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ABSTRACT 

In this research, we address the challenges associated with part-of-speech (POS) tagging and morphological 

classification of Arabic text where word structure is the subject of study.. Our focus is on Classical Arabic (CA) 

and Modern Standard Arabic (MSA), where the text is typically vocalized and includes diacritics on most letters. 

Our proposed classification method does not require a lexicon, stemming processes, or artificial-intelligence 

techniques. The goal is to minimize the resources needed for classifying Arabic text. This method is based on the 

principle that each verb in the Arabic language adheres to a specific pattern, we refere to as (wazn   وزن or  tafʿīl 
 ,that can be utilized to identify a word. The classification process is governed by a finite state machine ,(تفعيل

which is translated into regular expressions. Each verb tense is represented by a set of regular expressions (REs). 

The order in which these regular expressions are processed is crucial for the accuracy of the results. Whenever a 

match is found, the word is marked to prevent further matches. The proposed method is lightweight and functions 

as a best-effort classifier, assigning the closest match as a tag. In terms of performance, the proposed classifier's 

execution time is linear and does not require high processing capabilities.  
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1. INTRODUCTION

In Arabic language, words are classified into three main classes: nouns, verbs, and particles or hārf ( 

 ,with each having their own grammatical functions and structures. Nouns cover names, places ,(حرف

things, and abstract concepts, whereas verbs convey action or state and vary according to tense, person, 

and gender. Particles, on the other hand, serve as connectors or modifiers, altering the meaning and 

relationship between words without possessing complete lexical meaning themselves. 

Verbs in the Arabic language follow a unique patterning system that allows for the distinction between 

past, present, and imperative verbs. This patterning is governed by diacritical marks. Under these 

patterns fall all verbs that are similar in terms of the purpose they denote or the time in which the action 

occurs. Consequently, the set of patterns that determine the imperative form do not resemble the set of 

patterns that indicate past tense or the set of patterns for the present tense. These patterns are referred to 

as verb measures (الاوزان) or tafʿīl (تفعيل). The suffixes and prefixes attached to the verb serve other 

purposes, such as plural forms or the gender of the doer, whether male or female. 

In this research, we introduce a part of speech (POS) classification algorithm capable of classifying 

words from Arabic corpora into verbs, nouns, and particles without the necessity of stemming. This 

approach eliminates the substantial costs associated with processing all possible prefixes, suffixes, and 

search time in dictionaries. The proposed classification process aims to facilitate word classification in 

the Arabic language anonymously, context-free, without requiring artificial-intelligence knowledge 

bases or dictionaries. In terms of processing capabilities, the method does not demand powerful 

computers or extensive memory resources. 

The proposed algorithm is represented as a set of rules that work like a sieve panel, which is used to 

classify seeds of different shapes, sizes, and weights through a screen. Using the proposed ordered set 

of rules, each rule will be matched with potential matches in the provided text. When the shortest match 

is found, the tag associated with the rule will be assigned to the matched word. The rules are presented 

as regular expressions covering proper nouns, numbers, special characters, punctuation, pronouns and 

verbs. 

Since regular expressions can be complex to understand, each rule or verb pattern, which we refere to 
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as a measure, can be represented as a non-deterministic finite automaton (NFA) or multiple deterministic 

finite automata (DFA). However, after verification, the rules are implemented using regular expressions. 

Each measure represented by a regular expression (RE) consists of three major parts. Firstly, the rule 

body, where each letter in the word has specific diacritics sequence for a measure that uniquely identifies 

a verb. Secondly, the possible prefix, which is a set of possible characters that may precede the verb. 

Thirdly, the possible or optional set of suffixes or pronouns. In some complex cases, the diacritics change 

according to grammatical rules, and the vowels might be changed from (Yaa ي ) to ( Alef  ا ), … and so 

on. These cases can be expressed in a rule that matches many verbs without requiring a stemming 

process using the RE matcher.  

Accuracy can be significantly improved if the corpus includes diacritics (tashkeel تشكيل). However, 

diacritics are not mandatory and are treated as optional components in the rules. Consequently, the 

proposed rules represent a best-effort algorithm that is not deterministic, meaning that tagging might 

change according to the level of detail provided in the text. Another aspect is the colloquial words and 

spoken language; such words are not considered in the proposed rules.  

Classification and tagging present challenges due to ambiguity; in the Arabic language, a noun can also 

function as a verb. For instance, the word (yzeed, يزيد) , which means "increase", serves as a verb. Or it 

can be used as a proper noun, as noted by Farghaly et al. in [1] and Maamouri and Bies in [2]. Ambiguity 

increases when diacritics (tashkeel تشكيل) are absent and/or words are removed from their context. 

However, the context or sentence in which a word exists makes it easy to identify the word's tag without 

going into any stages of classification, such as stemming or searching in a lexicon. For example, in the 

Arabic language, if a word is preceded by the prepositions (jarr particles احرف جر)  such as ( , من,  إلى

 the subsequent word is a noun by default. Another rule is that if a word is accurately ,(…عن   ,على

identified as a verb, such as ( يسقي ), which means to water something, then it cannot be preceded or 

followed by another verb. Therefore, the words before and after that verb are nouns with 100% accuracy. 

An exception is to be able to match those words with the patterns of prohibition, negation and affirmation 

words in the Arabic language or other categories that precede verbs. 

The primary challenge is context-free part-of-speech (POS) tagging, which focuses on identifying a 

word's tag without taking into consideration the word's context. As noted by Eid et al. in [3], any verb 

should follow specific rules. Therefore, an efficient approach will be matching words with their 

corresponding measure first, if they can be identified. Otherwise, the word is most likely a noun, if not 

identified as a particle or any other known category. This approach is the one adopted in this research. 

2. LITERATURE REVIEW

Words in the Arabic language are classified into three main categories: nouns, verbs, and particles, 

correspondingly, (fe’l, ism, and harf) [4]. As stated by B. Weiss in [5], grammarians put two methods 

to classify words into these categories: the descriptive method and the rational method. The descriptive 

method focuses on the observable features of each part of speech, such as nunnation, the genitive case, 

and the vocative case. The properties of a verb are the suffixes such as the letter tā( ت ) equivalent to 

(T) and the letter Yā (ي ), and the energetic nūn ( ن ). The rational method (àqlī) is non-investigative

and non-empirical. On one hand, nouns are not tied to time; they possess meaning by themselves. On 

the other hand, the meanings of verbs are qualified based on a timeline (past, present, or future). This 

leads us to the classification of particles, hārf ( حرف), which convey meaning in a context beyond their 

own. As stated by Weiss, the principle of classifying speech into these three parts developed out of “ilm 

al-wad” (علم الوضع ) written by Iji, Adud al-Din Abd al-Rahman ibn Ahmad (d. 757/1355) in the 

fourteenth century, in a work entitled al-Risāla al-wad'iya. The research presented by B. Weiss [5] 

discusses in detail the states of nouns, particles, and verb, explaining how to differentiate between them 

based on context, meaning, and by the suffix. The verbs, as stated, can be identified by their radicals.  

Alosaimy and Atwell [6] provided a comprehensive list of available part-of-speech (POS) taggers for 

both Classical Arabic (CA) and Modern Standard Arabic (MSA). In summary, they explained that the 

tagging process in the surveyed approaches depends on a morphological analyzer (MA) equipped with 

a lexicon that contains all possible solutions, regardless of the context being studied. They pointed out 

that no tagger has yet been adopted as a standard. The work presented offers a comparative study for 
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taggers and discusses their accuracy.  Table 1 shows the accuracy for each tagger as presented in the 

paper of Alosaimy and Atwell [6]. 

Table 1. POS tagging accuracy for 50 classical words. 

Accuracy MD MA ST MR WP AM  MT  FA 

Overall 69.6% 70.6% 78.4% 66.7% 68.6% 79.4% 67.6% 74.5% 

No Prop. Nouns 8.0% 78.5% 71.4% 52.8% 58.5% 74.2% 87.1% 74.2% 

Prop. Nouns 46.8% 53.1% 93.7% 96.8% 90.6% 90.6% 25.0% 75.0% 

MADA+TOKAN suite (MD), MADAMIRA suite (MA), Stanford POS tagger and segmenter (ST), 

MarMoT (MR), Segmentor and Part-of-speech tagger for Arabic (WP),  AMIRA Toolkit (AM), Arabic 

Toolkit Service POS Tagger (MT), Farasa (FA) [6]. 

Lee Y. et al. [7] presented a model for segmenting Arabic words based on the following pattern: prefix*-

stem-suffix*, where the * represents the degree of the morpheme, indicating zero or more occurrences. 

The initial dataset was created manually, with each word segmented by a human, then the corpus is fed 

to the unsupervised model. The classification result is determined based on the closest probable 

sequence of morphemes identified. To increase the accuracy, a set of stems derived from 155 million 

words was imported to the model through an unsupervised algorithm. The accuracy claimed after 

importing a very large dataset of words and stems to the system is 97%. However, the accuracy is 

debatable, since stemming is automatic, and the stemming is done for a specific set of words. The 

described process requires tokenization based on whitespace and punctuation.  

To achieve multiple goals within a single process, Habash, N. and Rambow, O. [8] proposed a model 

that integrates tokenization, part-of-speech tagging, and morphological disambiguation into a three-

stage framework. In this proposed solution, tokenization, along with morphological and part-of-speech 

tagging are considered one process of three stages. In the first stage, all possible analyses are gathered 

for the sentence subject to study. In the second stage, a classifier consisting of ten morphological features 

is applied to the words in the text. The features include “POS” for parts of speech, “Conj” for clitic 

conjunctions, “Part” for particles, “Pron” for pronominal clitics, “Det” for clitic definite determiners 

such as (ال), “Gen” for gender, “Num” for numbers, “Per” for persons, and “Voice” and “Asp” for aspect 

(imperfective, perfective, imperative). As explained in the proposed solution, it is possible for one word 

to match more than one feature. A morphological analyzer will then choose among the returned results 

by considering two values: agreement and weighted agreement. Agreement represents the number of 

classifiers matching the analysis. The weighted agreement is the sum of all classifiers agreeing with the 

analysis. It is noticeable that the provided model is time-consuming and requires intense analysis and 

pre-knowledge of words and classifications, in addition to a database of prefixes, suffixes, and stems. 

In two separate studies, E. Mohammad et al. discussed the feasibility of performing parts of speech 

tagging without word segmentation [9]. In the second study [10], they provided two methods for parts 

of speech tagging, adding a new method that depends on artificial intelligence and machine learning to 

segment words. In the first study, they compared methods of classification accuracy that do 

not depend on segmentation with other methods that rely on tokenization and segmentation. In their 

research, they claim an accuracy of 94.74% in tagging words without segmentation, compared to 

93.47% accuracy when segmentation is used. However, the proposed solutions depend on 

having a dataset and trained algorithms ahead; prior knowledge is required. 

In [11], Khoja presented PAT, a Part-of-Speech tagger, which utilizes a tagset of (131) tags that are 

used to manually tag a corpus to produce a lexicon. This lexicon is based on traditional Arabic language 

grammars. However, the tagset categories extended to include 35 additional tags to account for Arabic 

clitics. Furthermore, verbs are sub-divided into various sub-categories. Nouns are also classified 

into categories, distinguishing between singular and plural forms (the latter referring to two or 

more, according to the numbering system), along with other sub-classifications, such as particles, dates, 

numbers, and punctuation. The proposed tagger (PAT) performs initial tagging process, which is 

basically searching the produced lexicon for a match. This means that a pre-processing of stemming, 

removing prefixes and suffixes is required. Khoja claimed an accuracy rate of 97% using a 

dictionary containing 4,748 root words. 
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Mohammad Y. et al. in [12] proposed a tagger based on sentence structure using morphological 

analysis in conjunction with a Hidden Markov Model. However, the basics are still the same as found in 

the works of other researchers, including the need to stem, removing suffixes, prefixes, and the need to 

have a dataset. The difference is that Arabic grammar specifies by its rules and what can follow a verb 

in a sentence. For instance, if a verb is identified, then it cannot be followed by another verb; 

instead, it must be followed by a noun. This functions similarly to a context-aware system. In [13], 

Elhadj Y. attempted to implement the same approach in traditional Arabic text. However, the proposed 

work does not introduce any new concepts beyond what is presented in [12]. 

In [14], M. Hjouj et al. presented a tool for Arabic text tagging and named entity 

recognition depending on a two-phase process. Firstly, the proposed process passes the text through a 

lexicon recognition phase, followed by a morphological phase. However, the rule development for 

morphological classification is not explained in the paper. Additionally, some rules proposed in the 

work to classify words as nouns are flawed. For example, the rule states that any word that ends with 

the letters (alef- tā ات) is a noun. This is incorrect; for instance, the word (يقتات), which means (feed 

on), is a present-tense verb, not a noun, despite ending with the (alef- tā) letters. 

Transformation-based Learning (TBL) for Part-of-Speech (POS) tagging is a corpus-based method 

introduced by Algahtani et al. in [15]. This approach claims to reduce the required processing power 

and offers more flexibility in guessing and classifying tags for unknown words compared to 

traditional rule-based methods. The proposed method depends on selecting the best-fit tag from a list of 

candidate tags generated by a morphological analyzer, which derives these tags from previously 

analyzed text. As described, the TBL POS approach requires a training set, pre-defined rules, and a 

lexicon containing tag/word combinations. Each word goes through assigning a tagging process 

where the most frequently matched tag is assigned, followed by a list of rules for further correction 

to the assigned tag. This approach highly depends on the existence of the word in the 

prepared corpus and context. 

Zeroual et al. [16] aimed to present a hierarchical level of tagset and their relationships to produce more 

accurate results by navigating deeper in the relations. The proposed method is based on estimating 

transition probabilities using a decision tree. A tagger named TreeTagger, which is not 

specifically designed for the Arabic language, utilized the generated tagset used to tag Arabic text. 

The use of regular expressions in Arabic-text research is not new; M. Tarawneh and E. AlShawakfa [17] 

explored the power of regular expressions to improve the accuracy of information retrieval in Quranic 

text. The use of regular expressions improved the matching process, where prefixes and suffixes can be 

presented as a group of possibilities surrounding the keyword subject of the search process. In our 

research, we enhanced regular expressions to represent verb measures.  

3. METHODOLOGY AND ALGORITHM

The process for the proposed method is illustrated in Figure 1. Classification and 

tagging involve several steps, where the possible matches are reduced at each stage to reduce the 

number of future comparisons and mitigate ambiguities that may arise from partial matching.  

Figure 1. System flow, classification and tagging steps. 
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The process of tagging and classifying text involves three stages. The first stage is preliminary 

classification, during which the provided text goes through a basic classification based on detecting 

well-known words, such as present verbs preceded by particles of nasb (subjunctive markers). In Arabic 

grammar, the particles of nasb (subjunctive markers) always come after the present-tense verb. Another 

category includes nouns that are preceded by prepositions, which occur exclusively before nouns. The 

first stage is a bulk matching process, where a pair of processes <find, replace> is performed at once. 

This is the only part of the tagger that investigates partial context, one token before or after, not both, 

that makes the tagger a semi context-free tagger.   

The latter process can be done for all known patterns of a form < particle, word> where the particle 

precedes a known morphological rule in identifying the successor "word". In Stage 2, a bulk match is 

performed for each regular expression representing a morphological verb form in the Arabic 

language, following the same method described in Stage 1. Consequently, the number of possible 

matches decreases with each step. In Stage 3, the text will contain tagged and untagged words. Any 

word in the text that remains untagged can be safely marked as a noun, as it does not match any regular 

expression within the set of regular expressions that defines any rule measure for verb , particle, or 

pronoun. 

3.1 Regular Expressions’ Classification Panel (ReCp) Design 

In the proposed algorithm, clitics, such as continuous pronouns, are not removed from the words in order 

to be tagged.For instance, the word (فهمتها) should be segmented, on conventional tagging methods, into 

 and (pronoun referring to the speaker ,ت / tā) then the ,(understood / فهم fahim) the verb ,( ها + فهم + ت)

the (Haa/ها, pronoun referring to the object). Conjunctions and prepositions that are not part of the word, 

such as (  عن ٬من ، الى  ...), can also be attached to a pronoun. For example, (من + ها) will form the (منها) 

word, which means “from it”. Such pronouns will not go through any stemming process. 

The word-sieve panel is represented as a set of regular expression rules specifically designed for 

recognizing patterns in the Arabic language. Each rule is a regular expression (RE) representing a verb 

measure. In terms of length, the expressions are organized from shortest to longest. For instance, 

expressions representing particles, such as prepositions, accusatives, conjunctions, and 

separate pronouns, come first. Next are three-letter verbs, followed by verbs with four-letter roots, … 

and so on. As the text enters the screen, it will pass over the small expressions first; if it fits a 

pattern, then it will be classified as a word of that measure or rule. Otherwise, the algorithm will move 

it further along the screen. Figure 2 shows the screening mechanism, its design, and the number of 

rules for each stage.  

3.2 Regular Expression Design 

Representing Arabic verb weights using regular expressions is challenging due to the large number of 

possibilities and variations that depend on the verb's context within a sentence. In Figure 3, we present a 

regular expression for the measure tafāal / ٌتفعل (example سيتقدمّهم). The question mark in the regular 

expression represents an optional term with at most one occurrence in the word. As illustrated, it is 

possible to represent an entire family of verbs with this expression without needing to know the verb 

itself. This identification gives us the flexibility to keep the action represented by the verb anonymous.  

Figure 2. The priorities of regular expressions presented in the sifting screen (matcher). 
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As shown in Figure 3, the prefix (سيت) can be expanded as needed to cover additional cases; 

however, we shortened it to simplify the presentation of the verb weight explained. The RE then 

continues to match the middle letters of the verb and any possible diacritics. This section is indicated in 

the figure by the dotted, underlined part. Then the remaining part of the verb weight, which is optional, 

presents the possible suffixes. In RE, the optional components are followed by (?). 

Figure 3. Regular expression for the measure (Tafaal / فعلٌت  ). 

Figure 3 shows the DFA or machine for the RE presented in Figure 3 that represents a past-verb measure. 

Group 2 and group 3 in the figure show the possible optional prefixes such as (ست/ سي / …) at the 

beginning, denoting timing in the future, intention, because of the letter (s/ س) and the (tā / ت ) for the 

opposite person.  

However, the possible optional suffixes at the end of the verb, group 6, denote gender, such as ( ها ، هن) 

for female, or the letter (hā/ هاء) for singular male. The figure shows the basic rule or measure where the 

diacritics (تشكيل) are optional in some cases, such as the second Fat’hā (  َ ) with the loop over it. But, 

when diacritics are provided, tagging accuracy will be higher.  Groups 2,3 in the figure are optional 

prefixes, where group 6 is an optional suffix with non-deterministic probability.  

Each verb can be represented by a finite automaton. However, we can notice similarities between 

some verb measures in the Arabic language within the same category of verbs, such as the imperative-

verb weight. This similarity enables the merging of multiple finite automata to 

recognize various verb forms or weights. 

Table 2 shows an example of imperative verbs where multiple weights are represented by a 

single regular expression for one verb tense. In this table, imperative verb rule 2 combines two 

forms into one regular expression, as the objective is just to identify the tense of the verb, not the root 

or verb meaning. This approach can be applied to other verb tenses, such as present (mudari-مضارع) 

and past (madi-ماضي). Regarding nouns, some nouns can be identified when preceded by the definite 

article (alef-laam ال) or by specific disconnected pronouns or preposition particles. 

As shown in Figure 4 and its corresponding regular expression, the weights of the two imperative 

verbs are represented by a single Deterministic Finite Automaton (DFA) and one regular 

expression, indicated by rule 2. However, rule 1 consolidates five rules due to the high similarity in the 

structures of the verb weights. 

Figure 3. Finite automaton representing the measure (Tafaal / ٌتفعل ). 
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Table 2. Similar verb weights that can be represented in one regular expression. 

Imperative verb 

weights 1 

RE presentation 

". "أفَْعِلْ 4  . "افْعَلْ" 3. "افْعِلْ"  2"افْعلُْ"    1. 

Imperative verb 

weights 2 

RE presentation 

) Move forwardتقََدَّمْ ( example :"تفََعَّلْ"  1.

 ) Tolerateتسََامَحْ ( example ": . "تفَاَعَلْ 2

Figure 4. DFA for imperative verb, rule 2 described in Table 2. 

3.3 Algorithm 

Table 3 shows the proposed algorithm for the classifier. The algorithm starts with considering any 

Arabic text provided as (T). Two sets of regular expressions defined, CP and R, where CP is used in the 

initial matching to reduce future work done by R bulk matcher. Time measured before and after tagging 

is performed as (τ).  

Table 3. Algorithm for Arabic regex morphological tagging. 

Let: 1. 𝐓 ∈ Σ* : Input Arabic text over some alphabet Σ 

2. CP = { (𝐂j, 𝐏j) }m
j₌₁ : a set of category-pattern pairs where 𝐂j is a linguistic category name and

 𝐏j  is a regular expression pattern for preliminary matches (obvious cases) 

3. 𝐑 = { (𝐂ᵢ, 𝐏ᵢ) }ⁿᵢ₌₁ : A finite ordered set of category-pattern pairs where 𝐂ᵢ is a linguistic category

     name and 𝐏ᵢ is a regular expression pattern (for bulk match) 

4. counter ∈ ℕ : Counter for replacements

5. 𝜏 : Execution time in nanoseconds

Input: 

     B ∈ Base64 (optional) — Base64-encoded Arabic string

Output: 

    Tagged text T', total replacements counter, execution time τ 

Initialization: 
1. Let R ← {(C₁, P₁), (C₂, P₂), ..., (Cₙ, Pₙ)}

2. Initialize counter ← 0

Input Handling: 

3. If B ≠ ∅:  Decode B using Base64 to get T ∈ Σ*

4. Else:         Read T from dataset file

5. Timing Start:  Let t_start ← System.nanoTime()

preliminary classification 

6. foreach  𝐑j ∈ CP
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  if (matcher.find(𝐑j , T) :  

       T ← Replace(T, '  𝐂j  [Ti ] ') 

Pattern Matching and Replacement: 

7. For each (Cᵢ, Pᵢ) ∈ R:

8.      From the results While Pᵢ matches a substring m ⊂ T & m not tagged:

9.              replace m in T with   '  Cᵢ  [m] ' 

10.              counter ← counter + 1

11. Timing End: Let t_end ← System.nanoTime()  ,  Compute τ ← t_end - t_start

12. Output:   Print transformed text T , counter ,  τ

The first two lines of the algorithm show the initialization step, where all regular expressions are added 

to the regular expression (RE) hash map. The order in which RE is added to the map is significant to the 

work of the algorithm, since it should follow the presentation described in sub-section 3.1. In line 6, the 

preliminary or initial classification starts using the CP set. Each (𝐑j)  is a regular expression that performs 

one bulk match for a very specific family of verb weights or noun detection in a single command. The 

number of preliminary rules specified in the panel is eight. Each match will be marked so that it will be 

excluded from any future processing. The algorithm in lines 7 through 10 is performing a bulk match 

for each verb, particle or noun weight found in the text. Each rule uses the matcher to perform a bulk 

match in the hash map for all possible string matches that have not been previously processed. At the 

end of the algorithm, time is measured again to get t, as τ, presenting the consumed time for all tagging 

performed.  

3.4 Complexity 

Let ( n ) be the length of the text (in characters), ( m ): the number of patterns in the regex patterns, and 

( k ) be the number of matches a single regular expression finds in the text. The initialization process is 

just the area where regular expressions are added to the matching map, a one-time process.  Lines 3 and 

4 are getting the input from the user and storing it in the text to analyze. In line 6, the process of bulk 

match and replace will take O(1) for each regular expression, since it does not loop over the text, or the 

regular expressions set. For the remaining lines, starting at line 7,  in the worst case, a regular expression 

matching is: O(n) per pattern (can be worse depending on pattern complexity, but typically O(n)), across 

m patterns, this is O(m × n) as it might look in the worst case.  

However, a deeper look at the proposed algorithm, the outer loop that passes over all defined regular 

expressions, is always bounded to 45 times, which is the number of regular expressions defined. The 

inner loop will execute only once when a match is found for the rule.  The matcher is just walking 

through the input linearly with no backtracking. This means that the matching process does not scan the 

entire text again as if it were a new scan every time. Instead, it resumes from where the last match ended. 

So, across the inner loop, the matcher will look at each character at most once per regular expression.   

Based on the previous discussion, assume n = length of the text in characters. k = number of regular 

expression rules (45 constant).  Thus, the total work will be O(k⋅ n)= O(45⋅ n)=O(n).  In terms of space 

complexity, the algorithm does not reserve new memory to process the input. Consequently, the space 

will remain at the boundaries of O(n). 

4. RESULTS AND TEST CASES

Hardware specifications of the classifier used in are  MacBook Pro 2012, macOS Catalina version 10.15, 

16 GB 1600 MHz, 2.3 GHz Quad-Core Intel Core i7. The classifier is programmed using the Java 

programming language.  However, other anonymous servers are used as well to run the classifier, giving 

a much better time. The dataset used is provided by T. Zerrouki and A. Balla [18] which contains 98.85% 

classical Arabic text and 1.15% Modern Standard Arabic text . The dataset contains 7701 manually 

diacritized words. Our  classifier is available on the website mentioned in  [19]  as an experimental 

release. 

As shown in Figure 5 for the relation between the input size and the number of comparisons the 

algorithm performs, it is noticeable that the increase is almost linear for several input sizes. As shown 

in Figure 5 (A), for small file sizes, the number of matches or passes is less than the number of tokens, 

since regular expression matches rules for each measure one time only. When the file size increased to 

contain more than 100,000 tokens, comparisons are around 39,400, as shown in Figure 5 (B). The 
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algorithm showed a consistent behavior for incremental input sizes, as shown in the previous figures 

and as presented in Table 4. 

Table 4. Test cases and performance metrics. 

Tagged Tokens Size in KB  Time in ms 

47 1.34 49 

72 1.97 55 

195 4.00 60 

251 5.65 63 

281 6.47 69 

312 8.05 79 

19730 434.16 911 

38009 941.84 1373 

73359 1770.54 2245 

106992 2183.34 3099 

Figure 6 shows the growth in time against the growth in input size for our proposed algorithm. 

As illustrated in the figure, time complexity increases linearly with input size and is not related to code 

design, as pointed out earlier in the complexity analysis. For files approximately 1.0 MB in size, the 

time required to classify and tag words is about 3 seconds.  

Figure 6. Time growth in relation to input size. 

As shown in Table 4, the input size is 47 words, out of which 3 preliminary matches happened before 

the classifier starts its work. As shown, the complexity of execution relates to the size of the input only. 

Time taken to perform the tagging is about 42ms, whereas in faster machines it takes about 10ms only, 

as seen using our classifier provided online at [19]. 

Figure 5. The linear increase of number of comparisons versus number of tokens. 



441

"An Enhanced Word Level Arabic OCR Based on Dual Encoder Transformer Architecture", K. Gaashan and M. Bani Younes. 

Table 5. Sample output and analysis from the classifier. 

Sample Input 

ةَ والْكَرَامَةَ لِ  ِ الْغنَِيِّ الْحَمِيدِ الْمُبْدِئِ الْمُعِيدِ، الْفَعَّالِ لِمَا يرُِيْدُ، كَتبََ الْعِزَّ لَّةِ والْهَوَانِ عَلَى مَنْ عَ الْحَمْدُ لِِلََّ صَاهُ وهُوَ الْعَزِيزُ مَنْ أطََاعَهُ، وقضََى بِالذِّ

ادِقِ الَْ  سُولِ الصَّ ُ، أنَْعمََ عَلَيْنَا باِلْكِتاَبِ الْمُبِينِ والرَّ    مِينِ الْحَكِيمُ. وأشَْهَدُ أنَْ لَا إِلهََ إلِاَّ اللََّّ

Output 

Noun      : ُالْحَمْد 

LafzAlJalal : ِ  لِِلََّ

Noun      : ِّالْغنَِي 

Noun      : ِالْحَمِيد 

Noun      : ِالْمُبْدِئ 

Noun      : ِالْمُعِيد 

Noun      : ِالْفَعَّال 

JarrMjror    :لِمَا 

Present      : ُيرُِيْد 

Past      : ََكَتب 

Noun      : َة  الْعِزَّ

AtfParticle : َو 

Noun : َالْكَرَامَة 

AsmaaMusol : ْلِمَن 

Past : ُأطََاعَه 

AtfParticle : َو 

Past :قضََى 

Noun : ِلَّة  بِالذِّ

Atf Particle : َو 

Noun : ِالْهَوَان 

JarrParticle :عَلَى 

JazmParticle : ْمَن 

Past : ُعَصَاه 

AtfParticle : َو 

DameerMonfasel : َهُو 

Noun : ُالْعَزِيز 

Noun : ُالْحَكِيم 

AtfParticle : َو 

Present : ُأشَْهَد 

NasbParticle : َْأن 

NafiOrNahi : لَا 

LafzAlJalal : َإلَِه 

Estithnaa : َّإِلا 

LafzAlJalal : ََّّالل 

Past   :ََأنَْعم   

JarrMjror   :عَليَْنَا 

Noun       :ِباِلْكِتاَب  

Noun          : ِالْمُبيِن 

AtfParticle :َو 

Noun          :ِسُول    الرَّ

Noun          :ِادِق   الصَّ

Noun          : لْمَِينِ ا  

Total Tokens: 47 

Possible preliminary matches   :  3 

Matches through loops  : 39 

Tokens in the text larger than 1 symbol = 42 

Number Iterations: 39 

size in bytes:  1368.0 

Time to classify: 42.70574 ms 

Table 5 shows an example of tagging Arabic text decorated with diacritics. Table 6 shows the pre-

classification process results where words preceded by preposition particles are classified by default as 

nouns. The tag (noun2) is assigned to them to distinguish them from the words tagged based on word 

structure. The example of present verb preceded by Nasb letter, if the verb is tagged in the pre-

classification stage, the verb will be tagged as PresentNasb, not just present.  

Table 6. Pre-classification sample results for nouns and present verbs. 

Sentence to analyze:   و لَنْ يخذلَ السائل مِنَ الناسِ الطيب و في قلبهِ الرحمة   

JarrLetter ←  َمِن  Noun2 ← ِالناس  

Noun1  ←الطيب   

AtefCONJ ← و   

JarrLetter ←في  Noun2 ← ِقلبه   

Noun1← الرحمة   

AtefCONJ  ←و   

NasbLetter ← ْلَن  PresentNasb ←  َيخذل  

Noun1 ←السائل  

Table 7. Fine-grained tagging based on morphological features. 

Sentence to analyze:   . 7  مَعَ خولة بنت الزور ! وُلِدتَْ في القرنِ  سَافَرَ   الزور،ضرار بن  

NounMale  ←ضرار  Noun←بن Noun  ←الزور 

punctuation ← ،  

Past             ←  ََسَافر 

JarrLetterOrDarf ← َمَع  

NounFemail← خولة Noun ← بنت  Noun4 ←الزور 

punctuation ← ! 

Past             ←  َْوُلِدت 

JarrLetter    ←في  

Noun           ←  ِالقرن 

Numbers     ← 7  

punctuation ← . 

Regular expression allows fine-grained tagging based on morphological features, such as numbers, 

punctuation, and gender. As shown in Table 7, some pronouns and names are gender-specific. For 

example, (بن, bin), which means "son of", and (بنت, bint), which means "daughter of". Such words 

provide the ability to tag words correctly before they are used correctly based on gender. However, 

depending on such terms may not be useful to tag words after them with the same accuracy. 
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5. COMPARISONS AND FEATURES

5.1 Comparison with Previous Approaches 

Compared to previous work, CAMel tools [20], which are powerful, well-known, and multi-purpose 

analysis tools; CAMel requires approximately 5.2 GB of information to be stored and processed before 

the analyzer can be used. However, our proposed method provides POS tagging with predictable space 

compared to CAMel. The required storage for our proposed method is less than 0.5 MB of rules. Since 

CAMel provides many services, the comparison will be just for the POS tagging feature. As shown in 

Figure 7, using the same hardware used for our algorithm, CAMel behaves differently for variable input 

sizes. In both small and large inputs, our algorithm takes much less time than CAMel. For 2MB of input 

size, our algorithm took about 3 seconds, whereas in CAMel, using trained AI model, it needed 140.25 

seconds to finish tagging. This shows that the rule-based algorithm is about 97.86% faster than CAMel. 

Using the same input data shown previously in Table 5, CAMel took 6.6 seconds to process the sentence, 

whereas our proposed light-weight algorithm took 42.70574 ms for the same input. In terms of accuracy, 

CAMel incorrectly tagged some words, as shown in Table 8 marked with *.  The error ratio for the 

provided text is about 11% for 47 words.  

Figure 8 shows the performance for Farasa tagger using small datasets of a size of 4 kilobytes up to 180 

kilobytes as shown in part (A) of the figure. Part (B) shows the performance using large datasets starting 

at 1500 kilobytes up to 5000 kilobytes. As illustrated in the figure, Farasa demonstrates a linear growth 

in execution time as the size of the input files increases. 

Figure 8. Farasa performance analysis using small and large datasets. 

Table 8. Results for CAMel POS tagging for fixed benchmark input. 

 adj ← الْفَعَّالِ 

 * .verb ← لِمَا

 verb ← يرُِيْدُ 

 * verb ← لِمَنْ 

طَاعَهُ أَ   ← verb 

 noun_prop ← الْحَمِيدِ 

 ]]لا يوجد تحليل← الْمُبْدِئِ * 

 noun ← الْمُعِيدِ 

 * noun ← كَتبََ 

ةَ   noun ← الْعِزَّ

 verb ← أشَْهَدُ 

 conj_sub ← أنَْ 

 part_neg ← لَا 

 * verb ← إلِهََ 

 verb ← إلِاَّ 

Figure 7. CAMel performance for small (A) and large (B) datasets.
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Table 9.  Comparison with Farasa POS tagger, Golden Standard POS dataset tags and the proposed 

light-weight tagger. 

Word Farasa POS Proposed Light-wight algorithm 
Gold Standards POS tags 

 Tag result Tag accuracy 

الْحَمْدُ  DET+NOUN OK Noun OK DET+NOUN 

 ِ لِِلََّ PREP NOUN OK LafzAlJalal_Noun OK PREP+NOUN 

الْغنَِيِّ  DET+NOUN OK Noun OK (Ignored) DET+ADJ 

الْحَمِيدِ  DET+NOUN OK Noun OK (Ignored) DET+ADJ 

الْمُبْدِئِ  DET+ADJ OK Noun OK DET+ADJ 

الْمُعِيدِ  DET+NOUN OK Noun OK (Ignored) DET+ADJ 

، PUNC OK punctuation OK PUNC 

لْفَعَّالِ ا DET+ADJ OK Noun OK DET+ADJ 

لِمَا PREP PART OK JarrMjror OK PREP+PRON 

يرُِيْدُ  V OK PresentVerb OK V 

، PUNC OK punctuation OK PUNC 

كَتبََ  V OK PastVerb OK V 

ةَ  الْعِزَّ DET+NOUN+NSUFF OK Noun OK DET+NOUN+NSUFF 

والْكَرَامَةَ  CONJ DET 

+NOUN+NSUFF

OK AtefCONJ OK CONJ 

Noun OK DET+NOUN+NSUFF 

لِمَنْ  PREP PART OK AsmaaMusol OK PREP+PRON 

أطََاعَهُ  V PRON OK PastVerb OK V+PRON 

، PUNC OK punctuation OK PUNC 

وقضََى CONJ V OK AtefCONJ OK CONJ 

PastVerb OK V 

لَّةِ  بِالذِّ PREP DET+ 

NOUN+NSUFF 

OK Noun OK PREP+DET+NOUN+NSUFF 

والْهَوَانِ  CONJ DET+NOUN OK AtefCONJ OK CONJ 

Noun OK DET+NOUN 

عَلَى PREP OK JarrLettersPREP OK PREP 

مَنْ  PREP NO LetterJazm NO REL.PRON 

عَصَاهُ  NOUN PRON * NO PastVerb OK VERB+PRON 

وهُوَ  CONJ PRON OK AtefCONJ OK CONJ 

DameerMonfasel OK PRON 

الْعَزِيزُ  DET+NOUN OK Noun OK (Ignored) DET+ADJ 

الْحَكِيمُ  DET+ADJ OK Noun OK DET+ADJ 

. PUNC OK punctuation OK PUNC 

وأشَْهَدُ  CONJ V OK AtefCONJ OK CONJ 

PresentVerb OK V 

أنَْ  PART OK NasbLetters OK PART 

لَا  PART OK NafiOrNahi OK NEG.PART 

إلَِهَ  NOUN OK LafzAlJalal_Noun OK NOUN 

إِلاَّ  PART OK Estithnaa OK EXCEPT.PART 

 ُ اللََّّ NOUN OK LafzAlJalal_Noun OK NOUN 

، PUNC OK punctuation OK PUNC 

أنَْعَمَ  V OK PastVerb OK V 

عَليَْنَا PREP PRON OK JarrMjror OK PREP+PRON 

لْكِتاَبِ باِ PREP DET+NOUN OK Noun OK PREP+DET+NOUN 

الْمُبيِنِ  DET+ADJ OK Noun OK DET+ADJ 

سُولِ  والرَّ CONJ DET+NOUN OK Noun OK CONJ+DET+NOUN 

ادِقِ  الصَّ DET+ADJ OK Noun OK DET+ADJ 

الْمَِينِ  DET+NOUN OK Noun OK (Ignored) DET+ADJ 

As shown in Table 9, the same text used with CAMel was classified and tagged using the Farasa POS 

tagger, a complete stack for Arabic language processing. It was produced by [21] and is available online 

at [22]. Farasa tagger accuracy was 95.56% when compared to the golden standard POS tags using the 

Penn Arabic Treebank [23]. In our proposed semi context-free tagging approach, we do not consider the 
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tags derived from nouns. For example, the word ( ِ  which is a noun, when put in the sentence ,(الْغنَيِّ

context, it is an adjective (DET+ADJ) according to the gold standard. The accuracy percentage of our 

proposed algorithm, based on the test cases, is slightly over 97%. As demonstrated in Table 9, the Farasa 

tagger incorrectly classified the word ( ُعَصَاه) to be a noun meaning (his stick). Whereas, our rule-based 

classifier correctly identified it as a verb in the past tense, as it matches a specific verb rule. However, 

our tagger will not be as accurate as other taggers when diacritics are partially provided on the text.  

We compared the accuracy of our algorithm with that of other taggers using a dataset provided by the 

Universal Dependencies Treebank of Arabic, developed at New York University Abu Dhabi (NYUAD). 

Following the extraction of results from each tagger, we normalized the assigned tags to establish a 

unified tagset, allowing systematic comparison across all outputs. Table 10 shows an accuracy 

comparison using precision, recall and F1 for CAMel, Farasa and Stanford POS taggers against our 

provided tagger. Farasa tagger presented a 94.37% accuracy, followed by our proposed algorithm with 

an accuracy of 93.07%.  Table 11 summarizes the architecture and the key models used in each tagger. 

Table 10. Accuracy comparison for standard Arabic text. 

Taggers Precision Recall F1 Accuracy 

Farasa 89.31% 76.77% 81.53% 94.37% 

Our poropsed tagger 94.86% 89.3% 90.07% 93.07% 

CAMeL 65.85% 65.51% 62.48% 87.01% 

Stanford 70.7% 70.53% 68.11% 81.82% 

Table 11. Summary of under-laying AI architecture for used taggers. 

Tagger Model Architecture Key Model(s) Note 

Farasa Deep Learning RNNs, LSTMs Designed for speed and accuracy in 

Arabic. CAMeL Machine Learning/Deep Learning SVMs, RNNs Uses a mix, often SVMs for reliability.

Stanford Machine Learning (Classic) / 

Deep Learning (New) 

MaxEnt (Classic) 

LSTMs/Transformers 

(New) 

The classic version is not deep 

learning. The modern Stanza version 

is AI based tagger. 

Table 12 shows the results of another comparison performed using 3358 words from Quranic text. 

CAMeL tagger scored 66.85% in accuracy, while our proposed algorithm scored just above 50%. The 

downside of our tagger is the fact that it does not cover some special Quranic diacritics and some word 

measures. For example, words like book (كِتََٰب) and devil ( ن in Quranic writing where the letter ( شَيْطََٰ

alef is superscripted unlike in standard Arabic  (كتاب) and (شيطان), respectively.  

Table 12. Accuracy test using Quranic text. 

Taggers Precision Recall F1 Accuracy 

Our poropsed tagger 32.72% 14.3% 19.67% 50.01% 

CAMeL 25.89% 15.23% 12.45% 66.85% 

Table 13. Meaning manipulation using diacritics in Arabic language. 

 Sentence:                                                                               مَنْ مَنَّ مِنْ مَنٍّّ مُنَّ مِنَ المنانِ 

Approximate translation: Who blesses from his blessings, will be bestowed by the generous one 

Word Proposed Algorithm CAMeL Farasa Stanford Golden tags 

 Letterjazm/JUSPART PREP* PREP* PREP* PREP مَنْ 

مَنَّ  PASTVERB PREP* PART* PRON* VERB 

مِنْ  JARRLETTER_PREP PREP PART* PREP PREP 

مَنٍّّ   NOUN/PRON PREP* PREP* NOUN/PRON NOUN/PRON 

مُنَّ  PASTVERB PREP* PART* PREP* VERB 

مِنَ  JARRLETTER_PREP PREP PART* PRON* PREP 

المنانِ  NOUN X * NOUN NOUN NOUN 
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An extreme case is the sentence presented in Table 13, where six words with five different meanings 

are provided by changing diacritics. As shown in the table, tagging based on rules presented better results 

than by other taggers. This behaviour is expected, since rules are deterministic more than taggers that 

depend on machine learning or deep learning. Bad tags are marked with *. 

4.2 Features of the Proposed Algorithm 

In summary, the proposed light-weight, rule-based tagging system offers several advantages over 

traditional tagging methods and modern AI approaches. 

Hardware Requirements: Our proposed algorithm operates effectively on any hardware capable of 

running Java or Python code, without demanding high memory or CPU resources. While there may be 

a slight performance degradation on weaker hardware, our proposed algorithm is designed to be an in-

place algorithm, requiring no extra datastructures or memory. Furthermore, the execution time of the 

algorithm can be anticipated to be lower than expected due to its linear growth in execution time, as 

demonstrated in the performance analysis provided earlier. 

Accuracy: The accuracy of the proposed tagger depends on two factors: 1) the definition of rules and 2) 

the presence of diacritics on text. This means that the tagger can offer a best-effort tagging based 

on diacritics accuracy. Comparing to machine-learning and deep-learning approaches, AI-based 

algorithms require retraining with a substantial amount of pre-classified words to cover all 

possibilities and optimize the results. This leads us to the third feature of our rule-based classifier: low 

maintenance cost. 

Low Maintenance Cost: Modifying or adding a rule will alter the results or add a new tagging category. 

However, ambiguity in certain words, such as nouns in the form of verb (i.e. يزيد yazeed), remains a 

challenge for all taggers. This issue can be solved by looking into the context in which the 

word resides. Such cases are not solved in the provided algorithm, as it discusses the context-free 

approach. It is worthy noticing that adding new measures to the tagger may require revising the sieve 

design and the priorities of applying those new measures when tagging text.  

Finally, the execution time. As shown by the provided comparisons, the rule-based algorithm 

is efficient more than traditional and AI-based approaches, since: 1) It does not perform prefix and 

suffix processing. 2) It eliminates dictionary search time, and 3) No databases for training are required. 

6. CONCLUSIONS

Tagging and morphological analysis using regular expressions show that the Arabic language is 

sensitive to context, diacritics, suffixes, and prefixes. As shown by this paper, it is possible to develop 

lightweight, fast, and effective classifiers and taggers using regular expressions. However, the way 

regular expressions are used, in terms of order in the matching panel and the reduction of ambiguity, is 

crucial.  

When designing regular expressions, the following points should be considered to minimize the cost of 

the matching process. First, use possessive quantifiers whenever possible to reduce backtracking (i.e., 

use ++ instead of +). For example, when matching the regular expression “(a+)+b” with the string 

“aaaaaaax”, the matcher will fail after a very long time because of backtracking, since there is no letter 

“b” at the end. By modifying the RE to possessive RE “(a++)+b”, the matcher will fail faster, since there 

is no “b” at the end of the input string. This will improve RE performance in cases where no matches 

are found in the text.  

Second, it is important to avoid nested quantifiers such as (.*)* or (a+)+ to constrain matching and avoid 

unexpected results. Additionally, use anchoring (^, $, \b) . Finally, try to avoid using look heads and 

look behinds when possible to reduce complexity.  The tagger can be improved by building a better 

context-aware analyzer to solve the problem of ambiguity and wrong tagging, and by integrating 

machine-learning and deep-learning techniques with the current rule-based approach. 
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ملخص البحث:

فيييييي هيييييذا البحيييييد، نعُيييييال  التحّيييييديات المرتبطييييية بتحدييييييد أنيييييواع أجيييييزاء الكييييي م وتصيييييني  كلميييييات 

نصُييييييوغ اللعغيييييية العربييييييية حيييييييد يكييييييون تركيييييييب الكلمييييييات هييييييو موضييييييوع البحييييييد. وسيييييييكون 

 تركيزنا على العربية الك سيكية والعربية القياسية الحديثة.

لا تحتييييييام إلييييييى مُعجييييييم أو عمليييييييات اسييييييتخرام وتجييييييدر اإشييييييارة إلييييييى أنّ طريقتنييييييا المقترحيييييية 

جيييييييذور الكلميييييييات أو تقنييييييييات هكييييييياء اايييييييطناعي. فالهيييييييدف هيييييييو تقلييييييييل المصيييييييادر الّ زمييييييية 

نّ كُيييييلّ فعِيييييلٍّ فيييييي اللعغييييية ألتصيييييني  الكلميييييات فيييييي النصّيييييوغ العربيييييية. وترتكيييييز طريقتنيييييا عليييييى 

اسيييييتغ له لتحدييييييد نيييييا  نشيييييير إلييييييه بيييييالوزْن أو التفّعييييييل ، ومييييين الممكييييين العربيييييية يتبيييييع نمطيييييا  معيّ 

نييييييوع الكلميييييية. وكييييييلّ ايييييييغةٍّ ميييييين اِيييييييَّ الفعييييييال يييييييتم تمثيلهييييييا بمجموعييييييةٍّ ميييييين التعّبيييييييرات 

المنتظميييييية، ويعُييييييدّ الترّتيييييييب اليّيييييذي تييييييتمّ بييييييه معالجيييييية هييييييذه التعّبيييييييرات المنتظميييييية أمييييييرا  حاسييييييما  

 رى.بالنسّبة لدقةّ النتّائ . فإها وُجِد توافق، يتمّ وَسْم الكلمة لمنع التوّافقات الخ

 نِّ صيييييملل ذييييييفنتّ لا نميييييزريقييييية المقترحييييية تتسّيييييم بخفيّيييية اليييييوزن، وأمّيييييا مييييين حييييييد الداء، فيييييإنّ الطّ 

 .ةيلاع ةٍّ جلاعم تاردقُ  بلّ طتي لاو يطّ خ نمَ زَ  وه
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