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ABSTRACT

Vehicular Ad Hoc Networks (VANETS) are a cornerstone of modern Intelligent Transportation Systems (ITSs),
enabling real-time communication among vehicles and infrastructure. However, the open and dynamic nature of
VANETS exposes them to a wide range of cybersecurity threats, such as spoofing, Sybil attacks and denial-of-
service (DoS). This paper introduces a novel Federated Learning (FL) framework designed to enhance VANET
security by enabling distributed and privacy-preserving intrusion detection across the network. By leveraging
local model updates instead of centralized data aggregation, our proposed FL approach mitigates privacy risks,
reduces communication overhead and offers robust detection of cyber-threats. The paper presents a
comprehensive analysis including system architecture, threat modeling, security properties, performance
evaluation and real-world applicability. Extensive simulations show that our model achieves a detection accuracy
of up to 96.2%, with minimal latency and low model convergence time, outperforming existing centralized and
traditional machine-learning models.
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1. INTRODUCTION

The automotive industry is undergoing a transformative evolution with the integration of Vehicle-to-
Everything (V2X) communication into smart transportation systems. Vehicular Ad Hoc Networks
(VANETS), a sub-class of Mobile Ad Hoc Networks (MANETS), allow vehicles to communicate with
each other (V2V) and with roadside infrastructure (V2I). These networks facilitate various applications,
such as traffic safety, infotainment, autonomous driving and environmental monitoring. However,
VANETS' inherent characteristics-high mobility, dynamic topology and real-time constraints-introduce
significant security challenges [1]-[2].

Traditional centralized Intrusion-detection Systems (IDS) struggle to meet the privacy and scalability
demands of VANETSs [3]. Moreover, transmitting raw vehicular data to centralized servers introduces
latency and violates data privacy, especially when vehicles are equipped with sensitive sensors, such as
GPS, cameras and biometric modules [4]. As a result, there is a growing need for decentralized, privacy-
preserving security mechanisms that can operate at the network edge [5]-[9].

Federated Learning (FL), a decentralized machine-learning paradigm, offers a promising solution by
allowing vehicles to collaboratively train a shared model while keeping local data on-device [3]-[4].
Each vehicle computes local gradients, which are then aggregated by a central coordinator or distributed
through peer-to-peer aggregation strategies. FL ensures data privacy, minimizes communication
overhead and can adapt to the heterogeneous nature of VANET environments [10]-[15].

This paper proposes a Federated Learning-based security framework for VANETS that supports real-
time threat detection, lightweight model updates and robust resistance to poisoning and adversarial
attacks. Our key contributions include:

e A novel federated intrusion-detection architecture tailored for distributed VANET
environments.

o Integration of lightweight deep-learning models with differential privacy and secure aggregation
techniques.

o Comprehensive mathematical modeling and performance analysis under various attack
scenarios.
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e Evaluation using real-world VANET datasets (e.g. NSL-KDD, VeReMi) with metrics, such as
accuracy, latency and communication overhead.

e Comparison with centralized and traditional IDS approaches demonstrating the superiority of
FL in distributed environments.

The remainder of this paper is organized as follows. Section 2 reviews related work on federated learning
and VANET security. Section 3 describes the system model and methodology. Section 4 presents the
proposed FL-based intrusion-detection framework. Section 5 provides the security and privacy analysis,
while Section 6 reports the experimental results and performance evaluation. Section 7 discusses
reproduction with real-world VANET data. Section 8 presents technical justification and comparative
evaluation, while Section 9 presents potential use cases and Section 10 concludes the paper and
highlights future-research directions.

2. RELATED WORKS
2.1 VANET Security Challenges

VANETS are inherently vulnerable to various cyber-attacks due to their decentralized nature, real-time
communication constraints and wireless broadcast medium [15]. Common threats include Sybil attacks,
message tampering, spoofing, blackhole attacks and denial-of-service (DoS). Traditional cryptographic
mechanisms are often insufficient due to computational constraints on On-Board Units (OBUs) and the
need for rapid authentication and verification [12]. Therefore, lightweight, adaptive and scalable security
models are essential.

2.2 Intrusion-detection Systems (IDSs) in VANETS

Machine-learning (ML) and deep-learning (DL) techniques have been widely employed in VANET
intrusion detection. Conventional centralized IDSs require vehicular data to be transmitted to remote
servers for training, which raises concerns about latency, bandwidth usage and privacy leakage [13].
DL-based IDSs such as CNNs, LSTMs and Auto-encoders, have demonstrated significant success in
detecting anomalous traffic patterns. However, these solutions often ignore the privacy constraints of
vehicular data and are difficult to scale to large, distributed environments.

2.3 Federated Learning in Intelligent Networks

Federated Learning (FL) was first introduced by Google to address privacy concerns in mobile-device
learning [5]. Since then, FL has gained attention in smart healthcare, finance and 10T systems. In the
context of Intelligent Transportation Systems (ITSs), FL has been proposed for traffic prediction, driver-
behavior modeling and collaborative perception [16]-[33]. However, its application in VANET security
is still in its nascent stage.

Several studies have explored FL in vehicular environments. For instance, [6] introduced FL-VANET,
an architecture leveraging FL for anomaly detection using LSTM-based encoders. [7] developed a
federated transfer-learning model for intrusion detection in edge-VANETS. Despite promising results,
these works often ignore adversarial model poisoning and secure aggregation. Moreover, the dynamic
and heterogeneous nature of VANET nodes requires models that can handle non-1ID data and
intermittent participation [34]-[42].

2.4 Secure Federated Learning in VANETS

Privacy and security in FL are emerging concerns. Techniques, such as differential privacy (DP), secure
multi-party computation (SMC) and homomorphic encryption (HE), are being integrated to preserve
model confidentiality [14]. In VANETS, preserving privacy while ensuring resilience to poisoning
attacks is challenging due to node mobility and limited bandwidth. Recent studies, like [10], have
proposed trust-aware aggregation mechanisms, while [11] introduced blockchain-based verifiable FL to
detect malicious contributions.

Yet, few approaches offer an integrated solution combining secure model aggregation, dynamic
participation and lightweight intrusion detection tailored to VANET characteristics. This paper aims to
bridge that gap by proposing a federated IDS with secure gradient aggregation, resilient to adversarial
contributions and efficient under network constraints.
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2.5 Comparison Summary

Table 1 summarizes key related works in terms of learning paradigm, privacy technique, attack model
and deployment scalability.

Table 1. Comparison of related works in FL-based VANET security.

Learning

Approach Model Privacy Mechanism Limitations
Wang et al. (2024) LSTM + FL None Lacks defense against poisoning
[6] attacks

Differential Privacy

Zhou et al. (2023) [7] Transfer + FL High communication overhead

(DP)
I[?la(quman etal. (2023) CNN + FL Trust Aggregation No protection against Sybil attacks
Ahmed et al. (2023) FL + - . . .
[11] Blockchain Verifiable Updates High computational complexity
This Work CNN + EL DP + Sec_ure VANET optimized integrated
Aggregation framework

3. METHODOLOGY

This section outlines the foundational elements of our proposed federated-learning (FL) framework for
VANET security. It includes the system architecture, the federated-learning model, the threat model and
the mathematical formulation of training and aggregation.

3.1 System Model

Our system consists of three main components:

e Vehicles (Clients): Each vehicle is equipped with an On-Board Unit (OBU) and local storage to
collect and process traffic data.

o Roadside Units (RSUs): Serve as edge aggregators coordinating FL updates in a localized
geographic region.

e Central Coordinator (Optional): In hybrid deployments, a cloud server may be used for global
model synchronization.

Each vehicle trains a local model using its own traffic dataset. After a number of local epochs, the model
weights are sent to the RSU, which performs secure aggregation.

3.2 Data Distribution and Learning Assumptions

The vehicular data is non-1ID and unbalanced due to differences in driving environments, attack
exposure and data availability. Each vehicle v; has a local dataset D; comprising labeled communication
packets, logs and message attributes.

Let w} represent the local model parameters at round ¢ and f (wf,Dl-) be the local loss function.

3.3 Federated-learning Framework
The goal of FL is to minimize the global loss function over all distributed clients:

N
D;
mwin; %  f(w, D) )

where:
e w is the shared global model,
e |D;]| is the size of local data on client i,
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o |D| =2, |D;| is the total data across all clients.
Clients update their model weights locally using stochastic gradient descent (SGD):
witt = wf —n-Vf(wf,D;) (2)

3.4 Secure Aggregation Mechanism

After local training, the RSU performs secure model aggregation using Federated Averaging:
N

1D
witl = z |Dl| -witt 3)

i=1

To protect model confidentiality, we employ a secure aggregation protocol, where each wf** is masked

using additive-noise and differential-privacy (DP) techniques.

3.5 Threat Model

The proposed system operates in a dynamic and decentralized VANET environment, where nodes
frequently join and leave the network. Given this open topology, both external and internal adversaries
can attempt to compromise the confidentiality, integrity or availability of communication and model
updates. The threat model considers an array of realistic and mobility-driven attack vectors, described
as follows:

o External Adversaries: Entities that eavesdrop, inject falsified messages or disrupt
communication channels. Typical attacks include jamming, eavesdropping and replay of
Cooperative Awareness Messages (CAMSs) or Decentralized Environmental Notification
Messages (DENMs).

o Internal Adversaries: Compromised vehicles that participate in federated learning with
malicious intent. They may alter model updates, send poisoned gradients or collude with other
compromised vehicles to skew the global model.

¢ Mobility-based Attacks: Attackers exploit mobility patterns, such as location spoofing,
pseudonym hopping and path replication, to evade detection or fabricate false traffic-density
information.

o Collusive Attacks: A group of malicious clients cooperatively inject correlated gradient updates
to mislead the aggregation process and amplify the impact of poisoning or backdoor attacks.

We assume that all communications between vehicles and Roadside Units (RSUs) are authenticated
using standard V2X certificates, but that no trusted third-party global coordinator is fully immune to
compromise. Hence, the defense design emphasizes local resilience and Byzantine robustness during
aggregation.

To counter these threats, the proposed system integrates Byzantine-resilient aggregation and differential
privacy techniques. Specifically, the defense layer replaces purely accuracy-based trust scoring with
robust aggregation algorithms, such as Krum and Multi-Krum, which tolerate a bounded number of
malicious or colluding clients without degrading global model convergence. These methods are
combined with differential privacy (DP) noise addition and gradient clipping to further limit information
leakage and ensure fairness across heterogeneous nodes.

3.6 Byzantine-Robust Aggregation Strategy

To enhance resilience against poisoning, collusion and mobility-based attacks, the original trust-aware
mechanism is extended into a Byzantine-robust aggregation framework. Let g; denote the local gradient
of client i at round t. The aggregation process proceeds as follows:

1. Each RSU collects gradients {g4, g2, ..., gn} from participating vehicles.

2. For robustness, the RSU computes the pairwise Euclidean distance between gradients and
selects a sub-set S of size N — f (where f is the maximum tolerated number of Byzantine
clients).

3. The Krum algorithm [34] selects the client the gradient of which has the smallest total distance
to other gradients in S:
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. . T
g = argmin ||gl- gj||
JES j#i

4. For improved robustness, Multi-Krum aggregates the top- m most consistent gradients:

*_12
g_m i

iEM
where M is the set of m selected gradients with minimum pairwise distances.

This approach ensures that the influence of outlier or collusive clients is minimized. Compared to the
earlier accuracy-based trust metric, Byzantine-robust aggregation eliminates dependency on local
accuracy feedback, which can be easily manipulated in adversarial environments. The final aggregated
gradient g* is then sanitized with differential privacy noise N (0, 5?) before being distributed back to
participating clients:
g =g +N(©,0%

This combination of Multi-Krum selection and DP masking ensures that the global model remains robust
to both independent and collusive poisoning attacks while preserving communication efficiency.

3.7 Dataset and Feature Engineering

We use the following datasets for experiments:

o NSL-KDD: Pre-processed to match vehicular features (e.g. packet size, flags, duration).
o VeReMi: Real VANET attack dataset focused on misbehavior detection in cooperative
awareness messages (CAMS).

Each data sample is transformed into a fixed-length feature vector including time-series, protocol
types and attack labels. Data-normalization and class-balancing techniques are applied to reduce
model bias.

3.8 Model Architecture

The base model is a Convolutional Neural Network (CNN) optimized for edge devices. It includes:
e Input layer: 30 features (normalized)
e ConvlD layers (2x): Filters=64, Kernel size=3
e MaxPoolinglD: Pool size=2

e Dense layer: 128 units, ReLU
e Output layer: Softmax (for 5 -class classification)

Figure 1 illustrates the model structure.

FL
Server

i

L Global Model |

A

[Local Model ’——i Local Model ’

@@@

VANET
Figure 1. Lightweight CNN architecture used for local FL model.
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4. PROPOSED SYSTEM / APPROACH

This section presents the architecture and operational workflow of our proposed Federated Learning-
based Intrusion Detection System (FL-IDS) for VANETSs. The system is designed to meet the dynamic,
privacy-sensitive and distributed nature of vehicular networks.

4.1 System Architecture Overview

Figure 2 illustrates the high-level architecture of our proposed FL-based security framework.

Global
Orchestration
Layer

- N
7 N
-

(('!')) Edge Aggregafor (('!’))
Layer (RSUs)
4 \ v \

/ \ / \
/ % / \

Ll Dy Dy Dy

S S oy o

Vehicle Layer

Proposed Federated Learning architecture for VANET
intrusion detection

Figure 2. Proposed federated-learning architecture for VANET intrusion detection.

The architecture comprises three layers:

e Vehicle Layer: Each vehicle collects traffic data and executes local training on its OBU using
the CNN-based model. Sensitive data never leaves the vehicle.

o Edge Aggregator Layer (RSUs): RSUs collect model updates from vehicles, perform secure
aggregation and transmit the result to neighboring RSUs or a central server.

o Global Orchestration Layer: Optionally, a central server integrates regional model updates and
disseminates a refined global model. This enables inter-region learning transfer.

4.2 Workflow of FL-IDS in VANET
The system operation follows a cyclical five-phase process, as illustrated in Figure 3.

GLOBAL MODEL

SERVER

LOCAL MODEL LOCAL MODEL
A
1 i 1 1
LOCAL LOCAL LOCAL LOCAL
MODEL MODEL MODEL MODEL
FL WORKFLOW

Figure 3. Workflow of FL-IDS across vehicle and edge layers.

Step 1: Data Collection - Each vehicle gathers network traffic, logs and context data.
Step 2: Local Model Training - A CNN model is trained using Equation (2). Training runs for E epochs
locally.
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Step 3: Gradient Protection - Local gradients are perturbed using differential privacy:
V~Vit+1 — Wit+1 + N(O,O’Z) (4)

where N(0,02) is Gaussian noise and o is a tunable privacy budget parameter.
Step 4: Secure Aggregation - The RSU securely aggregates gradients using Equation (3) and broadcasts
the global model.

Step 5: Update Dissemination - VVehicles receive the new global model and replace their local model.

4.3 Trust-aware Aggregation Strategy
To mitigate poisoning attacks, we define a trust score T} for each client i at round:

t
¢ Accuracy ; — u

T = 5)

g

where p and o are the mean and standard deviation of accuracy across all clients. Only clients with T} >
0 contribute to the aggregation, ensuring robustness against adversarial models.

4.4 Communication Optimization

We reduce communication overhead via:

e Model Compression: Quantizing model weights to 8-bit floating point.

e Client Selection: At each round, only K of N clients participate, selected based on bandwidth
and availability.

This reduces update latency while maintaining model convergence.

4.5 Deployment Strategy in Urban VANETS

In urban scenarios with dense vehicular traffic, the system operates in a hierarchical mode. Each city
block has an RSU that aggregates models locally. RSUs synchronize every M rounds to maintain
consistency across geographic partitions.

4.6 Security Extensions

Beyond intrusion detection, our FL framework supports:

e Anomaly Scoring: Each sample is assigned a threat score using Softmax confidence.

¢ Incident Broadcast: Vehicles detecting anomalies broadcast CAMSs tagged with encrypted threat
scores.

e Privacy-preserving Logs: Local logs are retained using hash chains for forensic analysis.

4.7 Advantages of the Proposed FL Approach

e Privacy: Raw data remains local, satisfying data-protection regulations.
o Scalability: Works in both sparse and dense network conditions.

¢ Robustness: Resistant to gradient poisoning and adversarial model drift.
o Efficiency: Reduced latency and bandwidth consumption.

5. SECURITY ANALYSIS

This section provides an in-depth analysis of the security properties of the proposed Federated Learning-
based Intrusion Detection System (FL-IDS) in VANETSs. We focus on the system's ability to withstand
internal and external threats, protect data privacy and ensure trust in collaborative learning.

5.1 Threat-mitigation Capabilities

Table 2 summarizes how the proposed system counters key VANET security threats.



540
"Federated-learning Models for Distributed VANET Security”, M. ElI-Dalahmeh and A. EI-Dalahmeh.

Table 2. Threat-mitigation capabilities of FL-IDS.

Threat Type Mitigation Mechanism

Sybil Attack Model update consistency checking and vehicle 1D verification
Eavesdropping No raw data transmission; updates masked with DP noise
Gradient Poisoning Trust-aware score filtering (Eq. (5))

Model Drift Periodic synchronization with RSU consensus

Data Privacy Leakage Differential privacy via Gaussian noise (Eq. (4))

DoS on Aggregators Decentralized RSU fallback and redundancy

5.2 Adversarial Robustness
We simulate several adversarial settings to evaluate model robustness:

e Backdoor Insertion: Malicious clients inject poisoned data with specific patterns. The model
maintains > 90% accuracy post-filtering.

o Model Tampering: Clients transmit incorrect gradients. Aggregation weights based on trust
score significantly reduce impact.

o Data-injection Attacks: External adversaries attempt to overwhelm OBUs with malicious traffic.
Local IDS detects anomalies before model training.

5.3 Security Metrics

To quantify the security effectiveness, we define the following metrics:

False Positive Rate (FPR): Fraction of benign activities classified as malicious.

e Poisoning Tolerance (PT): The maximum proportion of malicious clients tolerated without
significant degradation ( < 5% drop in accuracy).

e Privacy Loss (¢) : Measured under (g,6) — DP, with target ¢ < 2.

Table 3 presents these metrics under different configurations.

Table 3. Security-evaluation metrics of FL-IDS.

Scenario FPR (%) Poisoning Tolerance
Standard FL 52 15%
FL + DP 4.1 20%
FL + Trust Filtering 3.8 28%
FL-IDS (Full) 3.2 32%

5.4 Formal Privacy and Confidentiality Analysis

To quantify the overall privacy and confidentiality of the proposed FL-IDS, we formalize both the
differential privacy (DP) component and the secure aggregation (SecAgg) protocol used during model
updates.

5.4.1 Differential Privacy Formulation
Each vehicle perturbs its local gradient before transmission using Gaussian noise as:
gi=9gi +N(0,0?)
where ¢ is the noise scale derived from the sensitivity A of the gradient and the privacy budget (¢, §).

According to the Gaussian Mechanism [35], a single local update satisfies (e, §)-DP if:
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- A,/2In(1.25/6)
- €
For our implementation, the sensitivity A was clipped to 1.0 and the per-round noise variance was set to

a2 = 0.4. Using the Rényi DP accountant across R = 50 global rounds, the total cumulative privacy
loss was computed as:

Etotal = +/ 2RIn(1/6) -

Substituting § = 10~° and the above parameters, we obtain:
€total = 1.64

which corresponds to a tight privacy bound ensuring that no adversary can infer individual client data
with a probability greater than e'®* ~ 5.16 times that of random guessing. This aggregated value
captures the end-to-end differential-privacy guarantee over the entire federated process, not merely per-
round protection.

SHN>2

5.4.2 Secure Aggregation Protocol

To strengthen confidentiality beyond statistical privacy, the FL-IDS employs a cryptographic Secure
Aggregation (SecAgg) protocol inspired by [36], integrated with the Paillier additive homomorphic
encryption scheme.

Each vehicle v; encrypts its local model update w; as:
E(w;) = g%ir"modn?
where (n, g ) is the public key, r is a random nonce and Paillier's homomorphic property ensures that:
E(wy) - E(wp) = E(wy +wy)

Without decrypting individual contributions, the RSU (aggregator) computes the aggregated encrypted
update:

N
E (Wagg) = 1_[ E(w;)
i=1

and sends E (wagg ) to the decryption authority (trusted module or TEE) for global model reconstruction.
This mechanism guarantees that:

1. No RSU or adversary can access individual model parameters during aggregation.
2. The aggregation remains verifiable, yet privacy-preserving, under a semi-honest threat model.
3. Communication cost overhead is bounded by O (Nlogn) per aggregation round, which remains

efficient for up to 100 vehicular clients.
5.4.3 Overall Privacy and Confidentiality Guarantee

Combining the differential privacy and cryptographic aggregation mechanisms, the overall system
satisfies:

FL-IDS € (€ioral, 8)-DP and SecAgg-Paillier confidentiality.

The differential privacy term bounds information leakage statistically, while Paillier-based SecAgg
ensures that no entity, including RSUs or the central coordinator, can observe individual gradient values.
The integration of these two orthogonal layers formalizes the degree of privacy and confidentiality
throughout the entire federated-learning pipeline.

5.5 Attack Detection Latency

Our architecture maintains a detection latency below 100 ms under typical VANET throughput. Table
4 illustrates performance in both edge and centralized variants.
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Table 4. Attack-detection latency (in milliseconds).

Deployment Mode Latency (ms)
Centralized IDS 230 ms

Edge IDS 98 ms
FL-IDS (Ours) 86 ms

5.6 Security Summary

The proposed FL-IDS demonstrates high resilience against insider and outsider threats while ensuring
compliance with privacy guarantees. Its layered defense - including differential privacy, trust scoring
and edge-based detection-renders it suitable for real-world VANET deployments.

6. PERFORMANCE EVALUATION

To validate the effectiveness of our FL-IDS framework, we conducted extensive simulations using real-
world VANET datasets. We evaluated the framework across multiple metrics: accuracy, precision,
recall, communication overhead, model convergence time and system latency.

6.1 Experimental Setup

Simulation Environment: Experiments were conducted using Python 3.10 and TensorFlow 2.14 in a
federated environment built on the Flower framework. Vehicular mobility and communication were
emulated using SUMO and Veins simulators integrated through OMNeT++ [42]-[53].

Network Scale:

e Vehicles (Clients): 1,000-1,200 simulated vehicles with non-11D data splits per region.

e RSUs: 20 edge servers acting as regional aggregators, each supporting 50-60 clients.

e Global Coordinator: One optional cloud server for cross-region synchronization every 25
rounds.

Datasets: Combined NSL-KDD, VeReMi and Zhou-Jiang [54] datasets were used to emulate mixed
synthetic and real-world vehicular traffic patterns.

Training Configuration:

Local epochs E = 3, global rounds R = 100.
Optimizer: Adam with learning rate n = 0.001.

DP noise variance o2 = 0.5, privacy budget £ = 1.5.
Byzantine tolerance parameter f = 10 (Multi-Krum).

6.2 Baseline Comparison and SOTA Reference
For comprehensive benchmarking, we compared FL-1DS with recent VANET-FL architectures:

e FL-VANET [6]: LSTM-based distributed IDS.
e TrustFL [10]: Trust-aware aggregation for adversarial VANETS.
e VeriFL [11]: Blockchain-enabled verifiable aggregation.

All baselines were re-implemented under identical data partitions and computational limits for fairness.

6.3 Evaluation Metrics
Performance was measured using both classical and advanced metrics:

e Accuracy, Precision, Recall (baseline metrics).
e F1-Score (harmonic mean of Precision and Recall):

Precision - Recall
F1=2

" Precision + Recall
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e AUC-ROC (Area under the Receiver Operating Characteristic curve), providing a threshold
independent measure of classification quality.

o Statistical Significance: Independent-sample t-tests ( p < 0.05 ) between FL-IDS and baselines
across 10 training repetitions.

6.4 Results on Large-scale VANET
Table 5 summarizes key results for 1,000-vehicle deployment.

Table 5. Large-scale VANET evaluation results (1,000 vehicles).

Approach Accuracy (%)  Precision (%) Recall (%) F1(%) AUC  p-value
FL-VANET [6] 94.3 93.8 93.5 93.6 0.963 0.018
TrustFL [10] 95.1 94.7 94.1 94.4 0.971 0.011
VeriFL [11] 95.5 95.2 94.8 95.0 0.975 0.007
FL-IDS (Ours) 96.4 95.9 95.5 95.7 0.982 < 0.005

The proposed FL-IDS consistently outperformed baseline frameworks with statistically significant
improvements (p < 0.01) inall metrics. The AUC-ROC curve (Fig. 4) demonstrates a high separability
between benign and malicious classes, indicating excellent detection consistency across diverse mobility
conditions.

6.5 Scalability and RSU Bottleneck Analysis

Communication Latency: Average round latency increased sub-linearly with client count (86 ms to 172
ms for 1,000 clients). Hierarchical aggregation at RSUs reduced uplink traffic by 63 percent.

RSU Bottlenecks:

e Processing Overhead: Each RSU handled up to 80 parallel gradient updates per round. Beyond
60 clients, aggregation time increased exponentially.

e Bandwidth Load: Transmission peaks at 2.3MBs~! under full participation. RSUs with limited
backhaul links experienced temporary queuing delays.

e Operational Concerns: Faulty or compromised RSUs can propagate corrupted aggregates.
Byzantine robust methods (Multi-Krum) mitigated this risk with less than 2 percent accuracy
drop even under 10 percent malicious clients.

Scalability Outcome: Simulation of 1,200 vehicles confirmed stable convergence within 29 rounds, with
less than 0.8 percent accuracy degradation and AUC greater than 0.97 , proving practical viability for
large-scale deployments.

6.6 Statistical Significance and Model Robustness

We performed two-tailed t-tests on model F1-scores between FL-IDS and each baseline over 10
independent runs. All results were significant ( p < 0.01 ), confirming that the observed performance
gains are unlikely due to random variation. Standard deviation of metrics remained below 0.4 percent,
demonstrating robustness and repeatability.

6.7 AUC-ROC and F1 Visualization

Figure 4 presents the AUC-ROC curves of all models. The proposed FL-IDS achieves the steepest rise
with AUC = 0.982, outperforming TrustFL ( 0.971 ) and VeriFL ( 0.975 ). Figure 5 shows F1-score
trends across rounds, illustrating faster stabilization and higher final values compared to baseline
systems.

6.8 Discussion on Scalability Risks

Scaling FL-IDS beyond 1,000 vehicles introduces operational concerns:
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e RSU Synchronization Delays: Decentralized aggregation across overlapping coverage zones
may cause stale updates if synchronization exceeds 100 ms.

o Gradient Staleness: Non-1ID data and intermittent clients can induce gradient divergence;
adaptive local learning rates can mitigate this.

o Security Amplification: Larger networks amplify the impact of collusive attacks. Byzantine-
robust aggregation mitigates up to 20 percent adversarial clients, but may reduce convergence
speed by 7-9 percent.

Future work will explore dynamic RSU load-balancing and mobility-aware asynchronous aggregation
for next-generation FL-enabled VANETS.
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Figure 5. F1-score convergence across FL rounds (1,000 vehicles).

7. REPRODUCTION WITH REAL-WORD VANET DATA

To further validate the generalizability of the proposed FL-IDS framework, the experiments were
reproduced using real-world VANET datasets, specifically the VeReMi dataset and the benchmark
vehicular traces introduced by Zhou and Jiang [54]. These datasets include authentic vehicular
communication logs and misbehavior events captured from live vehicular testbeds, offering realistic
spatio-temporal dynamics and protocol-level message interactions consistent with Cooperative

Intelligent Transportation Systems (C-ITSs).

7.1 Dataset Description

o VeReMi: A comprehensive misbehavior-detection dataset containing Cooperative Awareness
Messages (CAMs) exchanged among vehicles. It includes attack classes, such as position
falsification, message suppression and timing manipulation, collected from urban and highway

driving scenarios.
e Zhou and Jiang (2024) [54]: A real-world vehicular dataset with traces from 200 vehicles
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equipped with IEEE 802.11p OBUs. The dataset records message dissemination rates,
transmission power and positional accuracy under benign and adversarial conditions.

7.2 Feature Engineering for VANET Protocols

Feature extraction focused on protocol-specific attributes according to ETSI EN 302 637-2/3
standards. The selected features were grouped as follows:

e CAM Features: StationID, Latitude, Longitude, Speed, Heading, Acceleration, Timestamp Drift
(At between consecutive CAMSs), Beacon Frequency Deviation and Position Error Rate.
o DENM Features: Cause Code, SubCause Code, Detection Time, Event Position, Repetition
Interval, Alert Propagation Distance and Event Rebroadcast Count.
o Derived Features: Message Interval Variance, Relative Speed Deviation, Signal-to-Noise Ratio
(SNR) and Neighbor Density.
All features were normalized to the range [0,1] and converted into fixed-length vectors of 40
dimensions. A sliding window of 5 consecutive message samples was used to preserve temporal
correlations across CAM/DENM transmissions.

7.3 Experimental Configuration

Retraining was performed using 100 vehicular clients, each holding non-11D splits of the VeReMi and
Zhou-Jiang [54] datasets. Each On-Board Unit (OBU) executed three local epochs per FL round and
RSUs aggregated updates every 25 rounds. The privacy budget was fixed at € = 1.5 with Gaussian noise
variance o2 = 0.4. The same CNN architecture and FL environment previously described were adopted
to ensure comparability.

7.4 Results and Analysis

Table 6 summarizes the comparative performance of the baseline (NSL-KDD + VeReMi) and the
reproduced real-world VANET setup.

The reproduced results show a minor accuracy reduction ( < 0.5% ), primarily due to increased channel
noise and inconsistent beacon intervals inherent to real-world data. However, latency and convergence
behavior remained stable. The system maintained a poisoning-tolerance above 30% and a false positive
rate (FPR) of approximately 3.4%, confirming the resilience of FL-IDS under practical vehicular
conditions.

Table 6. Performance of FL-IDS on real-world VANET data.

Dataset Accuracy (%) Precision (%) Recall (%0) Latency (ms)
VeReMi + NSL-KDD (Baseline) 96.2 95.6 95.1 86
VeReMi + Zhou-Jiang (Real) 95.7 95.1 94.8 89

7.5 Discussion

The reproduced experiments demonstrate that the proposed FL-IDS effectively generalizes to real-world
VANET environments when trained with raw VeReMi data and live vehicular traces. Incorporating
CAM/DENM protocol-level features improved the temporal and contextual understanding of vehicular
interactions, enabling more precise anomaly detection. Future work will extend this approach to include
Cooperative Perception Messages (CPMs) and sensor-fusion attributes to enhance situational awareness
in 5G-enabled vehicular networks.

8. TECHNICAL JUSTIFICATION AND COMPARATIVE EVALUATION

To strengthen the rationale for our architectural design, an extended evaluation was performed
comparing the adopted Convolutional Neural Network (CNN) with alternative frameworks, including
Graph Neural Networks (GNNs) and Support Vector Machines (SVMs). The goal was to determine the
optimal balance between detection performance, computational efficiency and energy sustainability
under VANET constraints.
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8.1 Comparative Evaluation of Learning Architectures

The CNN-based FL-IDS was benchmarked against GNN and SVM models using the same federated
setup and VeReMi dataset. The results are summarized in Table 7.

Table 7. Comparison of CNN, GNN and SVM models under FL-VANET setup.

Model Accuracy (%) | F1(%) | Latency (ms) | Energy (J)
SVM (RBF) 91.8 91.2 142 0.93
GNN (GraphConv) 95.2 94.8 117 1.18
CNN (Proposed) 96.4 95.7 86 0.61

The results show that GNNs provide improved spatial reasoning and awareness of vehicular topology,
but this comes at the cost of higher computational and communication overhead due to graph
construction and message passing. SVMs, while lightweight and energy-efficient, failed to generalize
effectively across non-11D vehicular data distributions. The CNN model achieved the best overall trade-
off, offering superior detection accuracy, reduced inference latency and lower energy consumption,
which makes it suitable for deployment on On-Board Units (OBUSs) with limited power budgets.

8.2 Energy and Computational Trade-offs

To assess energy sustainability, average energy consumption was measured per local training round
across 1,000 vehicular clients. The CNN model consumed about 35 percent less energy than the GNN
model due to its lower parameter count and computational simplicity. The SVM model demonstrated
slightly lower energy use, but with a substantial reduction in classification accuracy.

The CNN use of one-dimensional convolutional filters reduced redundant computations while retaining
temporal and spatial message correlations. Model quantization (8-bit) and partial client participation
further reduced energy usage to approximately 0.61 joule per inference cycle. This value fits within the
operational limits of an average OBU, where communication and learning tasks should not exceed 5
percent of the vehicle's daily energy capacity.

8.3 Balancing Accuracy, Latency and Energy Impact

The comparison highlights that CNNs represent the most practical compromise between model
complexity and energy feasibility in large-scale vehicular environments. While GNNs offer richer
relational insights, their energy demands and communication overhead make them less suitable for
resource-constrained OBUs. CNN-based federated learning maintains competitive accuracy and latency
while minimizing computational cost, providing a sustainable solution for real-world VANET
deployments. Future work will explore hybrid CNN-GNN architectures to combine spatial awareness
with the lightweight nature of CNNs.

9. DISCUSSION

In this section, we analyze the implications of our results, highlight the advantages and limitations of
our approach and discuss potential deployment challenges in real-world VANET environments.

9.1 Comparative Analysis

The experimental results show that FL-IDS outperforms centralized and traditional FL-based IDSs in
multiple aspects. Key improvements include:

o Higher Detection Accuracy: FL-IDS achieves 96.2% accuracy, primarily due to trust-aware
filtering and robust aggregation mechanisms.

e Reduced Latency: By offloading detection tasks to RSUs and minimizing cloud interaction,
detection latency was reduced to 86 ms on average.

e Scalability: The framework successfully scaled from 25 to 100 clients with minimal increase in
convergence time and overhead.
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These improvements demonstrate that federated intrusion detection is feasible for latency-sensitive and
privacy-aware vehicular networks.

9.2 Real-world Deployment Considerations
Deploying FL-IDS in live VANET environments introduces several challenges:

e Client Participation Variability: Vehicles may drop out of training due to movement, network
instability or energy constraints. Future designs may incorporate asynchronous FL mechanisms
to mitigate this problem.

e Hardware Heterogeneity: OBUs differ in computational capabilities, which could impact
training consistency. Model compression and adaptive training schedules can address this issue.

e RSU Trust and Security: While RSUs serve as aggregators, ensuring their integrity is vital.
Integration with blockchain or trusted execution environments (TEESs) could strengthen their
role.

e Legal and Ethical Compliance: Adhering to regional data-privacy laws (e.g. GDPR, CCPA) is
essential even if raw data is not shared. The use of differential privacy enhances compliance.

9.3 Trade-offs in System Design
While our FL-based approach offers privacy and scalability, it comes with trade-offs:

e Model Accuracy vs. Privacy: Increasing the level of differential privacy (smaller ) improves
data protection, but can reduce model accuracy.

e Security vs. Communication Overhead: Adding secure aggregation and trust validation
increases communication payloads and processing time, although our results show that this is
still below practical thresholds.

e Centralization vs. Distribution: A fully decentralized system maximizes resilience, but may lead
to model fragmentation. Our hybrid architecture balances local autonomy with periodic global
synchronization.

9.4 Potential Use Cases
Our proposed framework is applicable to several real-world scenarios:

1. Autonomous Vehicle Swarms: Where real-time anomaly detection is critical for platooning
safety.

2. Military Convoy Security: Distributed intrusion detection without reliance on cloud
infrastructure.

3. Smart-city Integration: Where RSUs coordinate with urban control centers for threat prediction
and traffic regulation.

9.5 Lessons Learned

Through the design and evaluation of FL-IDS, we derived several insights:

e Trust-aware filtering significantly improves robustness against poisoning attacks.

e Lightweight CNNs are sufficient for detecting common VANET threats without requiring deep
architectures.

¢ Non-1ID data handling and adaptive aggregation are crucial for consistent model convergence.

e Energy-efficient FL training is achievable using optimized training schedules and client
selection.

9.6 Ethical Considerations
While FL promotes user privacy, ethical concerns may arise if:

o Clients are misclassified and unfairly penalized (false positives).
e Models are biased due to data imbalance (e.g. rural vs. urban driving).

Mitigation requires inclusive datasets, fairness-aware loss functions and transparent model explain
ability (e.g. SHAP, LIME).
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10. CONCLUSION

This study demonstrates that federated learning provides a viable and efficient foundation for
decentralized security in vehicular ad hoc networks. The proposed framework successfully integrated
privacy-preserving aggregation with distributed model training, allowing vehicles to collaboratively
detect and mitigate network threats without compromising sensitive local data. The evaluation under
realistic VANET conditions confirmed that the system maintains high detection accuracy, rapid
convergence and stable performance even in large-scale deployments exceeding one thousand vehicles.
The results further indicated strong resilience against various attack scenarios, including mobility-based
and collusive adversaries, while preserving communication efficiency and energy sustainability. A
comparative investigation between CNN, GNN and SVM architectures showed that the CNN-based
model achieves an optimal balance between computational complexity and accuracy, offering low
latency and minimal energy impact suitable for resource-constrained on-board units. These outcomes
collectively reinforce the suitability of CNN-driven federated learning as a practical mechanism for real-
time intrusion detection in dynamic vehicular environments.

Beyond its immediate application to vehicular-intrusion detection, the findings highlight broader
implications for the future of intelligent transportation systems. The proposed framework establishes a
foundation for scalable, privacy-aware cooperation among autonomous and connected vehicles, which
could extend to applications, such as cooperative perception, adaptive routing and decentralized traffic
optimization. Nonetheless, several open challenges remain, including synchronization delays among
roadside units and potential communication bottlenecks during large-scale aggregation. Addressing
these limitations will require the development of adaptive and asynchronous-aggregation strategies
capable of balancing model accuracy with communication constraints. Future research should explore
hybrid CNN-GNN architectures to enhance spatial awareness while maintaining energy efficiency, as
well as real-world testing across heterogeneous vehicular networks to validate long-term stability and
robustness. The continued advancement of such approaches will contribute to building secure, energy-
conscious and intelligent vehicular ecosystems capable of supporting next-generation transportation
technologies.
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