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ABSTRACT 

Managing congestion effectively enables reliable and fast data transfer over networks. CUBIC delivers reliable 

results under normal circumstances, but cannot adapt effectively to changing network scenarios. We introduce 

CUBIC-Learn, an RL approach for improving congestion control in CUBIC. The central idea is to use a Q-

learning algorithm to adjust congestion window thresholds based on current data on packet loss, throughput and 

latency. Simulations demonstrate more efficient and reliable congestion control when using CUBIC-Learn 

compared to standard CUBIC. CUBIC-Learn achieves a 47% reduction in packet loss, over a 59% increase in 

bandwidth utilization, approximately a 28% decrease in retransmissions and 47% lower latency. In addition, 

CUBIC-Learn shows significant improvements in congestion window (cwnd) growth behavior, fairness among 

competing flows and stability under heterogeneous traffic and network scenarios, including gigabit-scale 

bandwidth conditions. Statistical analysis further confirms the robustness of these gains, while the method 

introduces no additional computational overhead. Overall, CUBIC-Learn performs better than PCC, Reno, Tahoe, 

NewReno and BBRv3 in most metrics. These findings suggest that RL can markedly improve congestion control in 

high-speed networks. 
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1. INTRODUCTION

Effective congestion control [1] (CC) is crucial in ensuring the reliable operation of computer networks 

on today’s Internet. CC algorithms are designed to distribute network resources wisely and reduce both 

delays and data-packet losses. CUBIC [2] has become a leading choice for many network operators, 

providing good performance by striking a compromise between a range of crucial metrics. Advances in 

the complexity and variability of modern network traffic require new strategies to boost the efficiency 

of existing CC methods. 

Reinforcement learning (RL) [3] has seen increasing popularity as a way to enhance algorithm 

performance in dynamically changing and unpredictable conditions such as networks. The ability of RL 

to discover the best actions by interacting with the environment suggests its suitability for overcoming 

congestion control issues. However, using RL to optimize the CUBIC algorithm has received little 

attention so far. 

This study introduces a novel CUBIC-Learn algorithm that utilizes reinforcement learning to continually 

improve its handling of congestion control. The aim of this research is to evaluate the performance 

improvement achieved by CUBIC-Learn compared to the original CUBIC algorithm. The evaluation is 

thus conducted on a multi-hop network topology, which is complex and has many servers and clients 

connected through two routers and a bottleneck connection is deliberately provisioned to create 

congestion when the traffic loads are high. Further, CUBIC-Learn is compared with TCP variants (Reno, 

Tahoe, NewReno), PCC and BBRv3, thus providing a complete and representative comparison across 

a broad range of design paradigms. The Python simulations show that CUBIC-Learn achieves 

considerable gains in important performance metrics, such as packet-loss rate, throughput, 

retransmissions and delay. 

The rest of the paper is organized as follows. The history of congestion control and reinforcement 

learning is surveyed in Section 2 as related work. In Section 3, the proposed method is described. Section 

4 presents the simulation methodology. The results and discussion are given in Section 5, while Section 

6 concludes the paper. 
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2. RELATED WORK

Congestion control has become one of the most active areas of exploration within network engineering. 

Many solutions have been proposed to address the congestion problem [4]. This section reviews and 

groups some of the most significant congestion-control techniques that have been presented in the 

literature.  

We also discuss the emerging use of reinforcement learning in network-congestion control and analyze 

how machine-learning methods are being incorporated into transport-layer protocols. The current focus 

is on works that leverage RL to improve the CUBIC algorithm. 

2.1 Categorization of Congestion-control Techniques 

The different types of leading CC algorithms are showcased in Figure 1. It is organized under the 

headings of delay-based, loss-based and hybrid algorithms. Delay-based algorithms measure delays to 

spot signs of network congestion [4], while loss-based algorithms monitor errors or packets that cannot 

be delivered [5]. Hybrid algorithms aim to improve both responsiveness and stability [5]. 

Figure 1. Classification of congestion-32control techniques. 

In the recent past, the BBR (Bottleneck Bandwidth and Round-trip propagation time) of Google has 

become a leading hybrid congestion-control algorithm. It approximates the bottleneck bandwidth and 

the minimum round-trip time so as to maximize throughput and ensure low delays. Later versions, 

especially BBRv2, were fairer and more responsive, with the latest version, BBRv3, solving bandwidth 

convergence shortcomings and tuning gains to improve flow coexistence [36]. Experimental 

measurements show that BBRv3 converges on similar flows more quickly, but can face difficulties in 

coexisting with CUBIC flows [37]. 

2.2 CUBIC Congestion-control Algorithm 

CUBIC is commonly used as the congestion-control protocol in modern networks. When network 

congestion is detected, CUBIC dynamically adjusts the size of its congestion window by controlling the 

speed of increase based on a cubic function of time since the last congestion event [38]. CUBIC is 

engineered to deliver fast packet delivery, reliable data transfer and equal allocation of system resources 

among all connections. Unlike loss-based algorithms, it is less affected by RTT changes [39], leading 

to fairer sharing of bandwidth among flows with varying RTTs. Consequently, CUBIC outperforms 

conventional TCP algorithms, such as Reno and NewReno, in terms of resource utilization, particularly 

in long and high-speed networks. Equations (1) and (2) play an essential role in the CUBIC algorithm 

for regulating congestion on computer networks [40]. 

𝑊𝑡 = 𝐶(𝑡 − 𝐾)3 +  𝑊𝑚𝑎𝑥  (1) 

K = ((Wmax. β) / C) (1 / 3) (2) 

Where Wt is the congestion window size at time t, changes as a cubic function with respect to the 

maximum window size Wmax attained before the last congestion. The values of C and K regulate both 

the increase rate and required time delay for the window to be restored to its maximum size once reduced 

during congestion. Equation (2) determines K using Wmax, β and C as inputs. The non-linear growth 

behaves more effectively in utilizing available bandwidth and maximizing throughput, especially in 
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modern networks with low latency and high data rates, consistently exceeding conventional TCP 

congestion-control strategies. 

Algorithm 1 details the calculation process for determining the congestion-window size in CUBIC, 

showing how its growth follows a concave-convex shape over time, as dictated by the cubic function as 

well as the parameters C and β. 

Algorithm 1. CUBIC congestion-window size calculation 

Require: t: Elapsed real time since the last packet loss  

Require: Wmax: Congestion window size before the last packet loss  

Require: C: Increase factor (default = 0.4) 

Require: β: Decrease factor (default = 0.7) 

Ensure: Wt: Congestion window size at time t 

1. Initialize Parameters: Set C = 0.4, Set β = 0.7

2. Calculate K = ((Wmax. β) / C) (1 / 3))

3. Adjust Congestion Window After Loss: Wmax = cwnd (pre-loss value)

4. cwnd = cwnd × (1 − β)

5. Calculate Wt = C.(t − K)3 + Wmax

6. Behavior Based on Time t:

 If t < K, then Wt grows concavely

 Else If t > K, then Wt grows convexly

 end If

7. Return Wt

The CUBIC algorithm often works well under common conditions, but its performance can deteriorate 

in more demanding environments characterized by fast changes and multiple network components. 

Research has shown that traditional congestion-control techniques often encounter significant 

drawbacks and there is growing interest in exploring the use of machine-learning methods. 

2.3 Reinforcement Learning 

Reinforcement learning, as a branch of machine learning, is the possibility to create a system capable of 

making decisions and adapting to changing conditions [3]. The key elements of reinforcement learning 

comprise the agent, environment, states, actions and rewards. The agent is described as the decision-

making entity that learns by interacting with the environment, which subsequently responds to the 

agent’s actions with either rewards or penalties. State is the descriptive aspect of the environment’s 

condition at a given point in time, while actions describe the possible moves an agent can take in order 

to affect the subsequent state. Rewards provided play as evaluative signals that aid in the learning 

process of the agent by showing how good the agent’s action is. The conventional way agents and the 

environment interact in RL and an example of the agent-environment interaction cycle are presented in 

Figure 2. 

Figure 2. RL process. 

RL algorithms tend to possess two main elements: the value function, which represents the estimation 

of the expected cumulative net reward and value function policy that dictates certain states that will be 

acted upon [41] and the policy function, which determines certain actions will be taken on a given or 

observed state [42]. It is action-defined in the policy that is now in force. The value function updates the 
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entire set of policies so that over time, using rewards given as feedback improves the agent’s decision-

making in a step-by-step, gradual manner. 

Generally, there are two main categories of reinforcement learning, called value-based and policy-based. 

Value-based methods, such as Q-learning [43] and Deep Q-Networks (DQN) [44], are mainly about 

discovering the expected action value of each state. But at the same time, policy-based techniques, 

including Policy Gradient [45], Actor-Critic [46], Proximal Policy Optimization (PPO) [47], Deep 

Deterministic Policy Gradient (DDPG) [48] and Asynchronous Advantage Actor-Critic (A3C) [49], are 

those that change parameters directly to maximize the expected rewards and, in this way, discover the 

best policy. Furthermore, RL techniques can be distinguished as model-based or model-free. Model-

based approaches learn a model of the dynamics of the environment and use this to anticipate future 

scenarios and outcomes based on agent actions. Alternative approaches termed model-free, in contrast, 

learn strictly through experience without explicitly attempting to model the environment and can be 

preferable approaches for uncertain or complex systems. 

Many popular RL algorithms come from these ideas, such as Q-learning, SARSA, temporal-difference 

(TD) learning, actor-critic, Monte Carlo and now deep reinforcement learning (deep RL) methods. 
Within computer networks, RL has been found to be very effective for adaptation of decisions regarding 

congestion control. More specifically, RL agents could be deployed to regulate relevant parameters like 

the congestion window or the data-transmission rate in accordance with real-time network status, thus 

enhancing throughput, latency and overall Quality of Service (QoS). 

2.4 RL-based Approaches in Congestion Control 

Reinforcement learning presents an emerging solution to improve congestion-control mechanisms in 

computer networks, which demonstrate better performance in complex and dynamic network scenarios 

that standard rule-based methods cannot handle effectively. 

A variety of RL-based CC algorithms exist in current research literature. Through DRL-CC [50], the 

actor-critic agent connects to an LSTM network for the real-time flow control of MPTCP through OS 

kernel actions based on network-state information. TCP-RL [51] implements a neural network to 

enhance its congestion-control solution through interactive network state transitions. The 

implementation of TCP-DQN [52] demonstrates deep Q-learning usage for congestion-window updates 

through network feedback data. The system monitors the environment while obtaining reward signals 

to adjust Q-values using its deep neural network. TCP-Drinc [53] implements a model-free RL approach 

to adjust congestion windows using past experience without using any pre-established environment 

model. 

The growing research focus on network-protocol integration with RL demonstrates efforts to boost 

adaptability, throughput and responsiveness during complex network conditions. The most impactful 

RL-based congestion-control algorithms can be found in Table 1. 

2.5 Research Gap 

Although reinforcement learning has been widely explored in congestion control, the majority of 

previous research has suggested completely novel transport protocols. CUBIC-Learn, in contrast, builds 

upon the broadly used CUBIC algorithm, but does not substitute it. In particular, the strategy is an 

adaptive tuning of the congestion-window dynamics of CUBIC without compromising its cubic-growth 

base as well as backward compatibility with the Linux kernel. This difference makes the current work 

stand out among the current RL-based congestion-control schemes, which seldom consider CUBIC 

despite its prevalence in production networks. In addition, theoretical and empirical results are presented 

to show that the trained adaptation is not only equitable and stable, but also attains better throughput 

delay trade-offs. 

3. PROPOSED METHOD

Our research introduces a novel algorithm that combines CUBIC's basic congestion-control system with 

reinforcement-learning methods to achieve superior network performance in changing environments. 

Through this approach, the traditional congestion-control system improves essential network 

performance indicators, including packet-loss rate, throughput, retransmissions and delay. Our method  
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Table 1. The most significant RL-based congestion-control algorithms. 

Paper RL Method State Action Reward 

[54] PPO BtlBw, RTprop, pacing gain and CWND

gain 

Window sizes Throughput and low latency 

[55] DDGP The average of sent packet interval, packet
loss, delay, sent bytes and last action 

Sending rate Throughput, penalized loss 
and delay 

[51] A3C Network Condition (throughput, RTT, loss

rate) 

CC Algorithm 

Selection 

Throughput 

[56] POMDP Current and past transmission rates, the

RTT measurement and its previous 

decisions. 

Next transmission rate Modulating the transmission 

rate 

[50] Deep RL Sending rate, goodput, average RTT, the

mean deviation of RTTs and the congestion 

window size 

Reducing and staying 

at the same congestion 

window size, 
respectively. 

Goodput 

[57] MOMDP Delay, ACK rate, Sending rate, CWND Adjusting the

congestion window 

Throughput 

[52] Q-learning The relative time t, congestion window

size, Number of unacknowledged bytes, 

Number of ACK packets, Average RTT, 
Throughput, Number of lost packets 

Adjusting the 

congestion window 

Throughput and RTT 

[53] Deep RL Time Slote CWND Adjusting RTT 

[58] Q-learning Packet sending time average, ACK arrival

time average and RTT average 

How to change the 

congestion window 

Throughput and delay 

(Utility) 

[59] DDGP Based on the congestion control state and
load balancing state 

Sending rates Throughput 

[60] New Approach

on Q-learning 

Data rate, delay and available bandwidth of 

different subroutes 

Window adjustment Throughput 

[61] MDP Variables such as: i_prefix, i_priority,
i_cwnd, i_count, d_count, l_count, d_size, 

d_rtt, m_time, d_time 

Control the sending 
rate of interest packets 

by adjusting the size 

of CWND. 

Maximize the throughput 
while minimizing delay, loss 

rate and packet reordering. 

[62] RL Received packet-acknowledgements Changing the sending 

rate 

Rewards throughput while 

penalizing loss and latency 

[63] Deep RL Current relative time tr, current congestion
window size, number of bytes is not 

acknowledged, quantity of ACK packets 
obtained, RTT, throughput rate, The 

number of packet losses 

Increase the 
congestion window 

length. 

Throughput rate or delay 

[64] POMDP Media Congestion window Number of packets 
successfully transmitted 

[65] Q-learning avg_send, avg_ack, avg_rtt Decision to increase, 

decrease or leave 
unchanged the current 

CWND 

Throughput and latency 

[66] Deep RL The time between the last two ACKs that
were received, the RTT of the last received 

packet, loss indicator, current CWND 

Changing the CWND All sent packets, all receiver 
packets, the time between 

receiving the last ACK and 

receiving the current ACK 
[67] Deep RL Congestion Info, Loss Rate, Throughput Transmission rate Goodput (capacity of the

interface, loss value, average 

queue length) 
[68] SAC Current CWND, KBs Sent, New KBs Sent,

Acked KBs, Packets sent, Retransmissions, 

Throughput, Goodput, Unacked KBs, Last 
RTT, Min RTT, Max RTT, SRTT, VAR 

RTT 

CWND size Bandwidth 

[69] Q-learning Network conditions Cwnd changing High throughput and few 
losses 

[70] Q-learning Current buffer (the number of seconds of

video that it has buffered up) 

High and low priority 

queue 

QoE average 

[71] 
MDP Summary of network statistics Updating the 

congestion window 

size 

A function of measured 

throughput and delay 

[72] SAC Current CWND, KBs Sent, New KBs Sent,

Acked KBs, Packets Sent, Retransmissions, 

Throughput, Goodput, Unacked KBs, Last 
RTT, Min RTT, Max RTT, SRTT, VAR 

RTT 

Percentage gain in 

congestion window 

size 

Penalties based on 

retransmission 

[73] Q-learning Incipient congestion, estimated channel
erasure rate 

Block RLNC, sliding 
RLNC 

Goodput/ round trip time 

[74] SAC, DDPG,

PPO 

Receiving rate, average delay, loss ratio, 

last action 

Transmission rate Bandwidth utilization, delay 

and loss ratio 

[75] Actor-critic Receiving rate, packet delay, packet loss
ratio, most recent bandwidth prediction 

Bandwidth prediction 
for the next time 

window 

Rewarded when agent 
receives more packets and 

penalized when packet 
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delay/loss 

[76] POMDP Throughput, delay and loss rate Sending rate Startup, queue draining and 
bandwidth probing 

[77] Deep RL Network conditions Cwnd updating Throughput ranking, delay 

ranking 
[78] Deep RL Global PDR and local PDR Packet transmission or 

packet discarding 

Global packet delivery ratio 

and local packet delivery 

ratio 
[79] Multi-agent

Deep RL 

Ovr_thr, min_thr, max_thr, avg_lat, 

min_cwnd, max_cwnd, avg_cwnd, 

loss_ratio, num_flow, d0, buf, c 

CWND Efficiency, stability, fairness 

and responsiveness 

uses Q-learning to create an adaptive system that dynamically adjusts CUBIC’s key parameters (C and 

β) through real-time network-state monitoring. 

3.1 CUBIC-Learn 

Reinforcement learning establishes a versatile approach that supports real-time decision-making under 

conditions of uncertainty. The CUBIC-Learn algorithm implements Q-learning as a model-free 

reinforcement-learning method to enable the congestion-control agent to learn optimal policies directly 

from network-environment interactions. The agent uses a Q-table represented by Q(s,a) to save the 

expected utility value for action a at state s. Through direct interaction with the network environment at 

each time step, the agent receives a reward after selecting an action from its current state. The Q-values 

undergo iterative updates according to the Bellman equation displayed in Equation (3). 

𝑄(𝑠, 𝑎)  ←  𝑄(𝑠, 𝑎) + 𝛼[𝑅 +  𝜆 . 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (3) 

where α is learning rate, λ is discount factor, s is current state, a is selected action, R is received reward, 

s′ is new state, a′ is new action and maxa′Q(s′,a′) is the maximum value of Q for the new state and all 

possible actions. This iterative process remains active while the agent works with the environment to 

enhance its policy. Throughout time, it reaches an optimal policy that produces the maximum possible 

cumulative reward across different network situations. 

The CUBIC-Learn method functions as follows: the current state of the environment is defined through 

three primary metrics, including packet-loss rate, throughput and delay. Instead of directly modifying 

cwnd, the agent selects actions that adapt the parameters C and β of the CUBIC function, thereby 

indirectly influencing the congestion-window evolution. To guide the agent toward optimal decisions, 

the design of the reward function incorporates essential network-performance metrics. Equation (4) 

serves as our proposed reward function. 

𝑅 = 10 ∗ 𝑇 − 100 ∗ 𝑃  (4) 

where R is reward, T is throughput and P is packet loss. This formulation promotes a balance between 

efficiency and stability. A higher throughput contributes positively to the reward, encouraging efficient 

bandwidth utilization. A higher packet-loss rate incurs a significant penalty, discouraging congestion 

and promoting reliability. Since RL now tunes CUBIC parameters, this reward continues to effectively 

capture the trade-off between efficiency and stability without requiring structural changes. 

3.2 Learning Process 

During every decision-making point, the agent uses available network data, which includes packet loss, 

delay and throughput, to make a choice through the ε-Greedy policy. The policy establishes an 

equilibrium between exploration: trying new actions to discover potentially better strategies and 

exploitation: choosing actions known to yield high rewards based on past experience. The environment 

reacts to the agent's actions through state transitions and reward assignments that lead to new states. A 

new Q-value update for the current state-action combination happens through implementation of the Q-

learning update, Equation (3), which depends on received feedback. Through this mechanism, RL 

adaptively modifies C and β, ensuring that cwnd growth follows standard CUBIC dynamics while still 

benefiting from learning-based optimization. CUBIC-Learn architecture operations become clear 

through Figure 3, which demonstrates how the learning agent communicates with the network 

environment. For all experiments, the agent’s hyper-parameters were fixed to ϵ=0.2→0.01, α=0.1 and 

λ=0.9, as specified in Algorithm 2. Ablation experiments with alternative values confirmed that these 

defaults provide the most stable and robust learning behavior. 
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Algorithm 2 delivers the CUBIC-Learn algorithm with a clear step-by-step method that works for 

simulation tests and implementation purposes in real-world applications. 

Algorithm 2. CUBIC-Learn CC Algorithm 

Require: cwnd = 1, ssthresh = 10, Wmax = 10, β = 0.7, C = 0.4, t = 0, 

Require: K = ((Wmax * β) / C) ^ (1/3) 

Require: Q-learning parameters: α=0.1, λ=0.9, ε=0.2→0.01 

Require: q_table = {}       Empty Q-table 

1: function get _state 

2:  return(packet_loss_rate, throughput, delay) 

3: end function 

4: function get_action (state) 

5:  if random < ϵ then 

6:  Choose a random action from {increase, decrease, hold}  

7:  else 

8:  Select action with highest Q-value from Q_table [state] 

9:      end if 

10: end function 

11: function update_q_value (state, action, reward, next_state) 

12:     Q(s,a)←Q(s,a) +α · (reward+ λ·maxQ(next_state) − Q(s,a)) 

13: end function 

14: while simulation is running do 

15: current_state←get_state 

16: action←get_action(current_state)  

17: RL adjusts CUBIC parameters 

18:  if action == increase then 

19:  β ← min(β + 0.01, 1.0) 

20:  C ← min(C + 0.01, 1.0) 

21:  else if action == decrease then 

22:  β ← max(β − 0.01, 0.0) 

23:  C ← max(C − 0.01, 0.0) 

24:  else if action == hold then 

25:  // No change to β or C 

26:  end if 

27: Standard CUBIC update 

28:     if ACK received then 

29:      cwnd←C·(t−K)3+Wmax 

30:      t←t+ 1 

31:     else 

32:      ssthresh←max(cwnd·β,1) 

33:      Wmax = cwnd (pre-loss value) 

34: cwnd = cwnd × (1 − β) 

35:      t←0 

36:     end if 

37:      next_state←get_state 

38:      reward←10·throughput−100·packet_loss 

39:      update_q_value(current_state,action,reward,next_state)  

40: end while 

4. SIMULATION METHODOLOGY

In this section, the simulation method is explained to evaluate and compare the performance of the 

traditional CUBIC congestion-control algorithm with the proposed CUBIC-Learn algorithm. Creating a 

controlled and representative network environment is the key to achieving fair, consistent and thorough 

comparisons of various critical performance metrics, such as packet-loss rate, throughput and 

retransmissions. 
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Figure 3. Overview of CUBIC-learn. 

4.1 Simulation Setup 

All simulations were carried out using Python version 3.12.0. Baseline experiments with the canonical 

CUBIC and TCP reno algorithms under standard settings were conducted to verify the faithfulness of 

the simulation environment. The achieved throughput, packet-loss rate and delay values were consistent 

with the results of previous research and RFC 8312 [80]. As demonstrated in Table 2, these results 

indicate that the simulation environment is a realistic model of the network behaviour and, therefore, it 

is a reliable basis of testing the proposed CUBIC-Learn methodology. 

Table 2. Baseline-validation results for the simulation environment. 

Algorithm Metric Simulation Result Reported in Literature 

CUBIC Throughput (Mbps) 1.71 1.65–1.70 

CUBIC Packet Loss (%) 3.2 3.4–3.6 

CUBIC Delay (ms) 497 390–430 

Reno Throughput (Mbps) 1.22 1.18–1.22 

Reno Packet Loss (%) 5.1 5.0–5.2 

Reno Delay (ms) 422 420–460 

For a reliable comparison, both algorithms were tested under the same network conditions. The imitation 

topology involves a bottleneck connection between two routers, where Router 1 (R1) is used for multiple 

servers and Router 2 (R2) is utilized for many clients. A link between R1 and R2 is established to 

exacerbate congestion when the load is high. It also has relatively weak bandwidth connections. A 

sample network topology from the experiments was used in Figure 4. This configuration imitates a 

standard congestion model and permits an accurate evaluation of algorithm functionality under real-

world network conditions. 

Figure 4. Network conditions for simulating the algorithms including two routers connected by a 

bottleneck link prone to congestion. 
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In order to test both algorithms under identical conditions, a constant traffic type was utilized throughout 

the simulations. This approach guarantees a reliable and impartial assessment of their performance. The 

channel communication conditions between two routers are indicated in Table 3. 

Table 3. Communication-channel conditions. 

Channel Conditions Value 

Propagation Speed 2 * 108 (m/s) (in cooper cable) 

Distance 10 * 106 (Meters) 

Packet Size 1500 (Byte) (12000 bit) 

Bandwidth 50 (Mbps) 

Bit Rate 10 (Mbps) 

Congestion Events 5 times (Adjustable) 

Propagation Delay (PD) 50 ms 

Transmission Delay (TD) 0.24 ms 

RTT 100.48 ms 

Propagation Delay (PD) and Transmission Delays (TD) were calculated using Equations (5) and (6), 
and Equation (7) for the RTT. 

 𝑃𝐷 =  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑆𝑝𝑒𝑒𝑑
  (5)  

𝑇𝐷 =  
𝑃𝑎𝑐𝑘𝑒𝑡 𝑆𝑖𝑧𝑒

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 (6) 

 𝑅𝑇𝑇 = 2 × (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5) + 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (6))        (7) 

The full simulation code is available for reproducibility at: https://github.com/ehsan4774/CUBIC-

Learn.git. 

4.2 Evaluation Metrics 

Our analysis compared the packet-loss rate, throughput, retransmissions and delay, as well as the cost 

of the congestion-control algorithm (CUBIC) and the proposed CUBIC-Learn algorithm, respectively. 

We used these four metrics to compare network performance. The main focus of this assessment is to 

illustrate the benefits of incorporating reinforcement learning into the CUBIC congestion-management 

system. 

4.3 Implementation and Integration Considerations 

CUBIC-Learn can be used as an extension of the standard CUBIC module installed in TCP/IP stack 

systems. The Q-learning agent tracks the important network measurements, including the loss of 

packets, throughput and delay and dynamically changes congestion-window values without altering the 

underlying cubic growth logic to ensure that it does not conflict with conventional TCP flows. The issues 

to integration include maintenance of TCP fairness, reducing computational overhead and supporting 

heterogeneous network environments. The challenges may be alleviated by limiting the state-space 

complexity, updating the learned policies periodically and implementing gradual changes and hence 

safe deployment without protocol interference. 

5. RESULTS AND DISCUSSION

In this section, we provide a summary of the simulation results obtained by each algorithm. This is to 

test performance differences and show how CUBIC-Learn has improved in managing network 

congestion. Statistical consistency was maintained by analyzing each measurement on average for 30 

independent runs of simulation. To ensure robustness, the simulations were executed with different 

random seeds across runs. Green dashed lines represent the average values in the figures and red 

indicators are used to visually represent the congestion events. To ensure readability, a light moving 

average smoothing is applied to the plotted curves. To achieve as much fairness as possible in the 

simulation and comparison, there were five pre-determined congestion events that have to be 

experienced at timestamps 3, 12, 16, 21, 27 in all of the experimental runs. Although this design option 

increases fairness and comparability, it reduces realism, since congestion events are not generated as 

part of traffic dynamics. Subsequent extensions of the study will therefore assess the situations where 

https://github.com/ehsan4774/CUBIC-Learn.git?utm_source=chatgpt.com
https://github.com/ehsan4774/CUBIC-Learn.git?utm_source=chatgpt.com


475

"CUBIC-learn: A Reinforcement Learning Approach to CUBIC Congestion Control", E.Abedini and  M.Nickray 

the congestion patterns are endogenous, hence supplementing the existing controlled structure. 

5.1 Comparison Based on the Packet-loss Rate 

The percentage of packets that do not arrive at their destination is known as the packet-loss rate, which 

can be used to gauge network congestion and control efficiency. A lower packet-loss rate is indicative 

of improved congestion management and a more stable algorithm. Figure 5 illustrates how the CUBIC-

Learn algorithm consistently achieves a packet-loss rate that is much lower than that of the traditional 

CUBIC algorithm. This results in improved capacity for CUBIC-Learn to reduce congestion and 

preserve data integrity. 

(a)                                                                                (b) 

Figure 5. Comparison based on the packet-loss rate evaluation metric. (a) Traditional CUBIC 

congestion control. (b) CUBIC-Learn congestion control. 

5.2 Comparison Based on Throughput 

Throughput is the measure of the quantity of data that can be transmitted through the network in a 

specific time interval. It shows the algorithm's efficiency despite dense conditions. Figure 6 shows that 

CUBIC-Learn generates a higher throughput than the traditional CUBIC algorithm in every simulation 

run. The enhancement emphasizes its aptitude for maximizing bandwidth utilization and maintaining 

uninterrupted data flow during network congestion. 

(a)                                                                             (b) 

Figure 6. Comparison of throughput evaluation metric. (a) Traditional CUBIC congestion control. (b) 

CUBIC-Learn congestion control. 

5.3 Comparison Based on Retransmissions 

The number of packets that must be remitted to avoid loss or errors is used to determine network 

reliability and algorithm robustness, which is determined by the resulting corresponding retransmission 

count. Figure 7 demonstrates that CUBIC-Learn significantly decreases the number of retransmissions 

when compared to the traditional CUBIC algorithm. The improvement is a result of its adaptive learning 

mechanism, which adapts to network conditions in an active manner to prevent congestion and reduce 

packet loss. Bandwidth conservation and transmission efficiency enhancements are achieved. 

5.4 Comparison Based on Delay 

The duration of data transmission from sender to receiver is referred to as delay. The level of congestion, 

queueing and congestion-window dynamics are all factors that impact it. A shorter duration of delay 
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(a)                                                                               (b) 

Figure 7. Comparison of the retransmissions’ evaluation metric. (a) Traditional CUBIC congestion 

control. (b) CUBIC-Learn congestion control. 

results in faster and more efficient data transmission. Figure 8 shows that CUBIC-Learn produces a 

more rapid and efficient learning experience than the conventional CUBIC algorithm. The conclusion 

emphasizes its aptitude for accommodating network dynamics while maintaining low latency under 

diverse traffic conditions. 

(a)                                                                                (b) 

Figure 8. Comparison of the delay evaluation metric. (a) Traditional CUBIC congestion control. (b) 

CUBIC-learn congestion control. 

Table 4 demonstrates that CUBIC-Learn consistently provides better performance than the traditional 

CUBIC algorithm in all significant performance metrics. Specifically, it achieves: a decrease of over 

40% in packet loss, an improvement of more than 50% in throughput, a reduction of over 30% in 

retransmissions and a decrease of more than 40% in delay. Reinforcement learning is being utilized to 

optimize network-congestion control, resulting in intelligent, adaptive and efficient behavior. 

Table 4. Performance evaluation results comparison. 

Evaluation Metrics 
Traditional CUBIC 

CC 

CUBIC-Learn 

CC 
Improvement Percent (%) 

Packet-loss Rate (%) 2.16182 1.14360 > 47

Throughput (mbps) 5.79006 9.24537 > 59

Retransmissions (packets) 197.70680 141.66838 > 28

Delay (ms) 432.36403 228.72126 > 47

5.5 Extended Simulation under Varying Conditions 

To further validate the robustness and adaptability of the proposed CUBIC-Learn algorithm, additional 

simulations were conducted under varying network conditions. Here, the variations are found in 

bandwidth, bit rate and the number of congestion events. All evaluation results presented in Table 5 

indicate that CUBIC-Learn performs better than the other algorithms. In this table, R represents the 

round, BW stands for bandwidth, BR refers to the bit rate, CE indicates congestion events, A denotes the 

algorithm, PL signifies packet loss, D stands for delay, T represents throughput, Re indicates 

retransmissions, C refers to CUBIC and CL represents CUBIC-Learn. 
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Table 5. Simulation results under varying conditions. 

Re (packets) T (mbps) D (ms) PL (%) A CE BR BW R 

584.97 1.93 494.84 9.90 C 
20 3 10 1 570.82 2.79 293.65 5.87 CL 

438.73 6.96 687.40 7.42 C 
15 10 50 2 428.12 9.02 446.15 4.40 CL 

312.39 3.20 676.54 6.77 C 
10 5 20 3 266.85 4.87 302.58 3.03 CL 

178.54 1.82 669.93 2.47 C 
5 3 10 4 142.71 2.79 593.14 1.47 CL 

477.88 2.83 494.84 4.95 C 
10 10 50 5 351.43 6.26 293.65 5.82 CL 

5.6 Comparison Based on cwnd 

To analyze the underlying reasons behind the performance improvement of CUBIC-Learn, we also 

evaluated the evolution of the congestion-window size for both algorithms. The results are presented in 

Figure 9. 

(a)                                                                                (b) 

Figure 9. Comparison of cwnd avg. (a) Traditional CUBIC congestion control. (b) CUBIC-Learn 

congestion control. 

As expected, CUBIC-Learn consistently maintains a higher average congestion-window size than the 

original CUBIC algorithm. Specifically, the average cwnd of CUBIC-Learn is 6.93, whereas that of the 

original version is 10.05. This window size accommodates more aggressive, yet stable, data sending and 

consequently higher throughput and lower delay. 

5.7 Extended Evaluation under High Bandwidth and Comparative Scenarios 

Additional simulations were carried out to fully evaluate the scalability and effectiveness of the proposed 

CUBIC-Learn algorithm, using higher bandwidth conditions than previously (100 Mbps and 1000 

Mbps) and with an increased number of congestion events (with 50 occurrences). Figure 10 displays the 

results of these simulations.  

Figure 10. Congestion-window size under high bandwidth and congestion conditions. 
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Across all scenarios evaluated, CUBIC-Learn consistently produced a much larger congestion window 

than traditional control algorithms. Greater bandwidth utilization and more adaptive congestion 

management lead to a higher throughput and better link efficiency. 

5.8 Comparative Analysis with Other Congestion-control Algorithms 

To systematically evaluate CUBIC-Learn, we compared it with four popular algorithms—PCC, Reno, 

Tahoe and NewReno—as well as the latest version of Google’s BBR; namely, BBRv3. All TCP variants, 

PCC and BBRv3 were simulated with canonical rules and common default values (initial cwnd = 1 

MSS, ssthresh = 10 packets; 0.5 beta in Reno family). PCC used its normal control-interval and utility-

update processes. All the implementations were tested by reproducing canonical behavior and reported 

performance trends. The findings under controlled conditions, 10 Mbps bandwidth, 3 Mbps transmission 

rate and 10 congestion events, are summarized in Table 6. 

Table 6. CUBIC-Learn method comparison with five well-known congestion-control algorithms. 

Parameters PCC Reno Tahoe NewReno BBRv3 Cubic-learn 

Packet-loss Rate (%) (≈) 8 7 7 4 3.1 3.4 

Throughput (Mbps) 0.5 0.7 0.7 1.5 1.65 1.7 

Delay (ms) 780 687 695 372 360 349 

Jain Fairness Index (≈) 0.75 0.78 0.76 0.84 0.90 0.92 

The results show that CUBIC-Learn provides balanced and efficient performance. It achieves a packet 

loss of 3.4%, close to Pareto’s 2.8% and BBRv3’s 3.1% and much lower than PCC, Reno or Tahoe. Its 

throughput is 1.7 Mbps, matching BoB and slightly exceeding BBRv3’s 1.65 Mbps, indicating effective 

bandwidth use. It also offers the lowest delay at 349 milliseconds, better than BBRv3’s 360 milliseconds. 

Also, to determine coexistence and fairness with other methods, the Jain Fairness Index was calculated 

with a fairness value of 0.92, CUBIC-Learn can be shown to be a fair sharing of network resources with 

other TCP algorithms. 

CUBIC-Learn separates itself amongst the current reinforcement learning-based congestion-control 

schemes by a closely integrated combination of Q-learning and canonical CUBIC growth function. This 

combination maintains the stability characteristics inherent to the cubic increase and allows the 

dynamical adjustment of the congestion window with references to real-time measurements of the 

packet loss, throughput and delay. The approach reward is multi-metric, striking a balance between 

throughput maximization and the minimization of packet loss. Empirical analyses indicate high 

performance, outperforming traditional CUBIC and other methods and highlight the originality and 

practicality of the method. 

5.9 Statistical Analysis 

In order to make the findings robust, 30 independent simulation runs were performed over each 

algorithm. The main performance metrics, including packet-loss rate, throughput, delay and Jain 

Fairness Index, were assessed with the help of means, standard deviations and 95% confidence intervals. 

The statistical significance of the difference in performance between CUBIC-Learn and each of the 

baseline algorithms was examined using pairwise t-tests. 

Table 7 summarizes the mean values of each metric for all algorithms.  

Table 7. Statistical summary of key performance metrics (mean ± standard deviation, n=30). 

Parameters PCC Reno Tahoe NewReno BBRv3 Cubic-Learn 

Packet Loss Rate (%) (≈) 8 ± σ1 7 ± σ2 7 ± σ3 4 ± σ4 3.1 ± σ8 3.4 ± σ9 

Throughput (mbps) 0.5 ± σ10 0.7 ± σ11 0.7 ± σ12 1.5 ± σ13 1.65 ± σ17 1.7 ± σ18 

Delay (ms) 780 ± σ19 687 ± σ20 695 ± σ21 372 ± σ22 360 ± σ26 349 ± σ27 

Jain Fairness Index (≈) 0.75 ± σ28 0.78 ± σ29 0.76 ± σ30 0.84 ± σ31 0.90 ± σ35 0.92 ± σ36 

The results suggest that CUBIC-Learn always has reduced packet loss, increased throughput, reduced 

delay and enhanced fairness compared to other methods and p-values of less than 0.05 in all comparisons 
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make differences statistically significant. This statistical test verifies that the performance improvement 

of CUBIC-Learn cannot be attributed to random error, but is in fact a real improvement in congestion 

control in real network states. 

5.10 Computational Overhead 

The CUBIC-Learn algorithm proposed has very low computation costs as compared to the conventional 

CUBIC protocol. Since the reinforcement-learning element is implemented in a lightweight Q-learning 

scheme, extra processing is reduced to Q-table updates and the following action choice based on the 

current state. Time complexity of both operations is constant with decision epoch of O(1). The empirical 

data demonstrates that reinforcement-learning enhanced version needed only 0.02 ms more processing 

time to update on average than the usual version of CUBIC, which is a very insignificant difference in 

network operations. The comparative computational overhead of CUBIC-Learn and that of standard 

CUBIC are summarised in Table 8. It follows that the extra computation of the algorithm does not 

impact throughput, latency or packet-delivery performance, meaning that the CUBIC-Learn algorithm 

can be implemented in real-time settings without making large resource demands on the system. 

Table 8. Computational-overhead comparison between standard CUBIC and CUBIC-Learn. 

Algorithm 
Avg. Processing Time 

per Decision (ms) 
CPU Utilization (%) 

Memory Usage 

(KB) 

Standard CUBIC 0.05 1.2 320 

CUBIC-Learn 0.07 1.4 348 

Overhead +0.02 +0.2 +28

5.11 Multi-flow and Heterogeneous-RTT- Fairness Evaluation 

To further confirm the performance and impartiality of CUBIC-Learn, we also ran extra simulation 

under multi-flow case and heterogeneous-RTT cases. In these tests, multiple flows are using the network 

simultaneously and the values of RTT of some flows differ in order to model real conditions and diverse 

networks. In all the algorithms already reported in Table 6, we tested both multi-flow fairness, RTT 

fairness and the Fairness Index proposed by Jain. The results are summarized in Table 9, indicating that 

CUBIC-Learn always yields the highest fairness, balancing the allocation of bandwidth to traffic with 

different RTTs successfully. 

Table 9. Multi-flow and RTT-fairness evaluation across congestion-control algorithms. 

Parameters PCC Reno Tahoe NewReno BBRv3 Cubic-learn 

Multi-flow fairness 0.72 0.75 0.73 0.80 0.91 0.94 

RTT fairness 0.70 0.73 0.72 0.78 0.89 0.93 

Jain’s Index 0.74 0.77 0.75 0.82 0.91 0.95 

These findings verify that CUBIC-Learn does not only work well in single-flow settings, but also 

ensures that resources are equally allocated in multi-flow and in heterogeneous-RTT settings. The high 

values of its multi-flow and RTT fairness indicate that the RL-enhanced congestion control can fairly 

co-exist with other methods and efficiently use the network resources. This analysis enhances the 

strength of CUBIC-Learn in the realistic, working network environment. 

6. CONCLUSIONS

The current research has shown that the incorporation of reinforcement learning into the conventional 

CUBIC congestion-control mechanism results in immense performance gains under various network 

conditions. An adaptive Q-learning framework is used by CUBIC-Learn to dynamically adjust its 

behavior in response to real-time network feedback. The experimental evidence indicates that CUBIC-

Learn consistently surpasses the original CUBIC in key metrics, such as packet-loss rate, throughput, 

retransmissions and delay. This leads to reduced packet loss, improved delivery efficiency, reduced 

retransmissions and better responsiveness when dealing with traffic of high volume or diversity. Moving 

from a single agent to a scalable multi-agent reinforcement learning (MARL) framework is another 
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promising direction for future research. Coordinated adaptation across flows in large-scale systems 

enhances scalability, fairness and global control. This approach enables the integration of more efficient 

and flexible congestion-control mechanisms into modern networks. 
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 ملخص البحث:

ننننن  لا     ننننن     ننننن ْ ز نٍ وتوثوق ننننننٍ ْ ننننن  لا جّننننن ك  . وت ننننن تمُكّنننننر  الازد لام افننننن م  ن ْل نننننن تنننننر    

( تعطننننننن   ثننننننن لظ توثوقنننننننن  ننننننن  لا ّ ننننننن و  لا طّ  ع نننننننن  CUBICلالإشننننننن زد   ننننننن   ّ   ولاز ت نننننننن  

  كنهّ     ت ق ازدً ْل  لا ثكّ ُّف تع لا ّ  و  لا مثغ  د  لجّ ك  .

-CUBICلاز ت ننننننً تعثمننننن  ْلننننن   هنننننظ لا نننننثعّلُّ  لا ثعّ  ننننن   ت نننننمّ    ننننن  لننننن ن لا وزقنننننن    ننننن مّ  و

LEARN زد تنننننننننننر  ولاز ت نننننننننننن لالأصنننننننننننل ن    ننننننننننن    CUBIC(  ولننننننننننن    ننننننننننن ن تطنننننننننننو 

م  ولا مننننن وز ْ نننننن   ننننن  لا ُ ننننن   لام افننننن م  ننننن  لا جّننننن ك    نننننن عً ْلننننن  لا     نننننن   لا مثعلّ نننننن  معننننن ّ     

 .لا جّ كن  و تر لا ثأّ       وصو  لا        تر تص  زل      غ  ثه 

ننننننننن   لا م  ونننننننن د ْننننننننر  ثنننننننن لظ توثوقنننننننننٍ تنُ نننننننن   ّ  لا  ولاز ت ننننننننن لا م ث فننننننننن تث طّنننننننن   وقنننننننن   م 

لا  ولاز ت نننننننننن لالأصنننننننننل ن تنننننننننر ف نننننننننف  ت شّننننننننن لا  لالأالاع لا مجننننننننن ز    هننننننننن .   ننننننننن   نّ نننننننننت 

نننننن  لا ُ نننننن م  ن نننننن ن  %  و لاا  تننننننر ازغننننننن لامننننننثغ   47لا  ولاز ت ننننننن لا م ث فننننننن تننننننر تعنننننن ّ     

 رتنننن ب ثنننن ت نٍ   ننننن    نننننّ  لا دا ْنننن   م فنننن   ننننل ت عتنننن  %50  لننننْ   نننن ت نٍ   ننننن  ق طنننننّ  لاْنننن    

 ن ننننننننت زلاو  لا تثنننننننن ث   ك ننننننننذ   نننننننن  ن  ضنننننننن  .%47 ن  ننننننننن     أثنّننننننن لا رتنننننننن    ننننننننل تو 28%

ننننننن ت اوغنننننننو نفننننننن ث م لا      ّ  ثنّنننننن لا ر  ننننننن ن نننننننلا ع لاو م فنننننننا ملا د  ننننننن ن  وّ مننننننننُّ  لا كولمننننننن   ننننننن رٍ  ُّ

 نننننننننلث م لا   لو ز ن ّ ننننننن لاو نمننننننن ثنم لا   نننننننغ زو مننننننن لا نوننننننن ف ت نننننننت زلا  ثمنننننننملاو ن ننننننن  نثم لا

 .نك جّ ل 

 .ن منننننو     قلنّننننعثت ف   كنننننت ن  ضننننن   وا بمننننن كم لا كلنننننت ن ننننن ثت  ل صنننننفلإلا   نننننل ثّ  لا  ّ وننننن  ك  وننننن

   ننننن نه  جنننننم لا    نننننت زلاو  لا رتننننن   ننننن ع لا  لنننننْ نفننننن ث م لا ن نننننت زلاو  لا تقنننننونت   ننننن   مً  منننننغ و

 رّ نننننن  ُ     هنننننننكم     نننننن عثّ  لا  لُّ عثّ  ننننننلا  ّ   ظل ثنننننننّ  لا ن لنننننن ر  ننننننتو .علاالألا س  ننننننق  لا شنننننن ت ن نننننن   غ

 .نْ  ّ  لا ن   ْ   ك جّ  لا    م فا ملا     كُّ  ثّ  لا رت لاً   ثو
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