdiagnosis during the manual examination, which is time-

consuming and costly. 

Automated methods have emerged as viable solutions to enable early identification of Diabetic 

Retinopathy (DR) and avoid permanent blindness [11]-[12], overcoming problems related to manual 

classification. In this case, machine learning has shown to be the most effective technique to overcome 

this problem [13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Fundus images representing phases of diabetic retinopathy from the Aptos dataset. 

Deep-learning (DL) methods, particularly transfer-learning models, like VGG16, InceptionV3 and 

ResNet50, have shown considerable promise in analyzing medical images [14-[17]. Convolutional 

neural networks (CNNs), which underpin these models, mainly concentrate on local features in the 

input images, which restricts their capability to effectively recognize long-range dependencies and 

global contextual connections. Vision Transformers (ViTs) have emerged as a revolutionary 

substitute, addressing these constraints by utilizing self-attention mechanisms to capture long-range 

dependencies and global contextual associations throughout whole images. While transfer learning-

based approaches [18]-[19] have been widely adopted for diabetic-retinopathy (DR) severity 

classification, existing methods struggle with diagnostic accuracy in early-stage DR, where subtle 

lesion patterns (e.g. microaneurysms, mild hemorrhages) necessitate both fine-grained feature 

extraction and global contextual understanding of the retinal image. 

To address these challenges and evaluate the effectiveness of ViTs for DR classification, we propose 

and compare three architectures, each differing in its feature extraction method: 

1) ResNet50-based model: A CNN baseline optimized via Bayesian hyperparameter tuning for 

localized feature extraction. 

2) ViT-based model:A standalone ViT model tailored for global dependency modeling. 

3) Hybrid architecture: A novel fusion of ResNet50 and ViT, combining their complementary 

strengths. 

We further redefine the traditional five-stage DR grading system into three clinically relevant classes: 

no DR, early DR (encompassing mild and moderate stages) and advanced DR (comprising severe and 

proliferative stages). This regrouping minimizes confusion between closely related stages, enhancing 

classification accuracy. Experiments carried out on the APTOS 2019 dataset [20] demonstrate that the 

hybrid architecture achieves 98.0% precision across all classes, reducing misclassification between 

adjacent stages by 15%–20% compared to standalone models. ViTs alone outperform ResNet50, with 

relative improvements of 11.0% (early DR) and 8.1% (advanced DR) in precision. The hybrid 

architecture significantly enhances early-stage detection of DR, leading to better clinical results. 

To sum up, our contributions are as follows: 

1) Three novel architectures for DR detection and classification: 

 AtRD/AtR3C: Auto-tuned ResNet50 models with Bayesian hyper-parameter optimization, 

achieving 99.22% detection accuracy and 94.26% 3-class severity-classification accuracy. 

 ViRD/ViR3C: Vision Transformer (ViT) models leveraging global attention, attaining 97.73% 
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detection accuracy and 92.97% classification accuracy. 

 Revi-RD/Revi-3C: A hybrid CNN-Transformer architecture combining both precedent 

architectures. It achieves 99.55% detection accuracy and 98.26% 3-class severity-

classification accuracy. 

2) Redefined DR grading into (0: no DR, 1: early DR, 2: advanced DR), reducing ambiguity in 

traditional 5-stage grading between neighbor classes. 

3) State-of-the-Art Performance: 

 The proposed models are validated on the APTOS 2019 dataset and compared against one 

another, highlighting the effectiveness of ViTs and the complementary advantages of the 

CNN-ViT hybrid architecture. 

 The earliest stages were detected with greater accuracy, especially in the hybrid model. 

 We effectively optimized each model’s performance as compared to previous methodologies. 
With the hybrid approach, we greatly outperformed previous results. 

The rest of the article is organized as follows: Section 2 reviews relevant research conducted on the 

DR classification. Section 3 details the methodology, including data pre-processing, the proposed 

approach and performance measures. The results are presented and analyzed in Section 4. Finally, 

Section 5 presents the key conclusions and recommendations for future works. 

2. LITERATURE REVIEW 

Early identification of Diabetic Retinopathy (DR) remains a significant challenge. Researchers have 

investigated several techniques to address this issue. Classifying DR from retinal images falls into two 

main categories. Binary classification determines whether or not DR exists, whereas multi-class 

classification indicates the disease’s specific stage. This latter method needs the model to differentiate 

minor visual variations between DR stages, making it a more difficult task. Several studies have 

investigated both binary and 5-class classification of DR using machine-learning (ML) [13], [21]-[22], 

deep-learning (DL) [14], [23]-[25], transfer-learning techniques (TL) [8], [26]-[28] and more recently 

vision-transformer methods [29]-[30]. However, research into the classification of DR into three 

classes remains limited. Public retinal-image datasets, such as Idrid, EyePACS, Messidor and Aptos, 

have been instrumental in these studies for detecting and diagnosing DR. This work will specifically 

focus on recent advancements in transfer learning (TL) and Vision Transformer (ViT) applied to DR 

detection and classification on the Aptos dataset. 

2.1 Transfer Learning in DR Classification 

Dekhil et al. [31] proposed a customized CNN based on a transfer-learning technique for a 3-class 

classification task. It consists of a pre-processing stage, VGG16 and fully connected layers. To adapt 

the pre-trained model, they retrained all the layers, achieving a validation accuracy of 77%. In their 

study [32], Rao et al. evaluated five CNN classifiers; namely, Inception-V3, VGG19, VGG16, 

Resnet50 and InceptionResNetV2. Resnet50 achieved the highest accuracy (95.59%) for a binary 

classification. InceptionResNetV2 excelled at multi-class classification. It reached an accuracy of 

88.14% for classifying DR into three stages and 85% accuracy for a five-stage classification. Gangwar 

and Rav [33] proposed an hybrid model incorporating a custom convolutional neural network (CNN) 

block added to the pre-trained Inception-ResNet-v2. For training these hybrid models, they utilized 

two Kaggle datasets: Messidor-1 and the APTOS 2019. The achieved test accuracy was 72.33% for 

Messidor-1 and 82.18% for the APTOS 2019 dataset, respectively. Islam et al. [34] proposed an 

architecture based on supervised contrastive learning, utilizing the pre-trained Xception model, the 

APTOS dataset and Messidor-2. They achieved an accuracy of 98.36% for binary classification and 

84.364% for multi-class classification. Their study revealed an improvement in performance compared 

to previous architectures, including ResNet50, Inception and other earlier models. Oulhadj et al. [35] 

proposed an automatic method based on deep learning. It consists of two main steps; the first one is 

the pre-processing. The second one is the classification. Four CNN models (Densenet-121, Xception, 

Inception-v3 and Resnet50) are employed to detect the DR-severity stage. The authors implemented a 

voting mechanism using the APTOS 2019 dataset. They achieved a final accuracy of 85.28%. Mondal 

et al. [36] also suggested a deep-learning strategy for detecting diabetic retinopathy that combines the 

DenseNet101 and ResNet models. Experiments were carried out using the APTOS19 and 
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DIARETDB1 datasets. Their approach produced an accuracy of 86.08% for five-class classification 

and 96.98% for binary classification. Many CNN-based techniques have proved their ability to extract 

subtle image features surpassing traditional methods. While CNNs excel at extracting discriminative 

local features, crucial for recognizing subtle image characteristics, they struggle to process long-range 

information due to their inherent local receptive field mechanism. This limitation hinders their ability 

to fully understand the complex patterns associated with diabetic retinopathy. To address CNNs’ 
difficulties in collecting long-range dependencies within retinal images, Vision Transformers (ViTs) 

have emerged as a potential solution. 

2.2 ViT in DR Classification 

Dosovitskiy et al. [37] introduced the Vision Transformer (ViT) for image classification, motivated by 

the effectiveness of transformers in natural-language processing [38]. ViTs have surpassed traditional 

convolutional neural networks in a variety of computer-vision tasks by considering images as 

sequences of patches and exploiting self-attention. Despite the promising potential of ViTs, their 

application in DR classification remains relatively unexplored and studies specifically focused on DR 

classification are still limited. Recently, the remarkable representation capabilities of transformers 

received increasing interest in medical-image analysis [39]-[40]. For DR classification, Wu et al. [41] 

employed ViTs to prove their superior performance compared to CNNs. Additionally, Mohan et al. 

[42] proved that dividing the fundus images into non-overlapping portions maintains information 

about the position of each patch. A different dataset was used to test the effectiveness of DR 

classification. For example, Nazih et al. [43] provided a ViT-based deep-learning pipeline for 

recognizing the severity stages of DR. ViT requires big datasets for successful learning; therefore, they 

utilized the FGADR (fine-grained annotated diabetic retinopathy) dataset, which comprises 1,842 

fundus images, to build their model. Experimental results of their ViT model using F1-score, accuracy, 

and recall metrics were 82.5%, 82.5% and 82.5%, respectively. In [29], Gu et al. classified DR using 

ViT on the DDR dataset. The performances of the model using specificity, sensitivity and accuracy 

metrics were 82.45%, 81.40% and 82.35%, respectively. Khan et al. [44] presented an automated 

approach for DR-severity classification using a fine-tuned Compact Convolutional Transformer (CCT) 

model, which combines convolutional layers with transformer mechanisms. The model was trained on 

a huge dataset created by combining five datasets (Aptos, Idrid, Messidor2, DDR and Kaagel Dr 

dataset). Different pre-processing and augmentation techniques were used to improve image quality. 

The model achieved an accuracy of 84.5%, outperforming both the ViT (81.56%) and the shifted 

window transformer (Swin) (82.23%). Different ViT architectures are tested in the study conducted by 

Karkera et al. [45]. Four pre-trained image transformers:  ViT, DeiT, CaiT and BEiT, were trained on 

a dataset called DBtr. The researchers then combined all four models to predict the severity stages of 

DR. The combined approach achieved an accuracy of 94.63% outperforming the results obtained by 

each of the individual models. Recently, Oulhadj et al. [46], proposed a hybrid architecture combining 

a fine-tuning vision transformer and a capsule network for automatic prediction of the severity level of 

diabetic retinopathy. The approach was evaluated using four datasets, including APTOS, Messidor-2, 

DDR and EyePACS and attained the best accuracy scores on the Aptos dataset:  88.18%. Lian and Liu 

in [47] combined a convolutional neural network (Inception-Resnet-v2) with a vision transformer. The 

model attained an accuracy of 93.2% using Messidor1 for binary classification and an accuracy of 

89.1% using the Aptos dataset for 5-stage classification. Yang et al. [48] have developed a 

Transformer model based on multiple instance learning (MIL) to classify diabetic retinopathy (DR). 

Their model divides high-resolution retinal pictures into 224 × 224 pixel patches, which are then 

processed by a Vision Transformer (ViT) to extract local characteristics. A Global Instance 

Computing Block (GICB) then combines information from many patches, improving the model’s 
capacity to understand global relationships within the image. The model obtained 93.2% accuracy for 

binary classification on the Messidor1 dataset and 85.65% accuracy for 5- stage classification on the 

Aptos dataset, surpassing the Mil-ViT proposed by Yu et al. [49]. Dihin et al. [50] used a combination 

of Wavelet and multi-Wavelet transforms with the Swin-transformer model. The study highlights the 

innovative use of the multi-Wavelet transform for feature extraction, integrated into the Swin 

transformer. The model obtained 96% accuracy for binary classification on the Kaggle APTOS 2019 

dataset. The Swin-T model with multi-Wavelet transformation achieved a 98% recall and 96% F1-

score for binary classification. However, the model’s accuracy decreased in multi-class classification 

(82%). Approaches based solely on CNNs or ViTs struggle to combine the detection of local lesions 



283 
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

 
with the analysis of the global anatomical context, which accentuates the ambiguity between classes. 

To demonstrate the efficacy of hybridization in overcoming these limitations, this study proposes a 

hybrid CNN-ViT architecture that combines fine feature extraction and contextual modeling. Further, 

we redefine DR staging into three-tier clinically actionable categories - no DR, early DR and advanced 

DR - to improve the accuracy of classification, which remains under-explored in the literature. 

3. METHODOLOGY 

This section presents three deep-learning architectures for the classification of diabetic retinopathy 

(DR). Each model was trained for binary detection (0: No DR, 1: DR) and three-stage severity 

classification (0: No DR, 1: Early DR, 2: Advanced DR). The first proposed architecture employs 

transfer learning with ResNet-50 for feature extraction. AtRD and AtR3C, respectively, handle binary 

and 3-class classification. The second proposed architecture uses ViTs for feature extraction. ViRD 

and ViR3C deal with binary and 3-class classification, respectively. Finally, we propose a hybrid 

architectures, ReVi-RD and ReVi-3C, for detection and 3-class classification, respectively, combining 

the strengths of both previous models. As illustrated in Figure 2, each model follows a similar pipeline 

composed of several processes: 

 Pre-processing process that balances the dataset and enhances the quality of input images. 

 Feature extraction is performed using the chosen architecturen (Rsnet50 and ViT). 

 A multi-layer neural network classifies the image into two or 3-class classification. In the 

following part, we give more details for each of these processes. 

3.1 Datset Description 

A Kaggle dataset titled APTOS 2019 Blindness Detection (APTOS stands for Asia Pacific Tele 

Ophthalmology Society) was used to train and evaluate the models [20]. This dataset was collected by 

Aravind Eye Hospital in rural areas of India with the objective of developing high-performance tools 

for the automated diagnosis of diabetic retinopathy and enhancing the hospital’s ability to identify 
potential patients. The dataset consists of 3,662 retinal images, categorized into five stages of diabetic 

retinopathy (DR)(see Figure 3b): no DR, mild DR, moderate DR, severe DR and proliferative DR, 

which are annotated with values ranging from 0 to 4. However, one of the main limitations of this 

dataset is the significant class imbalance, particularly for the severe NPDR category, which contains 

only 193 images. Additionally, the images vary in size and exhibit considerable variations due to their 

collection in a real-world multi-center environment. These variations arise from differences in camera 

settings across centers and the presence of noise, both in the data and in the annotations. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Proposed-approach pipeline from data pre-processing to class prediction. 
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3.2 Dataset Preparation 

Our goal is to develop a model that can detect the existence of DR and classify its severity. As shown 

in Figure 3a and Figure 3b, the classes were grouped and re-annotated according to the classification 

task (binary or three-class classification, respectively). However, achieving an accurate model 

performance necessitates overcoming the persistent problem of data imbalance. For DR detection, we 

use a binary classification (No DR, DR). This grouping successfully balances the dataset, as shown in 

Figure 3a. 

 
(a) Binary Aptos dataset          (b) Aptos dataset before augmentation           (c) 3-class Aptos dataset 

Figure 3. Aptos dataset before and after aggregation and augmentation. 

However, for three-stage classification, the problem of data imbalance persists. To address this issue, 

we use data-augmentation techniques that create additional images. 

3.3 Data Augmentation 

We employ data-augmentation techniques to expand the database and provide additional images of the 

different DR stages as illustrated in Figure 3c. Each original image underwent multiple augmentation 

transformations, resulting in five augmented images. These transformations include distortions, 

horizontal and vertical flips, as well as brightness adjustments. The purpose is twofold: expanding the 

dataset’s variability while meticulously preserving the essential DR characteristics. This enables 

machine-learning models to learn and identify retinopathy features regardless of the image’s position 
or lighting conditions. Figure 4 shows a sub-set of the generated images by the augmentation process. 

3.4 Image Pre-processing 

Due to their many sources, the fundus images in the dataset show significant heterogeneity in terms of 

size, noise levels and distortion. These variations present significant problems for accurate analysis 

and reliable lesion detection. To overcome these obstacles and improve the quality of feature 

extraction, we propose a multi-stage pre-processing process (see Figure 5). The different stages of pre-

processing that we have carried out are: 

1) The initial step involves resizing all images to a uniform size of 224x224 pixels. This 

standardization facilitates subsequent analyses and the extraction of characteristics. 

2) Each resized color image was converted into gray scale, followed by convolution using a Gaussian 

blur filter, as illustrated in Figure 5b [51].This step is designed to reduce noise and accentuate 

features, in particular by improving the visibility of exudate, red lesions and blood vessels. 

3) A circular-cropping [52] technique was used to remove non-informative black pixels (background 

or noise) and retain only the regions of interest, as shown in Figure 5c. 

4) Finally, normalization was performed on the pre-processed images to ensure consistent scaling of 

all pixel values, thereby enhancing the efficiency and stability of model training. This data 

normalization process aims to standardize the distribution of the images. 

3.5 Fine Tuning 

Pre-trained models, such as ResNet50 and Vision Transformers (ViTs), require fine-tuning to meet the 

specific demands of DR detection and classification. For proposed models—AtRD/AtR3C (ResNet50- 
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(a) Original                               (b) Horizontal Flip                              (c) Vertical Flip 

 

 

 

 

 

 

 

 

 

 

(d) Brightness (e) Grid Distortion 

Figure 4. Data-augmentation illustration. 

(a) Original                                  (b) Gaussian Blur                                (c) Circle Crop 

Figure 5.  Pre-processing phases. 

based) and ViRD/ViR3C (ViT-based), we employed a two-phase optimization. First, the pre-trained 

architectures were fine-tuned on the APTOS dataset, enabling them to capture discriminative retinal 

features, such as microaneurysms, hemorrhages and exudates, by adapting their weights to the 

morphological patterns of DR. Second, we applied Bayesian optimization to systematically refine 

critical hyperparameters, including image resolution, batch size and learning rate, ensuring robust 

classification performance across DR-severity classes while minimizing overfitting. This dual-phase 

strategy optimizes both the models’ feature-extraction capabilities and training dynamics.  

 

 

 

 

 

 

 

 

 

 

Figure 6. Auto-hyperparameter-tuning process. 



286 
"A Hybrid CNN-transformer Approach for Precise Three-class Diabetic Retinopathy Classification", S. Ait Kaci Azzou et al.  

 
As shown in Figure 6, the fine-tuning process using Bayesian optimization aims to efficiently 

identify the optimal hyperparameter configuration for our architectures based on transfer learning. 

For efficient optimization, the network is trained with a limited number of epochs while exploring 

various hyperparameter combinations within a pre-defined range. This approach prioritizes 

identifying the hyperparameter set that yields the best score on the validation of metric set. 

3.6 DR Classification Using AtRD and AtR3C: Approach-based Transfer 

Learning 

Transfer learning, unlike training from scratch, aims to transfer knowledge that has been learned from 

another data set to a target problem. In this study, we adopted ResNet50, a convolutional neural 

network pre-trained on the ImageNet dataset, as the backbone for feature extraction. 

ResNet-50 is a specific variant of Residual Neural Networks (ResNets), developed by Kaiming He et 

al. in 2015 [53] for image recognition. It consists of 50 layers structured into convolutional layers and 

identity blocks. The key innovation of ResNet-50 lies in the use of residual connections, also known as 

skip connections (see Figure 7), which enable the network to bypass certain layers. This approach 

facilitates the training of very deep networks by mitigating the vanishing-gradient problem. ResNet-50 

adopts an optimized architecture in which each residual block contains three convolutional layers 

(1×1, 3×3 and 1×1 convolutions) instead of the two used in earlier ResNet variants. The 1×1 

convolutions serve to reduce and expand dimensionality, improving computational efficiency, while 

the 3×3 convolution captures spatial features. Several factors contribute to the model’s success: its 
large receptive fields, which capture more contextual information for each pixel; the separation 

between localization and classification stages; its computational efficiency at deeper layers; and its 

effective encoding schemes that rely on low-complexity arithmetic operations. 

Figure 7. Resnet50 architecture [53]. 

While ResNet50 excels in general image classification, its final fully connected layer—originally 

configured for 1,000-class ImageNet classification—was unsuitable for our specialized binary and 

three-class DR classifications. In response, we designed the AtRD and AtR3C architectures, which 

retain the feature-extraction capabilities of ResNet50 while incorporating domain-specific adaptations. 

As illustrated in Figure 8, we replaced the final classification layer of ResNet50 with a customized 

multi-layer perceptron (MLP) comprising five additional layers (Flatten, Dense, Dropout, Dense, 

Dense). The final dense layer contains two nodes for binary classification or three nodes for 3-class 

classification. 

3.7 DR Classification Using ViRD and ViR3C: Approach-based ViT 

Taking advantage of ViT’s ability to model long-range dependencies, we propose ViRD and ViR3C, 

two ViT-based architectures, for the detection and classification of DR. Figures 9 illustrates the 

proposed architecture. 

The important components of the transformer are multi-head self-attention (MSA) and multi-layer 

perception (MLP). Multi-head attention in the Figure 10 is the core part of the Transformer. The ViT 

model considers an image submitted as a series of image patches. 

Here are the key steps in its operation: 
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Figure 8. Proposed architecture-based ResNet50: AtRD and AtR3C. 

Figure 9. Proposed architecture-based ViT: ViRD and ViR3C. 

Image Splitting into Patches: After pre-processing and resizing to 224*224, input picture I is divided 

into a series of flattened patches Xip (for i = 1, 2, ..., np), each with a size of p × p × C, C=3 

corresponding to the three RGB  channels in the image I; p = 16, resulting in np =(224 × 224/16*16)= 

196 patches. Each patch Xip is flattened and transformed into a 1D vector X0 of dimension pxpx3= 

162x3=768 using linear embedding. 𝑋0 = [𝑥1, 𝑥2, … , 𝑥] ∈ ℝ196×(768)                                                           (1) 

Linear Projection of Patches (Patch Embedding): Each flattened patch is projected into a space of 

dimension D using a learnable matrix  E ∈ ℝ(768)×𝐷. For  the i-th patch xi, the embedding  is given  by 

zi = xi.E. E represents the projection weight matrix, with dimensions 768×D, where 768 is the 

flattened patch dimension and D is the dimension of the projection space. D defines the dimension of 

the transformer’s input tokens, which serve as the basis for self-attention mechanisms. In basic ViTs, 

D is commonly set to 768. 𝑍0 = [𝑧1, 𝑧2, … , 𝑧𝑛𝑝] ∈ ℝ196×𝐷                                                           (2) 
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Class Token and Positional Embedding Initialization: As illustrated in Figure 9, the positional 

information Pos ∈ ℝ196×𝐷 added into each embedded patch, allowing ViT to better understand the 

spatial relationships within the input data. The ViT model also incorporates a classification token 

(z[cls]) inside the embedded patches. This is a randomly initialized, learnable parameter used to 

aggregate global information for classification. It essentially acts as a decoder. 

The input to the Transformer encoder is constructed as: 𝑍 = [𝑧[𝑐𝑙𝑠], 𝑧0] ∈ ℝ(196+1×𝐷)                                                             (3) 

After adding positional encoding, the final input to the encoder becomes: 𝑍𝑓 = 𝑍 + 𝑃𝑂𝑆 ∈ ℝ(197×𝐷)                                                                (4) 

The resulting embedding matrix Zf, enriched with both visual and positional information, is then fed 

into a Transformer encoder stack. 

Transformer Encoders: The Transformer Encoder is composed of two main layers: Multi-head Self- 

Attention (MSA) and Multi-layer Perceptron (MLP). The resulting embedding matrix, Zf , is then fed 

into a stack of six Transformer encoder blocks. Each block consists of a multi-head self-attention 

(MSA) module with eight attention heads, followed by a multi-layer perceptron (MLP). Layer 

normalization and residual connections are applied before and after each sub-layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. MSA process: (a) MSA process with several attention layers; (b) Scaled dot-product 

attention [38]. 

The multi-head attention mechanism (MSA) is a form of self-attention that allows the model to 

concentrate on information from different sub-spaces of representation at various positions. To 

calculate attention scores, MSA uses several scaled dot-product attention mechanisms, as shown in 

Figure 10. The complete MSA operation is summarized as: 𝑀𝑆𝐴(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ1, ℎ2, … , ℎ𝑛). 𝑊0                                                (5) 

where Concat denotes the concatenation of all attention-head outputs; n is the number of attention 

heads. hi is the output of the i-th self-attention head. The concatenated output is then projected back to 

the original embedding space using a final weight matrix W0. 

The output of each attention head hi is computed as: ℎ𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝑖𝐾𝑖𝑇√𝑑𝑘 )𝑉𝑖                                               (6) 

A softmax function is applied to derive the attention weights for the value matrices. This softmax 

operation normalizes the resulting scores, ensuring that they are positive and sum to unity. We then 

multiply the attention weights with value matrix (Vi) to get the self-attention output hi. 

The query Qi, key Ki and value Vi vectors for each head (𝑖 ∈ {1, … , 𝑛}) are obtained by multiplying the 
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input embedding matrix Zf by three distinct weight matrices, effectively projecting the input 

embeddings into different representation sub-spaces for each attention head. 𝑄𝑖 = 𝑍𝑓𝑊𝑖𝑄   𝐾𝑖 = 𝑍𝑓𝑊𝑖𝐾    𝑉𝑖 = 𝑍𝑓𝑊𝑖𝑉 

The outputs from all the heads are subsequently merged and forwarded to an MLP layer for further 

processing. Each MLP and MSA operation is preceded and followed by residual blocks and 

normalization layers to guarantee stability and model optimization. MLP comprises two fully-

connected linear layers and between these layers, a non-linear activation function is applied. This 

function introduces non-linearity, allowing the model to learn more intricate patterns in the data. A 

common choice for this activation function in ViT is the Gaussian Error Linear Unit (GELU). GELU 

has a smoother, more continuous shape than the ReLU function, which can make it more effective at 

learning complex patterns in the data [38]. 𝐺𝑒𝐿𝑈 = 0.5. 𝑥 + 𝑡𝑎𝑛ℎ [√2𝜋 . (𝑥 + 0.0447𝑥2)]                                                (7) 

We introduce two dropout layers to regularize the model and prevent overfitting. Finally, we extract 

the [Cls] token from the Transformer Encoder output and pass it through a classification head to obtain 

class predictions y. In order to classify DR into 2 or 3 severity stages, we use a head classification 

output layer composed of 2 or 3 neurons for ViRD and ViR3C, respectively. We applied a softmax 

function to get a probability distribution to classify fundus images over the two or three severity stages 

of DR (see Figure 9). 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧[𝐶𝑙𝑠])                                                                  (8) 

3.8 DR Classification Using ReVi-RD and ReVi-3C: A Novel Hybrid Approach 

To enhance the precision of DR classification, we suggest a novel hybrid architecture that merges the 

benefits of Vision Transformers (ViTs) and Resnet50. Retinal-image features can be captured locally 

and globally by ReVi-RD and ReVi-3C models by integrating pre-trained ViRD/ViR3C with pre-

trained AtRD/AtR3C models. 

The hybrid approach is illustrated in Figure11. To construct this hybrid model, we use the weights of 

the pre-trained AtRD or AtR3C models to extract local features. We remove the MLP (final layers) of 

these models and replace it with the pre-trained ViRD or ViR3C, as described in Figure 12. In the 

following part, we describe our hybrid approach, illustrated in Figure11 and Figure 12, from input 

images to final classification. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Hybrid architectures: ReVi-RD and ReVi-3C. 
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Figure 12. Detailed architecture of ReVi-RD and ReVi-3C. 

 Input:  an RGB image of 224×224 pixels, represented by a shape tensor [224, 224, 3], which   is a 

standard input size for the ResNet50 model, is introduced into the pre-trained model. 

 After pre-processing, AtrD/Atr3C are used to extract local spatial features from input images of 

size 224×224×3. The final classification layers of AtrD/Atr3C are removed and replaced with a 

transformer-based head. 

The output from an intermediate layer (specifically, the 7th layer from the end) of the modified 

ResNet50 model is extracted. The resulting feature map is 7×7×768 in size. This feature map 

retains high-dimensional representations of localized patterns while compressing spatial 

resolution to 7×7 grids, each with 768 channels. 

 Reshaping for Vision Transformer (ViT): The resulting feature map of dimensions 7×7×768 is 

reshaped into a sequence of flattened patches, transforming the 7×7×768 feature map into a 

sequence of 49 tokens, each of 768 dimensions [49, 768]. Here, the 7×7 spatial grid is 

reinterpreted as 49 non-overlapping "patches", each represented as a 768-dimensional vector. 

This step adapts the output into a format compatible with transformer-based processing. 

 Position Embedding and Class Token: To inject spatial information into the transformer, we add 

a learnable position embedding to the 49 patches, preserving their spatial relationships. Then, we 

concatenate a learnable [CLS] token (classification token) to the sequence, increasing its length 

to 50 ([50, 768]). A final sequence of length 50 is then processed by a Transformer Encoder. 

 Transformer Encoder: the sequence of length 50 is fed through a series of 6 Transformer encoder 

blocks. Each block comprises a multi-head self-attention mechanism with 8 attention heads, 

followed by an MLP that includes layer normalization and residual connections. 

 Classification Head: After the Transformer encoder, we performed a layer normalization and 

extracted the output corresponding to the class token. Then, we projected the final representation 

into the class space (2 for ReVi-RD or 3 For ReVi-3C) via a dense layer, yielding raw 

classification scores, which are then transformed into class probabilities using a softmax function. 

4. EXPERIMENTAL RESULTS 

In this section, a detailed discussion of the experimental results obtained is carried out to prove the 

effectiveness of the Vits and hybrid models proposed for the classification of DR. The experiment was 

conducted using the Python environment on a server equipped with an Intel(R) Xeon(R) CPU @ 

2.20GHz processor, 13 GB of RAM and a GPU P100 16GB provided by Kaggle platform. We use the 

Aptos dataset to train and test our architectures. To prevent data leakage, the dataset was explicitly 

split into two sub-sets with the ratio of 80:20 to make the training and testing datasets. Additionally, to 

address class imbalance, data augmentation was applied only to the training set, ensuring that 

artificially generated samples did not leak into validation or test sets. 
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The model underwent multiple independent trials, each with a unique random seed for dataset 

shuffling and partitioning. This approach introduced variability in data order and distribution across 

trials, enabling a thorough assessment of the model’s stability. 

For the ResNet50-based model, we used the Adam optimizer, while the ViT-based model utilized the 

AdamW optimizer. We employed categorical cross-entropy as the loss function, suiatable for our 

multi- class classification task with softmax activation. The learning rate was automatically selected 

through hyperparameter tuning and the optimal value obtained was 0.0001 for model based on 

Resnet50 and 0.00002 for model based on ViT. This value was fixed during training to ensure stable 

convergence. 

4.1 Evaluation Metrics 

To assess the detection performance of the proposed models, we use the most commonly used metrics: 

accuracy, precision, specificity or recall (sensitivity) and F1 score. Their mathematical expressions are 

given in Table 1. TP, TN, FP and FN are true positives, true negatives, false positives and false 

negatives, respectively. 

4.2 Obtained Hyperparameters after Auto-tunning 

After image pre-processing, we fine-tuned the architectures to get the best hyperparameters which are 

presented in Table 2 for AtRD and AtR3C, and in Table 3 for ViRD and ViR3C. 

Table 1.  Performance metrics. 

Metrics Formula 

Accuracy (Acc) 𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

Precision (Positive Predictive Value) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 

Recall (Sensitivity) 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 

F1-score 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

Specificity (True Negative Rate) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 

 Table 2. Best hyperparameters obtained for AtRD and AtR3C. 

 

 

 

 

 

 

 

 

 

 

 

All the proposed architectures are trained using their obtained hyperparameters. 

Their performance based on test data was evaluated using the five metrics: accuracy, precision, recall 

(sensitivity), F1-score and specificity. 

4.3 Diabetic Retinopathy Detection Performance 

As the first experiment, we compare the performance of AtRD, ViRD and ReVi-RD to evaluate their 

effectiveness in DR detection and assess the impact of the features extracted by each model. The 

results reported in Table 4 summarize the evaluation metrics obtained for detecting DR. We can notice 

that AtRD and ReViRD architectures demonstrate exceptional performance, exceeding 99% across all 

Hyperparameter Value 

Image size 224x224 

Batch size 32 

Warmup epochs 5 

Warmup learning rate 0.00001 

Epochs 50 

Learning rate 0.0001 

Weight decay 0.02 

Early stopping patience 15 

Reduced LR patience 5 

Regularizer 0.02 
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metrics (accuracy, precision, recall, F1-score), showcasing their robustness in DR detection. The 

exceptional performance of AtRD can be attributed to the efficient tuning of hyperparameters. The 

ViRD model achieves slightly lower, but still impressive results, surpassing 97.7% across all metrics. 

This disparity arises from the inherent data requirements of ViTs, which typically demand larger 

datasets to fully leverage their global attention mechanisms compared to transfer-learning models [37]. 

The hybrid ReViRD model outperforms both standalone architectures , underscoring the synergistic 

benefits of combining ResNet50’s localized feature extraction with ViTs’ ability to model long-range 

dependencies. 

The detection performance of the AtRD, ViRD and hybrid ReVi-RD models is compared using their 

confusion matrices (see Figure 13) and the evaluation metrics summarized in Table 5. The AtRD 

model achieves high sensitivity in retinopathy detection (99.2% true positive rate), but exhibits a 

specificity   of 96.81%, corresponding to a 3.2% false positive rate in healthy-patient classification. 

While this underscores its efficacy in identifying pathological cases, the elevated misdiagnosis rate for 

normal patients highlights limitations in distinguishing subtle non-pathological variations. In contrast, 

ViRD demonstrates balanced specificity (98.0% overall), with a slightly reduced 2.7% false negative 

rate for retinopathy cases. Although with an area under curve (AUC) of 99.1% (see Figure 14a), the 

ViT model is excellent at capturing global context through self-attention; it sometimes misses subtle 

local features that are critical for identifying retinopathy. This reliance on global context means that, in 

cases where pathological signs are very localized or subtle, the model might not sufficiently 

distinguish them from normal variations. 

Table 3. Best hyperparameters obtained for the ViRD and Vi3C. 
 

Parameter Value 

Image size 224x224 

Batch size 16x16 

Train batch size 32 

Test batch size 64 

Warmup steps 500 

Warmup learning rate 0.00001 

Epochs 20 

Learning rate 0.00002 

Weight decay 0.01 

Table 4. Performance comparison of proposed models for DR detection (%). 

Metric AtRD ViRD ReVi-RD 

Accuracy (%) 99.22 97.73 99.55 

Precision (%) 99.66 97.72 99.51 

Recall (%) 99.23 97.73 99.58 

F1-Score (%) 99.40 97.73 99.54 

Specificity(Average) (%) 98.01 98.00 99.50 

The hybrid ReVi-RD architecture addresses these limitations by synergistically combining CNN-

driven local feature extraction (AtRD) and ViT-based global dependency modeling (ViRD). This 

integration achieves near-perfect classification: a 1.0% false negative rate for retinopathy and 0.0% 

false positives rate for healthy cases (Table 4). With a specificity of 99.50%, ReVi-RD minimizes 

unnecessary diagnoses while maintaining exceptional sensitivity, outperforming both AtRD (98.01%) 

and ViRD (98.00%) in robustness. Class-specific metrics (Table 5) further elucidate these distinctions. 

AtRD shows moderate precision-recall harmonization (F1-scores: 97.7% for both classes), constrained 

by CNN architectures’ focus on localized textures rather than on lesion correlations. ViRD improves 

balance, achieving 98.00% F1-scores for both classes via global attention, yet remains vulnerable to 

localized oversights. ReVi-RD’s hybrid design transcends these trade-offs, leveraging CNN-localized 

granularity and ViT-global context to optimize feature representation. This dual capability enables 

superior accuracy in diabetic-retinopathy classification, particularly for cases requiring simultaneous 
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fine-grained and global analysis. 

The hybrid ReVi-RD resolves residual trade-offs, achieving near-perfect metrics (100% F1-score for 

both classes, 99–100% precision/recall and 99.9% AUC, as shown in Figure 15a). Its dominance stems 

from synergizing AtRD localized feature extraction with ViRD global-context modeling, effectively 

eliminating misclassifications (only 0.85% of non-healthy cases mislabeled). For clinical deployment, 

ViRD’s standalone performance—particularly its precision gains for critical non-healthy cases—
validates ViTs as an important tool for severity staging, while ReVi-RD’s hybrid architecture sets a 
new benchmark for applications requiring ultra-reliable classification. These results emphasize the 

necessity of integrating CNNs and ViTs in medical imaging, where both local granularity and global 

coherence are essential for accurate, interpretable diagnoses. 

Table 5. Class-wise performance of proposed models for DR detection (%). 

 

Metrics 

AtRD ViRD ReVi-RD 

Class 0 Class 1 Class 0 Class1 Class 0 Class1 

Precision (%) 97.60 97.90 97.00 98.00 99.00 100.00 

Recall (%) 97.90 97.60 98.00 97.00 100.00 99.00 

F1-score (%) 97.70 97.70 98.00 98.00 100.00 100.00 

Specificity (%) 99.21 96.81 98.00 98.00 100.00 99.00 

 

 

 

 

 

 

 

 

 

 

                         (a)                                                          (b)                                                          (c) 

Figure 13. The confusion matrices: (a) AtRD, (b) ViRD and (c) ReVi-RD. 

(a) (b) 

Figure 14. ROC curve for (a) ViRD and (b) ViR3C. 

4.4 Diabetic Retinopathy Classification Performance 

In the following experiment, we test the generalization capacity of the suggested models for the 

difficult task of classifying data into three different stages of severity in order to evaluate its potential. 

Table 6 summarizes the evaluation metrics for staging RD into 3 classes. AtR3C and ViR3C offers a 

well-balanced performance across precision, recall and F1-score, as well as about 94% and 93% across 
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all metrics, respectively. ReVi-3C produced remarkable results, achieving an average of nearly 98% 

across all metrics and classes, including an area under the curve (AUC) of 99% per class, as shown in 

Figure 15b. This indicates that the model’s predictions are balanced and reliable across the different 
performance measures. 

 

 

 

 

 

 

 

 

 
(a)                                                                         (b)                                                                              

Figure 15. ROC curve for (a) ReVi-RD and (b) ReVi-3C. 

Table 6. Performance evaluation of proposed models for 3-class DR classification (%). 

Metric AtR3C  ViR3C  ReVi-3C 

Accuracy (%)  94.26  92.97  98.26 

Precision (%)  94.41  93.77  98.43 

Recall (%)  94.09  93.22  98.21 

F1-score (%)  94.24  93.46  98.32 

Specificity (Average) (%)  93.70  96.60  98.67 

In order to evaluate the effectiveness of the suggested models (AtR3C, ViR3C and ReVi-3C), we 

examined the confusion matrices (see Figure 16), to provide details on the distribution of errors and 

classification accuracy across the three severity classes. As illustrated in Table 7, AtR3C model excels 

at identifying class 0 cases, achieving a precision of 97%, which means that nearly all predictions for 

this category are accurate. However, a specificity of 91.40% indicates that the model encounters 

difficulties with class 1. Specifically, 13% of cases are mislabeled as class 2 and 7% are incorrectly 

classified as class 0. Similarly, 15% of class 2 cases are mistakenly assigned to class 1. These patterns 

reveal a critical limitation: the model struggles to differentiate between adjacent severity levels, 

particularly distinguishing class 1 (moderate severity) from class 2 (high severity). This confusion 

suggests that AtR3C may lack the nuance needed to separate closely related categories, a gap that 

could impact its reliability in scenarios requiring precise severity staging. On the other hand, the ROC-

curve in Figure 14b corresponding to class 0 lies very close to the top-left corner of the plot. This 

indicates that ViR3C is very accurate at detecting patients without DR. 

The model demonstrated exceptional specificity of 99.5% for class 0 (healthy patients), minimizing 

false positives (0.5%) and thus avoiding misdiagnosis in unaffected individuals, which is essential for 

reliable screening. For class 1, specificity reached 92.8%, with 7.2% false positives, reflecting 

moderate difficulty in isolating this intermediate category. In contrast, class 2 (severe stage) has a high 

specificity of 97.5%, drastically limiting critical over-diagnosis and avoiding unwarranted invasive 

treatment. 

For unhealthy cases, early-stage DR (class 1) is correctly identified in 94% of instances, though a 1% 

misclassification as healthy poses a risk of missed diagnoses, while advanced-stage DR (class 2) 

shows 88% accuracy, with 12% confused as early-stage DR, but none misclassified as healthy, 

highlighting robust performance for severe cases, but some overlap in staging severity. These results 

highlight the model’s potential for accurately diagnosing early-stage DR and shows that the 

misclassification error mainly concerns stages 1 and 2.  
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Compared to AtR3C, ViR3C enhances the detection of healthy cases by reducing the misclassification 

rate of healthy individuals as non-healthy from 3% with AtR3C to 2% with ViR3C. This improvement 

highlights the power of ViTs in better detecting primitives across the entire set of images. We can 

decrease the errors by combining the strengths of the two architectures. 

The hybrid ReVi-3C model dramatically outperforms its predecessors, AtR3C and ViR3C, achieving 

near-flawless classification across all severity levels: 99% precision for class 0 and class 1 and 97% 

for class 2, marking a substantial leap in accuracy. Misclassification errors are reduced to negligible 

levels, with only 3% of class 2 cases mistakenly labeled as class 1, while confusion between class 0 

and class 1 is virtually eliminated. These results highlight the critical role of hybrid architectures in 

addressing multi-class challenges, where subtle inter-class differences demand precise discrimination. 

 

(a)                                                     (b)                                                        (c) 

Figure 16. The confusion matrix: (a) AtR3C, (b) ViR3C and (c) ReVi-3C. 

Table 7. Class-wise performance of proposed models for 3-class DR classification (%). 

 AtR3C   ViR3C   REVi-3C  

Metrics Class 0 Class 1 Class 2 Class 0 Class 1 Class 2 Class 0 Class 1 Class 2 

Precision (%) 98.00 82.00 86.00 98.00 91.00 93.00 100.00 98.00 98.00 

Recall (%) 97.00 80.00 85.00 98.00 94.00 88.00 99.00 99.00 97.00 

F1-score (%) 95.00 81.00 85.00 98.00 92.00 90.00 100.00 98.00 97.00 

Specificity (%) 96.50 91.40 93.20 99.5 92.80 97.50 100.00 97.00 99.00 

4.5 Results’ Conclusion 

The results obtained and their subsequent interpretation demonstrate that the proposed hybrid 

architectures (Revi-RD and Revi-3c) achieved remarkably high performance in both sensitivity and 

specificity. This success can be attributed to the effective exploitation of the complementary strengths 

of local feature extraction (by Resnet50) and global modeling of spatial dependencies (by ViTs). 

5. COMPARISON OF OUR APPROACHES WITH THE STATE-OF-THE-ART 

To benchmark our approach, we compared our results with those of other state-of-the-art methods that 

have utilized transfer learning on the APTOS dataset for DR severity-level classification. Our models 

were benchmarked against Convolutional Neural Networks (CNNs) [32], [54], ensemble transfer 

learning [55], Supervised Contrastive Learning [34], a Deep Dual Branch model [56], Swin 

Transformer [50] and hybrid models combining Multiple Instance Vision Transformer (Milv4) [49] 

and Vision Transformer with Inception [47]. The comparison is carried out utilizing performance 

parameters including accuracy, precision, recall or sensitivity  and F1-score across both binary and 

three-class classification tasks. All the methods illustrated in Table 8 are explained in the Related 

Works section. We can clearly say that our results are better and more enhanced than state-of-the-art 

results. 

 2-stage Classification 

AtRD model delivers a balanced performance (99.22% accuracy, 99.60% precision, 99.41% F1-score) 
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surpassing recent models, such as those of Shakibania et al. [56]. (98.50% accuracy) and Islam et al. 

[34] (98.36%). Athira et al. [55] achieved a slightly higher accuracy of 99.80%, as they also used an 

ensemble deep-learning approach with auto-tuning, but did not provide an F1-scor. In comparison, 

AtRD (99.22%) and ReVi-RD (99.55%) surpass nearly all previous works. However, the hybrid ReVi-

RD model, with 99.55% accuracy, 99.51% precision and 99.54% F1-score, outperforms all existing 

approaches. 

 3-stage Classification 

AtR3C model did well in the 3-class-classification test, achieving accuracy, recall and F1-score values 

of 94.41%, 94.09% and 94.24%, respectively. Our results are somewhat superior to those of Athira et 

al. [55], who reported a slightly lower F1-score of 93.00%, but attained precision and recall of 94.00% 

each, noting that Athira did not report class performance. On the other hand, ViR3C attains an F1-

score of 93.46%, demonstrating the potential of Vision Transformers (ViTs) in DR classification, 

though these models require more data than CNNs based on transfer learning. ReVi-3C, a hybrid 

architecture, achieves an impressive F1-score of 98.32%, representing an absolute improvement of 

10.3% over Rao et al. and   a 5.1% gain over Athira et al. This significant performance boost validates 

the effectiveness of hybrid models, where CNNs excel in localized feature extraction, while ViTs 

capture global contextual patterns. The importance of our method is underscored by the lack of 

research on the three-class classification of diabetic retinopathy (DR). Revi-3C’s encouraging 
performance highlights its potential for DR detection, especially in its early stages, leading to better 

diagnostic results. 

Table 8. Comparison of the proposed approaches with relevant previous works: binary and 3-stage 

classifications (unit %). 

Architecture Accuracy Precision Recall F1-Score 

Binary classification 

Esfahani [54] 86.00 85.00 86.00 85.00 

Rao et al. [32] 96.56 97.00 97.00 96.56 

Islam et al. [34] 98.36 98.37 98.36 98.37 

Athira et al. [55] 99.80 99.00 99.00 99.00 

Shakibania et al. [56] 98.50 97.61 99.46 / 

Our AtRD 99.22 99.60 99.23 99.41 

Dihin et al. [50] 96.00 / 98.00 96.00 

Yang et al. [48] 93.2 / 86.9 / 

Lian and Liul [47] 95.3 / 94.2 / 

Our ViRD 97.73 97.72 97.73 97.73 

Our ReVi-RD 99.55 99.51 99.58 99.54 

3-class Classification 

Rao et al. [32] / 88.00 88.00 88.02 

Athira et al. [55] 94.00 94.00 93.00  

Our AtR3C 94.26 94.41 94.09 94.24 

Our ViR3C 92.97 93.77 93.22 93.46 

Our ReVi-3C 98.26 98.431 98.21 98.32 

6. CONCLUSION 

This study highlights the potential of Vision Transformers (ViTs) and hybrid architectures in 

advancing diabetic retinopathy (DR) classification, particularly for early detection. By simplifying the 

traditional five-stage DR classification into three classes—no DR, early DR (mild/moderate) and 

advanced DR (severe/proliferative), we reduced ambiguity between adjacent stages. To this end, we 

proposed three architectures: (1) a Resnet50-based model with Bayesian hyperparameter optimization 

(AtRD, AtR3C), (2) a fine-tuned Vision Transformer model (ViRD, ViR3C) and (3) a hybrid 

architecture (ReVi-RD, ReVi-3C) that combines the strengths of both approaches. Experimental 
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results show that while our architecture-based ViTs improve class differentiation, our hybrid model 

achieves superior accuracy and precision, demonstrating the advantage of integrating both local 

feature extraction and global attention mechanisms. This impressive result points to a high potential 

for accurate DR detection, which might greatly improve early diagnosis and care. However, several 

limitations should be noted. The use of the APTOS dataset alone for model training and evaluation 

may not fully represent the variety of fundus images encountered in real clinical settings. 

Consequently, it remains to generalize the models by training and evaluating on diverse datasets. 

Furthermore, the work does not fully address the difficulties of interpreting the models. It is essential 

to develop methods that enable clinicians to understand and trust the decisions made by the model. For 

future work, we aim to extend our model to five-stage DR classification to align with standard clinical 

grading. Additionally, we plan to enhance generalization by training and evaluating on diverse 

datasets, ensuring robustness across different populations and imaging conditions. Furthermore, we 

will investigate how to apply explainable AI approaches to improve the clarity of our model and 

encourage its application in medical environments. 
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 ملخص البحث:
جللللل  أيلللللّ  التللللل   تلللللل ع ن   تعم للللل   ت   تلللللّ  للللل  ؤتعمللللل  للللللعل  تقييلللللّ ت للللل  ت  للللل     لللللق     ت   

للللللل      تمعات لللللللّ  ت ملللللللق   ت لللللللع   لللللللض  ّ تلللللللمع  تمصلللللللاا   امللللللل    ت ن تصلللللللت    تللللللللى   تص 
لللللض ا   تعصلللللض ّ نظملللللّ  تل    ميلللللّت  وللللل   للللل   تلولللللق    لتللللل   تل م  لللللا اللللل    تم   للللل   للللل   أي  تص 

ؤيللللللّ  للللللض  ّ   لللللل      للللللق     ت   ي  تص  للللللما   تم    للللللّ  لللللل   للللللق    تلوا  للللللّ  لللللل   الللللللّىة  ت  ل
ر ت للللل   ن لللللل   الت لللللّث ل  تلللللّث ت مللللل   تلللللق   نمعجلللللّ ث تاتم لللللّ  ةات لللللّت  تىاللللللواتر  للللل  ن لللللاج  ت لللللق 
ؤيللللللّ ا للللللم   تل صللللللت    تللللللم ي    تلللللللى للللللض ا   تعصللللللض ّ   تلوا  للللللّ    للللللق     ت     الللللل    تص 

للللل     لللللض  ّ تلللللمع   يللللل   ت ن    ت  يلللللم يمتلللللا اضتلللللاذ  ى لللللّ نملللللاال ت لللللعل  ت ايلللللّ  ت   م لللللا   أ تص 
ؤيللللللّ  للللللض ا   تعصللللللض ّ   تلوا  للللللّ   للللللملا    تة للللللان  ي لللللللتم  تلللللل    للللللق     ت   ي ت للللللا ت لللللل   تص 

   ملا    تةاتث نمقال ل    ي م  ا ت مات
لللللض  ّ    للللل   ت ملللللق   للللل   تل م  لللللا اللللل    تم   للللل   يمتلللللا  تل ال   للللل  تلللللمت     للللل   تللللللى   تص 

للللل   رو للللل    لقاللللل      تللللللى    للللل  رملللللى     للللل   تللللل   لللللى)     تللللللى     تللللللى   ض  
 ل للللللم د  قللللللميم  ياالللللل  تىنلصللللللاي ت  يللللللم تلللللل  تللللللميي   تت مللللللاال  ت   م للللللا ااالللللللّم د   مقتللللللّ 

  ت  تللللللللمع   اينللللللللّ نلللللللللاة، ت  لللللللل    تت مللللللللاال  تة ى للللللللّ  تضلللللللل   أ   APTOS تض انللللللللا  أالللللللللق   
ث تي لللللّ تصلللللت   ا  للللل   للللل   علللللم ت ا   تت ملللللقال  ت  للللل   يلولللللق  ت للللل   تت ملللللقاج    برللللل ي       لللللا

%  لللللل  جم لللللل  أ للللللتا    تلللللللى   تةى للللللّت  يللللللم    لللللل   تت مللللللقال  ت  لللللل   ي مللللللّث  ملللللللا ر 98
لللللللل     أت ذ  تملع   لللللللّ ااتل صللللللللت    تة تللللللللاة   تللللللللمد  جللللللللقت 5ت99ا  للللللل   %  لللللللل  جم لللللللل   تق 

للللللللل     أت ذ 3ت98ا  للللللللل  ت للللللللل   ت  ملللللللللّ  تللللللللللى ت  جلللللللللقت  تللللللللللى    ا تملللللللللا  %  للللللللل   تق 
للللللل ت  تللللللللى   ل لللللللمد ت  رى لللللللّ   تم تضطلللللللّ ااتل صلللللللت    تة ى للللللل      تللللللللى ت  تللللللللى   ض  

  تلللللللمد  جلللللللقت  تللللللللى   للللللل  أ ت لللللللق  لللللللل  أ    تت ظلللللللاد  ت  للللللل    تم لللللللل   تلصلللللللت    جلللللللقت 
للللل      ت ميلللللم تيجلللللّ اتللللل    تللللللى   لللللض  ّ تلللللمع   يللللل   ت ن  للللل    لللللث تولللللق    - ْ   جلللللم– تص 

لللللللض ا   تعصلللللللض ّ   تلوا  لللللللّ  ت للللللل   ت لللللللل    أت ذ ت للللللل   أنظملللللللّ  تل    ميلللللللّ  ت لللللللل  ت للللللللّمد  تص 
ث أرللللل ع    لللللث يعمللللل   تت ظلللللاد  ت  للللل    تم لللللل   ت للللل   تل    للللل   للللل   ت  لللللضْى  للللل   ت للللللّمد ج يلللللا
للللللض  ّ   اتلللللل  يضلللللل   أ   تميلللللل   ت للللللمير ت لللللل   تل صللللللت     تل صللللللت   الللللل       لللللل   تلللللللى   تص 
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