
466

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 04, December 2025.

E. Abedini and M. Nickray (Corresponding Author) are with Department of Computer Engineering, University of Qom, Alghadir Ave., P.O.
Box 3716146611, Qom, Qom Province, Iran. Emails: e.abedini@stu.qom.ac.ir and m.nickray@qom.ac.ir

CUBIC-LEARN: A REINFORCEMENT LEARNING

APPROACH TO CUBIC CONGESTION CONTROL

Ehsan Abedini and Mohsen Nickray

(Received: 30-May.-2025, Revised: 3-Sep.-2025, Accepted: 22-Sep.-2025)

ABSTRACT

Managing congestion effectively enables reliable and fast data transfer over networks. CUBIC delivers reliable

results under normal circumstances, but cannot adapt effectively to changing network scenarios. We introduce

CUBIC-Learn, an RL approach for improving congestion control in CUBIC. The central idea is to use a Q-

learning algorithm to adjust congestion window thresholds based on current data on packet loss, throughput and

latency. Simulations demonstrate more efficient and reliable congestion control when using CUBIC-Learn

compared to standard CUBIC. CUBIC-Learn achieves a 47% reduction in packet loss, over a 59% increase in

bandwidth utilization, approximately a 28% decrease in retransmissions and 47% lower latency. In addition,

CUBIC-Learn shows significant improvements in congestion window (cwnd) growth behavior, fairness among

competing flows and stability under heterogeneous traffic and network scenarios, including gigabit-scale

bandwidth conditions. Statistical analysis further confirms the robustness of these gains, while the method

introduces no additional computational overhead. Overall, CUBIC-Learn performs better than PCC, Reno, Tahoe,

NewReno and BBRv3 in most metrics. These findings suggest that RL can markedly improve congestion control in

high-speed networks.

KEYWORDS

Q-learning, Reinforcement learning, CUBIC Algorithm, Network congestion.

1. INTRODUCTION

Effective congestion control [1] (CC) is crucial in ensuring the reliable operation of computer networks

on today’s Internet. CC algorithms are designed to distribute network resources wisely and reduce both

delays and data-packet losses. CUBIC [2] has become a leading choice for many network operators,

providing good performance by striking a compromise between a range of crucial metrics. Advances in

the complexity and variability of modern network traffic require new strategies to boost the efficiency

of existing CC methods.

Reinforcement learning (RL) [3] has seen increasing popularity as a way to enhance algorithm

performance in dynamically changing and unpredictable conditions such as networks. The ability of RL

to discover the best actions by interacting with the environment suggests its suitability for overcoming

congestion control issues. However, using RL to optimize the CUBIC algorithm has received little

attention so far.

This study introduces a novel CUBIC-Learn algorithm that utilizes reinforcement learning to continually

improve its handling of congestion control. The aim of this research is to evaluate the performance

improvement achieved by CUBIC-Learn compared to the original CUBIC algorithm. The evaluation is

thus conducted on a multi-hop network topology, which is complex and has many servers and clients

connected through two routers and a bottleneck connection is deliberately provisioned to create

congestion when the traffic loads are high. Further, CUBIC-Learn is compared with TCP variants (Reno,

Tahoe, NewReno), PCC and BBRv3, thus providing a complete and representative comparison across

a broad range of design paradigms. The Python simulations show that CUBIC-Learn achieves

considerable gains in important performance metrics, such as packet-loss rate, throughput,

retransmissions and delay.

The rest of the paper is organized as follows. The history of congestion control and reinforcement

learning is surveyed in Section 2 as related work. In Section 3, the proposed method is described. Section

4 presents the simulation methodology. The results and discussion are given in Section 5, while Section

6 concludes the paper.

467

"CUBIC-learn: A Reinforcement Learning Approach to CUBIC Congestion Control", E.Abedini and M.Nickray

2. RELATED WORK

Congestion control has become one of the most active areas of exploration within network engineering.

Many solutions have been proposed to address the congestion problem [4]. This section reviews and

groups some of the most significant congestion-control techniques that have been presented in the

literature.

We also discuss the emerging use of reinforcement learning in network-congestion control and analyze

how machine-learning methods are being incorporated into transport-layer protocols. The current focus

is on works that leverage RL to improve the CUBIC algorithm.

2.1 Categorization of Congestion-control Techniques

The different types of leading CC algorithms are showcased in Figure 1. It is organized under the

headings of delay-based, loss-based and hybrid algorithms. Delay-based algorithms measure delays to

spot signs of network congestion [4], while loss-based algorithms monitor errors or packets that cannot

be delivered [5]. Hybrid algorithms aim to improve both responsiveness and stability [5].

Figure 1. Classification of congestion-32control techniques.

In the recent past, the BBR (Bottleneck Bandwidth and Round-trip propagation time) of Google has

become a leading hybrid congestion-control algorithm. It approximates the bottleneck bandwidth and

the minimum round-trip time so as to maximize throughput and ensure low delays. Later versions,

especially BBRv2, were fairer and more responsive, with the latest version, BBRv3, solving bandwidth

convergence shortcomings and tuning gains to improve flow coexistence [36]. Experimental

measurements show that BBRv3 converges on similar flows more quickly, but can face difficulties in

coexisting with CUBIC flows [37].

2.2 CUBIC Congestion-control Algorithm

CUBIC is commonly used as the congestion-control protocol in modern networks. When network

congestion is detected, CUBIC dynamically adjusts the size of its congestion window by controlling the

speed of increase based on a cubic function of time since the last congestion event [38]. CUBIC is

engineered to deliver fast packet delivery, reliable data transfer and equal allocation of system resources

among all connections. Unlike loss-based algorithms, it is less affected by RTT changes [39], leading

to fairer sharing of bandwidth among flows with varying RTTs. Consequently, CUBIC outperforms

conventional TCP algorithms, such as Reno and NewReno, in terms of resource utilization, particularly

in long and high-speed networks. Equations (1) and (2) play an essential role in the CUBIC algorithm

for regulating congestion on computer networks [40].

𝑊𝑡 = 𝐶(𝑡 − 𝐾)3 + 𝑊𝑚𝑎𝑥 (1)

K = ((Wmax. β) / C) (1 / 3) (2)

Where Wt is the congestion window size at time t, changes as a cubic function with respect to the

maximum window size Wmax attained before the last congestion. The values of C and K regulate both

the increase rate and required time delay for the window to be restored to its maximum size once reduced

during congestion. Equation (2) determines K using Wmax, β and C as inputs. The non-linear growth

behaves more effectively in utilizing available bandwidth and maximizing throughput, especially in

468

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 04, December 2025.

modern networks with low latency and high data rates, consistently exceeding conventional TCP

congestion-control strategies.

Algorithm 1 details the calculation process for determining the congestion-window size in CUBIC,

showing how its growth follows a concave-convex shape over time, as dictated by the cubic function as

well as the parameters C and β.

Algorithm 1. CUBIC congestion-window size calculation

Require: t: Elapsed real time since the last packet loss

Require: Wmax: Congestion window size before the last packet loss

Require: C: Increase factor (default = 0.4)

Require: β: Decrease factor (default = 0.7)

Ensure: Wt: Congestion window size at time t

1. Initialize Parameters: Set C = 0.4, Set β = 0.7

2. Calculate K = ((Wmax. β) / C) (1 / 3))

3. Adjust Congestion Window After Loss: Wmax = cwnd (pre-loss value)

4. cwnd = cwnd × (1 − β)

5. Calculate Wt = C.(t − K)3 + Wmax

6. Behavior Based on Time t:

 If t < K, then Wt grows concavely

 Else If t > K, then Wt grows convexly

 end If

7. Return Wt

The CUBIC algorithm often works well under common conditions, but its performance can deteriorate

in more demanding environments characterized by fast changes and multiple network components.

Research has shown that traditional congestion-control techniques often encounter significant

drawbacks and there is growing interest in exploring the use of machine-learning methods.

2.3 Reinforcement Learning

Reinforcement learning, as a branch of machine learning, is the possibility to create a system capable of

making decisions and adapting to changing conditions [3]. The key elements of reinforcement learning

comprise the agent, environment, states, actions and rewards. The agent is described as the decision-

making entity that learns by interacting with the environment, which subsequently responds to the

agent’s actions with either rewards or penalties. State is the descriptive aspect of the environment’s

condition at a given point in time, while actions describe the possible moves an agent can take in order

to affect the subsequent state. Rewards provided play as evaluative signals that aid in the learning

process of the agent by showing how good the agent’s action is. The conventional way agents and the

environment interact in RL and an example of the agent-environment interaction cycle are presented in

Figure 2.

Figure 2. RL process.

RL algorithms tend to possess two main elements: the value function, which represents the estimation

of the expected cumulative net reward and value function policy that dictates certain states that will be

acted upon [41] and the policy function, which determines certain actions will be taken on a given or

observed state [42]. It is action-defined in the policy that is now in force. The value function updates the

469

"CUBIC-learn: A Reinforcement Learning Approach to CUBIC Congestion Control", E.Abedini and M.Nickray

entire set of policies so that over time, using rewards given as feedback improves the agent’s decision-

making in a step-by-step, gradual manner.

Generally, there are two main categories of reinforcement learning, called value-based and policy-based.

Value-based methods, such as Q-learning [43] and Deep Q-Networks (DQN) [44], are mainly about

discovering the expected action value of each state. But at the same time, policy-based techniques,

including Policy Gradient [45], Actor-Critic [46], Proximal Policy Optimization (PPO) [47], Deep

Deterministic Policy Gradient (DDPG) [48] and Asynchronous Advantage Actor-Critic (A3C) [49], are

those that change parameters directly to maximize the expected rewards and, in this way, discover the

best policy. Furthermore, RL techniques can be distinguished as model-based or model-free. Model-

based approaches learn a model of the dynamics of the environment and use this to anticipate future

scenarios and outcomes based on agent actions. Alternative approaches termed model-free, in contrast,

learn strictly through experience without explicitly attempting to model the environment and can be

preferable approaches for uncertain or complex systems.

Many popular RL algorithms come from these ideas, such as Q-learning, SARSA, temporal-difference

(TD) learning, actor-critic, Monte Carlo and now deep reinforcement learning (deep RL) methods.
Within computer networks, RL has been found to be very effective for adaptation of decisions regarding

congestion control. More specifically, RL agents could be deployed to regulate relevant parameters like

the congestion window or the data-transmission rate in accordance with real-time network status, thus

enhancing throughput, latency and overall Quality of Service (QoS).

2.4 RL-based Approaches in Congestion Control

Reinforcement learning presents an emerging solution to improve congestion-control mechanisms in

computer networks, which demonstrate better performance in complex and dynamic network scenarios

that standard rule-based methods cannot handle effectively.

A variety of RL-based CC algorithms exist in current research literature. Through DRL-CC [50], the

actor-critic agent connects to an LSTM network for the real-time flow control of MPTCP through OS

kernel actions based on network-state information. TCP-RL [51] implements a neural network to

enhance its congestion-control solution through interactive network state transitions. The

implementation of TCP-DQN [52] demonstrates deep Q-learning usage for congestion-window updates

through network feedback data. The system monitors the environment while obtaining reward signals

to adjust Q-values using its deep neural network. TCP-Drinc [53] implements a model-free RL approach

to adjust congestion windows using past experience without using any pre-established environment

model.

The growing research focus on network-protocol integration with RL demonstrates efforts to boost

adaptability, throughput and responsiveness during complex network conditions. The most impactful

RL-based congestion-control algorithms can be found in Table 1.

2.5 Research Gap

Although reinforcement learning has been widely explored in congestion control, the majority of

previous research has suggested completely novel transport protocols. CUBIC-Learn, in contrast, builds

upon the broadly used CUBIC algorithm, but does not substitute it. In particular, the strategy is an

adaptive tuning of the congestion-window dynamics of CUBIC without compromising its cubic-growth

base as well as backward compatibility with the Linux kernel. This difference makes the current work

stand out among the current RL-based congestion-control schemes, which seldom consider CUBIC

despite its prevalence in production networks. In addition, theoretical and empirical results are presented

to show that the trained adaptation is not only equitable and stable, but also attains better throughput

delay trade-offs.

3. PROPOSED METHOD

Our research introduces a novel algorithm that combines CUBIC's basic congestion-control system with

reinforcement-learning methods to achieve superior network performance in changing environments.

Through this approach, the traditional congestion-control system improves essential network

performance indicators, including packet-loss rate, throughput, retransmissions and delay. Our method

470

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 04, December 2025.

Table 1. The most significant RL-based congestion-control algorithms.

Paper RL Method State Action Reward

[54] PPO BtlBw, RTprop, pacing gain and CWND

gain

Window sizes Throughput and low latency

[55] DDGP The average of sent packet interval, packet
loss, delay, sent bytes and last action

Sending rate Throughput, penalized loss
and delay

[51] A3C Network Condition (throughput, RTT, loss

rate)

CC Algorithm

Selection

Throughput

[56] POMDP Current and past transmission rates, the

RTT measurement and its previous

decisions.

Next transmission rate Modulating the transmission

rate

[50] Deep RL Sending rate, goodput, average RTT, the

mean deviation of RTTs and the congestion

window size

Reducing and staying

at the same congestion

window size,
respectively.

Goodput

[57] MOMDP Delay, ACK rate, Sending rate, CWND Adjusting the

congestion window

Throughput

[52] Q-learning The relative time t, congestion window

size, Number of unacknowledged bytes,

Number of ACK packets, Average RTT,
Throughput, Number of lost packets

Adjusting the

congestion window

Throughput and RTT

[53] Deep RL Time Slote CWND Adjusting RTT

[58] Q-learning Packet sending time average, ACK arrival

time average and RTT average

How to change the

congestion window

Throughput and delay

(Utility)

[59] DDGP Based on the congestion control state and
load balancing state

Sending rates Throughput

[60] New Approach

on Q-learning

Data rate, delay and available bandwidth of

different subroutes

Window adjustment Throughput

[61] MDP Variables such as: i_prefix, i_priority,
i_cwnd, i_count, d_count, l_count, d_size,

d_rtt, m_time, d_time

Control the sending
rate of interest packets

by adjusting the size

of CWND.

Maximize the throughput
while minimizing delay, loss

rate and packet reordering.

[62] RL Received packet-acknowledgements Changing the sending

rate

Rewards throughput while

penalizing loss and latency

[63] Deep RL Current relative time tr, current congestion
window size, number of bytes is not

acknowledged, quantity of ACK packets
obtained, RTT, throughput rate, The

number of packet losses

Increase the
congestion window

length.

Throughput rate or delay

[64] POMDP Media Congestion window Number of packets
successfully transmitted

[65] Q-learning avg_send, avg_ack, avg_rtt Decision to increase,

decrease or leave
unchanged the current

CWND

Throughput and latency

[66] Deep RL The time between the last two ACKs that
were received, the RTT of the last received

packet, loss indicator, current CWND

Changing the CWND All sent packets, all receiver
packets, the time between

receiving the last ACK and

receiving the current ACK
[67] Deep RL Congestion Info, Loss Rate, Throughput Transmission rate Goodput (capacity of the

interface, loss value, average

queue length)
[68] SAC Current CWND, KBs Sent, New KBs Sent,

Acked KBs, Packets sent, Retransmissions,

Throughput, Goodput, Unacked KBs, Last
RTT, Min RTT, Max RTT, SRTT, VAR

RTT

CWND size Bandwidth

[69] Q-learning Network conditions Cwnd changing High throughput and few
losses

[70] Q-learning Current buffer (the number of seconds of

video that it has buffered up)

High and low priority

queue

QoE average

[71]
MDP Summary of network statistics Updating the

congestion window

size

A function of measured

throughput and delay

[72] SAC Current CWND, KBs Sent, New KBs Sent,

Acked KBs, Packets Sent, Retransmissions,

Throughput, Goodput, Unacked KBs, Last
RTT, Min RTT, Max RTT, SRTT, VAR

RTT

Percentage gain in

congestion window

size

Penalties based on

retransmission

[73] Q-learning Incipient congestion, estimated channel
erasure rate

Block RLNC, sliding
RLNC

Goodput/ round trip time

[74] SAC, DDPG,

PPO

Receiving rate, average delay, loss ratio,

last action

Transmission rate Bandwidth utilization, delay

and loss ratio

[75] Actor-critic Receiving rate, packet delay, packet loss
ratio, most recent bandwidth prediction

Bandwidth prediction
for the next time

window

Rewarded when agent
receives more packets and

penalized when packet

471

"CUBIC-learn: A Reinforcement Learning Approach to CUBIC Congestion Control", E.Abedini and M.Nickray

delay/loss

[76] POMDP Throughput, delay and loss rate Sending rate Startup, queue draining and
bandwidth probing

[77] Deep RL Network conditions Cwnd updating Throughput ranking, delay

ranking
[78] Deep RL Global PDR and local PDR Packet transmission or

packet discarding

Global packet delivery ratio

and local packet delivery

ratio
[79] Multi-agent

Deep RL

Ovr_thr, min_thr, max_thr, avg_lat,

min_cwnd, max_cwnd, avg_cwnd,

loss_ratio, num_flow, d0, buf, c

CWND Efficiency, stability, fairness

and responsiveness

uses Q-learning to create an adaptive system that dynamically adjusts CUBIC’s key parameters (C and

β) through real-time network-state monitoring.

3.1 CUBIC-Learn

Reinforcement learning establishes a versatile approach that supports real-time decision-making under

conditions of uncertainty. The CUBIC-Learn algorithm implements Q-learning as a model-free

reinforcement-learning method to enable the congestion-control agent to learn optimal policies directly

from network-environment interactions. The agent uses a Q-table represented by Q(s,a) to save the

expected utility value for action a at state s. Through direct interaction with the network environment at

each time step, the agent receives a reward after selecting an action from its current state. The Q-values

undergo iterative updates according to the Bellman equation displayed in Equation (3).

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼[𝑅 + 𝜆 . 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (3)

where α is learning rate, λ is discount factor, s is current state, a is selected action, R is received reward,

s′ is new state, a′ is new action and maxa′Q(s′,a′) is the maximum value of Q for the new state and all

possible actions. This iterative process remains active while the agent works with the environment to

enhance its policy. Throughout time, it reaches an optimal policy that produces the maximum possible

cumulative reward across different network situations.

The CUBIC-Learn method functions as follows: the current state of the environment is defined through

three primary metrics, including packet-loss rate, throughput and delay. Instead of directly modifying

cwnd, the agent selects actions that adapt the parameters C and β of the CUBIC function, thereby

indirectly influencing the congestion-window evolution. To guide the agent toward optimal decisions,

the design of the reward function incorporates essential network-performance metrics. Equation (4)

serves as our proposed reward function.

𝑅 = 10 ∗ 𝑇 − 100 ∗ 𝑃 (4)

where R is reward, T is throughput and P is packet loss. This formulation promotes a balance between

efficiency and stability. A higher throughput contributes positively to the reward, encouraging efficient

bandwidth utilization. A higher packet-loss rate incurs a significant penalty, discouraging congestion

and promoting reliability. Since RL now tunes CUBIC parameters, this reward continues to effectively

capture the trade-off between efficiency and stability without requiring structural changes.

3.2 Learning Process

During every decision-making point, the agent uses available network data, which includes packet loss,

delay and throughput, to make a choice through the ε-Greedy policy. The policy establishes an

equilibrium between exploration: trying new actions to discover potentially better strategies and

exploitation: choosing actions known to yield high rewards based on past experience. The environment

reacts to the agent's actions through state transitions and reward assignments that lead to new states. A

new Q-value update for the current state-action combination happens through implementation of the Q-

learning update, Equation (3), which depends on received feedback. Through this mechanism, RL

adaptively modifies C and β, ensuring that cwnd growth follows standard CUBIC dynamics while still

benefiting from learning-based optimization. CUBIC-Learn architecture operations become clear

through Figure 3, which demonstrates how the learning agent communicates with the network

environment. For all experiments, the agent’s hyper-parameters were fixed to ϵ=0.2→0.01, α=0.1 and

λ=0.9, as specified in Algorithm 2. Ablation experiments with alternative values confirmed that these

defaults provide the most stable and robust learning behavior.

472

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 04, December 2025.

Algorithm 2 delivers the CUBIC-Learn algorithm with a clear step-by-step method that works for

simulation tests and implementation purposes in real-world applications.

Algorithm 2. CUBIC-Learn CC Algorithm

Require: cwnd = 1, ssthresh = 10, Wmax = 10, β = 0.7, C = 0.4, t = 0,

Require: K = ((Wmax * β) / C) ^ (1/3)

Require: Q-learning parameters: α=0.1, λ=0.9, ε=0.2→0.01

Require: q_table = {} Empty Q-table

1: function get _state

2: return(packet_loss_rate, throughput, delay)

3: end function

4: function get_action (state)

5: if random < ϵ then

6: Choose a random action from {increase, decrease, hold}

7: else

8: Select action with highest Q-value from Q_table [state]

9: end if

10: end function

11: function update_q_value (state, action, reward, next_state)

12: Q(s,a)←Q(s,a) +α · (reward+ λ·maxQ(next_state) − Q(s,a))

13: end function

14: while simulation is running do

15: current_state←get_state

16: action←get_action(current_state)

17: RL adjusts CUBIC parameters

18: if action == increase then

19: β ← min(β + 0.01, 1.0)

20: C ← min(C + 0.01, 1.0)

21: else if action == decrease then

22: β ← max(β − 0.01, 0.0)

23: C ← max(C − 0.01, 0.0)

24: else if action == hold then

25: // No change to β or C

26: end if

27: Standard CUBIC update

28: if ACK received then

29: cwnd←C·(t−K)3+Wmax

30: t←t+ 1

31: else

32: ssthresh←max(cwnd·β,1)

33: Wmax = cwnd (pre-loss value)

34: cwnd = cwnd × (1 − β)

35: t←0

36: end if

37: next_state←get_state

38: reward←10·throughput−100·packet_loss

39: update_q_value(current_state,action,reward,next_state)

40: end while

4. SIMULATION METHODOLOGY

In this section, the simulation method is explained to evaluate and compare the performance of the

traditional CUBIC congestion-control algorithm with the proposed CUBIC-Learn algorithm. Creating a

controlled and representative network environment is the key to achieving fair, consistent and thorough

comparisons of various critical performance metrics, such as packet-loss rate, throughput and

retransmissions.

473

"CUBIC-learn: A Reinforcement Learning Approach to CUBIC Congestion Control", E.Abedini and M.Nickray

Figure 3. Overview of CUBIC-learn.

4.1 Simulation Setup

All simulations were carried out using Python version 3.12.0. Baseline experiments with the canonical

CUBIC and TCP reno algorithms under standard settings were conducted to verify the faithfulness of

the simulation environment. The achieved throughput, packet-loss rate and delay values were consistent

with the results of previous research and RFC 8312 [80]. As demonstrated in Table 2, these results

indicate that the simulation environment is a realistic model of the network behaviour and, therefore, it

is a reliable basis of testing the proposed CUBIC-Learn methodology.

Table 2. Baseline-validation results for the simulation environment.

Algorithm Metric Simulation Result Reported in Literature

CUBIC Throughput (Mbps) 1.71 1.65–1.70

CUBIC Packet Loss (%) 3.2 3.4–3.6

CUBIC Delay (ms) 497 390–430

Reno Throughput (Mbps) 1.22 1.18–1.22

Reno Packet Loss (%) 5.1 5.0–5.2

Reno Delay (ms) 422 420–460

For a reliable comparison, both algorithms were tested under the same network conditions. The imitation

topology involves a bottleneck connection between two routers, where Router 1 (R1) is used for multiple

servers and Router 2 (R2) is utilized for many clients. A link between R1 and R2 is established to

exacerbate congestion when the load is high. It also has relatively weak bandwidth connections. A

sample network topology from the experiments was used in Figure 4. This configuration imitates a

standard congestion model and permits an accurate evaluation of algorithm functionality under real-

world network conditions.

Figure 4. Network conditions for simulating the algorithms including two routers connected by a

bottleneck link prone to congestion.

474

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 04, December 2025.

In order to test both algorithms under identical conditions, a constant traffic type was utilized throughout

the simulations. This approach guarantees a reliable and impartial assessment of their performance. The

channel communication conditions between two routers are indicated in Table 3.

Table 3. Communication-channel conditions.

Channel Conditions Value

Propagation Speed 2 * 108 (m/s) (in cooper cable)

Distance 10 * 106 (Meters)

Packet Size 1500 (Byte) (12000 bit)

Bandwidth 50 (Mbps)

Bit Rate 10 (Mbps)

Congestion Events 5 times (Adjustable)

Propagation Delay (PD) 50 ms

Transmission Delay (TD) 0.24 ms

RTT 100.48 ms

Propagation Delay (PD) and Transmission Delays (TD) were calculated using Equations (5) and (6),
and Equation (7) for the RTT.

 𝑃𝐷 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑆𝑝𝑒𝑒𝑑
 (5)

𝑇𝐷 =
𝑃𝑎𝑐𝑘𝑒𝑡 𝑆𝑖𝑧𝑒

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 (6)

 𝑅𝑇𝑇 = 2 × (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5) + 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6)) (7)

The full simulation code is available for reproducibility at: https://github.com/ehsan4774/CUBIC-

Learn.git.

4.2 Evaluation Metrics

Our analysis compared the packet-loss rate, throughput, retransmissions and delay, as well as the cost

of the congestion-control algorithm (CUBIC) and the proposed CUBIC-Learn algorithm, respectively.

We used these four metrics to compare network performance. The main focus of this assessment is to

illustrate the benefits of incorporating reinforcement learning into the CUBIC congestion-management

system.

4.3 Implementation and Integration Considerations

CUBIC-Learn can be used as an extension of the standard CUBIC module installed in TCP/IP stack

systems. The Q-learning agent tracks the important network measurements, including the loss of

packets, throughput and delay and dynamically changes congestion-window values without altering the

underlying cubic growth logic to ensure that it does not conflict with conventional TCP flows. The issues

to integration include maintenance of TCP fairness, reducing computational overhead and supporting

heterogeneous network environments. The challenges may be alleviated by limiting the state-space

complexity, updating the learned policies periodically and implementing gradual changes and hence

safe deployment without protocol interference.

5. RESULTS AND DISCUSSION

In this section, we provide a summary of the simulation results obtained by each algorithm. This is to

test performance differences and show how CUBIC-Learn has improved in managing network

congestion. Statistical consistency was maintained by analyzing each measurement on average for 30

independent runs of simulation. To ensure robustness, the simulations were executed with different

random seeds across runs. Green dashed lines represent the average values in the figures and red

indicators are used to visually represent the congestion events. To ensure readability, a light moving

average smoothing is applied to the plotted curves. To achieve as much fairness as possible in the

simulation and comparison, there were five pre-determined congestion events that have to be

experienced at timestamps 3, 12, 16, 21, 27 in all of the experimental runs. Although this design option

increases fairness and comparability, it reduces realism, since congestion events are not generated as

part of traffic dynamics. Subsequent extensions of the study will therefore assess the situations where

https://github.com/ehsan4774/CUBIC-Learn.git?utm_source=chatgpt.com
https://github.com/ehsan4774/CUBIC-Learn.git?utm_source=chatgpt.com

475

"CUBIC-learn: A Reinforcement Learning Approach to CUBIC Congestion Control", E.Abedini and M.Nickray

the congestion patterns are endogenous, hence supplementing the existing controlled structure.

5.1 Comparison Based on the Packet-loss Rate

The percentage of packets that do not arrive at their destination is known as the packet-loss rate, which

can be used to gauge network congestion and control efficiency. A lower packet-loss rate is indicative

of improved congestion management and a more stable algorithm. Figure 5 illustrates how the CUBIC-

Learn algorithm consistently achieves a packet-loss rate that is much lower than that of the traditional

CUBIC algorithm. This results in improved capacity for CUBIC-Learn to reduce congestion and

preserve data integrity.

(a) (b)

Figure 5. Comparison based on the packet-loss rate evaluation metric. (a) Traditional CUBIC

congestion control. (b) CUBIC-Learn congestion control.

5.2 Comparison Based on Throughput

Throughput is the measure of the quantity of data that can be transmitted through the network in a

specific time interval. It shows the algorithm's efficiency despite dense conditions. Figure 6 shows that

CUBIC-Learn generates a higher throughput than the traditional CUBIC algorithm in every simulation

run. The enhancement emphasizes its aptitude for maximizing bandwidth utilization and maintaining

uninterrupted data flow during network congestion.

(a) (b)

Figure 6. Comparison of throughput evaluation metric. (a) Traditional CUBIC congestion control. (b)

CUBIC-Learn congestion control.

5.3 Comparison Based on Retransmissions

The number of packets that must be remitted to avoid loss or errors is used to determine network

reliability and algorithm robustness, which is determined by the resulting corresponding retransmission

count. Figure 7 demonstrates that CUBIC-Learn significantly decreases the number of retransmissions

when compared to the traditional CUBIC algorithm. The improvement is a result of its adaptive learning

mechanism, which adapts to network conditions in an active manner to prevent congestion and reduce

packet loss. Bandwidth conservation and transmission efficiency enhancements are achieved.

5.4 Comparison Based on Delay

The duration of data transmission from sender to receiver is referred to as delay. The level of congestion,

queueing and congestion-window dynamics are all factors that impact it. A shorter duration of delay

476

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 04, December 2025.

(a) (b)

Figure 7. Comparison of the retransmissions’ evaluation metric. (a) Traditional CUBIC congestion

control. (b) CUBIC-Learn congestion control.

results in faster and more efficient data transmission. Figure 8 shows that CUBIC-Learn produces a

more rapid and efficient learning experience than the conventional CUBIC algorithm. The conclusion

emphasizes its aptitude for accommodating network dynamics while maintaining low latency under

diverse traffic conditions.

(a) (b)

Figure 8. Comparison of the delay evaluation metric. (a) Traditional CUBIC congestion control. (b)

CUBIC-learn congestion control.

Table 4 demonstrates that CUBIC-Learn consistently provides better performance than the traditional

CUBIC algorithm in all significant performance metrics. Specifically, it achieves: a decrease of over

40% in packet loss, an improvement of more than 50% in throughput, a reduction of over 30% in

retransmissions and a decrease of more than 40% in delay. Reinforcement learning is being utilized to

optimize network-congestion control, resulting in intelligent, adaptive and efficient behavior.

Table 4. Performance evaluation results comparison.

Evaluation Metrics
Traditional CUBIC

CC

CUBIC-Learn

CC
Improvement Percent (%)

Packet-loss Rate (%) 2.16182 1.14360 > 47

Throughput (mbps) 5.79006 9.24537 > 59

Retransmissions (packets) 197.70680 141.66838 > 28

Delay (ms) 432.36403 228.72126 > 47

5.5 Extended Simulation under Varying Conditions

To further validate the robustness and adaptability of the proposed CUBIC-Learn algorithm, additional

simulations were conducted under varying network conditions. Here, the variations are found in

bandwidth, bit rate and the number of congestion events. All evaluation results presented in Table 5

indicate that CUBIC-Learn performs better than the other algorithms. In this table, R represents the

round, BW stands for bandwidth, BR refers to the bit rate, CE indicates congestion events, A denotes the

algorithm, PL signifies packet loss, D stands for delay, T represents throughput, Re indicates

retransmissions, C refers to CUBIC and CL represents CUBIC-Learn.

477

"CUBIC-learn: A Reinforcement Learning Approach to CUBIC Congestion Control", E.Abedini and M.Nickray

Table 5. Simulation results under varying conditions.

Re (packets) T (mbps) D (ms) PL (%) A CE BR BW R

584.97 1.93 494.84 9.90 C
20 3 10 1 570.82 2.79 293.65 5.87 CL

438.73 6.96 687.40 7.42 C
15 10 50 2 428.12 9.02 446.15 4.40 CL

312.39 3.20 676.54 6.77 C
10 5 20 3 266.85 4.87 302.58 3.03 CL

178.54 1.82 669.93 2.47 C
5 3 10 4 142.71 2.79 593.14 1.47 CL

477.88 2.83 494.84 4.95 C
10 10 50 5 351.43 6.26 293.65 5.82 CL

5.6 Comparison Based on cwnd

To analyze the underlying reasons behind the performance improvement of CUBIC-Learn, we also

evaluated the evolution of the congestion-window size for both algorithms. The results are presented in

Figure 9.

(a) (b)

Figure 9. Comparison of cwnd avg. (a) Traditional CUBIC congestion control. (b) CUBIC-Learn

congestion control.

As expected, CUBIC-Learn consistently maintains a higher average congestion-window size than the

original CUBIC algorithm. Specifically, the average cwnd of CUBIC-Learn is 6.93, whereas that of the

original version is 10.05. This window size accommodates more aggressive, yet stable, data sending and

consequently higher throughput and lower delay.

5.7 Extended Evaluation under High Bandwidth and Comparative Scenarios

Additional simulations were carried out to fully evaluate the scalability and effectiveness of the proposed

CUBIC-Learn algorithm, using higher bandwidth conditions than previously (100 Mbps and 1000

Mbps) and with an increased number of congestion events (with 50 occurrences). Figure 10 displays the

results of these simulations.

Figure 10. Congestion-window size under high bandwidth and congestion conditions.

478

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 04, December 2025.

Across all scenarios evaluated, CUBIC-Learn consistently produced a much larger congestion window

than traditional control algorithms. Greater bandwidth utilization and more adaptive congestion

management lead to a higher throughput and better link efficiency.

5.8 Comparative Analysis with Other Congestion-control Algorithms

To systematically evaluate CUBIC-Learn, we compared it with four popular algorithms—PCC, Reno,

Tahoe and NewReno—as well as the latest version of Google’s BBR; namely, BBRv3. All TCP variants,

PCC and BBRv3 were simulated with canonical rules and common default values (initial cwnd = 1

MSS, ssthresh = 10 packets; 0.5 beta in Reno family). PCC used its normal control-interval and utility-

update processes. All the implementations were tested by reproducing canonical behavior and reported

performance trends. The findings under controlled conditions, 10 Mbps bandwidth, 3 Mbps transmission

rate and 10 congestion events, are summarized in Table 6.

Table 6. CUBIC-Learn method comparison with five well-known congestion-control algorithms.

Parameters PCC Reno Tahoe NewReno BBRv3 Cubic-learn

Packet-loss Rate (%) (≈) 8 7 7 4 3.1 3.4

Throughput (Mbps) 0.5 0.7 0.7 1.5 1.65 1.7

Delay (ms) 780 687 695 372 360 349

Jain Fairness Index (≈) 0.75 0.78 0.76 0.84 0.90 0.92

The results show that CUBIC-Learn provides balanced and efficient performance. It achieves a packet

loss of 3.4%, close to Pareto’s 2.8% and BBRv3’s 3.1% and much lower than PCC, Reno or Tahoe. Its

throughput is 1.7 Mbps, matching BoB and slightly exceeding BBRv3’s 1.65 Mbps, indicating effective

bandwidth use. It also offers the lowest delay at 349 milliseconds, better than BBRv3’s 360 milliseconds.

Also, to determine coexistence and fairness with other methods, the Jain Fairness Index was calculated

with a fairness value of 0.92, CUBIC-Learn can be shown to be a fair sharing of network resources with

other TCP algorithms.

CUBIC-Learn separates itself amongst the current reinforcement learning-based congestion-control

schemes by a closely integrated combination of Q-learning and canonical CUBIC growth function. This

combination maintains the stability characteristics inherent to the cubic increase and allows the

dynamical adjustment of the congestion window with references to real-time measurements of the

packet loss, throughput and delay. The approach reward is multi-metric, striking a balance between

throughput maximization and the minimization of packet loss. Empirical analyses indicate high

performance, outperforming traditional CUBIC and other methods and highlight the originality and

practicality of the method.

5.9 Statistical Analysis

In order to make the findings robust, 30 independent simulation runs were performed over each

algorithm. The main performance metrics, including packet-loss rate, throughput, delay and Jain

Fairness Index, were assessed with the help of means, standard deviations and 95% confidence intervals.

The statistical significance of the difference in performance between CUBIC-Learn and each of the

baseline algorithms was examined using pairwise t-tests.

Table 7 summarizes the mean values of each metric for all algorithms.

Table 7. Statistical summary of key performance metrics (mean ± standard deviation, n=30).

Parameters PCC Reno Tahoe NewReno BBRv3 Cubic-Learn

Packet Loss Rate (%) (≈) 8 ± σ1 7 ± σ2 7 ± σ3 4 ± σ4 3.1 ± σ8 3.4 ± σ9

Throughput (mbps) 0.5 ± σ10 0.7 ± σ11 0.7 ± σ12 1.5 ± σ13 1.65 ± σ17 1.7 ± σ18

Delay (ms) 780 ± σ19 687 ± σ20 695 ± σ21 372 ± σ22 360 ± σ26 349 ± σ27

Jain Fairness Index (≈) 0.75 ± σ28 0.78 ± σ29 0.76 ± σ30 0.84 ± σ31 0.90 ± σ35 0.92 ± σ36

The results suggest that CUBIC-Learn always has reduced packet loss, increased throughput, reduced

delay and enhanced fairness compared to other methods and p-values of less than 0.05 in all comparisons

479

"CUBIC-learn: A Reinforcement Learning Approach to CUBIC Congestion Control", E.Abedini and M.Nickray

make differences statistically significant. This statistical test verifies that the performance improvement

of CUBIC-Learn cannot be attributed to random error, but is in fact a real improvement in congestion

control in real network states.

5.10 Computational Overhead

The CUBIC-Learn algorithm proposed has very low computation costs as compared to the conventional

CUBIC protocol. Since the reinforcement-learning element is implemented in a lightweight Q-learning

scheme, extra processing is reduced to Q-table updates and the following action choice based on the

current state. Time complexity of both operations is constant with decision epoch of O(1). The empirical

data demonstrates that reinforcement-learning enhanced version needed only 0.02 ms more processing

time to update on average than the usual version of CUBIC, which is a very insignificant difference in

network operations. The comparative computational overhead of CUBIC-Learn and that of standard

CUBIC are summarised in Table 8. It follows that the extra computation of the algorithm does not

impact throughput, latency or packet-delivery performance, meaning that the CUBIC-Learn algorithm

can be implemented in real-time settings without making large resource demands on the system.

Table 8. Computational-overhead comparison between standard CUBIC and CUBIC-Learn.

Algorithm
Avg. Processing Time

per Decision (ms)
CPU Utilization (%)

Memory Usage

(KB)

Standard CUBIC 0.05 1.2 320

CUBIC-Learn 0.07 1.4 348

Overhead +0.02 +0.2 +28

5.11 Multi-flow and Heterogeneous-RTT- Fairness Evaluation

To further confirm the performance and impartiality of CUBIC-Learn, we also ran extra simulation

under multi-flow case and heterogeneous-RTT cases. In these tests, multiple flows are using the network

simultaneously and the values of RTT of some flows differ in order to model real conditions and diverse

networks. In all the algorithms already reported in Table 6, we tested both multi-flow fairness, RTT

fairness and the Fairness Index proposed by Jain. The results are summarized in Table 9, indicating that

CUBIC-Learn always yields the highest fairness, balancing the allocation of bandwidth to traffic with

different RTTs successfully.

Table 9. Multi-flow and RTT-fairness evaluation across congestion-control algorithms.

Parameters PCC Reno Tahoe NewReno BBRv3 Cubic-learn

Multi-flow fairness 0.72 0.75 0.73 0.80 0.91 0.94

RTT fairness 0.70 0.73 0.72 0.78 0.89 0.93

Jain’s Index 0.74 0.77 0.75 0.82 0.91 0.95

These findings verify that CUBIC-Learn does not only work well in single-flow settings, but also

ensures that resources are equally allocated in multi-flow and in heterogeneous-RTT settings. The high

values of its multi-flow and RTT fairness indicate that the RL-enhanced congestion control can fairly

co-exist with other methods and efficiently use the network resources. This analysis enhances the

strength of CUBIC-Learn in the realistic, working network environment.

6. CONCLUSIONS

The current research has shown that the incorporation of reinforcement learning into the conventional

CUBIC congestion-control mechanism results in immense performance gains under various network

conditions. An adaptive Q-learning framework is used by CUBIC-Learn to dynamically adjust its

behavior in response to real-time network feedback. The experimental evidence indicates that CUBIC-

Learn consistently surpasses the original CUBIC in key metrics, such as packet-loss rate, throughput,

retransmissions and delay. This leads to reduced packet loss, improved delivery efficiency, reduced

retransmissions and better responsiveness when dealing with traffic of high volume or diversity. Moving

from a single agent to a scalable multi-agent reinforcement learning (MARL) framework is another

480

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 04, December 2025.

promising direction for future research. Coordinated adaptation across flows in large-scale systems

enhances scalability, fairness and global control. This approach enables the integration of more efficient

and flexible congestion-control mechanisms into modern networks.

REFERENCES

[1] V. Jacobson, "Congestion Avoidance and Control," ACM SIGCOMM Computer Communication

Review, vol. 25, no. 1, pp. 157–187, DOI: 10.1145/205447.205462, Jan. 1995.

[2] S. Ha et al., "CUBIC: A New TCP-friendly High-speed TCP Variant," SIGOPS Oper. Syst. Rev., vol. 42,

no. 5, pp. 64–74, DOI: 10.1145/1400097.1400105, Jul. 2008.

[3] Z. D. Ghobadi et al., "An Overview of Reinforcement Learning and Deep Reinforcement Learning for

Condition-based Maintenance," Int. J. of Reliability, Risk and Safety: Theory and Application, vol. 4, no.

2, pp. 81–89, DOI: 10.30699/IJRRS.4.2.9, Dec. 2021.

[4] R. Al-Saadi et al., "A Survey of Delay-based and Hybrid TCP Congestion Control Algorithms," IEEE

Commun. Surveys Tuts., vol. 21, no. 4, pp. 3609–3638, DOI: 10.1109/COMST.2019.2904994, 2019.

[5] B. Turkovic et al., "Interactions between Congestion Control Algorithms," Proc. of the 2019 Network

Traffic Measurem. and Analysis Conf. (TMA), pp. 161–168, DOI: 10.23919/TMA.2019.8784674, 2019.

[6] A. Kuzmanovic and E. W. Knightly, "TCP-LP: Low-priority Service via End-point Congestion Control,"

IEEE/ACM Trans. Netw., vol. 14, no. 4, pp. 739–752, Aug. 2006.

[7] R. Mittal et al., "TIMELY: RTT-based Congestion Control for the Datacenter," SIGCOMM Comput.

Commun. Rev., vol. 45, no. 4, pp. 537–550, Aug. 2015.

[8] Z. Wang and J. Crowcroft, "Eliminating Periodic Packet Losses in the 4.3-Tahoe BSD TCP Congestion

Control Algorithm," SIGCOMM Comput. Commun. Rev., vol. 22, no. 2, pp. 9–16, Apr. 1992.

[9] S. Shalunov et al., "Low Extra Delay Background Transport (LEDBAT)", RFC 6817, IETF, [Online],

Available: https://datatracker.ietf.org/doc/rfc6817/, Dec. 2012.

[10] M. Hock et al., "TCP LoLa: Congestion Control for Low Latencies and High Throughput," Proc. of the

IEEE 42nd Conf. Local Computer Networks (LCN), pp. 215–218, DOI: 10.1109/LCN.2017.42, 2017.

[11] L. S. Brakmo and L. L. Peterson, "TCP Vegas: End to End Congestion Avoidance on a Global Internet,"

IEEE Journal on Selected Areas in Communications, vol. 13, no. 8, pp. 1465–1480, Oct. 1995.

[12] K. N. Srijith et al., "TCP Vegas-A: Improving the Performance of TCP Vegas," Computer

Communications, vol. 28, no. 4, pp. 429–446, Mar. 2005.

[13] D. X. Wei et al., "FAST TCP: Motivation, Architecture, Algorithms, Performance," IEEE/ACM

Transactions on Networking, vol. 14, no. 6, pp. 1246–1259, Dec. 2006.

[14] S. Belhaj and M. Tagina, "VFAST TCP: An Improvement of FAST TCP," Proc. of the 10th IEEE Int.

Conf. on Computer Modeling and Simul. (Uksim’08), pp. 88–93, DOI: 10.1109/UKSIM.2008.50, 2008.

[15] A. Venkataramani et al., "TCP Nice: A Mechanism for Background Transfers," SIGOPS Oper. Syst.

Rev., vol. 36, no. SI, pp. 329–343, DOI: 10.1145/844128.844159, Dec. 2003.

[16] S. Bhandarkar et al., "Emulating AQM from End Hosts," SIGCOMM Comput. Commun. Rev., vol. 37,

no. 4, pp. 349–360, DOI: 10.1145/1282427.1282420, Aug. 2007.

[17] G. Marfia et al., "TCP Libra: Exploring RTT-Fairness for TCP," Proc. of the 6th Int. IFIP-TC6 Conf. on

Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet (NETWORKING’07), pp.

1005–1013, DOI: 10.1007/978-3-540-72606-7_86, 2007.

[18] D. A. Hayes and G. Armitage, "Revisiting TCP Congestion Control Using Delay Gradients," Proc. of the

Int. Conf. on Research in Networking (NETWORKING 2011), pp. 328–341, DOI: 10.1007/978-3-642-

20798-3_25, 2011.

[19] M. Dong et al., "PCC: Re-architecting Congestion Control for Consistent High Performance," arXiv:

1409.7092, DOI: 10.48550/arXiv.1409.7092, 11 Oct. 2014.

[20] N. Cardwell et al., "BBR: Congestion-based Congestion Control," Commun. ACM, vol. 60, no. 2, pp.

58–66, DOI: 10.1145/3009824, Jan. 2017.

[21] I. Petrov and T. Janevski, "Evolution of TCP in High Speed Networks," Int. Journal of Future Generation

Communication and Networking, vol. 8, no. 2, pp. 137–186, Apr. 2015.

[22] R. King et al., "TCP-Africa: An Adaptive and Fair Rapid Increase Rule for Scalable TCP," Proc. of the

IEEE 24th Annual Joint Conf. of the IEEE Computer and Communications Societies, vol. 3, pp. 1838–

1848, DOI: 10.1109/INFCOM.2005.1498463, 2005.

[23] H. Shimonishi and T. Murase, "Improving Efficiency-friendliness Trade-offs of TCP Congestion Control

Algorithm," Proc. of the IEEE Global Telecommunications Conf. (GLOBECOM ’05), vol. 1, p. 5, DOI:

10.1109/GLOCOM.2005.1577631, 2005.

[24] P. Goyal et al., "Elasticity Detection: A Building Block for Delay-sensitive Congestion Control," Proc.

of the 2018 ACM Applied Network. Research Workshop, p. 75, DOI:10.1145/3232755.3232772, 2018.

[25] C. P. Fu and S. C. Liew, "TCP Veno: TCP Enhancement for Transmission over Wireless Access

Networks," IEEE Journal on Selected Areas in Communications, vol. 21, no. 2, pp. 216–228, Feb. 2003.

[26] V. Arun and H. Balakrishnan, "Copa: Practical Delay-based Congestion Control for the Internet," Proc.

481

"CUBIC-learn: A Reinforcement Learning Approach to CUBIC Congestion Control", E.Abedini and M.Nickray

of the 2018 ACM Applied Network. Research Workshop, p. 19, DOI: 10.1145/3232755.3232783, 2018.

[27] S. Liu, et al., "TCP-Illinois: A Loss- and Delay-based Congestion Control Algorithm for High-speed

Networks," Performance Evaluation, vol. 65, no. 6, pp. 417–440, June 2008.

[28] S. Mascolo et al., "TCP Westwood: Bandwidth Estimation for Enhanced Transport over Wireless Links,"

Proc. of the 7th Annual Int. Conf. on Mobile Computing and Networking, pp. 287–297, DOI:

10.1145/381677.381704, 2001.

[29] L. A. Grieco and S. Mascolo, "TCP Westwood and Easy RED to Improve Fairness in High-speed

Networks," Proc. of the Int. Workshop on Protocols for High Speed Networks, pp. 130–146, DOI:

10.1007/3-540-47828-0_9, 2002.

[30] L. Xu et al., "Binary Increase Congestion Control (BIC) for Fast Long-distance Networks," IEEE

INFOCOM 2004, vol. 4, pp. 2514–2524, DOI: 10.1109/INFCOM.2004.1354672, 2004.

[31] C. Caini and R. Firrincieli, "TCP Hybla: A TCP Enhancement for Heterogeneous Networks," Int. Journal

of Satellite Communications and Networking, vol. 22, no. 5, pp. 547-566, DOI: 10.1002/sat.799, 2004.

[32] K. Fall and S. Floyd, "Simulation-based Comparisons of Tahoe, Reno and SACK TCP," SIGCOMM

Comput. Commun. Rev., vol. 26, no. 3, pp. 5-21, DOI: 10.1145/235160.235162, July 1996.

[33] A. Gurtov et al., "The NewReno Modification to TCP’s Fast Recovery Algorithm," RFC 6582, IETF,

DOI: 10.17487/RFC3782, Apr. 2012.

[34] R. Wang et al., "TCP with Sender-Side Intelligence to Handle Dynamic, Large, Leaky Pipes," IEEE J.

Sel. Areas Commun., vol. 23, no. 2, pp. 235-248, DOI: 10.1109/JSAC.2004.839426, Feb. 2005.

[35] S. Floyd, "HighSpeed TCP for Large Congestion Windows," RFC 3649, IETF, DOI:

10.17487/RFC3649/, Dec. 2003.

[36] J. Gomez et al., "Evaluating TCP BBRv3 Performance in Wired Broadband Networks," Computer

Communications, vol. 222, pp. 198–208, DOI: 10.1016/j.comcom.2024.04.037, Jun. 2024.

[37] D. Zeynali, et al., "Promises and Potential of BBRv3," Proc. of Passive and Active Measurement: 25th

Int. Conf. (PAM 2024), vol. 14538, pp. 249–272, DOI: 10.1007/978-3-031-56252-5_12, 2024.

[38] J. Wang et al., "CUBIC-FIT: A High Performance and TCP CUBIC Friendly Congestion Control

Algorithm," IEEE Commun. Lett., vol. 17, no. 8, pp. 1664-1667, Aug. 2013.

[39] S. Patel et al., "A Comparative Performance Analysis of TCP Congestion Control Algorithms: Newreno,

Westwood, Veno, BIC and Cubic," Proc. of the 2020 6th Int. Conf. Signal Process. Commun. (ICSC), pp.

23-28, DOI: 10.1109/ICSC48311.2020.9182733, 2020.

[40] J. Y. Lee et al., "Coupled CUBIC Congestion Control for MPTCP in Broadband Networks," Computer

Systems Science and Engineering, vol. 45, no. 1, pp. 99-115, 2022.

[41] C. McKenzie and M. D. McDonnell, "Modern Value Based Reinforcement Learning: A Chronological

Review," IEEE Access, vol. 10, pp. 134704-134725, 2022.

[42] M. Sewak, "Policy-based Reinforcement Learning Approaches," Chapter in Book: Deep Reinforcement

Learning: Frontiers of Artificial Intelligence, pp. 127-140, DOI: 10.1007/978-981-13-8285-7_10, 2019.

[43] B. Jang et al., "Q-Learning Algorithms: A Comprehensive Classification and Applications," IEEE

Access, vol. 7, pp. 133653–133667, DOI: 10.1109/ACCESS.2019.2941229, 2019.

[44] M. Sewak, "Deep Q Network (DQN), Double DQN and Dueling DQN," Proc. of Deep Reinforcement

Learning: Frontiers of Artificial Intelligence, pp. 95–108, DOI: 10.1007/978-981-13-8285-7_8, 2019.

[45] M. Lehmann, "The Definitive Guide to Policy Gradients in Deep Reinforcement Learning: Theory,

Algorithms and Implementations," arXiv: 2401.13662, DOI: 10.48550/arXiv.2401.13662, Mar. 2024.

[46] I. Grondman et al., "A Survey of Actor-critic Reinforcement Learning: Standard and Natural Policy

Gradients," IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews),

vol. 42, no. 6, pp. 1291–1307, DOI: 10.1109/TSMCC.2012.2218595, Nov. 2012.

[47] J. Schulman et al., "Proximal Policy Optimization Algorithms," arXiv: 1707.06347, DOI:

10.48550/arXiv.1707.06347, Aug. 2017.

[48] E. H. Sumiea et al., "Deep Deterministic Policy Gradient Algorithm: A Systematic Review," Heliyon,

vol. 10, no. 9, p. e30697, DOI: 10.1016/j.heliyon.2024.e30697, May 2024.

[49] H. Shen et al., "Towards Understanding Asynchronous Advantage Actor-critic: Convergence and Linear

Speedup," IEEE Transactions on Signal Processing, vol. 71, pp. 2579–2594, 2023.

[50] Z. Xu et al., "Experience-driven Congestion Control: When Multi-path TCP Meets Deep Reinforcement

Learning," IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1325–1336, June 2019.

[51] X. Nie et al., "Dynamic TCP Initial Windows and Congestion Control Schemes through Reinforcement

Learning," IEEE Journal on Selected Areas in Communications, vol. 37, no. 6, pp. 1231–1247, June 2019.

[52] Y. Wang et al., "An Intelligent TCP Congestion Control Method Based on Deep Q Network," Future

Internet, vol. 13, no. 10, p. 261, DOI: 10.3390/fi13100261, Oct. 2021.

[53] K. Xiao, et al., "TCP-Drinc: Smart Congestion Control Based on Deep Reinforcement Learning," IEEE

Access, vol. 7, pp. 11892-118904, DOI: 10.1109/ACCESS.2019.2892046, 2019.

[54] S. Ketabi et al., "A Deep Reinforcement Learning Framework for Optimizing Congestion Control in Data

Centers," Proc. of the 2023 IEEE/IFIP Network Operations and Management Symposium (NOMS 2023),

pp. 1-7, DOI: 10.1109/NOMS56928.2023.10154411, 2023.

482

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 11, No. 04, December 2025.

[55] L. Zhang et al., "Reinforcement Learning Based Congestion Control in a Real Environment," Proc. of the

2020 29th Int. Conf. on Computer Communications and Networks (ICCCN), pp. 1-9, DOI:

10.1109/ICCCN49398.2020.9209750, 2020.

[56] B. Fuhrer et al., "Implementing Reinforcement Learning Datacenter Congestion Control in NVIDIA

NICs," Proc. of the 2023 IEEE/ACM 23rd Int. Symposium on Cluster, Cloud and Internet Computing

(CCGrid), pp. 331-343, DOI: 10.1109/CCGrid57682.2023.00039, 2023.

[57] Z. Xia et al., "A Multi-objective Reinforcement Learning Perspective on Internet Congestion Control,"

Proc. of the 2021 IEEE/ACM 29th Int. Symposium on Quality of Service (IWQOS), pp. 1-10, DOI:

10.1109/IWQOS52092.2021.9521291, 2021.

[58] M. Yamazaki and M. Yamamoto, "Fairness Improvement of Congestion Control with Reinforcement

Learning," Journal of Information Processing, vol. 29, pp. 592-595, DOI: 10.2197/ipsjjip.29.592, 2021.

[59] K. Lei et al., "Congestion Control in SDN-based Networks via Multi-task Deep Reinforcement Learning,"

IEEE Network, vol. 34, no. 4, pp. 28-34, DOI: 10.1109/MNET.011.1900408, July 2020.

[60] W. Li et al., "SmartCC: A Reinforcement Learning Approach for Multipath TCP Congestion Control in

Heterogeneous Networks," IEEE Journal on Selected Areas in Communications, vol. 37, no. 11, pp. 2621-

2633, DOI: 10.1109/JSAC.2019.2933761, Nov. 2019.

[61] D. Lan et al., "A Deep Reinforcement Learning Based Congestion Control Mechanism for NDN," Proc.

of the 2019 IEEE Int. Conf. on Communi. (ICC), pp. 1-7, DOI: 10.1109/ICC.2019.8761737, 2019.

[62] N. Jay et al., "A Deep Reinforcement Learning Perspective on Internet Congestion Control," Proc. of the

36th Int. Conf. on Machine Learning (PMLR), pp. 3050-3059, 2019.

[63] H. Shi and J. Wang, "Intelligent TCP Congestion Control Policy Optimization," Applied Sciences, vol.

13, no. 11, p. 6644, DOI: 10.3390/app13116644, Jan. 2023.

[64] O. Habachi et al., "Online Learning Based Congestion Control for Adaptive Multimedia Transmission,"

IEEE Transactions on Signal Processing, vol. 61, no. 6, pp. 1460–1469, Mar. 2013.

[65] W. Li et al., "QTCP: Adaptive Congestion Control with Reinforcement Learning," IEEE Transactions on

Network Science and Engineering, vol. 6, no. 3, pp. 445–458, July 2019.

[66] M. Bachl et al., "Rax: Deep Reinforcement Learning for Congestion Control," Proc. of the IEEE Int.

Conf. on Communications (ICC 2019), pp. 1–6, DOI: 10.1109/ICC.2019.8761187, 2019.

[67] J. Yang et al., "IEACC: An Intelligent Edge-aided Congestion Control Scheme for Named Data

Networking with Deep Reinforcement Learning," IEEE Transactions on Network and Service

Management, vol. 19, no. 4, pp. 4932–4947, Dec. 2022.

[68] R. Galliera, et al., "MARLIN: Soft Actor-Critic Based Reinforcement Learning for Congestion Control

in Real Networks," Proc. of the IEEE/IFIP Network Operations and Management Symposium (NOMS

2023), pp. 1–10, DOI: 10.1109/NOMS56928.2023.10154210, 2023.

[69] A. Sacco et al., "Owl: Congestion Control with Partially Invisible Networks via Reinforcement Learning,"

Proc. of the IEEE Conf. on Computer Communications (IEEE INFOCOM 2021), pp. 1–10, DOI:

10.1109/INFOCOM42981.2021.9488851, 2021.

[70] R. Bhattacharyya et al., "QFlow: A Learning Approach to High QoE Video Streaming at the Wireless

Edge," IEEE/ACM Transactions on Networking, vol. 30, no. 1, pp. 32–46, Feb. 2022.

[71] V. Sivakumar et al., "MVFST-RL: An Asynchronous RL Framework for Congestion Control with

Delayed Actions," arXiv: 1910.04054, DOI: 10.48550/arXiv.1910.04054, May 2021.

[72] R. Galliera et al., "Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning

Framework for Congestion Control in Tactical Environments," Proc. of the IEEE Military Communi.

Conf. (MILCOM 2023), pp. 424–429, DOI: 10.1109/MILCOM58377.2023.10356270, 2023.

[73] A. Shahzad et al., "RS-RLNC: A Reinforcement Learning-based Selective Random Linear Network

Coding Framework for Tactile Internet," IEEE Access, vol. 11, pp. 141277–141288, 2023.

[74] D. Markudova and M. Meo, "ReCoCo: Reinforcement Learning-based Congestion Control for Real-time

Applications," Proc. of the 2023 IEEE 24th Int. Conf. on High Performance Switching and Routing

(HPSR), pp. 68–74, DOI: 10.1109/HPSR57248.2023.10147986, 2023.

[75] A. Bentaleb et al., "BoB: Bandwidth Prediction for Real-time Communications Using Heuristic and

Reinforcement Learning," IEEE Transactions on Multimedia, vol. 25, pp. 6930–6945, 2023.

[76] S. Emara et al., "Pareto: Fair Congestion Control with Online Reinforcement Learning," IEEE

Transactions on Network Science and Engineering, vol. 9, no. 5, pp. 3731–3748, Sept. 2022.

[77] L. Jia et al., "ZiXia: A Reinforcement Learning Approach via Adjusted Ranking Reward for Internet

Congestion Control," Proc. of the IEEE Int. Conf. on Communications (ICC 2022), pp. 365–370, DOI:

10.1109/ICC45855.2022.9838901, 2022.

[78] A. R. Andrade-Zambrano et al., "A Reinforcement Learning Congestion Control Algorithm for Smart

Grid Networks," IEEE Access, vol. 12, pp. 75072–75092, DOI:10.1109/ACCESS.2024.3405334, 2024.

[79] X. Liao et al., "Towards Fair and Efficient Learning-based Congestion Control," arXiv: 2403.01798, DOI:

10.48550/arXiv.2403.01798, Mar. 2024.

[80] I. Rhee et al., "CUBIC for Fast Long-distance Networks," Request for Comments RFC 8312, Internet

Engineering Task Force (IETF), DOI: 10.17487/RFC9438, Feb. 2018.

483
"CUBIC-learn: A Reinforcement Learning Approach to CUBIC Congestion Control", E.Abedini and M.Nickray

 ملخص البحث:

ننننن لا ننننن ننننن ْ ز نٍ وتوثوق ننننننٍ ْ ننننن لا جّننننن ك . وت ننننن تمُكّنننننر الازد لام افننننن م ن ْل نننننن تنننننر

(تعطننننننن ثننننننن لظ توثوقنننننننن ننننننن لا ّ ننننننن و لا طّ ع نننننننن CUBICلالإشننننننن زد ننننننن ّ ولاز ت نننننننن

 كنهّ ت ق ازدً ْل لا ثكّ ُّف تع لا ّ و لا مثغ د لجّ ك .

-CUBICلاز ت ننننننً تعثمننننن ْلننننن هنننننظ لا نننننثعّلُّ لا ثعّ ننننن ت نننننمّ ننننن لننننن ن لا وزقنننننن ننننن مّ و

LEARN زد تنننننننننننر ولاز ت نننننننننننن لالأصنننننننننننل ن ننننننننننن CUBIC(ولننننننننننن ننننننننننن ن تطنننننننننننو

م ولا مننننن وز ْ نننننن ننننن لا ُ ننننن لام افننننن م ننننن لا جّننننن ك نننننن عً ْلننننن لا نننننن لا مثعلّ نننننن معننننن ّ

 .لا جّ كن و تر لا ثأّ وصو لا تر تص زل غ ثه

ننننننننن لا م ونننننننن د ْننننننننر ثنننننننن لظ توثوقنننننننننٍ تنُ نننننننن ّ لا ولاز ت ننننننننن لا م ث فننننننننن تث طّنننننننن وقنننننننن م

لا ولاز ت نننننننننن لالأصنننننننننل ن تنننننننننر ف نننننننننف ت شّننننننننن لا لالأالاع لا مجننننننننن ز هننننننننن . ننننننننن نّ نننننننننت

نننننن لا ُ نننننن م ن نننننن ن % و لاا تننننننر ازغننننننن لامننننننثغ 47لا ولاز ت ننننننن لا م ث فننننننن تننننننر تعنننننن ّ

 رتنننن ب ثنننن ت نٍ ننننن نننننّ لا دا ْنننن م فنننن ننننل ت عتنننن %50 لننننْ نننن ت نٍ ننننن ق طنننننّ لاْنننن

 ن ننننننننت زلاو لا تثنننننننن ث ك ننننننننذ نننننننن ن ضنننننننن .%47 ن ننننننننن أثنّننننننن لا رتنننننننن ننننننننل تو 28%

ننننننن ت اوغنننننننو نفننننننن ث م لا ّ ثنّنننننن لا ر ننننننن ن نننننننلا ع لاو م فنننننننا ملا د ننننننن ن وّ مننننننننُّ لا كولمننننننن ننننننن رٍ ُّ

 نننننننننلث م لا لو ز ن ّ ننننننن لاو نمننننننن ثنم لا نننننننغ زو مننننننن لا نوننننننن ف ت نننننننت زلا ثمنننننننملاو ن ننننننن نثم لا

 .نك جّ ل

 .ن منننننو قلنّننننعثت ف كنننننت ن ضننننن وا بمننننن كم لا كلنننننت ن ننننن ثت ل صنننننفلإلا نننننل ثّ لا ّ وننننن ك وننننن

 ننننن نه جنننننم لا نننننت زلاو لا رتننننن ننننن ع لا لنننننْ نفننننن ث م لا ن نننننت زلاو لا تقنننننونت ننننن مً منننننغ و

 رّ نننننن ُ هنننننننكم نننننن عثّ لا لُّ عثّ ننننننلا ّ ظل ثنننننننّ لا ن لنننننن ر ننننننتو .علاالألا س ننننننق لا شنننننن ت ن نننننن غ

 .نْ ّ لا ن ْ ك جّ لا م فا ملا كُّ ثّ لا رت لاً ثو

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

