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ABSTRACT 

The Android operating system is considered as a leading global mobile OS, with its open-source nature driving 

widespread use across critical daily activities like banking, communication, entertainment, education and 

healthcare. Therefore, Android is a primary target and attractive ground for cyber-threats. In this paper, a novel 

malware-detection framework, which is called TAB-DROID, is introduced. The proposed framework leverages 

advanced feature selection, compression, and classification techniques applied to real-world datasets. Firstly, the 

Conditional Mutual Information Maximization (CMIM) and Joint Mutual Information (JMI) algorithms are used 

concurrently for feature selection. Each algorithm independently selects relevant features from the datasets. 

Moreover, product quantization (PQ) for feature compression is applied separately to the outputs of both CMIM 

and JMI to enhance storage and accelerate subsequent processing without compromising critical information. 

Subsequently, the Tabular Prior data Fitted Network (TabPFN) classifier is integrated into pipelines to perform 

the classification task. By applying 5-fold cross-validation, the results demonstrate that the optimized pipeline 

using CMIM achieved superior detection performance compared to the pipeline using JMI. According to CMIM-

based pipeline configuration, the accuracy, AUC, precision, recall, and F1-score metrics reach 99.2%, 99.9%, 

99.6%, 98.7%, and 99.2%, respectively. In addition, integrating PQ with CMIM reduced testing time by 44.4% 

and memory usage by 42.8%, highlighting the framework’s efficiency alongside its high detection accuracy. 

Furthermore, the results are compared to other competing techniques, showing that the proposed framework 

achieved significantly enhanced performance, where the TAB-DROID has improved the accuracy up to 1.52% 

and precision up to 2.69%, while also reducing the feature space by 73%. 
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1. INTRODUCTION

Mobile devices have become integral to modern life, with global smartphone subscriptions approaching 

7 billion in 2023 and projected to exceed 7.7 billion by 2028 [1]. As for the 1st quarter (Q1) 2025, 

Android operating system has maintained a dominant market share of approximately 71.88% [2], with 

Google Play hosting over 2.26 million applications [3] and surpassing 102 billion downloads in 2024 

[4]. Despite their benefits, mobile devices and third-party applications introduce significant security and 

privacy risks. The pervasive uses of Android applications across sectors such as banking, commerce, 

and education amplify the exposure of sensitive data to potential threats. Android’s open-source nature, 

while promoting flexibility, also permits relatively unrestricted third-party application installation, 

increasing the platform’s susceptibility to malware and cyber-attacks. 

As the most widely used mobile platform, Android has become a primary target for malware due to its 

open architecture and extensive user base [5]. In Q2 2024, Kaspersky has reported 367,418 malicious 

installation packages targeting Android devices, underscoring the persistent and large-scale nature of 

these threats [6]. Many malware variants employ advanced encryption and obfuscation techniques to 

evade detection, complicating identification and mitigation efforts [7]-[8].  

The growing expansion of Android malware has intensified the need for robust detection and defence 

frameworks. Research highlights the raised risk posed by applications distributed outside the official 
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Google Play Store [9]-[10], with approximately 13% of Android application installations originating 

from third-party sources that often lack rigorous security vetting. These alternative channels facilitate 

the spread of malware, often disguised as legitimate applications. Many such applications delay 

malicious behavior through dynamic code loading or remote payload retrieval, further complicating 

detection. This threat is made worse by limited user awareness: only 35% of users review application 

permissions before installation, and just 23% have declined applications due to excessive permissions 

[11]-[12]. These trends emphasize the urgent need for automated, scalable, and effective detection 

frameworks to counter increasingly sophisticated Android malware. 

Traditional signature-based methods have proven inappropriate against the rapidly evolving nature of 

Android malware, prompting increased interest in machine learning (ML) and deep learning (DL) 

techniques for dynamic and intelligent detection. These approaches enable automated analysis of 

application behaviors to uncover malicious patterns beyond static signatures. However, advanced ML 

models, particularly neural networks, often require substantial computational resources, limiting their 

real-time applicability on mobile devices [13]-[15]. Furthermore, their adaptability to emerging threats 

remains a challenge. To address these limitations, this study proposes TAB-DROID, a lightweight and 

resource-efficient classification framework designed to deliver robust, timely malware detection with 

minimal computational overhead. Its efficiency has formed a 73% reduction in feature space and 

significant reductions in testing time by 44.4% and memory usage by 42.8%. The primary contributions 

of this research are as follows: 

 A novel resource-efficient classifier framework for Android malware detection is proposed, with

efficiency validated through serious reductions in feature dimensionality, testing time, and memory 

usage, which addresses the computational challenges with novel existing ML-based approaches. 

 The framework employs two parallel pipelines featuring effective feature-selection and compression

stages. The first pipeline uses CMIM, while the second uses JMI for feature selection. Both pipelines 

are followed by a PQ step to reduce the feature space while retaining discriminative information. 

 The two pipelines are subsequently completed using the TabPFN classifier, which is a pre-trained

single transformer-based classifier, enabling fast few-shot inference and strong generalization 

without hyper-parameter tuning, making it ideal for real-time use on resource-limited devices. 

 The framework is evaluated on two datasets: TUANDROMD (241 features), which despite its small

size, includes diverse and modern Android threats, and Malgenome (215 features). 

 Comprehensive experimentation is applied, and 5-fold cross-validation is used to demonstrate that

the pipeline using the CMIM feature-selection technique achieved optimal performance with a 

reduced feature set attribute, compared to the proposed framework using JMI, therefore significantly 

enhancing detection accuracy and AUC. Moreover, comparative evaluations against other 

techniques collectively validate the efficacy of the proposed TAB-DROID framework. 

The rest of this paper is structured as follows: Section 2 presents the related works, reviewing recent 

advancements in Android malware detection. Section 3 details the proposed TAB-DROID framework, 

including its main components: CMIM and JMI feature selection, PQ, and the TabPFN classifier. 

Section 4 describes the experimental setup and the evaluation metrics and presents the results. Finally, 

Section 5 concludes the paper and discusses its limitations and potential directions for future work. 

2. RELATED WORKS

In this section, the use of ML techniques for Android malware detection is examined, which focuses on 

static, dynamic, and hybrid analysis approaches [16]-[17]-[18]-[19]. Each method exhibits inherent 

limitations: static analysis involves the inspection of the application’s code without the need for 

execution, which is computationally efficient.  Although, it is more vulnerable to evasion techniques, 

such as code obfuscation and binary packing. On the other hand, dynamic analysis observes the 

application’s behaviors as it executes, which is more accurate due to its ability to monitor runtime 

activity; however, it is a more time-consuming and resource-intensive usage. 

Finally, the hybrid analysis leverages the strengths of both static and dynamic techniques, aiming to 

provide a broader and more accurate understanding of malware characteristics. A comprehensive 

understanding of these techniques is vital for improving the performance and reliability of ML-driven 

malware-detection systems. In addition to these approaches, recent studies have explored federated and 

privacy-preserving learning frameworks [20], which enable collaborative malware detection without 
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directly exposing the sensitive information of the users, thereby addressing growing privacy concerns 

in Android threat analysis. 

2.1 Static-analysis Techniques for Detecting Android Malware 

Numerous studies have focused on static analysis, highlighting its role in malware detection. Pathak et 

al. [21] utilized static analysis and reverse engineering to build an Android permission-based dataset. 

Using 48 features and a Random Forest (RF) classifier, they achieved 97.5% accuracy in malware 

detection.  Soi et al. [22] proposed an Android malware-detection method using API-based features from 

the DEX Call Graph, enabling interpretable models and malware-family correlation, with 87.3% 

accuracy and F1-score.  

Manh et al. [23] developed a five-step ML/DL-based approach to detect malicious APKs by generating 

and embedding Directed API Call Graphs (DACGs) with Graph2Vec, achieving 98% accuracy. 

Sivaprakash [24] proposed a static-analysis approach for Android malware detection using APK 

disassembly and bytecode inspection. The method leveraged LSTM and functional API-based DL 

models, utilizing features such as API calls, opcode sequences, and n-grams. 

Zhao et al. [25] introduced AppPoet, an LLM-powered Android malware-detection framework using 

static analysis, custom prompts, and a deep neural network (DNN) classifier. It combined multiple views 

for accurate detection and provided human-readable diagnostic reports. Hero et al. [26] analyzed 50 

Google Play applications using ESET Security and VirusTotal, revealing that 40 applications showed 

malware signs of 86% adware and 14% trojans, visualized via a Python tool. 

[27] evaluated XGBoost, RF, Support Vector Machine (SVM), and Decision Tree (DT) for Android

malware detection, with RF achieving the highest accuracy of 0.99, followed by SVM at 0.96, 

highlighting the effectiveness of ML in enhancing Android security. 

2.2 Dynamic-analysis Techniques for Detecting Android Malware 

Fallah et al. [28] used ML techniques to detect Android malware through network-traffic analysis across 

multiple malware families, achieving around 90% F1-score, but showed limited effectiveness in 

detecting both known and novel malware families. Amel et al. [29] proposed a dynamic-analysis 

framework for Android malware detection using system calls, debug logs and network activity. 

Combining these sources improved accuracy, aided by an MQTT-based intermediary to optimize 

database load and learning efficiency. 

Sathyadevi et al. [30] developed an Android malware-detection system using diverse data sources, such 

as permissions, network traffic, API calls, opcodes, system calls, binary features and behavioral logs, 

combined with advanced ML techniques. The framework was evaluated using standard performance 

metrics. Zhu et al. [31] introduced XDeepMal, an explainable DL–based malware-detection framework. 

It featured XTracer+, a dynamic tool that captured real-time execution traces, and an interpretation 

module that isolated key behavior segments influencing model decisions. Empirical results showed that 

XDeepMal provided robust, interpretable insights into DL-based detection. 

Prathapaneni et al. [32] proposed an ensemble of ML classifiers for multi-class dynamic feature 

classification using the CCCS-CIC-AndMal-2020 dataset. The ensemble notably improved malware-

family prediction, boosting Adware detection from 33.84% to 81.96% and Backdoor from 67.42% to 

83.71%.  Ciaramella et al. [33] combined DL with the Longest Common Subsequence algorithm to 

classify Android applications via system-call sequences converted into images. Using a dataset of 

13,570 samples, four convolutional neural networks (CNNs) achieved up to 89% accuracy. Class 

Activation Mapping techniques highlighted key regions to interpret system-call patterns, distinguishing 

malicious from benign behaviors. 

In [34], the authors analyzed 1,535 malicious Android applications and found that 18.31% used anti-

analysis techniques. To counter this, they introduced DOOLDA, a dynamic-analysis framework that 

detected and neutralized anti-analysis behaviors by injecting targeted instrumentation across bytecode 

and native layers. DOOLDA successfully defeated all known anti-analysis techniques. 

2.3 Hybrid-analysis Techniques for Detecting Android Malware 

Nasser et al. [35] proposed DL-AMDet, a DL–based Android malware-detection system using hybrid- 
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analysis features. It combined deep autoencoders for anomaly detection with a CNN-BiLSTM model 

for static features, achieving 99.935% accuracy across two datasets. In [36], the authors proposed 

HGDetector, a hybrid malware-detection method combining static function-call graphs and dynamic 

network-traffic features via graph embedding. This method improved detection accuracy by around 4% 

with informative traffic and up to 26% when compensating for weaker features, demonstrating the 

effectiveness of hybrid feature fusion. 

[37] introduced MPDroid, a multi-modal pre-training approach for Android malware detection using

API and function-call graphs. It leveraged graph convolutional networks and modality fusion to reduce 

bias and enable efficient single-modality detection. MPDroid achieved 98.3% accuracy and 97.6% F1-

score while reducing training and inference time. Mesbah et al. [38] proposed LongCGDroid, an image-

based malware-detection method using semantic API call graphs from control and data-flow graphs. 

They evaluated model performance over time as APIs evolved, finding that CNNs with abstract API 

features remained the most robust despite general accuracy declines. 

Mercaldo et al. [39] evaluated whether images generated by deep convolutional generative adversarial 

networks (DCGANs) from Android malware data could be distinguished from real ones. Using static 

and dynamic analysis to create datasets, ML classifiers achieved an F1-score of approximately 0.8 in 

differentiating synthetic from real malware images. In [40] the authors explored ML techniques for 

Android malware detection using hybrid features from Androguard and Droidbot. k-Nearest Neighbors 

(KNNs) achieved the highest accuracy at 99%, followed by DT at 98%, RF at 92%, and Naive Bayes 

(NB) at 86%, highlighting KNNs’ effectiveness. 

[41] introduced TAML, a time-aware ML framework for Android malware detection using the

KronoDroid dataset. It built time-aware and time-agnostic models, identifying LastModDate as a key 

feature. TAML achieved a 99.98% F1-score in the time-agnostic setting and up to 99% annually in time-

aware evaluations over 12 years. Aledam et al. [42] proposed a hybrid Android malware-detection model 

combining static and dynamic analysis with PCA-based feature reduction. Evaluated on real and 

synthetic datasets, the model improved detection accuracy and efficiency, enhancing smartphone 

security. 

Waheed et al. [43] enhanced the KronoDroid dataset with malware-category labels and dynamic features 

from real devices. Using ExtraTree for feature selection, they trained several ML models, with RF 

achieving 98.03% accuracy for detection and 87.56% for classifying 15 malware types. 

2.4 Federated Learning and Privacy-protection Approaches for Detecting Android 

Malware 

Federated Learning (FL) is a decentralized paradigm that enables a model to be trained across multiple 

devices without sharing or exposing the raw data of the users. Each device is trained locally by utilizing 

its own data and then shares only the model parameters to a central FL server, while ensuring that the 

user data remains in the device. Then, the FL server aggregates these model parameters to create a global 

model. 

Hus et al. [44] proposed a private preserving FL (PPFL), which is an Android malware-detection system 

based on SVM. The model was trained using static analysis and secured with the Secure Multi-Party 

Computation (SMPC). Their results claimed that their system achieved a higher detection rate compared 

to the local model, and the results showed that accuracy increased with an increase in the number of 

clients. Mahindru et al. [45] introduced DNNdroid, which is based on the principle of FL. This model 

collected features from the users’ devices without prior knowledge of where an application is installed. 

The results revealed that the model achieved a 97.8% F1-score with a false positive rate of 0.95 using 

one million Android applications with 500 users and 50 rounds of federation. Moreover, Taheri et al. 

[46] presented Fed-IIoT, which is an architecture of FL that consisted of two parts: first, the data-

collection part through dynamic attack based on Generative Adversarial Network (GAN) and Federated 

GAN; and second, the server part, where the parameters are monitored, and by utilizing the A3GAN to 

avoid anomaly in aggregation and monitoring the parameters. The results showed high accuracy with 

8% higher than the existing solutions. Çıplak et al. [47] proposed FEDetect, an FL model, and compared 

it with non-FL models by building 22 variants using LSTM and feedforward neural networks. The 

results showed that FL achieved 99% accuracy in binary classification and 84.5% in multi-class 

classification. 
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In this paper, TAB-DROID is proposed, which is a new framework for Android malware detection that 

leveraged CMIM and JMI for feature selection, employed a PQ technique for feature compression and 

utilized TabPFN classifier. The system is evaluated using two datasets, the first consists of hybrid 

features, which have demonstrated superior performance compared to static or dynamic features 

mentioned above, thereby enhancing the overall detection accuracy and robustness of the model. The 

second dataset comprises only static features. 

3. TAB-DROID FRAMEWORK

The proposed TAB-DROID framework is comprised of four sequential and interrelated stages, as 

illustrated in Figure 1, each contributing to the overall malware-detection process. The first stage is data 

pre-processing, where the data is cleaned and balanced. The second stage performs feature reduction 

using two concurrent advanced selection methods: CMIM and JMI, with selection guided by 

framework-accuracy performance. In the third stage, the selected features are compressed using PQ to 

reduce computational complexity while retaining discriminative capability. Finally, the fourth stage 

employs the TabPFN classifier for efficient and accurate malware detection. Figure 1 presents the 

overall methodology of the TAB-DROID framework. 

3.1 Dataset Overview 

This sub-section explores the real-world datasets employed in the proposed work. The first dataset 

utilized is TUANDROMD, comprising 4,464 Android APK samples (3,565 malware and 899 benign) 

and 241 behavioral features stored in CSV format. The dataset construction followed three phases: phase 

1: application collection; phase 2: static and dynamic analysis using tools, like APKAnalyser [48], 

Androguard, and Smali-CFGs [49]; phase 3: feature extraction. Extracted features are categorized as 

permission-based (i.e., captured during installation and runtime) and API call–based (i.e., reflecting 

functional behavior). The resulting hybrid feature set combined static and dynamic attributes, enabling 

comprehensive behavioral profiling for robust machine learning–based malware detection.  

Figure 1. The proposed TAB-DROID framework. 

The second dataset used is Malgenome, comprising 3,799 Android APK samples (2,539 benign and 

1,260 malwares) sourced from the widely used Android Malware Genome Project [50]. It includes 215 

features extracted via an automated static-analysis tool developed in Python. After decompiling the 

manifest files using AXMLPrinter2, the tool extracted permissions and intents, while API calls are 

retrieved by reverse engineering .dex files using the Baksmali disassembler. The analyzer also detected 

potentially dangerous Linux commands and checked for embedded files, such as: .dex, .jar, .so, and 

.exe, enabling comprehensive static feature extraction. 

3.2 Data Pre-processing 

Data pre-processing is an essential step to ensure the quality and suitability of the dataset before applying 

the proposed framework, as poor data quality can significantly impair model performance. The pre-

processing process involves handling missing values, removing nulls and outliers and discarding 

features with zero or very low variance, which contribute a little to learning due to their minimal 

informational value. These steps ensure that the final dataset is clean, structured and ready for modelling. 
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As described earlier, the dataset exhibited class imbalance, with benign samples representing only a 

quarter of the malware samples. Such an imbalance can bias the model toward the majority class and 

degrade detection performance. To address this, two resampling strategies are typically employed: over-

sampling (i.e., increasing minority-class instances) and under-sampling (i.e., reducing majority-class 

instances).  

In this paper, the Synthetic Minority Oversampling Technique (SMOTE) is applied to over-sample the 

benign class. SMOTE is chosen for its ability to generate diverse synthetic samples, thereby preserving 

pattern variability and improving model generalization. This resulted in a balanced dataset with 3,565 

samples per class for TUANDROMD dataset and 2539 per class for Malgenome dataset, subjected to 

complete pre-processing for subsequent analysis. 

3.3 Feature Selection 

Feature selection plays a critical role in pattern recognition and machine-learning systems, serving as 

an essential pre-processing step to identify or prioritize features based on their relevance to the target 

task. In this paper, feature generation, as illustrated in Figure 1, yields many features. Consequently, 

applying feature selection techniques becomes imperative to reduce dimensionality, thereby decreasing 

model training time and enhancing the overall detection performance and classification accuracy by 

emphasizing the most informative features. Various feature-selection strategies are developed to isolate 

an optimal sub-set of features, facilitating the construction of more efficient and effective models. 

Generally, these techniques are categorized into three primary groups: filter methods, wrapper methods 

and embedded methods. 

Filter methods rank features based on their intrinsic statistical properties without involving model 

training. They are simple, fast and well-suited for large datasets. However, they ignore feature inter-

dependencies, potentially selecting individually relevant features that may not improve model 

performance. Wrapper methods select features by iteratively training a model and evaluating 

performance. These approaches yield high relevance, but are computationally expensive and time-

consuming. They also risk overfitting, especially with small datasets. The embedded methods integrate 

feature selection within model training, combining the efficiency of filters and the accuracy of wrappers. 

This process reduces overfitting by considering feature relevance during training, but depends heavily 

on the chosen algorithm and involves higher computational complexity. 

In this paper, two filter techniques are utilized as concurrent feature-selection strategies because of the 

advantages of filter methods over wrapper and embedded methods. These techniques are CMIM [51] 

and JMI [52]. Both seek to identify the features that exhibit the maximum relevance to the target variable 

while minimizing redundancy with the already selected features. This ensures that the chosen features 

contribute to the most informative content without introducing unnecessary overlap, leading to more 

efficient and effective models.  

The final selection between these two techniques is determined based on which technique yields superior 

performance for the TAB-DROID framework. Both techniques are based on information theoretic 

principles, relying on entropy and mutual information [53]-[54]. Entropy serves as a fundamental 

concept in the information theory of uncertainty in a random variable, denoted as 𝐸(𝐹), which quantifies 

the amount of uncertainty or randomness associated with the distribution of 𝐹. It is defined as shown in 

Equation (1). 

𝐸(𝐹) =  −∑ 𝒫(𝑓) log𝒫(𝑓)𝑓∈𝐹  (1) 

where 𝒫(𝑓) is the probability mass function of the random variable 𝐹.  𝑓 represents the value of all 

possible values of  𝐹. If the distribution of 𝐹 is heavily skewed towards one particular event, indicating 

minimal uncertainty regarding the outcome, the entropy 𝐸(𝐹) is low. In contrast, events are likely equal, 

implying maximum uncertainty about the result, and the entropy reaches its maximum value. This 

characteristic of entropy helps quantify the unpredictability or the level of disorder inherent in the system 

represented by 𝐹. Let 𝑌 be another event; the entropy can be conditioned on that event. This can be 

denoted as shown in Equation (2). 

𝐸(𝐹|𝑌) =  −∑ 𝒫(𝑦)𝑦∈𝑌 ∑ 𝒫(𝑓|𝑦) log𝒫(𝑓|𝑦)𝑓∈𝐹                                    (2)

This can be interpreted as the amount of uncertainty that remains in 𝐹 after the outcome of 𝑌 is known. 
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In other words, it quantifies how much information 𝐹 still contains after accounting for the information 

provided by 𝑌. This is central to understanding the relationship between two random variables in terms 

of shared information. Now, mutual information between 𝐹  and 𝑌  can be formally defined, which 

quantifies the amount of information shared between these two variables. It is defined as shown in 

Equation (3) (for more details, see appendix A). 

𝑀𝐼(𝐹; 𝑌) =  𝐸(𝐹) −  𝐸(𝐹|𝑌)           (3) 

Equation (3) represents the difference between: E(𝐹), which is the uncertainty about 𝐹 before knowing 

𝑌 and 𝐸(𝐹|𝑌), which is the uncertainty about 𝐹 after knowing 𝑌, Mutual Information can be interpreted 

as the amount of uncertainty in 𝐹 that is eliminated by knowing 𝑌. Thus, it corresponds to the intuitive 

interpretation of mutual information as the quantity of information that one variable reveals about 

another.  

One of the properties of mutual information is symmetry, which means that  𝑀𝐼(𝐹; 𝑌) =  𝑀𝐼(𝑌; 𝐹). 
Additionally, when 𝑓 and 𝑦 variables are statically independent, this means the mutual information 

equals zero, indicating that their joint probability distribution is factorized as 𝒫(𝑓, 𝑦) =  𝒫(𝑓)𝒫(𝑦). 

Alternatively, Equation (3) according to Fleuret [50] can also be expressed as in Equation (5). 

𝑀𝐼(𝐹; 𝑌) =  𝐸(𝐹) + 𝐸(𝑌) −  𝐸(𝐹, 𝑌)    (4) 

Similar to Equation (2), mutual information can also be conditioned, meaning that the amount of shared 

information can be measured between two random variables  𝐹 and 𝑌 while accounting for the influence 

of a third variable  𝑍. The conditional mutual information is defined as in Equation (5) (for more details, 

see appendix A). 

𝑀𝐼(𝐹; 𝑌|𝑍) =  𝐸(𝐹|𝑍) −  𝐸(𝐹|𝑌𝑍)      (5) 

Alternatively, according to Fleuret [50] Equation (5) can also be expressed as in Equation (6) (for more 

details, see appendix A). 

𝑀𝐼(𝐹; 𝑌|𝑍) =  𝐸(𝐹, 𝑍) − 𝐸(𝑍) − 𝐸(𝐹, 𝑌, 𝑍) + 𝐸(𝑌, 𝑍)     (6) 

After establishing a foundational understanding of entropy, mutual information and their conditional 

forms, the JMI and CMIM techniques are introduced and discussed, along with their key differences. 

Assume that a dataset of features set 𝐹, where 𝐹 = {𝑓1, 𝑓2, … 𝑓𝑛. . , 𝑓𝑁−1, 𝑓𝑁}, and 𝑁 is the total number

of features, while 𝑆 is another set of selected features chosen according to their scores, where 𝑆 =
{𝑠1, 𝑠2, … 𝑠𝑘. , 𝑠𝐾−1, 𝑠𝐾} while 𝐾 is the number of features needed to be selected and the label of the class

is 𝐿. The objective function of JMI is represented as in Equation (7) (for more details, see appendix A). 

𝐽𝑀𝐼(𝑓𝑛) = 𝑀𝐼(𝑓𝑛, 𝐿) −
1

|𝑆|
∑ [𝑀𝐼(𝑓𝑛, 𝑠𝑘) −𝑀𝐼(𝑓𝑛, 𝑠𝑘|𝐿)]𝑠𝑘∈𝑆 (7) 

Equation (7) computes the JMI between the pair of features (𝑓𝑛, 𝑠𝑘) and the class label 𝐿. By using the

sum operator in the equation, it quantifies how much additional and combined information the new 

candidate feature 𝑓𝑛 can provide together with each previously selected feature 𝑠𝑘 in predicting the class

label 𝐿. The objective function of CMIM is represented in Equation (8) (for more details, see appendix 

A). 

𝐶𝑀𝐼𝑀(𝑓𝑛) =  𝑀𝐼(𝑓𝑛; 𝐿) − {𝑚𝑎𝑥𝑠𝑘∈𝑆[𝑀𝐼(𝑓𝑛; 𝑠𝑘) − 𝑀𝐼(𝑓𝑛; 𝑠𝑘|𝐿)]}                        (8)

Equation (8) computes the conditional mutual information between 𝑓𝑛  and the target class 𝐿 ,

conditioned on each feature 𝑠𝑘 that has already been selected. The minimum of these values is then used

as the score for 𝑓𝑛 , which means that 𝑓𝑛  has maximum relevance to the class label and minimum

redundancy to the features in the 𝑆 set. 

The CMIM algorithm exists in two variants: the standard and optimized implementations. The fast 

implementation is utilized in this paper, which is the optimized version. The Fast-CMIM version 

exploits the observation that, as the selection process progresses, the score vector can only decrease, 

allowing for the omission of unnecessary score updates. Importantly, this optimization introduces no 

approximations. 

In the fast CMIM approach, for each feature 𝑓𝑛, a partial score 𝑃𝑠[𝑛]is maintained, representing the

minimum of the conditional mutual information values as defined in Equation (8). Additionally, a vector 

𝑚[𝑛] is used to track the index of the last selected feature considered in the computation of 𝑃𝑠[𝑛]. The 
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detailed procedure for the fast CMIM implementation is outlined in the pseudo-code presented in 

Algorithm 1. 

The principal distinction between JMI and CMIM lies in their selection strategies. JMI emphasizes the 

selection of features that, in combination with the already selected features, share a significant amount 

of information with the class label 𝐿, as described in Equation (7). In other words, JMI favours features 

that demonstrate strong collaborative effectiveness. In contrast, CMIM focuses on selecting features that 

provide a novel information about the class label 𝐿, which has not yet been captured by the previously 

selected features, as described in Equation (8). Thus, CMIM prioritizes features that are individually 

strong and minimally redundant. Due to this difference, JMI may tolerate a certain degree of redundancy 

if the additional features contribute positively to the overall model performance, whereas CMIM may 

exclude features that, despite being informative, are redundant with already selected ones. 

Algorithm 1. Fast-CMIM. 

1. For (𝑛 = 1 𝑡𝑜 𝑁) Do:

2.        𝑃𝑠[𝑛] = 𝑀𝐼(𝑛)

3.        𝑚[𝑛] = 0

4. End For

5. For (𝑘 = 1 𝑡𝑜 𝐾) Do:

6.         𝑞∗ = 0

7.        For (𝑛 = 1 𝑡𝑜 𝑁) Do:

8.                While (𝑃𝑠[𝑛] > 𝑞∗) & (𝑚[𝑛] < 𝐾 − 1) Do:

9.  𝑚[𝑛] = 𝑚[𝑛] + 1  

10.  𝑃𝑠[𝑛] = min (𝑃𝑠[𝑛], 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑀𝐼 (𝑛, 𝑛𝑢[𝑚[𝑛]])) 

11.                End While

12.                If (𝑃𝑠[𝑛] > 𝑞∗) Then:

13.                    𝑞∗ = 𝑃𝑠[𝑛]

14. 𝑛𝑢[𝑘] = 𝑛

15.                End If

16.        End For

17. End For

Note: 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒂𝒍_𝑴𝑰(𝒏,𝒎)= 𝑴𝑰(𝒇𝒏; 𝑳|𝒔𝒌), 𝑴𝑰(𝒏) =  𝑴𝑰(𝒇𝒏; 𝑳), and  𝒏𝒖[𝒎[𝒏]] is conditioned on selected features.

3.4 Product Quantization 

In the data-science domain, especially with high-dimensional datasets, the constraints of the resources 

of memory and computation present great challenges. As the size and dimensionality of data rise, the 

associated processing and storage requirements can quickly become infeasible. To address these 

restrictions, this sub-section presents PQ [55]-[57] as an effective data-compression technique that 

preserves main patterns and structure within the data while safely reducing size demands. 

Before illustrating PQ, it is important to understand the concept of quantization and its associated 

benefits. Quantization is a compression technique used for high-resolution data that maps it to smaller 

discrete values. This data precision is slightly reduced, but it keeps the key characteristics of the original 

data, thereby enabling efficient compression of data without substantial loss of information. To formally 

describe the PQ process, some notations will be introduced. Let the dataset be composed of high-

dimensional vectors in an 𝑁-dimensional space. For simplification, a vector 𝑉 ∈  ℛ𝑁 is utilized. This

vector 𝑉 is partitioned into 𝐼 sub-vectors (𝑆𝑉) as in Equation (9). 

𝑉 = {𝑣1, 𝑣2, . . , 𝑣𝑁
𝐼

⏞      
𝑆𝑉1

, … . , 𝑣
𝑁−

𝑁

𝐼
+1
, … . 𝑣𝑁⏞        

𝑆𝑉𝐼

}  = {𝑆𝑉1, 𝑆𝑉2, . . . , 𝑆𝑉𝑖, . . . . 𝑆𝑉𝐼}        (9) 

𝑆𝑉𝑖 ∈  ℛ
𝑁/Ι , for 𝑖 ∈ {1,2, . . . , 𝐼} , representing the 𝑖𝑡ℎ  sub-vector of 𝑉 . Each 𝑆𝑉𝑖 is quantized

independently, which allows for efficient compression. During the training phase of PQ, a separate sub-

codebook is constructed for each 𝑆𝑉𝑖 . Each sub-codebook is denoted as in Equation (10).

𝒞𝑖 = { 𝒸𝑞
𝑖 }𝑞=1
𝑄

    (10) 

where 𝒸𝑞
𝑖 ∈ 𝑅𝑁/𝐼 represents the 𝑞𝑡ℎ sub-codeword in the 𝑖𝑡ℎ sub-codebook and 𝑄 denotes the number

of codewords per sub-codebook and the parameter 𝑄 is specified by the user during the quantization. 
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Each sub-codebook 𝒞𝑖 is obtained by applying k-mean clustering algorithm to the 𝑖𝑡ℎ sub-space of the
training vectors. To encode a high-dimensional vector 𝑉  using PQ, each sub-vector 𝑆𝑉𝑖  is

independently encoded into an identifier of its nearest codeword in 𝒞𝑖 using sub-encoder function, which

is denoted as in Equation (11). 

ℓ𝑖( 𝑆𝑉𝑖) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑞∈{1,..𝑄}‖𝑆𝑉𝑖 − 𝒸𝑞
𝑖 ‖
2

  (11) 

After encoding all the sub-vectors, the original high-dimensional vector 𝑉 is compactly represented as 

a sequence of 𝐼  discrete identifiers, one for each sub-vector. At the end, by concatenating these 𝐼 
identifiers, a PQ-code is created, which defined as in Equation (12). 

ℓ(𝑉) = {ℓ1(𝑆𝑉1), . . . . , ℓ
𝐼(𝑆𝑉𝐼)}         (12) 

where an encoder function is defined as ℓ: 𝑅N⟶ {1, . . . , 𝑄}𝐼. Although conceptually straightforward,

the implementation of PQ is also relatively simple. This is illustrated in Algorithm 2, which presents the 

corresponding pseudocode. 

Algorithm 2. Product Quantization Pseudocode (PQ) 

1. # a sample vector

2. 𝑉
3. # The dimension per sub-vector Ds = N / I

4. I = 66

5. # The dimension per sub-vector

6. Ds = TNF/I

7. # Creating empty array for codewords

8. CW = (I, Q, Ds)

9. For (i = 1 to I) Do:

10.  Sub_vec = V [i * Ds to (i+1) * Ds]

11.  CW [i] = k-means (Sub_vec, Q)

12. End For

13. #creating empty array for PQ identifier

14. PQC = [I]

15. #encoding each sub-vector into an identifier

16. For (i = 1 to I) Do:

17.  Sub_vec = V [ i * Ds to (i+1) * Ds]

18.  PQC[i] = VQ (sub_vec, CW[i])

19. End For

V is a sample vector, I = number of sub-vectors, Ds = dimension per sub-vector (N/I), TNF = total number of features, CW = 

3D array to store codewords, k-means = is applying the k-mean clustering where the Q is the number of clusters, PQC = array 

for product-quantization code, VQ = nearest codeword in CW[i]. 

3.5 TabPFN Classifier 

TabPFN is a type of classifier specifically designed for tabular datasets [58], built on a generative 

transformer-based neural network [59] and pre-trained or self-learned on a large synthetic dataset before 

being used. Since it is pre-trained, TabPFN requires neither any retraining tasks nor fine tuning during 

inference, which makes it computationally efficient. TabPFN does not stick with or tailor to a specific 

tabular dataset, which enhances its applicability to real-world data.  

TabPFN consists of three phases: The first phase is the data-generation phase, where various synthetic 

tabular datasets are generated utilizing structural causal models (SCMs) [60] which encode diverse 

targets and feature relationships. These datasets are built to capture a broad spectrum of potential 

scenarios. SCMs provide a framework that represents the structural relationships and generative process 

that the dataset relies on. The construction of these datasets starts with sampling high-level hyper-

parameters (i.e., the number of features, data size, and the level of difficulty) to control the properties of 

the datasets generated. Afterward, a cyclic graph is constructed, which allocates the causality structure 

that the dataset relies on. Each sample per dataset is generated by propagating random noise on the 

causal graph root node. These samples are produced by sampling from a uniform distribution or random 

normal distribution and applying a varied set of computational mapping as these samples pass through 

the edges of the graph. At each edge, Gaussian noise is added. After constructing the causal graph, the 



457

" TAB-DROID: A Framework for Android Malware Detection Using the TABPFN Classifier", A. M. Saeed et al. 

sample features and target values are extracted from the feature and target nodes, which are sampled. 

The second phase is the pre-training phase, where a single transformer is trained offline using a large 

collection of synthetic datasets. The objective of this training is to learn to predict unknown targets 

within synthetic datasets. This phase is performed only once at the beginning and enables the model to 

acquire a generalized inference model. This approach is referred to as Prior Data Fitted Networks (PFNs) 

[61], where the learned algorithm can be applied to new datasets without additional retraining. In the 

final phase, after comprehensive pre-training on synthetic datasets, the model is applied to real-world 

data (i.e., an unseen dataset from the model's point of view). This step leverages in-context learning 

(ICL) [62], wherein a set of labelled instances is provided as context. The model utilizes this contextual 

information to infer the labels of unseen samples without requiring re-training or fine tuning. ICL 

enables the model to generalize effectively to new tasks by drawing on the algorithmic priors learned 

during the pre-training phase. 

4. EXPERIMENTAL RESULTS

This section outlines the setup for the experiment, the evaluation metrics employed and the results. There 

are five evaluation metrics employed to assess the performance of the proposed framework. These 

include accuracy, recall, precision, F1-score and the area under the Receiver Operating Characteristic 

(ROC) curve (AUC) as presented in Equations (13) to (16), respectively [63]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (13) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
      (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑝
   (15) 

𝐹1 =  
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑝+𝐹𝑁)

     (16)

Here, 𝑇𝑃 (True Positive) denotes the number of malicious APKs correctly classified as malicious, while

𝑇𝑁  (True Negative) represents the number of benign APKs correctly identified as benign. 𝐹𝑃 (False

Positive) refers to benign APKs incorrectly labelled as malicious, and 𝐹𝑁 (False Negative) corresponds

to malicious APKs that are incorrectly classified as benign. 

After preparing the datasets as described in the data pre-processing sub-section, each one is partitioned 

into training (80%) and testing (20%) sub-sets. These sub-sets are processed through two parallel 

pipelines. The first pipeline consists of Fast-CMIM for feature selection, followed by PQ and finally, 

TabPFN. The second pipeline follows the same structure, but begins with JMI instead of Fast-CMIM.  

Each feature-selection technique is independently applied to the training data to identify the most 

informative features. The selected features are then used to replace the original feature sets in both 

training and testing sub-sets. PQ is subsequently applied to compress these datasets, after which TabPFN 

is trained on the compressed training data and evaluated on the corresponding compressed test sets. To 

optimize the PQ, the number of sub-vectors 𝐼  and the number of codewords per sub-vector are 

empirically tuned. The best configuration is selected based on maximum classification accuracy with 

the lowest-feature sub-set. To reduce computational complexity, each feature vector is divided into sub-

vectors containing exactly two features. Each sub-vector is then quantified using k-means clustering 

with a codebook size of two.  

TabPFN is evaluated using 5-fold cross-validation, with performance metrics averaged to assess 

generalization capability. Experimental results demonstrate that the CMIM-based pipeline consistently 

outperformed the JMI-based pipeline. For the TUANDROMD dataset, the optimal configuration is 

achieved using 66 selected features, grouped into 33 sub-vectors, each quantized with 2 codewords, 

resulting in a final input dimensionality of 33. Similarly, for the Malgenome dataset, the best results are 

obtained with 88 features, 44 sub-vectors and 2 codewords per sub-vector, yielding a reduced dimension 

of 44.  

Figure 2 illustrates the high performance of the CMIM-based pipeline across both datasets. It achieves 

peak accuracy at 66 features (TUANDROMD) and 88 features (Malgenome), while the JMI-based 
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pipeline shows comparatively lower accuracy, even as the number of features increases. The CMIM-

based pipeline also consistently outperforms JMI across all evaluation metrics, including accuracy, 

AUC, precision, recall, and F1-score, indicating its effectiveness in selecting highly discriminative 

features. These results confirm that CMIM not only reduces feature dimensionality, but also enhances 

the overall classification performance. 

Figure 2. Comparison of evaluation metrics across different feature counts for CMIM and JMI-based 

pipelines on both datasets. 

The results in Table 1 demonstrate the greater performance of the CMIM-based pipeline over the JMI-

based pipeline, across all evaluated performance metrics. These results indicate that individual features 

in the dataset exhibit strong relevance to the target classes, which is consistent with the CMIM approach 

that prioritizes the individual contribution of each feature to the labelled class. In contrast, JMI 

emphasizes the joint relevance of feature combinations, which may overlook individually informative 

features. Based on the experimental findings, the TAB-DROID is constructed by integrating the CMIM 

feature-selection technique, PQ for dimensionality reduction and the TabPFN classifier, which is 

selected due to its superior performance across all evaluation metrics. Also, it is shown that 

incorporating PQ significantly reduces both training and testing times, particularly testing time, as well 

as overall memory usage, as shown in Table 2. This highlights PQ’s effectiveness in optimizing 

computational efficiency within the proposed framework. 
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Table 1. Performance evaluation of the proposed CMIM-based pipeline and JMI-based pipeline. 

Framework Dataset Name Number 

of 

Features 

Accuracy 

(%) 

AUC 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

CMIM-based 

Pipeline TUANDROMD 

66 99.22 99.92 99.69 98.76 99.22 

JMI-based 

Pipeline 

100 94.57 97.62 98.09 90.90 94.36 

CMIM-based 

Pipeline Malgenome 

88 98.62 99.81 99.19 98.01 98.60 

JMI-based 

Pipeline 

100 94.09 98.48 97.13 90.86 93.88 

Table 2. Comparison of the CMIM-based pipeline with and without PQ in terms of training time, 

testing time and memory usage. 

CMIM-based 

Pipeline 

Dataset Name Training Time 

(sec) 

Testing Time 

(sec) 

Memory Usage 

(MB) 

With PQ TUANDROMD 

Dataset 

(66-feature) 

33.70 0.004 15.2 

Without PQ 33.82 0.009 35.5 

With PQ Malgenome 

Dataset 

(88-feature) 

6.91 0.006 21.6 

Without PQ 8.657 0.01 34.1 

Figure 3 compares the performance of traditional classifiers, such as LR, SVM, NB, and Gradient 

Boosting (GB), against the TabPFN classifier within the CMIM-based pipeline, using the same feature 

sub-set selected by the CMIM technique for both datasets. The results in the graphs demonstrate that the 

proposed framework achieves superior accuracy, along with higher precision, F1-score and recall. 

Although the AUC remains comparable across models, TabPFN consistently outperforms classical 

classifiers, confirming its effectiveness in the proposed detection system. 

To assess the performance and reliability of the proposed TAB-DROID framework, a comparative 

analysis is carried out against other recent Android malware detection frameworks. As shown in Table 

1, the TUANDROMD dataset consistently yields higher performance compared to the Malgenome 

dataset, which can be attributed to its hybrid feature composition, offering richer behavioral insights. 

Unlike Malgenome, which includes only static features, TUANDROMD integrates recent attributes, 

providing greater data diversity and enhancing its suitability for real-time and obfuscation-resilient [64] 

detection. A detailed comparison of the two datasets' main aspects is summarized in Table 3. Therefore, 

all frameworks are evaluated on the TUANDROMD dataset to ensure consistency and fairness in 

comparison, leveraging its comprehensive information for more robust evaluation. 

Table 3. Comparison of TUANDROMD and Malgenome characteristics. 

Aspect Malgenome Dataset TUANDROMD Dataset 

Data Diversity Focuses on early Android threats of 

49 malware families. 

Modern dataset captures the recent 

spectrum of 71 malware families. 

Real-time Testing Less realistic, as samples do not 

reflect today’s threats. 

Most realistic, as the samples exhibit 

current attack behaviors. 

Obfuscation & Evasion Susceptible to evasion attacks. Employs advanced obfuscation and 

morphing techniques. 

The comparative results are summarized in Table 4. for TAB-DROID versus those state-of-the-art 

frameworks [64]-[70] utilizing the TUANDROMD dataset, Wajahat, Ahsan et al. [66] utilized the 

smallest feature set, emphasizing feature economy. T. Kacem et al. [67] achieved the highest accuracy 

and F1-score, which are nearly equivalent to those attained by the proposed TAB-DROID framework. 

Furthermore, TAB-DROID reduced the feature space by 73% of the original 241 features while 
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maintaining superior performance. It outperformed all other frameworks in terms of precision and 

achieved an AUC value approaching 100%, highlighting its robustness and high classification 

confidence. 

Figure 3. Comparison of evaluation metrics for CMIM-based pipeline versus classical classifiers on 

both datasets. 

Despite its strong performance, TAB-DROID has limitations, including reliance on specific feature sets, 

challenges in detecting more advanced evasion techniques and the need for PQ hyper-parameter tuning. 

Additionally, employing a lightweight alternative classifier could make the system more suitable for 

deployment on mobile devices. 

Table 4. TAB-DROID performance versus recent state-of-the-art frameworks. 

Ref. Year Model Features 

(%) 

Accuracy 

(%) 

AUC 

(%) 

Precision 

(%) 

F1-score 

(%) 

[64] 2024 SVC 241 98.9 100 97 84.2 

[65] 2024 DNDF 241 98.4 99 98.8 98.94 

[66] 2024 RFE+RF 40 98 - 99 98.8 

[67] 2025 Transformer 241 99.25 98.76 99.26 99.26 

[68] 2025 Decision Tree 241 99.1 - 99 99

[69] 2024 Transformer+CNN 241 97.7 - 97.5 97.25

[70] 2024 RF+PCA - 98 - 98 98 

Proposed 

TAB-DROID 

CMIM+PQ+TabPFN 66 99.22 99.92 99.69 99.22 
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The entire system is implemented and executed using Python version 3.8 within a Jupyter Notebook 

environment. Feature selection using the JMI method is conducted utilizing the publicly available scikit-

feature library [71], which includes a range of widely used feature-selection algorithms. Similarly, the 

Fast CMIM technique is adopted from the same repository, with modifications introduced to enhance 

computational efficiency, as outlined in algorithm 2. For vector quantization, PQ is implemented using 

the nanopq library [72]. The TabPFN classifier is integrated using its official open-source repository 

[73]. The experimental setup utilizes essential Python libraries, including Pandas (v1.2), NumPy 

(v1.23), Scikit-learn (v1.2) and Matplotlib (v3.7). The experiment is conducted using Google Colab, a 

cloud-based Jupyter notebook environment that provides free access to computational resources. Google 

Colab allows users to write and execute Python code directly in the browser without local configuration. 

It also offers access to hardware accelerators, including GPUs, which significantly enhances 

computational efficiency. In this paper, a T4 GPU is utilized to accelerate experimental processes. 

5. CONCLUSION

In this paper, TAB-DROID is introduced, which is a novel and efficient Android malware-detection 

framework integrating CMIM, PQ and the TabPFN classifier. The framework demonstrated superior 

performance, where the accuracy, AUC, precision, recall and F1-score metrics reached 99.2%, 99.9%, 

99.6%, 98.7% and 99.2%, respectively. CMIM reduced the feature space by 73%, while PQ decreased 

testing time and memory usage by 44.4% and 42.8%, confirming its resource efficiency. Compared to 

recent approaches, TAB-DROID improved accuracy by up to 1.52% and precision by up to 2.69%, 

achieving near-perfect classification. Moreover, TAB-DROID is considered general and scalable. 

Regarding generalization, it utilized TabPFN, which avoided overfitting to specific datasets and enabled 

robust detection across diverse malware samples. In terms of scalability, TAB-DROID applied feature 

reduction and compression, which lowered computational complexity, testing time and memory usage. 

For future work, the TAB-DROID can be extended for deployment on cloud-based solutions, enabling 

mobile devices to leverage the framework without heavy local computation. Additionally, it is planned 

to evaluate it by integrating additional datasets that incorporate more advanced evasion techniques and 

a broader set of behavioral features, allowing the system to identify the most informative features and 

maintain high detection performance as Android malware rapidly evolves. 

APPENDIX A 

A1. Proof of Equation (3) 

Let 𝐹 𝑎𝑛𝑑 𝑌 be two random variables, the mutual information between 𝐹 and 𝑌  by definition of Kullback-Leibler 

divergence is defined as follows: 𝑀𝐼(𝐹; 𝑌) =  ∑ ∑ 𝒫(𝑓, 𝑦)𝑦∈𝑌 log
𝒫(𝑓,𝑦)

𝒫(𝑓)𝒫(𝑦)𝑓∈𝐹

Expand the log, which separates the MI into three summation terms, each of which corresponds to an entropy as 

follows: ∑ ∑ 𝒫(𝑓, 𝑦)𝑦∈𝑌𝑓∈𝐹 [log𝒫(𝑓, 𝑦) − log𝒫(𝑓) − log𝒫(𝑦)] 

Evaluate each term using the entropy definition: 

The first term: −∑ ∑ 𝒫(𝑓, 𝑦)𝑦∈𝑌𝑓∈𝐹 log𝒫(𝑓, 𝑦)  =  𝐸(𝐹, 𝑌) 

The second term: −∑ ∑ 𝒫(𝑓, 𝑦)𝑦∈𝑌𝑓∈𝐹 log𝒫(𝑓)  =  ∑ (∑ 𝒫(𝑓, 𝑦)𝑦∈𝑌 )𝑓∈𝐹 log𝒫(𝑓) 

According to the Marginal distribution, the second term can be rewritten as follows: 

−∑∑𝒫(𝑓, 𝑦)

𝑦∈𝑌𝑓∈𝐹

log𝒫(𝑓)  =  ∑𝒫(𝑓)

𝑓∈𝐹

log𝒫(𝑓)  =  𝐸(𝐹) 

The third term is similar to the second term: −∑ ∑ 𝒫(𝑓, 𝑦)𝑦∈𝑌𝑓∈𝐹 log𝒫(𝑦) = ∑ 𝒫(𝑓)𝑓∈𝐹 log𝒫(𝑓) =  𝐸(𝑌)  

Substitute back the three terms into the MI equation: 𝑀𝐼(𝐹; 𝑌) =  𝐸(𝐹, 𝑌) − 𝐸(𝐹)  −  𝐸(𝑌)   
By using the chain rule, where 𝑀𝐼(𝐹; 𝑌) = 𝐸(Y) + 𝐸(𝐹|𝑌)  =  𝐸(𝐹) + 𝐸(𝑌|𝐹), rearrange to obtain the following 

formula: 

𝑀𝐼(𝐹; 𝑌) =  𝐸(𝐹) − 𝐸(𝐹|𝑌) 

A2. Proof of Equation (5) 

The conditional mutual information between 𝐹 𝑎𝑛𝑑 𝑌 𝑔𝑖𝑣𝑒𝑛 𝑍 definition is as follows: 

𝑀𝐼(𝐹; 𝑌|𝑍) =  ∑∑∑𝒫(𝑓, 𝑦, 𝑧)

𝑧∈𝑍𝑦∈𝑌𝑓∈𝐹

log
𝒫(𝑓, 𝑦|𝑧)

𝒫(𝑓|𝑧)𝒫(𝑦|𝑧)

This definition measures the dependence between 𝐹 𝑎𝑛𝑑 𝑌 once the variable 𝑍 is known. 
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Expand the log by splitting the MI into three summation terms, each of which corresponds to a conditional entropy 

as follows: ∑ ∑ ∑ 𝒫(𝑓, 𝑦, 𝑧)[𝑙𝑜𝑔 𝒫(𝑓, 𝑦|𝑧) − 𝑙𝑜𝑔 𝒫(𝑓|𝑧) − 𝑙𝑜𝑔 𝒫(𝑦|𝑧)]𝑧∈𝑍𝑦∈𝑌𝑓∈𝐹

Evaluate each term using the conditional entropy definition: 

The First term: ∑ ∑ ∑ 𝒫(𝑓, 𝑦, 𝑧)𝑧∈𝑍𝑦∈𝑌𝑓∈𝐹 𝑙𝑜𝑔 𝒫(𝑓, 𝑦|𝑧) = − 𝐸(𝐹, 𝑌|𝑍)  

The second term: ∑ ∑ ∑ 𝒫(𝑓, 𝑦, 𝑧)𝑧∈𝑍𝑦∈𝑌𝑓∈𝐹 𝑙𝑜𝑔 𝒫(𝑓|𝑧) = − 𝐸(𝐹, |𝑍) 

The third term is similar to the second term: ∑ ∑ ∑ 𝒫(𝑓, 𝑦, 𝑧)𝑧∈𝑍𝑦∈𝑌𝑓∈𝐹 𝑙𝑜𝑔 𝒫(𝑦|𝑧) = − 𝐸(𝑌, |𝑍)

Substitute back the three terms into the conditional mutual information equation: 

𝑀𝐼(𝐹; 𝑌|𝑍) =  𝐸(𝐹, 𝑌|𝑍) − 𝐸(𝐹|𝑍)  −  𝐸(𝑌|𝑍) 
By recalling the chain rule for conditional entropy: 

𝐸(𝐹, 𝑌|𝑍)  =  𝐸(𝐹|𝑌, 𝑍) + 𝐸(𝑌|𝑍) 
therefore, by substituting the chain rule into the expression, we obtain: 

𝑀𝐼(𝐹; 𝑌|𝑍) =  𝐸(𝐹|𝑍) − 𝐸(𝐹|𝑌, 𝑍) 

A3. Proof of Equation (6) 

By recalling the definition of conditional entropy: 

𝐸(𝐹|𝑍)      =  𝐸(𝐹, 𝑍) − 𝐸(𝑍) 

𝐸(𝐹|𝑌, 𝑍)  =  𝐸(𝐹, 𝑌, 𝑍) − 𝐸(𝑌, 𝑍) 
By substitution in Equation (5): 

𝑀𝐼(𝐹; 𝑌|𝑍) =  𝐸(𝐹, 𝑍) − 𝐸(𝑍) − 𝐸(𝐹, 𝑌, 𝑍) + 𝐸(𝑌, 𝑍) 

A4. Proof of Equation (7) 

The joint mutual information can be written as follows: 

𝐽𝑀𝐼(𝑓𝑛)  =  ∑ 𝑀𝐼(

𝑠𝑘∈𝑆

𝑓𝑛, 𝑠𝑘 ; 𝐿) =  ∑[𝑀𝐼(

𝑠𝑘∈𝑆

𝑠𝑘; 𝐿) + 𝑀𝐼(𝑓𝑛, 𝐿|𝑠𝑘)] 

Neglecting the term 𝑀𝐼(𝑠𝑘; 𝐿) as it is constant with respect to 𝑓𝑛, thus the joint mutual information reduces as

follows: 

= ∑ [𝑠𝑘∈𝑆
𝑀𝐼(𝑓𝑛, 𝐿|𝑠𝑘)]

=  ∑ [𝑠𝑘∈𝑆
𝑀𝐼(𝑓𝑛, 𝐿) − 𝑀𝐼(𝑓𝑛, 𝑠𝑘) + 𝑀𝐼(𝑓𝑛, 𝑠𝑘|𝐿)]

=  |𝑆| × 𝑀𝐼(𝑓𝑛, 𝐿) − ∑ [𝑠𝑘∈𝑆
𝑀𝐼(𝑓𝑛, 𝑠𝑘) − 𝑀𝐼(𝑓𝑛, 𝑠𝑘|𝐿)]

𝐽𝑀𝐼(𝑓𝑛)  =  𝑀𝐼(𝑓𝑛, 𝐿) −
1

|𝑆|
∑[

𝑠𝑘∈𝑆

𝑀𝐼(𝑓𝑛, 𝑠𝑘) − 𝑀𝐼(𝑓𝑛, 𝑠𝑘|𝐿)] 

A5. Proof of Equation (8) 

The Conditional Mutual Information has a very similar procedure. The original and its rewriting are as follows: 

𝐶𝑀𝐼𝑀(𝑓𝑛) =  𝑚𝑖𝑛𝑠𝑘∈𝑆[𝑀𝐼(𝑓𝑛; 𝐿|𝑠𝑘)]

=  𝑚𝑖𝑛𝑠𝑘∈𝑆[𝑀𝐼(𝑓𝑛; 𝐿) − 𝑀𝐼(𝑓𝑛; 𝑠𝑘) + 𝑀𝐼(𝑓𝑛; 𝑠𝑘|𝐿)]

=  𝑀𝐼(𝑓𝑛; 𝐿) + 𝑚𝑖𝑛𝑠𝑘∈𝑆[𝑀𝐼(𝑓𝑛; 𝑠𝑘|𝐿) − 𝑀𝐼(𝑓𝑛; 𝑠𝑘)]

𝐶𝑀𝐼𝑀(𝑓𝑛) =  𝑀𝐼(𝑓𝑛; 𝐿) − 𝑚𝑎𝑥𝑠𝑘∈𝑆[𝑀𝐼(𝑓𝑛; 𝑠𝑘) − 𝑀𝐼(𝑓𝑛; 𝑠𝑘|𝐿)]

AVAILABILITY OF DATA AND MATERIALS 

The TUANDROMD dataset used during the current study is available in the [UCI Machine Learning] 

repository, [https://doi.org/10.24432/C5560H]. 

The Malgenome dataset used during the current study is available in the [figshare] repository, 

[https://doi.org/10.6084/m9.figshare.5854590.v1] 
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ملخص البحث:

مائدددد بمى ددددعما ددددنعيلأ ددددد مممأغعددددأ ملوحددددم   فدددديمة  عددددام  ا ددددام أندردددديعُددددام اددددغيم أندردددد   م  ا  يددددام

مثدددددددد م أخددددددددامغ م أ  ددددددددرف امما دددددددد نخ أ ماطردددددددد لا مربددددددددعمقددددددددويمع ددددددددىم أ  ددددددددغ  م أ  نوحددددددددات

دددددد أنرف دددددد م  أنع دددددد مم  أرع  لات ددددددغلا م  ؛مأددددددنأهمفد ددددددد مرددددددا م  غ دددددديم    دددددد اماح غيددددددام أ د

 جغذبامأ ندهايا  م أسد بر   ا.م

ىم تددددغ  م ددددغ د ميسُدددد د رممبنأددددر رمأ أردددديمعدددد)مبددددر م م  ا  يددددام أ د -فدددديمرددددن،م أو حدددداام قنددددر م اغمددددغ

دددددد غ م  دددددد طهغم ت ددددددا  هغم أدندددددديمتطُبددددددد مع ددددددىم ددددددامم يعن ددددددامع ددددددىمتقا ددددددغ م  نقددددددغتم أسدب     ي 

رمأ أرددددديممج  مم   دددددغ مفددددديم أعدددددغأمم أحق قدددددي.م يعُدددددادم أادادددددغيم أ قندددددر م ةدددددغ مع ددددد م وعدددددغ مب غ دددددغ م

ممدددددد)مم  ددددددر  م لأ  تام ددددددغ د ؛مفقددددددامجددددددر،متق   دددددد مبو  ددددددطامعددددددا م عدددددد)مبددددددر م م  ا  يددددددام أ د

ممدددد)م ةُُددددرم أع دددد م أ اغفسدددداامح دددد محقددددد م حدددددارم م   ددددعممأددددا،ممقغ  ندددد مبعددددا م  بددددرر)مع ددددىمت ددددوى م

ددددددر  م لأ  تم لأرددددددر،.م  أجددددددايرمبغأددددددن رم%ام أددددددىمجغ دددددد99.2 صدددددد  م أددددددىم حدددددد مفدددددديمم  د بمت ود

م ةددددددغ م أع دددددد م أ قنددددددر م  بدددددد م  ددددددد مذ مفغع  ددددددام ب ددددددر مفدددددديم أأردددددديمعدددددد)مبددددددر م م  ا  يددددددام  ند

دددددد غ مباسددددددبام مبغأسدب ددددددتم أح ددددددد م أخددددددغ د ددددددغ د ام يع دددددد مع ددددددىمر   م73 أ د %ام لأمددددددرم أددددددن ميددددددالد

%م  أدددددددند  ر م44.4  دددددددن  أ مأ   دددددددغ  ؛مفقدددددددامر ددددددددتم مددددددد)م أ حددددددد مباسدددددددباممع دددددددىمحُسددددددد)

 %.42.8 أ سنخامامباسبام
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