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ABSTRACT 

Unmanned Aerial Vehicles (UAVs) play a crucial role in various operations, especially where human life must 

be protected. Efficient path planning and autonomous coordination are critical for UAV swarms in dynamic 3D 

cooperative missions, where real-time adaptability is essential. This work addresses the challenge of optimizing 

UAV swarm operations by proposing a novel hybrid navigation system based on Ant Colony Optimization 

(ACO). The system efficiently balances path optimization with dynamic formation control, adapting to mission-

specific requirements. A key contribution is the hybrid navigation approach, which prioritizes the desired 

formation of the swarm or the path length and flight time through a threshold- based mechanism, allowing real-

time adaptation to changing environments. The system also introduces a comprehensive cost function that 

evaluates the quality of the path, time consumption, mission completeness and formation divergence. The 

experiments show that the system consistently provides high-quality paths, achieving around 97% path quality in 

most cases and never declines below 90%, even in challenging scenarios. The collision avoidance module 

ensures the completeness of the 100% mission, successfully navigating drones around obstacles and maintaining 

an optimal path. Furthermore, the formation conservation mechanism effectively maintained the desired swarm 

configurations while dynamically adapting to obstacles, with the formation change staying within 30% of the 

allowable range in most scenarios, highlighting the system’s ability to preserve the desired formation even in 

dynamic environments. This research advances UAV swarm intelligence, enabling efficient and autonomous 

operations in complex 3D environments for diverse cooperative missions. The system’s adaptability to formation 

requirements opens new possibilities for UAV swarm applications, improving navigation efficiency and 

enhancing formation control. 
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1. INTRODUCTION 

Unmanned Aerial Vehicles (UAVs) are revolutionizing the industry. They enable rapid and more cost- 

effective completion of industrial activities while ensuring safety primarily due to their small size, 

affordable density and general simplicity of management and operation [1]. UAVs are an effective tool 

for carrying out operations in locations that are difficult to access. Performing in groups or swarms 

offers additional benefits. The ability to perform tasks that require flying over large areas, reducing the 

time required for specific operations, area coverage and coordinated impacts are only a few of the 

operational benefits that UAV swarms have over non-swarm systems [2]-[5].UAV swarms leverage 

aerial mobility, high-speed maneuverability and extensive coverage capabilities, making them 

essential for a variety of applications [6]-[8]. Hundreds of thousands of agents can collectively be 

controlled by swarm systems, while a single operator or a small team is focused on carrying out 

mission objectives. Humans can maintain operational control while delegating low-level routine 

choices to UAV agents. UAV swarms can provide the capability for quick communication and 

decision-making, as detailed in [3]. A UAV swarm is considerably more effective than one or even 

several human decision-makers in many situations. Because of many advantages, autonomous swarms 

are often much more effective, timely and responsive than human or human-operated robot groups. 

Centralized and distributed control architectures are the two main categories into which cooperative 

multi-UAV autonomous control architectures are typically classified [9]. With the benefit of obtaining 

a globally optimal solution, the centralized-control method has dominated early research. However, 

this strategy has a fundamental weakness: the multi-UAV system will become uncontrollable should 

the decision-making layer fail due to the high dependence on the communication link. The distributed 
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control approach, which has the advantages of increased dependability, less computation and 

communication, becomes a study focus as UAV performance and autonomous capabilities develop 

[10]-[11]. 

The capability of assigning targets and building a 3D trajectory for each UAV in the swarm is an 

essential part of its operation. The general problems associated with 3D path planning for a single 

UAV have been addressed using a variety of techniques, including probabilistic road maps, A* 

algorithms, artificial potential fields, probabilistic navigation functions and many other techniques 

[12]-[15]. Most of these algorithms use sampling-based and graph-based search techniques, which 

work well in high-dimensional configuration spaces and are relatively simple to implement. It is also 

known that, given enough time, they are probabilistically completed in a way that increases the 

probability of discovering a solution. Many of these techniques have drawbacks, such as potential 

exposure to local minima and limitations imposed by constraints connected to the grid’s properties. 

These algorithms often need a balance between exploration and exploitation and are computationally 

demanding. Some of these algorithms lack robustness, which prevents them from functioning in 

situations with various dynamic obstacles and automated real-time applications [16]-[17]. 

Kennedy and Eberhart presented an introductory book on swarm intelligence, based on previous work 

on robot control and decentralized AI [18]. Swarm intelligence is the intelligent behavior that results 

from a collection of independent, heterogeneous agents acting as one system. In terms of the 

distribution of organizational structure, simplicity of individuals, flexibility of the action mode, and 

establishment of Swarm Intelligence (SI), various social organisms in nature (such as ant colonies, bee 

colonies, fish schools, and wolf packs) exhibit many characteristics that UAV swarms share [19]. The 

swarm can be conceptualized as a single entity or system in which intelligence develops through the 

specific behaviors of a group of people [20]. To develop novel distributed integrated algorithms for 

UAV swarm cooperative mission planning, some researchers simulated the sophisticated and 

structured collective behaviors of social organisms. 

This research makes several significant contributions to the field of UAV swarm intelligence and 

distribution for cooperative missions. First, an ACO-based path-planning algorithm is developed. 

Then, a hybrid navigation and obstacle-avoidance algorithm is proposed. The hybrid navigation 

method adapts to different application requirements. By integrating a formation-conservation 

mechanism, the hybrid method monitors the relative positions of drones in real time and dynamically 

adjusts their positions to maintain a desired formation. This development adds versatility to the 

algorithm, as it can prioritize either formation conservation or optimized path planning based on the 

application’s specific needs. 

2. LITERATURE REVIEW 

With advancements in electronic intelligence and control sub-systems, UAVs have gained popularity 

and are widely used in various professional and recreational applications [21]. Although initially used 

primarily for military purposes, UAVs have expanded their presence in the commercial and industrial 

sectors [22]. This expansion can be attributed to technological advancements and improved power 

capacities, enabling customized structures, configurations, and equipment customized to specific 

tasks[23]-[24]. 

Engaging in risky or laborious tasks often requires the deployment of multiple UAVs. This 

requirement arises from the significant time commitment and limited autonomy of these small 

unmanned vehicles. Using multiple drones concurrently, each vehicle assuming the role of a backup in 

the event of failure, tasks can be performed in parallel, resulting in reduced overall time requirements 

compared to sequential execution with individual drones. This collective approach improves 

efficiency, productivity, and the ability to tackle challenging endeavors effectively. This strategy 

draws inspiration from the remarkable group dynamics observed in various natural biological models, 

such as birds or ants [25]. These organisms exhibit remarkable coordination and interaction among 

individuals, as they work together toward a shared objective: migrating to warmer regions or 

efficiently transporting food to their colonies. Swarm-based systems aim to harness the power of 

coordinated action and adaptability to solve complex problems. 

Metaheuristic algorithms have emerged as powerful tools in artificial intelligence and mathematical 

optimization, gaining significant attention over the past two decades [26]. These algorithms exhibit 
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stochastic behavior and offer optimal solutions with reduced computational effort compared to 

conventional techniques. Metaheuristic algorithms are problem-independent and can be broadly 

classified into four categories: swarm-based (SI), physics-based, evolutionary-based and human-based 

algorithms. SI algorithms, particularly, harness the collective intelligence observed in natural systems, 

such as birds, ants, fish, wolves, and other social organisms. These algorithms strike a balance 

between exploration and exploitation within the search space. Exploration involves a global search for 

exploration, while exploitation involves a local search in areas identified as promising during the 

exploration phase. SI algorithms aim to find optimal solutions to a wide range of problems by 

emulating these social behaviors. 

Multi-UAV cooperative path planning aims to meticulously determine an optimal flight path for each 

UAV, starting from its initial point and ending at the terminal point. This planning process involves 

minimizing overall flight costs while simultaneously satisfying various constraints, including the 

distance between UAVs, arrival time, safety requirements, and UAV Performance Criteria. Chen et al. 

tackled the air-ground cooperation problem of Unmanned Ground Vehicles (UGVs) and UAVs by 

combining the Genetic Algorithm (GA) with ACO [27]. Their method effectively decoupled the routes 

of UGVs and UAVs, optimizing the heterogeneous delivery problem and obtaining optimal routes. 

Kyriakakis et al. introduced a novel dynamic optimization problem for UAV search and rescue 

scenarios [28]. They developed a multi-swarm framework with additional UAV constraints and 

evaluated seven optimization algorithms. Yu et al. proposed a mutation-constrained adaptive selection 

Differential Evolution Algorithm (DE) to handle the optimization problem [29]. The algorithm aimed 

to find the optimal solution while satisfying these constraints. To plan feasible paths that cover an 

entire area for a UAV to maintain a constant flight level relative to the ground, Gonzalez et al. 

developed a coverage algorithm [30]. They used DE to evaluate the resulting paths and select the best 

path based on distance costs. 

Wu et al. developed an improved fast convergence Artificial Bee Colony (ABC) algorithm to obtain 

the optimal path in a battlefield environment, considering conflicts and constraints [31]. Xu et al. 

developed an improved multi-objective Particle Swarm Optimization (PSO) algorithm [32]. Their 

approach calculated feasible and collision-free trajectories with variable minimum altitude, length, and 

angle rates. 

Phung and Ha addressed the path-planning problem for multiple UAVs in complex environments with 

multiple conflicts [33]. They proposed the Spherical Vector-based PSO, which efficiently explores the 

configuration space of UAVs to generate the optimal path that minimizes the cost function. Tong et al. 

integrated the Pigeon-inspired Optimization (PIO) algorithm with DE mutation strategies for path-

planning optimization [34]. Their approach considered three indices: path length, path sinuosity, and 

path risk. Qu et al. combined hybrid Grey Wolf Optimization (GWO) with a modified Symbiotic 

Organism Search (SOS) algorithm [35]. They simplified the GWO phase to improve the convergence 

rate and maintain the population’s exploration ability. The SOS phase was synthesized with GWO to 

enhance the ability to exploit. 

There have been significant recent advancements in UAV swarm research in the integration of AI 

algorithms to enhance decision-making and adaptability [36]-[37]. However, challenges remain in 

achieving robust solutions for complex tasks, especially in dynamic and uncertain environments. Key 

research gaps include the need for improved collision avoidance, navigation strategies, and path-

planning algorithms that can effectively address real-world constraints, such as uncertainty, security 

restrictions, and dynamic obstacles, which until now were discussed as an open issue and a research 

challenge [38]. While existing studies have explored these areas individually, there is a need for 

integrated systems that can comprehensively address these challenges. The proposed system 

significantly contributes to UAV swarm research by integrating several essential components, 

including a collision-avoidance algorithm, a hybrid navigation approach, and a path-planning 

algorithm based on Ant Colony Optimization. The system showcases cooperative detection and 

avoidance capabilities, enabling UAV entities to collaborate effectively in detecting and avoiding 

collisions with both obstacles and other UAVs. It functions in a 3D dynamic environment, addressing 

uncertainties, security restrictions, and multiple objects. Utilizing ACO, the path-planning algorithm 

exhibits distributed-planning behavior, as it is applied to each target in the mission, ensuring optimized 

safety and cost objectives. The system’s ability to maintain formations enables UAV swarms to 

preserve their desired shapes and spatial dimensions. These features set the system apart from other 
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studies in the literature, demonstrating its versatility and potential for real-world applications in 

various cooperative missions. 

3. PROPOSED SYSTEM

The proposed system consists of four key modules: the ACO-based path-planning module, the hybrid-

path navigation module, the collision-avoidance module, and the messaging module. Each module 

serves a specific purpose in cooperative mission planning. These components work together to 

optimize the mission performance of the UAV swarm. Figure 1 illustrates the key components of the 

proposed system. 

The ACO module forms the core of the system, drawing inspiration from ants’ foraging behavior. 

Using pheromone-based communication and local heuristics, it guides the decision-making process of 

individual UAVs. By balancing exploration and exploitation, the ACO module facilitates the search 

for optimal paths within the swarm. To enhance the adaptability and flexibility of the system, a 

developed approach called the Hybrid Approach is proposed. The Hybrid Approach introduces 

adaptability to the system by dynamically adjusting the path-planning strategy based on the desired 

swarm shape. The Obstacle Avoidance module integrates real-time obstacle detection and intelligent 

decision-making to ensure safe navigation. By employing collision-avoidance algorithms, the module 

guides UAVs to navigate around obstacles and complete their missions. The Messaging System 

facilitates effective communication and information sharing among UAVs. 

3.1 ACO-Module 

Ant Colony Optimization (ACO) was initially proposed by Dorigo et al. as a powerful multi-

dimensional optimization algorithm that draws inspiration from the foraging behavior of specific 

species of ant [39]-[40]. 

Figure 1.  System block diagram. 

Through collective intelligence, the ACO collaboratively determines the shortest path based on the 

density of the pheromone trail [41]. The strength of ACO lies in its ability to balance exploration and 

exploitation effectively. Randomly exploring ants ensures a diverse search-space coverage, enabling 

the algorithm to discover potential solutions. At the same time, the exploitation of the pheromone trails 

by other ants reinforces the convergence towards promising paths, promoting the identification of 

optimal solutions. This inherent balance between exploration and exploitation makes ACO highly 

robust and adaptive in dynamic problem domains. 

To simulate the behavior of real ants, ACO models employ equations or algorithms to update and 

propagate the pheromone values dynamically. These updates reflect the collective behavior of the 

artificial ants and play a critical role in the convergence of the algorithm toward optimal or near-

optimal solutions. The equation for the pheromone update is as follows: 
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τij(t+1)←(1−ρ) ∗ τij(t)+Δτij(t)             (1) 

where: 

 τij(t + 1): Represents the updated pheromone value on the path of component i to j at time t+1.

 τij(t): Represents the current pheromone value on the path of component i to j at time t.

 ρ: The pheromone evaporation rate is a control of the rate at which pheromones decay.

 ∆τij(t): The pheromone deposit rate represents the amount of pheromone deposited on the

path from component i to j at time t by the artificial ants constructing solutions. 

ACO algorithms use mathematical models for simulating ant decision-making. Various models exist, 

often relying on state-transition rules and probabilistic methods. One widely used model is the ant 

system, which employs probabilities to choose paths. It balances pheromone intensity and heuristics, 

achieving the exploration-exploitation trade-off. The probability equation used in ant decision-making 

is as follows: 

𝑃𝑖𝑗 =
(𝜏𝑖𝑗(𝑡))𝛼∗(𝜂𝑖𝑗(𝑡))𝛽

∑ (𝜏𝑖𝑗(𝑡))𝛼∗(𝜂𝑖𝑗(𝑡))𝛽𝐴𝑙𝑙𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑝𝑎𝑡ℎ𝑠
0

(2) 

where: 

 Pij(t): Represents the probability of selecting the path from component i to j at time t.

 ηij(t): Represents a problem-specific heuristic value associated with the path of component i to

j at time t. 

 α and β: Are parameters that control the relative importance of the pheromone trail and

heuristic information, respectively. 

 The denominator [∑ (𝜏𝑖𝑗(𝑡))𝛼 ∗ (𝜂𝑖𝑗(𝑡))𝛽𝐴𝑙𝑙𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝑝𝑎𝑡ℎ𝑠
0 ] represents the sum of the probabilities 

for all possible paths or components at time t. 

In decision-making, artificial ants consider pheromone information and problem-specific heuristics. 

Pheromone information, encoded in the pheromone trails, provides a collective memory of the paths 

previously explored by the ants. The higher the pheromone concentration on a path, the more attractive 

it becomes to subsequent ants. 

The equation used to calculate the heuristic value, ηij(t), is problem-specific and depends on the 

characteristics of the path or component. One example of a commonly used heuristic is the inverse of 

the distance between two points, represented as: 

𝜂𝑖𝑗(𝑡) =
1

𝐷𝑖𝑗
(3) 

Where, 𝐷𝑖𝑗: Represent the distance between the two points i and j.

In this research, the characteristics of swarm UAV path planning and the parameter values accordingly 

are considered carefully, as shown in Table 1. 

Table 1. Parameter values for ACO in the proposed algorithm. 

ACO Parameter Value 

Evaporation Rate 0.5 

Pheromone Deposit Rate 1/Path length 

Heuristic Information (β) 5 

Importance of Pheromone Trails (α) 1 

Initial Pheromone Rate 0.01 

Number of Iterations 50 

At initialization, each drone establishes its colony by populating several ants. These ants are then 

tasked with finding the optimal path from the drone’s start to its target point. The information sharing 

and cooperation among ants occurs exclusively within the bounds of the same colony, which belongs 

to a specific UAV. Each ant performs its path exploration within a colony, utilizing local and global 

search strategies to identify the most efficient route toward the target. The local search involves 

making decisions based on the immediate surroundings and information available locally within the 

drone’s colony. Meanwhile, global search entails updating pheromone trails to incorporate valuable 

information gathered during exploration. As a result, the swarm of drones operates with high degrees 

of decentralization and parallelism, significantly enhancing the overall efficiency and scalability of the 

system. The algorithm’s key steps are shown in Algorithm 1. 
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Algorithm 1 ACO-based Path Planning Algorithm 

    1: Initialize algorithm parameters 
2: Set starting and target positions for the ant’s paths 
3: Create a list of random points representing the map, including start and target nodes 
4: Connect nodes with edges and set initial pheromone values 
5: Initialize the pheromone matrix 
6:  Number of iterations ⇐ 0 
7: while Number of iterations < desired number of iterations do 
8: Populate ants on the map 
9: for each ant in the ant-list do 

10: Create a visit list and add the start point to it 
11: while ant is not at the target node do 
12: Move the ant to the next node based on Eq2 
13: Add the chosen point to the visit list 
14: Apply local search 
15: Apply global search 
16: Update the pheromone matrix based on Eq1 
17: end while 
18: end for 
19: Number of iterations ⇐ Number of iterations + 1
20: if Number of iterations desired number of iterations then
21: Calculate the distance of each ant’s shortest path 
22: Compare distances of shortest paths and output the optimal path 
23: end if 

24: end while 

3.2 Collision Avoidance Algorithm 

The collision-avoidance process within the UAV swarm navigation system is an accurately designed 

multi-step procedure, supporting optimal path planning and obstacle avoidance. The collision-

avoidance algorithm implemented in the proposed system builds upon a well-established approach 

presented in [42]-[43], known for its effectiveness in handling complex scenarios. To work for a 

swarm of UAVs instead of a single UAV, the modified obstacle avoidance algorithm is illustrated in 

Algorithm 2. 

    Algorithm 2 Collision Avoidance 

1: Initialize each UAV with start point, target point, speed, rotation, scale and priority 
2: The UAV moves to its current target 
3: while UAV is moving to the target do 
4: Check if there is a potential collision on the UAV path 
5: if No potential collision then 
6: The UAV keeps moving to its target normally 
7: else 
8: Send a message to alert all drones in the swarm about the collision possibility 
9: Check if the UAV is considered to have the highest priority 

10: if UAV has the highest priority then 
11: Go back to The UAV moves to its current target and repeat 
12: else 
13: Generate a number of random points around the current position 
14: Calculate the distance to the target through the waypoints 
15: Find the nearest point with the minimum distance 
16: Check if the chosen point eliminates the potential collision 
17: if No, if the newly chosen point still leads to a potential collision then 
18: Go back to Generate a number of random points and repeat 
19: else 
20: Store the original target in the temporary target variable 
21: Set the target to the nearest point 
22: Go back to ”UAV moves to its current target” to move the UAV to the nearest point 
23: Check if the nearest point is reached 
24: if The nearest point is not reached then 
25: Go back to ”UAV moves to its current target” 
26: else 
27: Restore the original current target 
28: Go back to ”UAV moves to its current target” 
29: end if 
30: end if 
31: end if 
32: end if 

33: end while 

3.3 Messaging Module 

The messaging module in the system facilitates effective communication and coordination between 

drones within the UAV swarm. The messaging module implemented in the proposed system is based 

on a well- established approach presented in [43]. It is crucial to enable the swarm to operate as a 

cohesive unit, dynamically adapting to changing conditions and avoiding collisions while pursuing its 

mission objectives. Significant updates are made to enhance dynamic adaptability and swarm 

robustness. The system now adopts a distributed-path planning and hybrid navigation approach, 

allowing for more efficient and resilient performance.
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The messaging module enables drones within the swarm to share their real-time positions. This 

continuous data exchange is essential for maintaining the desired formation during cooperative 

missions. Knowing the positions of the other drones, each UAV can adjust its trajectory to stay in the 

designated formation. 

3.4 System Design 

The system described in this sub-section is designed to control a swarm of drones operating within a 

specified environment. Its primary objective is to optimize the movement and coordination of the 

drones to achieve efficient and effective task completion. The system aims to minimize the distance 

traveled, maximize productivity and ensure safe operation by intelligently guiding the drones through 

commands and paths. The drone-swarm navigation system can be adapted to two different options 

based on application requirements. In the first option, formation conservation is not an application 

requirement, while in the second option, the application requires maintaining a specific formation or 

shape. In both options, the drones follow the optimal path generated by the ACO module, ensuring 

efficient navigation and collision avoidance within the environment. 

 Option one: The system coordinates the movement of the drones, optimizes their paths using

ACO, controls their movement using PID controllers and performs collision avoidance to ensure 

safe operation within the swarm, as shown in Algorithm 3. 

 Option two: In the second option shown in Algorithm 4, additional functionality is introduced

when the application requires maintaining a specific formation or shape. 

3.5 Cost Function Evaluation 

For an objective evaluation of the overall performance of the swarm, the following data is collected 

before the evaluation parameters are computed: 

 Minimum Distance: The straight-line distance between each drone’s initial and final target

positions. 

 Total Travelled Distance: The cumulative distance traveled by each drone from its initial position

to its final target. 

 Total Travelled Time: The duration a drone needs to reach its final target.

 Number of Divergences: A divergence occurs when a drone deviates from its intended path.

 Number of Collisions: When two drones come into physical contact.

In addition, for option two, where formation conservation is required, an extra parameter is calculated: 

 Average Distance Change: Measures how much each drone deviates from the desired formation.

The following evaluation parameters are formulated to capture the mission’s quality, efficiency, 

completion and formation conservation during cooperative missions: 

 Path Quality (PQ): Evaluates the efficiency of the path-planning module. It is calculated using the

following equation (Eq. 4): 

𝑃𝑄 =
1

𝑁
∗ ∑

𝑀𝑖𝑛𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

𝑁−1
𝑖=0 ∗ 100%     (4) 

where: 

o N: the total number of drones in the swarm.

o MinTravelledDistancei: is the minimum distance traveled by drone i from its initial position to

its target. 

o TotalTravelledDistancei: is the total distance traveled by drone i during its mission.

A higher value for this parameter indicates that the drone successfully optimizes its path, following the 

shortest route to its target. 

 Algorithm 3 System Behavior – Option 1 

1: UAVs receive important mission information from the ground station, including start and target points, speed, rotation, scale, 
formation and priority. 
2: Apply the ant colony algorithm for each UAV. 
3: while the optimal path is not generated do 
4: Keep waiting 
5: end while 
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6: Begin the main loop of the system 
7: for each UAV do 
8: Each UAV’s initial target is set to the first node on its optimal path 
9: Each UAV sets the last point in the optimal path as the destination target 
10: Use a PID controller to calculate the drive forces for each axis (x, y,  z)   

  11: UAV moves to its current target 
12: while UAV is moving to the target do 
13: UAV checks if there is a potential collision on its path 
14: if No potential collision then 
15: Check if the current target has been reached 
16: if the current target is reached then 
17: Check if the current target is the destination target 
18: if the current target is the destination target then 
19: Mission ends 
20: else 
21: Update the target position to be the next node in the optimal path 
22: Go back to UAV moves to its current target 
23: end if 
24: end if 
25: else 
26: Send a message to alert all drones in the swarm about the collision possibility 
27: Check if the UAV has the highest priority 
28: if UAV has the highest priority then 
29: Go back to UAV moves to its current target 
30: else 

  31:  Generate several random points around the current position 
  32:  Calculate the distance to the target through the waypoints 
  33:      Find the nearest point with the minimum distance 

34: Check if the chosen point eliminates the potential collision 
35: if Chosen point eliminates collision then 
36: Store the original target in the temporary target variable 
37: Set the target to the nearest point 
38: Go back to UAV moves to its current target 
39: Check if the nearest point is reached 
40: if the nearest point is not reached then 
41: Go back to UAV moves to its current target 
42: else 
43: Restore the original current target 
44: end if 
45: else 
46: Go back to the step of generating several random points and repeat 
47: end if 
48: end if 
49: end if 
50: end while 
51: end for 

52: Repeat the main loop until the UAV reaches its target 

Algorithm 4 System Behavior – Option 2 

1: UAVs receive mission information from the ground station, including start and target points, speed, rotation, scale, formation 
and priority. 

2: Each UAV reads the start point for all other UAVs in the swarm. 
3: Create a reference distance array that captures the distances between drones in the desired formation. 
4: Apply the ant colony algorithm for all UAVs in the swarm. 
5:  Set the current target as the first node in the optimal path for the UAV and set the last point in the optimal path as the 

destination target. 
6: Use a PID controller to calculate drive forces for each axis (x, y, z). 
7: UAV moves to its current target. 
8: while UAV is moving to the target do 
9: Read the current positions for all drones and create a current distance array, representing the current formation distances 

for the swarm. 
10: if The current distance array equals the reference distance array then 
11:  The UAV keeps moving to its current position while checking for potential collisions and if the UAV reaches its 

target, continue to the next step. 
12: else 
13: Calculate the difference in distance between the UAV and all other UAVs in the swarm. 
14: if The difference in distances is less than the threshold then 
15: The UAV keeps moving to its current position while checking for potential collisions and if the UAV reaches its 

target, continue to the next step. 
16: else 
17: Generate several random points around the current position. 
18: Choose the nearest point. 
19: Check if the nearest point will maintain the UAV position. 
20: if The nearest point maintains the UAV position then 
21: Store the original target in the temporary target variable. 
22: Set the target to the nearest point. 
23: Go back to "UAV move to its current target". 
24: Check if the UAV reaches the nearest point. 
25: if UAV is not at the nearest point then 
26: Go back to UAV move to its current target and repeat. 
27: else 
28: Restore the original target. 
29: end if 
30: else 
31: Go back to Generate several random points and repeat. 
32: end if 
33: end if 
34: end if 
35: end while 

36: Repeat the main loop until the UAV reaches its target 
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 Mission Completeness (MC): Evaluates the collision-avoidance module’s effectiveness and the

UAV swarm’s adaptability in successfully achieving its mission objectives. It is calculated using 

Eq. 5. 

𝑀𝐶 =
𝑁𝑅𝑒𝑎𝑐ℎ𝑒𝑑𝐼𝑡𝑠𝑇𝑎𝑟𝑔𝑒𝑡

𝑁
∗ 100% (5) 

Where, NReachedItsTarget: is the count of drones successfully reaching their targets. 

A higher value for this parameter indicates a success rate in achieving mission objectives, as many 

drones have reached their targets without collisions. 

 Average of Divergence (AD): Measures how much each drone deviates from its original path to

avoid collisions with other drones or with obstacles. It quantifies the quality of the new routes 

generated by the collision-avoidance module. Eq. 6 shows how this is calculated. 

𝐴𝐷 =
∑ 𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑠𝑖

𝑁−1
𝑖=0

𝑁
(6) 

Where, NumberOf Divergencesi: is the number of times that drone i deviates from its original path. 

 Swarm Flight Time (FT): Quantifies the efficiency of the UAV swarm in completing the mission,

referring to a predefined time frame. It reflects how effectively all drones in the swarm work 

together to achieve mission objectives. This parameter is calculated as shown in Eq. 7. 

𝐹𝑇 =
𝑇

𝑇𝑖𝑚𝑒𝐹𝑟𝑎𝑚𝑒
(7) 

Where, T: is the total time taken for all drones in the swarm to reach their respective targets. 

A smaller value indicates a more cohesive and cooperative swarm, where drones work towards 

mission completion with minimal delays and divergences. 

 Formation Change (FC): Evaluates how effectively drones in the swarm maintain their desired

formation during cooperative missions. This parameter is calculated as shown in Eq. 8. 

𝐹𝐶 =
1

𝑁
∗ ∑

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑜𝑓𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑖

𝐷𝑒𝑓𝑖𝑛𝑑𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
𝑁−1
𝑖=0 ∗ 100%  (8) 

Where: 

o Averageof DistanceChangei: is the average distance change for each drone relative to the

desired formation of the swarm. 

o DefinedThreshold: is a predefined value that determines acceptable deviations from the

desired formation. 

A lower formation change value indicates better performance of the hybrid module, as it 

indicates that the drones successfully maintain their formation with minimal deviations from 

the desired configuration. 

A cost function is formulated as a weighted sum (α,β,ω,γ,µ) of the four parameters in the first option 

and five parameters in the formation-conservation option, with each parameter assigned a specific 

weight to reflect its relative importance. The formula for the comprehensive cost function is given 

by Eq.9 and Eq.10 for option one and option two, respectively. 

Option one: 

𝐶𝐹 = 𝛼𝑃𝑄 + 𝛽(1 − 𝐹𝑇) + 𝜔(1 − 𝐴𝐷) + 𝛾𝑀𝐶  (9)

Option two: 

𝐶𝐹 = 𝛼𝑃𝑄 + 𝛽(1 − 𝐹𝑇) + 𝜔(1 − 𝐴𝐷) + 𝛾𝑀𝐶 + 𝜇(1 − 𝐹𝐶)   (10) 

These formulations ensure that the algorithm is evaluated based on its ability to optimize multiple 

key aspects simultaneously. A higher comprehensive cost function value indicates better 

performance. 

3.6 System Complexity 

The algorithm complexity measures how the performance and execution time of the algorithm scale 

with the increasing number of drones in the swarm. As the swarm size grows, the algorithm’s 

efficiency becomes critical in ensuring real-time operation and mission success. Efficient algorithms 
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with lower complexity ensure that the swarm can handle larger numbers of drones without 

compromising performance. 

Figure 2. System execution time for both options as the number of drones in the swarm increases. 

The execution time of the algorithm is a critical aspect that directly impacts the real-time operation of 

UAV swarms. In the first option, where formation conservation is not a specific application 

requirement, the algorithm complexity is O(X + C), where X is the number of drones in the swarm and 

C is the number of execution cycles, which remains constant regardless of the number of drones. The 

algorithm’s scalability in this option is relatively better due to the linear complexity, making it suitable 

for swarms with a large number of drones. 

In the second option, where formation conservation is essential, the algorithm complexity becomes 

O(X4 + C). This increase in complexity is due to the additional calculations and coordination required 

to maintain the desired formation during cooperative missions. The formation-conservation constraint 

introduces non- linearity in the algorithm, which impacts its scalability as the number of drones 

increases. 

To ensure real-time execution in both options, an upper bound for the execution time of the algorithm 

is established as follows: 

 For Option One:

(𝑋 + 𝐶) ∗ (𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑐𝑦𝑐𝑙𝑒𝑡𝑖𝑚𝑒) < (
𝑠𝑒𝑛𝑠𝑖𝑛𝑔𝑟𝑎𝑛𝑔𝑒

𝑑𝑟𝑜𝑛𝑒𝑠𝑝𝑒𝑒𝑑
) (11) 

 For Option Two:

(𝑋4 + 𝐶) ∗ (𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑐𝑦𝑐𝑙𝑒𝑡𝑖𝑚𝑒) < (
𝑠𝑒𝑛𝑠𝑖𝑛𝑔𝑟𝑎𝑛𝑔𝑒

𝑑𝑟𝑜𝑛𝑒𝑠𝑝𝑒𝑒𝑑
) (12) 

By meeting this condition, the algorithm can guarantee safe and efficient navigation for the entire 

swarm, even in dynamic and densely populated environments. Figure 2 illustrates the algorithm 

execution time for both options as the number of drones in the swarm increases. 

4. SIMULATION AND RESULTS

The proposed system is implemented using the UTSim simulator, which offers an adaptable platform 

for creating and configuring multiple instances of UAVs [43]. The simulation setup involved the 

implementation of flight scenarios in a 3D environment, where the UAVs were controlled using the 

proposed system. Before each mission, the initial locations and destinations of the UAVs were defined 

based on the specific scenario. The UAVs used in the experiments were all fixed in size, with a half-

meter diameter. Their speeds were maintained at a constant value of 6 m/s throughout the missions. 

Due to the inherent characteristics of rigid bodies, the speed decreased when the UAVs changed 

direction or reached their destinations. 

Each run was performed 35 times in the 3D space to ensure reliable results. In an obstacle-free 

environment where formation maintenance is not a mission requirement, the swarm exhibits perfect 

consistency across all 35 experimental runs, with zero variability within a confidence interval of 95%. 



310

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

However, when operating in a dense obstacle environment with a 0.1 allowable distance change, the 

system displays slight variability. For a 30-drone swarm, the error margin remains below 0.007 for 

distance change and 0.009 for flight time. As the swarm size increases to 40 drones, the error in total 

distance remains below 0.12. Even with a swarm of up to 80 drones, the error margin for distance 

change stays below 0.01. These consistently low error margins across all test conditions provide strong 

evidence of the system’s robustness and reliability in both controlled and complex environments. 

4.1 Algorithm Constraints and Assumptions 

Constraints play a vital role in shaping the behavior and performance of UAV swarms during 

missions. They are essential elements that impose limits and restrictions on various aspects of the 

swarm’s operation, ensuring safe, efficient, and coordinated behavior. Several constraints were 

considered to study the system’s performance under different scenarios: 

 Maneuverability Constraints: The maximum turning angle (θmax) was set to 30 degrees on the x-

axis while remaining unrestricted in the y and z-axes. 

Θi(T ) − Θmax ≤ 0    (13) 

where: Θi(T ): The turning angle of the ith UAV at time T. 

 Sensing Range Constraint: Each UAV sampled 25 points every time a reroute was computed.

Rerouting was triggered when a passive obstacle was detected or when a higher-priority UAV was 

sensed. The sample points were taken within a customizable radius (Rs) of a circle/sphere set at 5 

meters. 

Rs − Dij(T ) ≥ 0              (14) 

where, Dij(T): The distance between the ith UAV and the jth UAV or obstacle at time T. 

 Collision-avoidance Constraints: The algorithm incorporates a safe distance, denoted as Dmin,

between two UAVs or between a UAV and an obstacle. This distance defines the collider sensing 

range, represented by the radius of a circle or sphere centered at the UAV. 

Dmin − Dij(T ) < 0            (15) 

where, Dij(T): The distance between the ith UAV and the jth UAV or obstacle at time T. 

 Operating-range Constraint: The flight operation area was defined as 1 km * 1 km, providing a

bounded environment for the swarm’s missions. 

 Time frame: the time frame is set to be a one-minute flight.

 For the first option’s cost function, the (α,β,ω and γ) are 0.3, 0.3, 0.2, 0.2, respectively.

 For the second option’s cost function, the (α,β,ω,γ and µ) are 0.2, 0.2, 0.2, 0.2, 0.2, respectively.

The experiment scenarios were designed to vary the number of drones within the flight area, ranging 

from 5 to 80 drones. The number of obstacles (moving and static) gradually increased, with the 

maximum number exceeding the total number of UAVs in the swarm, which is moving randomly in 

the environment. In the second option, various thresholds were tested to evaluate the performance of 

the hybrid navigation approach. 

4.2 Effects of Different Safe Distances 

This sub-section investigates the influence of varying safe distances on swarms of sizes ranging from 5 

to 80 UAVs. The safe distance is incrementally increased from 1 meter to 3 meters for each case. This 

analysis provides insights into the optimal safe distance setting that maximizes the UAV swarm’s 

efficiency and effectiveness in different scenarios. In this sub-section, all tests were conducted in 

obstacle-free environments and the safe-distance parameter of the system was adjusted and controlled 

from the ground station before each mission. The mission is designed, allowing tuning for a safe 

distance based on the distances between the drones and the total travel distance for each drone 

between the starting and target points, without considering the number of obstacles as a part of the 

mission design. This will be considered a design-preparation phase to set the safe distance to the next 

sections. These evaluations provided valuable insights into the system’s performance and how the 
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adjustable parameters influenced its behavior when encountering unexpected obstacles during 

missions. 

Figure 3. The path quality vs. the number of drones for different safe distances. 

 Path Quality: The ACO module achieves a path quality of over 99% with 1m safe-distance

scenarios. However, it reached 96% when the safe distance increased to 2m and 92% for the 3m 

safe distance, as shown in Figure 3. As the safe distance for drones increased, more drones had to 

make route diversions to avoid potential collisions, which increased the average of divergence, as 

shown in Figure 4, increasing the total traveled distance for each drone, which decreased the path 

quality. The formation and the distances between the start and target points for the drones are 

different from swarm to swarm, which explains the path quality and average of divergence 

behavior change for the same value of safe distance, since the distances between drones in the 

case with twenty UAVs are less than the distances between the drones in ten-UAVs. This 

increased the influence of large safe distances where the UAV needed to increase the number of 

divergences to save the safe distance simultaneously to avoid any potential collisions between the 

other UAVs in the swarm, which decreased the path quality. However, the path-quality values are 

close for all swarms because of the distributed approach in the ACO-based path-planning 

algorithm. The algorithm generates the optimal path for each drone based on its start and target 

point without considering the number of drones in the swarm. 

 Swarm flight time: The increase in the average number of divergences leads to a greater total

travel distance. This typically results in longer flight times for the swarms, as illustrated in Figure 

5. 

4.3 Effects of Number of Obstacles 

The number of obstacles gradually increases. The number, speed, direction and all information of 

obstacles are unknown for the drones in the swarm to evaluate the system’s adaptability to 

uncertainties. The obstacles move randomly in different directions and elevations. All cases are tested 

at a safe distance of 1 m. 

 Path Quality: As illustrated in Figure 6, an increase in the number of obstacles does not

significantly affect path quality in swarms with a small number of drones. This is because the 

drones maintain safe distances from each other and have a wide space within their operating 

range to locate the nearest point for collision avoidance. However, as the number of drones in the 

swarm increases, the distances between them decrease and the available operating space narrows, 

as shown in Figure 7. Consequently, the drones must find the nearest point to avoid collisions 

with obstacles while also considering a safe distance from other drones in the swarm. This 

necessity often increases the average number of divergences. Additionally, since the obstacles 

move randomly within the flight environment, their effects may vary across different scenarios. 

 Swarm FT: Increasing the number of obstacles affected the mission time and the values of the
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cost function. However, since the obstacles are moving randomly in the flight environment, the 

effect does not show the same behavior in all scenarios, as shown in Figure 8 and Figure 9.  

Figure 4. Average of divergence vs. the number of drones for different safe distances. 

Figure 5. Swarm flight time divergence vs. the number of drones for different safe distances. 

Figure 6. Path quality vs. the number of obstacles for different swarm sizes. 
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Figure 7. Eighty-UAV formation with 85 obstacles. 

Figure 8. Swarm flight time vs. the number of obstacles for different swarm sizes. 

Figure 9. Cost function vs. the number of obstacles for different swarm sizes. 
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4.4 The Formation Threshold Effects 

One of the important contributions of this study is the hybrid navigation approach, where application 

requirements are evaluated to prioritize following the optimal ACO path or maintaining a desired 

formation. In this sub-section, different thresholds (allowable change distance) are tested to evaluate 

the system’s performance, where each case has a different formation with different distances between 

the drones within the formation and different distances between the start and destination points for 

each drone. All cases will be tested at a safe distance of 1 m. 

 Path Quality: In the second option, with different threshold values, the system can manage the

trade-off between maintaining formation and following the optimal path, resulting in optimal 

flight trajectories and minimal divergence. The system showed its ability to choose the nearest 

points to preserve the formation. As Figure 10 illustrates, the quality of the path is above 97% in 

all cases. 

 Swarm Flight Time: Increasing the threshold allowed the drones more movement flexibility,

reducing the time needed to complete the mission, as shown in Figure 11. 

Figure 10. Path quality vs. the threshold values for different swarm sizes. 

Figure 11. Swarm flight time vs. the threshold values for different swarm sizes. 

 Formation Change: The formation change parameter evaluates the swarm’s ability to maintain its

desired formation during cooperative missions. The experiments demonstrated the success of the 

hybrid approach, as the formation change remained below 25% of the allowable change in all 

cases, as shown in Figure 12 and this percentage decreased when the threshold increased, but 

with different slopes, since each drone will generate a random point around its current position, 
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which is directly related to its formation and optimal path and choose the nearest point that 

maintains its formation, saves the safe distance between the UAVs and avoids any potential 

collisions. However, in all cases, the system shows high adaptability with an acceptable 

formation change. It shows that the approach effectively conserves the formation during 

missions. 

Figure 12. Formation change vs. the threshold values for different swarm sizes. 

In summary, achieving robust solutions for complex tasks in dynamic and uncertain environments is a 

persistent challenge. In its integrated approach, the proposed system contributes to filling this gap by 

integrating ACO-based path planning, hybrid navigation and collision avoidance, enabling cooperative 

detection and avoidance in 3D dynamic environments with multiple objects, uncertainties and security 

restrictions. As demonstrated in the results, the system’s performance is a direct consequence of this 

integration. ACO provides efficient path planning, while hybrid navigation and collision-avoidance 

algorithms work together to maintain formation and prevent collisions. The varying performance 

between swarms, where UAVs generate random points for collision avoidance, trading off mission 

objectives with safety directly related to these environments’ dynamic and unpredictable nature is a 

key challenge identified in previous research. Although this variability is observed, the system 

consistently demonstrated high adaptability with acceptable formation changes, validating its 

robustness in complex scenarios. 

4.5 Challenging Cases Evaluation 

To further assess the system’s performance, challenging cases were tested in which the swarm must 

preserve its formation with an allowable change distance of less than 0.1 m while flying in a dense-

obstacle environment to assess how the system adapts to high levels of obstacle density while 

maintaining its formation. As shown in Table 2, cases with a threshold of 0.1 and many obstacles were 

tested when evaluating the hybrid navigation approach. This case’s performance shows the hybrid 

approach’s efficiency in achieving mission objectives while ensuring formation conservation. 

Table 2. System’s performance in challenging cases. 

Number of Obstacles Number of Drones AD FT MC (100%) PQ (100%) FC (100%) Cost Function 

6 5 1 1.0969 100 97.7058 26.8118 34.3594 

12 10 1 0.6097 100 99.7400 26.0080 35.0247 

25 20 1.1 1.3182 100 99.1094 20.6193 35.8143 

40 30 4.33 0.9135 100 94.1925 20.0458 34.3799 

45 40 5.525 2.0233 100 94.5771 24.6229 33.0812 

60 50 8.34 2.5419 100 97.6972 24.2275 33.1175 

65 60 3.72 1.1032 100 98.9631 21.6300 35.1919 

75 70 2.3571 1.5063 100 98.8808 31.3673 33.3299 

85 80 4.19 1.8487 100 98.5522 28.7537 33.3524 



316

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 03, September 2025. 

Figure 13. System performance for different numbers of obstacles. 

To test the adaptability of the hybrid approach to the increased density of obstacles in the flight 

environment while maintaining the distance change to be less than 0.1 m, for a twenty-UAV swarm, the 

number of obstacles will start at 10 and then increase to 100, with a constant number of obstacles during 

each run session. As shown in Figure 13, increasing the number of obstacles will increase the possibility 

of collisions, since the operation space is so crowded, which increases the swarm flight time and the 

average number of divergences. With the increase in the number of obstacles, the UAVs need to 

increase the distance within the threshold to maintain their formation while saving their safe distance, 

which will normally affect path-quality and cost-function values. The tests are performed at a 1m safe 

distance. 

5. CONCLUSION

This work presents an adaptable intelligent system for cooperative UAV swarm missions, integrating a 

path-planning algorithm based on the ACO algorithm, a collision-avoidance algorithm and a hybrid 

navigation system. The system was tested and evaluated in various scenarios, including different 

swarm sizes in dynamic 3D environments filled with moving and static obstacles while maintaining 

the desired formation. The simulation results demonstrate the system’s outstanding performance, 

achieving a path quality of around 97% in most cases and never dropping below 90%, even in 

challenging scenarios. This reflects the high efficiency of the ACO module in finding optimal paths 

and the system’s adaptability in consistently following them. The collision-avoidance module showed 

remarkable performance, ensuring that all missions remained collision-free, with a mission 

completeness rate of 100% in all testing scenarios. When the desired formation was necessary, the 

system showed its ability to maintain it even in dynamic environments within 30% of the allowable 

range in most cases. The system’s success lies in its cooperative approach, in which all the modules 

work together smoothly. This collaborative and intelligent system illustrates its potential for real-world 

applications in various cooperative UAV-swarm missions. 
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ملخص البحث:

ما ببببب ائرل  ببببب ا ببببب ائرلااةببببباهائرا  حتا بببببالمئهالةبببببمائراً حربببببفا البببببما الئماياتببببباا عبببببف اأصبببببلطّائرات

اع ببببب  اا  لبببببة ائرطبببببباُاعاببببب ايةبببببا ائرل بببببم اا  لببببب تائر بببببفم  تخابببببةعائربلببببباااراايبببببالاائر  يبببببة اابخاصت

ببببببباهائر ت  ا ة ةبببببببفا بببببببالمئهالةبببببببمائراً حربببببببفا ببببببب ائراّات ئربببببببمتئ  اأ بببببببم  ا ّابببببببة التبببببببمئاائرات

ت اا   ببببباااا ئر تلاانةبببببفا ا ةبببببفائلبلبببببا ايةبببببلا  بببببحيائر ت ةبًببببيا ببببب ائرببببب ت  ائرط ة ببببب اأ بببببمئماأتاتبببببةا

ببببالمئهالةببببمائراً حربببب فائرت بببب ا لاببببتا بببب ا ببببمئائرلطببببلائر تطبببب تيائرا ا تببببتا بببب ا طيببببة اعااةبببباهائرات

ايببببببفائر حت ببببببفا م  بببببب ا ربببببب ائر تطيببببببة اأتببببببمئااعبببببب انم بببببب ائج ببببببمئ ان ببببببا ا ل  ببببببما  ببببببة اراا ا

ئر ببببببالااعابببببب ائراتم  ببببببفائرا تللببببببفا بببببب ا يبببببب لام ائر تاببببببت اا ببببببحئ يائر ت ببببببا ائرا  ببببببم ابببببببة ا   ببببببا ا

بببببفا اعاببببب ا  االببببباهائراّات بببببالمئهاب بببببا م بببببماائرات ئرايبببببالائل  بببببتاائرببببب تط اائرببببب ت  ا ة  اب  ببببب ةتات 

ببببببما اا  ا تببببببتا يبببببب  ائرايببببببا ااهائلتاتببببببةفارّببببببمئائرلطببببببلا بببببب ان ببببببا ائر بببببب  ا  ببببببح ابّبببببباائريت

ببببببمااأاائرا ا ايببببببفائر حت ببببببفائرّ ببببببة ائرايبببببب خ ل ائرتببببببميا  لابببببب ائلارح ببببببفارا ت بببببب ةتائراملببببببحاارايت

ببببب ا ببببب ائر ت ةبًببببيا ببببب انبببببحاائرايبببببالاا  ببببب ائراتةبببببمئياعلبببببما رةبببببفما اذئهاع لبببببف ائل بببببمائرتبببببميا ا ت

ا غةبببببم  ايبببببمرنا بببببح تمائر ت بببببا ائرا  بببببم ا ئرتبببببفما بببببا افمارا ت اببببببفا لابببببتائرببببب ت  ائرط ة ببببب ارالة ببببباهائر

فاائلانطمئفاع ائرايال  اعا ا  ةةااجح  ائرايالاائت ّاكائرحجّاائت  اااائراّات

اذئهاجبببببح  اعارةبببببفا  بببببتا رببببب ا ائر ت بببببا ائرا  بببببم ا   ببببب لا يبببببالئهم %ا97ر ببببب اأ ل بببببّائر ت بببببالااأيت

%اي بببببب ا بببببب ائريببببببة ال ح اهائرت بببببب ا  تيبببببباا90 بببببب ا ل بببببباائرطببببببالاهاالاا ّببببببلعا ربببببب ا بببببباا ايا

بببببباهاب يببببببلفا % اتببببببا طفما100بار تطبببببب ت اه اا دببببببا اايبببببب  ا   بًبببببمائلاصببببببا ئ ائتبببببب  اااائراّات

رااببببببالمئها ايانةببببببالابالار بببببببافايببببببحاائرلحئلبببببب ا بببببب ائرطببببببباُاعابببببب ائرايببببببالائل  ببببببت اا بببببب ا

اعابببببب ائراطا  ببببببفاعابببببب ائر ت بببببب  ةتانايةببببببفاأعببببببم  ا لاببببببتا رةببببببفائرطببببببباُاعابببببب ائر ت بببببب ةتاببلارةببببببفم

بببببالمئها ببببب ائر ت ةبًببببيا ببببب ائرلحئلببببب  ابطةبببببلا ل ببببب ائر تغةبًببببما ببببب ائر ت ببببب ةتا ئراملبببببحااريبببببماائرات

ا30 ببببب ايبببببب ا ا %ا ببببب ائرابببببب  ائرايببببباح اببببببب،ا بببببب ا ل ببببباائريببببببة ال ح اه ائل بببببمائرتببببببميا بببببب ات

بببببباُاعاببببب ائر ت ببببب ةتاي تببببب ا ببببب ائرلة ببببباهائر ت  ا ة ةبببببف اا  لببببب ا بببببمئاطعاببببب اجببببب ل ائر ت بببببا اعاببببب ائر

ما بببب ا  بببب ً ائرببببمتيا ائرا لاتبببب ابًتببببمئاا ببببالمئهالةببببمائراً حرببببفما ّببببحا ا تبببب ا بببب ائرلطببببلا تببببّا ا ئرات

 ببببب ائرلة ببببباهائرال تببببب  ا ا ةبببببفائلبلبببببا اراط بببببحااا-عاببببب انطبببببحا لتببببباااا يببببب  تتا– ن بببببا ائرلااةببببباها

عبببببفا ياببببباا ا لاانةبببببفا   حت ابببببحام ببببباه اعاببببب اي  ا بببببب لاجاباةبببببفائر ت بببببا اراتببببب  ابفارا االببببباهاائراّات

اج  بببببببب  مارا الة بببببببباها ببببببببالمئهاببببببببب ايانةببببببببالائرلبببببببباااأ ببببببببا ا   انةبببببببباهم   بببببببب ةاهاأتببببببببمئاائرات

ايبببببببفائر حت بببببببفا لئماببببببببمرنا لارةبببببببفائرا  بببببببالمئهالةبببببببمائراً حربببببببف ا ابببببببحت  ئرام لابببببببفابًتبببببببمئاائرات

مائر تطً اابار ت  ةاه  اا طيت  ا
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