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ABSTRACT 

Vehicular Ad Hoc Networks (VANETs) are a cornerstone of modern Intelligent Transportation Systems (ITSs), 

enabling real-time communication among vehicles and infrastructure. However, the open and dynamic nature of 

VANETs exposes them to a wide range of cybersecurity threats, such as spoofing, Sybil attacks and denial-of-

service (DoS). This paper introduces a novel Federated Learning (FL) framework designed to enhance VANET 

security by enabling distributed and privacy-preserving intrusion detection across the network. By leveraging 

local model updates instead of centralized data aggregation, our proposed FL approach mitigates privacy risks, 

reduces communication overhead and offers robust detection of cyber-threats. The paper presents a 

comprehensive analysis including system architecture, threat modeling, security properties, performance 

evaluation and real-world applicability. Extensive simulations show that our model achieves a detection accuracy 

of up to 96.2%, with minimal latency and low model convergence time, outperforming existing centralized and 

traditional machine-learning models. 
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1. INTRODUCTION 

The automotive industry is undergoing a transformative evolution with the integration of Vehicle-to-

Everything (V2X) communication into smart transportation systems. Vehicular Ad Hoc Networks 

(VANETs), a sub-class of Mobile Ad Hoc Networks (MANETs), allow vehicles to communicate with 

each other (V2V) and with roadside infrastructure (V2I). These networks facilitate various applications, 

such as traffic safety, infotainment, autonomous driving and environmental monitoring. However, 

VANETs' inherent characteristics-high mobility, dynamic topology and real-time constraints-introduce 

significant security challenges [1]-[2]. 

Traditional centralized Intrusion-detection Systems (IDS) struggle to meet the privacy and scalability 

demands of VANETs [3]. Moreover, transmitting raw vehicular data to centralized servers introduces 

latency and violates data privacy, especially when vehicles are equipped with sensitive sensors, such as 

GPS, cameras and biometric modules [4]. As a result, there is a growing need for decentralized, privacy-

preserving security mechanisms that can operate at the network edge [5]-[9]. 

Federated Learning (FL), a decentralized machine-learning paradigm, offers a promising solution by 

allowing vehicles to collaboratively train a shared model while keeping local data on-device [3]-[4]. 

Each vehicle computes local gradients, which are then aggregated by a central coordinator or distributed 

through peer-to-peer aggregation strategies. FL ensures data privacy, minimizes communication 

overhead and can adapt to the heterogeneous nature of VANET environments [10]-[15]. 

This paper proposes a Federated Learning-based security framework for VANETs that supports real-

time threat detection, lightweight model updates and robust resistance to poisoning and adversarial 

attacks. Our key contributions include: 

 A novel federated intrusion-detection architecture tailored for distributed VANET 

environments. 

 Integration of lightweight deep-learning models with differential privacy and secure aggregation 

techniques. 

 Comprehensive mathematical modeling and performance analysis under various attack 

scenarios. 
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 Evaluation using real-world VANET datasets (e.g. NSL-KDD, VeReMi) with metrics, such as 

accuracy, latency and communication overhead. 

 Comparison with centralized and traditional IDS approaches demonstrating the superiority of 

FL in distributed environments. 

The remainder of this paper is organized as follows. Section 2 reviews related work on federated learning 

and VANET security. Section 3 describes the system model and methodology. Section 4 presents the 

proposed FL-based intrusion-detection framework. Section 5 provides the security and privacy analysis, 

while Section 6 reports the experimental results and performance evaluation. Section 7 discusses 

reproduction with real-world VANET data. Section 8 presents technical justification and comparative 

evaluation, while Section 9 presents potential use cases and Section 10 concludes the paper and 

highlights future-research directions. 

2. RELATED WORKS 

2.1 VANET Security Challenges 

VANETs are inherently vulnerable to various cyber-attacks due to their decentralized nature, real-time 

communication constraints and wireless broadcast medium [15]. Common threats include Sybil attacks, 

message tampering, spoofing, blackhole attacks and denial-of-service (DoS). Traditional cryptographic 

mechanisms are often insufficient due to computational constraints on On-Board Units (OBUs) and the 

need for rapid authentication and verification [12]. Therefore, lightweight, adaptive and scalable security 

models are essential. 

2.2 Intrusion-detection Systems (IDSs) in VANETs 

Machine-learning (ML) and deep-learning (DL) techniques have been widely employed in VANET 

intrusion detection. Conventional centralized IDSs require vehicular data to be transmitted to remote 

servers for training, which raises concerns about latency, bandwidth usage and privacy leakage [13]. 

DL-based IDSs such as CNNs, LSTMs and Auto-encoders, have demonstrated significant success in 

detecting anomalous traffic patterns. However, these solutions often ignore the privacy constraints of 

vehicular data and are difficult to scale to large, distributed environments. 

2.3 Federated Learning in Intelligent Networks 

Federated Learning (FL) was first introduced by Google to address privacy concerns in mobile-device 

learning [5]. Since then, FL has gained attention in smart healthcare, finance and IoT systems. In the 

context of Intelligent Transportation Systems (ITSs), FL has been proposed for traffic prediction, driver-

behavior modeling and collaborative perception [16]-[33]. However, its application in VANET security 

is still in its nascent stage. 

Several studies have explored FL in vehicular environments. For instance, [6] introduced FL-VANET, 

an architecture leveraging FL for anomaly detection using LSTM-based encoders. [7] developed a 

federated transfer-learning model for intrusion detection in edge-VANETs. Despite promising results, 

these works often ignore adversarial model poisoning and secure aggregation. Moreover, the dynamic 

and heterogeneous nature of VANET nodes requires models that can handle non-IID data and 

intermittent participation [34]-[42]. 

2.4 Secure Federated Learning in VANETs 

Privacy and security in FL are emerging concerns. Techniques, such as differential privacy (DP), secure 

multi-party computation (SMC) and homomorphic encryption (HE), are being integrated to preserve 

model confidentiality [14]. In VANETs, preserving privacy while ensuring resilience to poisoning 

attacks is challenging due to node mobility and limited bandwidth. Recent studies, like [10], have 

proposed trust-aware aggregation mechanisms, while [11] introduced blockchain-based verifiable FL to 

detect malicious contributions. 

Yet, few approaches offer an integrated solution combining secure model aggregation, dynamic 

participation and lightweight intrusion detection tailored to VANET characteristics. This paper aims to 

bridge that gap by proposing a federated IDS with secure gradient aggregation, resilient to adversarial 

contributions and efficient under network constraints. 
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2.5 Comparison Summary 

Table 1 summarizes key related works in terms of learning paradigm, privacy technique, attack model 

and deployment scalability. 

Table 1. Comparison of related works in FL-based VANET security. 

Approach 
Learning 

Model 
Privacy Mechanism Limitations 

Wang et al. (2024) 

[6] 
LSTM + FL None 

Lacks defense against poisoning 

attacks 

Zhou et al. (2023) [7] Transfer + FL 
Differential Privacy 

(DP) 
High communication overhead 

Rahman et al. (2023) 

[10] 
CNN + FL Trust Aggregation No protection against Sybil attacks 

Ahmed et al. (2023) 

[11] 

FL + 

Blockchain 
Verifiable Updates High computational complexity 

This Work CNN + FL 
DP + Secure 

Aggregation 

VANET optimized integrated 

framework 

3. METHODOLOGY 

This section outlines the foundational elements of our proposed federated-learning (FL) framework for 

VANET security. It includes the system architecture, the federated-learning model, the threat model and 

the mathematical formulation of training and aggregation. 

3.1 System Model 

Our system consists of three main components: 

 Vehicles (Clients): Each vehicle is equipped with an On-Board Unit (OBU) and local storage to 

collect and process traffic data. 

 Roadside Units (RSUs): Serve as edge aggregators coordinating FL updates in a localized 

geographic region. 

 Central Coordinator (Optional): In hybrid deployments, a cloud server may be used for global 

model synchronization. 

Each vehicle trains a local model using its own traffic dataset. After a number of local epochs, the model 

weights are sent to the RSU, which performs secure aggregation. 

3.2 Data Distribution and Learning Assumptions 

The vehicular data is non-IID and unbalanced due to differences in driving environments, attack 

exposure and data availability. Each vehicle 𝑣𝑖 has a local dataset 𝒟𝑖 comprising labeled communication 

packets, logs and message attributes. 

Let 𝑤𝑖
𝑡 represent the local model parameters at round 𝑡 and 𝑓(𝑤𝑖

𝑡, 𝒟𝑖) be the local loss function. 

3.3 Federated-learning Framework 

The goal of FL is to minimize the global loss function over all distributed clients: 

min
𝑤

 ∑  

𝑁

𝑖=1

 
|𝒟𝑖|

|𝒟|
⋅ 𝑓(𝑤,𝒟𝑖) (1) 

where: 

 𝑤 is the shared global model, 

 |𝒟𝑖| is the size of local data on client 𝑖, 
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 |𝒟| = ∑  𝑖 |𝒟𝑖| is the total data across all clients. 

Clients update their model weights locally using stochastic gradient descent (SGD): 

𝑤𝑖
𝑡+1 = 𝑤𝑖

𝑡 − 𝜂 ⋅ ∇𝑓(𝑤𝑖
𝑡, 𝒟𝑖) (2) 

3.4 Secure Aggregation Mechanism 

After local training, the RSU performs secure model aggregation using Federated Averaging: 

𝑤𝑡+1 =∑ 

𝑁

𝑖=1

 
|𝒟𝑖|

|𝒟|
⋅ 𝑤𝑖

𝑡+1 (3) 

To protect model confidentiality, we employ a secure aggregation protocol, where each 𝑤𝑖
𝑡+1 is masked 

using additive-noise and differential-privacy (DP) techniques. 

3.5 Threat Model 

The proposed system operates in a dynamic and decentralized VANET environment, where nodes 

frequently join and leave the network. Given this open topology, both external and internal adversaries 

can attempt to compromise the confidentiality, integrity or availability of communication and model 

updates. The threat model considers an array of realistic and mobility-driven attack vectors, described 

as follows: 

 External Adversaries: Entities that eavesdrop, inject falsified messages or disrupt 

communication channels. Typical attacks include jamming, eavesdropping and replay of 

Cooperative Awareness Messages (CAMs) or Decentralized Environmental Notification 

Messages (DENMs). 

 Internal Adversaries: Compromised vehicles that participate in federated learning with 

malicious intent. They may alter model updates, send poisoned gradients or collude with other 

compromised vehicles to skew the global model. 

 Mobility-based Attacks: Attackers exploit mobility patterns, such as location spoofing, 

pseudonym hopping and path replication, to evade detection or fabricate false traffic-density 

information. 

 Collusive Attacks: A group of malicious clients cooperatively inject correlated gradient updates 

to mislead the aggregation process and amplify the impact of poisoning or backdoor attacks. 

We assume that all communications between vehicles and Roadside Units (RSUs) are authenticated 

using standard V2X certificates, but that no trusted third-party global coordinator is fully immune to 

compromise. Hence, the defense design emphasizes local resilience and Byzantine robustness during 

aggregation. 

To counter these threats, the proposed system integrates Byzantine-resilient aggregation and differential 

privacy techniques. Specifically, the defense layer replaces purely accuracy-based trust scoring with 

robust aggregation algorithms, such as Krum and Multi-Krum, which tolerate a bounded number of 

malicious or colluding clients without degrading global model convergence. These methods are 

combined with differential privacy (DP) noise addition and gradient clipping to further limit information 

leakage and ensure fairness across heterogeneous nodes. 

3.6 Byzantine-Robust Aggregation Strategy 

To enhance resilience against poisoning, collusion and mobility-based attacks, the original trust-aware 

mechanism is extended into a Byzantine-robust aggregation framework. Let 𝑔𝑖 denote the local gradient 

of client 𝑖 at round 𝑡. The aggregation process proceeds as follows: 

1. Each RSU collects gradients {𝑔1, 𝑔2, … , 𝑔𝑁} from participating vehicles. 

2. For robustness, the RSU computes the pairwise Euclidean distance between gradients and 

selects a sub-set 𝒮 of size 𝑁 − 𝑓 (where 𝑓 is the maximum tolerated number of Byzantine 

clients). 

3. The Krum algorithm [34] selects the client the gradient of which has the smallest total distance 

to other gradients in 𝒮: 
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𝑔∗ = arg⁡min
𝑖
  ∑

𝑗∈𝒮,𝑗≠𝑖

‖𝑔𝑖 − 𝑔𝑗‖
2

4. For improved robustness, Multi-Krum aggregates the top- 𝑚 most consistent gradients:

𝑔∗ =
1

𝑚
∑  

𝑖∈ℳ

𝑔𝑖 

where ℳ is the set of 𝑚 selected gradients with minimum pairwise distances. 

This approach ensures that the influence of outlier or collusive clients is minimized. Compared to the 

earlier accuracy-based trust metric, Byzantine-robust aggregation eliminates dependency on local 

accuracy feedback, which can be easily manipulated in adversarial environments. The final aggregated 

gradient 𝑔∗ is then sanitized with differential privacy noise 𝑁(0, 𝜎2) before being distributed back to

participating clients: 

𝑔̃∗ = 𝑔∗ +𝑁(0, 𝜎2) 

This combination of Multi-Krum selection and DP masking ensures that the global model remains robust 

to both independent and collusive poisoning attacks while preserving communication efficiency. 

3.7 Dataset and Feature Engineering 

We use the following datasets for experiments: 

 NSL-KDD: Pre-processed to match vehicular features (e.g. packet size, flags, duration).

 VeReMi: Real VANET attack dataset focused on misbehavior detection in cooperative

awareness messages (CAMs). 

Each data sample is transformed into a fixed-length feature vector including time-series, protocol 

types and attack labels. Data-normalization and class-balancing techniques are applied to reduce 

model bias. 

3.8 Model Architecture 

The base model is a Convolutional Neural Network (CNN) optimized for edge devices. It includes: 

 Input layer: 30 features (normalized)

 Conv1D layers (2x): Filters=64, Kernel size=3

 MaxPooling1D: Pool size=2

 Dense layer: 128 units, ReLU

 Output layer: Softmax (for 5 -class classification)

Figure 1 illustrates the model structure. 

Figure 1. Lightweight CNN architecture used for local FL model. 
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4. PROPOSED SYSTEM / APPROACH

This section presents the architecture and operational workflow of our proposed Federated Learning-

based Intrusion Detection System (FL-IDS) for VANETs. The system is designed to meet the dynamic, 

privacy-sensitive and distributed nature of vehicular networks. 

4.1 System Architecture Overview 

Figure 2 illustrates the high-level architecture of our proposed FL-based security framework. 

Figure 2. Proposed federated-learning architecture for VANET intrusion detection. 

The architecture comprises three layers: 

 Vehicle Layer: Each vehicle collects traffic data and executes local training on its OBU using

the CNN-based model. Sensitive data never leaves the vehicle. 

 Edge Aggregator Layer (RSUs): RSUs collect model updates from vehicles, perform secure

aggregation and transmit the result to neighboring RSUs or a central server. 

 Global Orchestration Layer: Optionally, a central server integrates regional model updates and

disseminates a refined global model. This enables inter-region learning transfer. 

4.2 Workflow of FL-IDS in VANET 

The system operation follows a cyclical five-phase process, as illustrated in Figure 3. 

Figure 3. Workflow of FL-IDS across vehicle and edge layers. 

Step 1: Data Collection - Each vehicle gathers network traffic, logs and context data. 

Step 2: Local Model Training - A CNN model is trained using Equation (2). Training runs for 𝐸 epochs 

locally. 
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Step 3: Gradient Protection - Local gradients are perturbed using differential privacy: 

𝑤̃𝑖
𝑡+1 = 𝑤𝑖

𝑡+1 +𝒩(0, 𝜎2) (4) 

where 𝒩(0, 𝜎2) is Gaussian noise and 𝜎 is a tunable privacy budget parameter.

Step 4: Secure Aggregation - The RSU securely aggregates gradients using Equation (3) and broadcasts 

the global model. 

Step 5: Update Dissemination - Vehicles receive the new global model and replace their local model. 

4.3 Trust-aware Aggregation Strategy 

To mitigate poisoning attacks, we define a trust score 𝑇𝑖
𝑡 for each client 𝑖 at round:

𝑇𝑖
𝑡 =

Accuracy 
𝑖
𝑡 − 𝜇

𝜎
(5) 

where 𝜇 and 𝜎 are the mean and standard deviation of accuracy across all clients. Only clients with 𝑇𝑖
𝑡 >

0 contribute to the aggregation, ensuring robustness against adversarial models. 

4.4 Communication Optimization 

We reduce communication overhead via: 

 Model Compression: Quantizing model weights to 8-bit floating point.

 Client Selection: At each round, only 𝐾 of 𝑁 clients participate, selected based on bandwidth

and availability. 

This reduces update latency while maintaining model convergence. 

4.5 Deployment Strategy in Urban VANETs 

In urban scenarios with dense vehicular traffic, the system operates in a hierarchical mode. Each city 

block has an RSU that aggregates models locally. RSUs synchronize every 𝑀 rounds to maintain 

consistency across geographic partitions. 

4.6 Security Extensions 

Beyond intrusion detection, our FL framework supports: 

 Anomaly Scoring: Each sample is assigned a threat score using Softmax confidence.

 Incident Broadcast: Vehicles detecting anomalies broadcast CAMs tagged with encrypted threat

scores. 

 Privacy-preserving Logs: Local logs are retained using hash chains for forensic analysis.

4.7 Advantages of the Proposed FL Approach 

 Privacy: Raw data remains local, satisfying data-protection regulations.

 Scalability: Works in both sparse and dense network conditions.

 Robustness: Resistant to gradient poisoning and adversarial model drift.

 Efficiency: Reduced latency and bandwidth consumption.

5. SECURITY ANALYSIS

This section provides an in-depth analysis of the security properties of the proposed Federated Learning-

based Intrusion Detection System (FL-IDS) in VANETs. We focus on the system's ability to withstand 

internal and external threats, protect data privacy and ensure trust in collaborative learning. 

5.1 Threat-mitigation Capabilities 

Table 2 summarizes how the proposed system counters key VANET security threats. 
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Table 2. Threat-mitigation capabilities of FL-IDS. 

Threat Type Mitigation Mechanism 

Sybil Attack Model update consistency checking and vehicle ID verification 

Eavesdropping No raw data transmission; updates masked with DP noise 

Gradient Poisoning Trust-aware score filtering (Eq. (5)) 

Model Drift Periodic synchronization with RSU consensus 

Data Privacy Leakage Differential privacy via Gaussian noise (Eq. (4)) 

DoS on Aggregators Decentralized RSU fallback and redundancy 

5.2 Adversarial Robustness 

We simulate several adversarial settings to evaluate model robustness: 

 Backdoor Insertion: Malicious clients inject poisoned data with specific patterns. The model

maintains > 90% accuracy post-filtering. 

 Model Tampering: Clients transmit incorrect gradients. Aggregation weights based on trust

score significantly reduce impact. 

 Data-injection Attacks: External adversaries attempt to overwhelm OBUs with malicious traffic.

Local IDS detects anomalies before model training. 

5.3 Security Metrics 

To quantify the security effectiveness, we define the following metrics: 

 False Positive Rate (FPR): Fraction of benign activities classified as malicious.

 Poisoning Tolerance (PT): The maximum proportion of malicious clients tolerated without

significant degradation ( < 5% drop in accuracy). 

 Privacy Loss (𝜀) : Measured under (𝜀, 𝛿) − DP, with target 𝜀 < 2.

Table 3 presents these metrics under different configurations. 

Table 3. Security-evaluation metrics of FL-IDS. 

Scenario FPR (%) Poisoning Tolerance 

Standard FL 5.2 15% 

FL + DP 4.1 20% 

FL + Trust Filtering 3.8 28% 

FL-IDS (Full) 𝟑. 𝟐 𝟑𝟐% 

5.4 Formal Privacy and Confidentiality Analysis 

To quantify the overall privacy and confidentiality of the proposed FL-IDS, we formalize both the 

differential privacy (DP) component and the secure aggregation (SecAgg) protocol used during model 

updates. 

5.4.1 Differential Privacy Formulation 

Each vehicle perturbs its local gradient before transmission using Gaussian noise as: 

𝑔̃𝑖 = 𝑔𝑖 +𝒩(0, 𝜎2)

where 𝜎 is the noise scale derived from the sensitivity Δ of the gradient and the privacy budget (𝜖, 𝛿). 

According to the Gaussian Mechanism [35], a single local update satisfies (𝜖, 𝛿)-DP if: 
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𝜎 ≥
Δ√2ln⁡(1.25/𝛿)

𝜖

For our implementation, the sensitivity Δ was clipped to 1.0 and the per-round noise variance was set to 

𝜎2 = 0.4. Using the Rényi DP accountant across 𝑅 = 50 global rounds, the total cumulative privacy

loss was computed as: 

𝜖total = √2𝑅ln⁡(1/𝛿) ⋅
Δ

𝜎

Substituting 𝛿 = 10−5 and the above parameters, we obtain:

𝜖total = 1.64 

which corresponds to a tight privacy bound ensuring that no adversary can infer individual client data 

with a probability greater than 𝑒1.64 ≈ 5.16 times that of random guessing. This aggregated value

captures the end-to-end differential-privacy guarantee over the entire federated process, not merely per-

round protection. 

5.4.2 Secure Aggregation Protocol 

To strengthen confidentiality beyond statistical privacy, the FL-IDS employs a cryptographic Secure 

Aggregation (SecAgg) protocol inspired by [36], integrated with the Paillier additive homomorphic 

encryption scheme. 

Each vehicle 𝑣𝑖 encrypts its local model update 𝑤𝑖 as:

𝐸(𝑤𝑖) = 𝑔𝑤𝑖𝑟𝑛mod𝑛2

where ( 𝑛, 𝑔 ) is the public key, 𝑟 is a random nonce and Paillier's homomorphic property ensures that: 

𝐸(𝑤1) ⋅ 𝐸(𝑤2) = 𝐸(𝑤1 +𝑤2) 

Without decrypting individual contributions, the RSU (aggregator) computes the aggregated encrypted 

update: 

𝐸(𝑤agg) =∏ 

𝑁

𝑖=1

𝐸(𝑤𝑖) 

and sends 𝐸(𝑤agg ) to the decryption authority (trusted module or TEE) for global model reconstruction.

This mechanism guarantees that: 

1. No RSU or adversary can access individual model parameters during aggregation.

2. The aggregation remains verifiable, yet privacy-preserving, under a semi-honest threat model.

3. Communication cost overhead is bounded by 𝑂(𝑁log⁡𝑛) per aggregation round, which remains

efficient for up to 100 vehicular clients. 

5.4.3 Overall Privacy and Confidentiality Guarantee 

Combining the differential privacy and cryptographic aggregation mechanisms, the overall system 

satisfies: 

 FL-IDS ∈ (𝜖total , 𝛿)-DP⁡and⁡SecAgg-Paillier⁡confidentiality. 

The differential privacy term bounds information leakage statistically, while Paillier-based SecAgg 

ensures that no entity, including RSUs or the central coordinator, can observe individual gradient values. 

The integration of these two orthogonal layers formalizes the degree of privacy and confidentiality 

throughout the entire federated-learning pipeline. 

5.5 Attack Detection Latency 

Our architecture maintains a detection latency below 100 ms under typical VANET throughput. Table 

4 illustrates performance in both edge and centralized variants. 
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Table 4. Attack-detection latency (in milliseconds). 

Deployment Mode Latency (ms) 

Centralized IDS 230 ms 

Edge IDS 98 ms 

FL-IDS (Ours) 𝟖𝟔 𝐦𝐬 

5.6 Security Summary 

The proposed FL-IDS demonstrates high resilience against insider and outsider threats while ensuring 

compliance with privacy guarantees. Its layered defense - including differential privacy, trust scoring 

and edge-based detection-renders it suitable for real-world VANET deployments. 

6. PERFORMANCE EVALUATION

To validate the effectiveness of our FL-IDS framework, we conducted extensive simulations using real-

world VANET datasets. We evaluated the framework across multiple metrics: accuracy, precision, 

recall, communication overhead, model convergence time and system latency. 

6.1 Experimental Setup 

Simulation Environment: Experiments were conducted using Python 3.10 and TensorFlow 2.14 in a 

federated environment built on the Flower framework. Vehicular mobility and communication were 

emulated using SUMO and Veins simulators integrated through OMNeT++ [42]-[53]. 

Network Scale: 

 Vehicles (Clients): 1,000-1,200 simulated vehicles with non-IID data splits per region.

 RSUs: 20 edge servers acting as regional aggregators, each supporting 50-60 clients.

 Global Coordinator: One optional cloud server for cross-region synchronization every 25

rounds. 

Datasets: Combined NSL-KDD, VeReMi and Zhou-Jiang [54] datasets were used to emulate mixed 

synthetic and real-world vehicular traffic patterns. 

Training Configuration: 

 Local epochs 𝐸 = 3, global rounds 𝑅 = 100.

 Optimizer: Adam with learning rate 𝜂 = 0.001.

 DP noise variance 𝜎2 = 0.5, privacy budget 𝜀 = 1.5.

 Byzantine tolerance parameter 𝑓 = 10 (Multi-Krum).

6.2 Baseline Comparison and SOTA Reference 

For comprehensive benchmarking, we compared FL-IDS with recent VANET-FL architectures: 

 FL-VANET [6]: LSTM-based distributed IDS.

 TrustFL [10]: Trust-aware aggregation for adversarial VANETs.

 VeriFL [11]: Blockchain-enabled verifiable aggregation.

All baselines were re-implemented under identical data partitions and computational limits for fairness. 

6.3 Evaluation Metrics 

Performance was measured using both classical and advanced metrics: 

 Accuracy, Precision, Recall (baseline metrics).

 F1-Score (harmonic mean of Precision and Recall):

𝐹1 = 2 ⋅
 Precision ⋅  Recall 

 Precision +  Recall 
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 AUC-ROC (Area under the Receiver Operating Characteristic curve), providing a threshold

independent measure of classification quality. 

 Statistical Significance: Independent-sample t-tests ( 𝑝 < 0.05 ) between FL-IDS and baselines

across 10 training repetitions. 

6.4 Results on Large-scale VANET 

Table 5 summarizes key results for 1,000-vehicle deployment. 

Table 5. Large-scale VANET evaluation results (1,000 vehicles). 

Approach Accuracy (%) Precision (%) Recall (%) F1 (%) AUC 𝒑-value 

FL-VANET [6] 94.3 93.8 93.5 93.6 0.963 0.018 

TrustFL [10] 95.1 94.7 94.1 94.4 0.971 0.011 

VeriFL [11] 95.5 95.2 94.8 95.0 0.975 0.007 

FL-IDS (Ours) 96.4 95.9 95.5 95.7 0.982 < 0.005 

The proposed FL-IDS consistently outperformed baseline frameworks with statistically significant 

improvements ( 𝑝 < 0.01 ) in all metrics. The AUC-ROC curve (Fig. 4) demonstrates a high separability 

between benign and malicious classes, indicating excellent detection consistency across diverse mobility 

conditions. 

6.5 Scalability and RSU Bottleneck Analysis 

Communication Latency: Average round latency increased sub-linearly with client count ( 86 ms to 172 

ms for 1,000 clients). Hierarchical aggregation at RSUs reduced uplink traffic by 63 percent. 

RSU Bottlenecks: 

 Processing Overhead: Each RSU handled up to 80 parallel gradient updates per round. Beyond

60 clients, aggregation time increased exponentially. 

 Bandwidth Load: Transmission peaks at 2.3MBs−1 under full participation. RSUs with limited

backhaul links experienced temporary queuing delays. 

 Operational Concerns: Faulty or compromised RSUs can propagate corrupted aggregates.

Byzantine robust methods (Multi-Krum) mitigated this risk with less than 2 percent accuracy 

drop even under 10 percent malicious clients. 

Scalability Outcome: Simulation of 1,200 vehicles confirmed stable convergence within 29 rounds, with 

less than 0.8 percent accuracy degradation and AUC greater than 0.97 , proving practical viability for 

large-scale deployments. 

6.6 Statistical Significance and Model Robustness 

We performed two-tailed t-tests on model F1-scores between FL-IDS and each baseline over 10 

independent runs. All results were significant ( 𝑝 < 0.01 ), confirming that the observed performance 

gains are unlikely due to random variation. Standard deviation of metrics remained below 0.4 percent, 

demonstrating robustness and repeatability. 

6.7 AUC-ROC and F1 Visualization 

Figure 4 presents the AUC-ROC curves of all models. The proposed FL-IDS achieves the steepest rise 

with AUC = 0.982, outperforming TrustFL ( 0.971 ) and VeriFL ( 0.975 ). Figure 5 shows F1-score 

trends across rounds, illustrating faster stabilization and higher final values compared to baseline 

systems. 

6.8 Discussion on Scalability Risks 

Scaling FL-IDS beyond 1,000 vehicles introduces operational concerns: 
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Figure 4. AUC-ROC comparison among SOTA FL-VANET frameworks. 

 RSU Synchronization Delays: Decentralized aggregation across overlapping coverage zones

may cause stale updates if synchronization exceeds 100 ms. 

 Gradient Staleness: Non-IID data and intermittent clients can induce gradient divergence;

adaptive local learning rates can mitigate this. 

 Security Amplification: Larger networks amplify the impact of collusive attacks. Byzantine-

robust aggregation mitigates up to 20 percent adversarial clients, but may reduce convergence 

speed by 7-9 percent. 

Future work will explore dynamic RSU load-balancing and mobility-aware asynchronous aggregation 

for next-generation FL-enabled VANETs. 

Figure 5. F1-score convergence across FL rounds (1,000 vehicles). 

7. REPRODUCTION WITH REAL-WORD VANET DATA

To further validate the generalizability of the proposed FL-IDS framework, the experiments were 

reproduced using real-world VANET datasets, specifically the VeReMi dataset and the benchmark 

vehicular traces introduced by Zhou and Jiang [54]. These datasets include authentic vehicular 

communication logs and misbehavior events captured from live vehicular testbeds, offering realistic 

spatio-temporal dynamics and protocol-level message interactions consistent with Cooperative 

Intelligent Transportation Systems (C-ITSs). 

7.1 Dataset Description 

 VeReMi: A comprehensive misbehavior-detection dataset containing Cooperative Awareness

Messages (CAMs) exchanged among vehicles. It includes attack classes, such as position 

falsification, message suppression and timing manipulation, collected from urban and highway 

driving scenarios. 

 Zhou and Jiang (2024) [54]: A real-world vehicular dataset with traces from 200 vehicles
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equipped with IEEE 802.11p OBUs. The dataset records message dissemination rates, 

transmission power and positional accuracy under benign and adversarial conditions. 

7.2 Feature Engineering for VANET Protocols 

Feature extraction focused on protocol-specific attributes according to ETSI EN 302 637-2/3 

standards. The selected features were grouped as follows: 

 CAM Features: StationID, Latitude, Longitude, Speed, Heading, Acceleration, Timestamp Drift

(Δ𝑡 between consecutive CAMs), Beacon Frequency Deviation and Position Error Rate. 

 DENM Features: Cause Code, SubCause Code, Detection Time, Event Position, Repetition

Interval, Alert Propagation Distance and Event Rebroadcast Count. 

 Derived Features: Message Interval Variance, Relative Speed Deviation, Signal-to-Noise Ratio

(SNR) and Neighbor Density. 

All features were normalized to the range [0,1] and converted into fixed-length vectors of 40 

dimensions. A sliding window of 5 consecutive message samples was used to preserve temporal 

correlations across CAM/DENM transmissions. 

7.3 Experimental Configuration 

Retraining was performed using 100 vehicular clients, each holding non-IID splits of the VeReMi and 

Zhou-Jiang [54] datasets. Each On-Board Unit (OBU) executed three local epochs per FL round and 

RSUs aggregated updates every 25 rounds. The privacy budget was fixed at 𝜀 = 1.5 with Gaussian noise 

variance 𝜎2 = 0.4. The same CNN architecture and FL environment previously described were adopted

to ensure comparability. 

7.4 Results and Analysis 

Table 6 summarizes the comparative performance of the baseline (NSL-KDD + VeReMi) and the 

reproduced real-world VANET setup. 

The reproduced results show a minor accuracy reduction ( < 0.5% ), primarily due to increased channel 

noise and inconsistent beacon intervals inherent to real-world data. However, latency and convergence 

behavior remained stable. The system maintained a poisoning-tolerance above 30% and a false positive 

rate (FPR) of approximately 3.4%, confirming the resilience of FL-IDS under practical vehicular 

conditions. 

Table 6. Performance of FL-IDS on real-world VANET data. 

Dataset Accuracy (%) Precision (%) Recall (%) Latency (ms) 

VeReMi + NSL-KDD (Baseline) 96.2 95.6 95.1 86 

VeReMi + Zhou-Jiang (Real) 95.7 95.1 94.8 89 

7.5 Discussion 

The reproduced experiments demonstrate that the proposed FL-IDS effectively generalizes to real-world 

VANET environments when trained with raw VeReMi data and live vehicular traces. Incorporating 

CAM/DENM protocol-level features improved the temporal and contextual understanding of vehicular 

interactions, enabling more precise anomaly detection. Future work will extend this approach to include 

Cooperative Perception Messages (CPMs) and sensor-fusion attributes to enhance situational awareness 

in 5G-enabled vehicular networks. 

8. TECHNICAL JUSTIFICATION AND COMPARATIVE EVALUATION

To strengthen the rationale for our architectural design, an extended evaluation was performed 

comparing the adopted Convolutional Neural Network (CNN) with alternative frameworks, including 

Graph Neural Networks (GNNs) and Support Vector Machines (SVMs). The goal was to determine the 

optimal balance between detection performance, computational efficiency and energy sustainability 

under VANET constraints. 
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8.1 Comparative Evaluation of Learning Architectures 

The CNN-based FL-IDS was benchmarked against GNN and SVM models using the same federated 

setup and VeReMi dataset. The results are summarized in Table 7. 

Table 7. Comparison of CNN, GNN and SVM models under FL-VANET setup. 

Model Accuracy (%) F1 (%) Latency (ms) Energy (J) 

SVM (RBF) 91.8 91.2 142 0.93 

GNN (GraphConv) 95.2 94.8 117 1.18 

CNN (Proposed) 96.4 95.7 86 0.61 

The results show that GNNs provide improved spatial reasoning and awareness of vehicular topology, 

but this comes at the cost of higher computational and communication overhead due to graph 

construction and message passing. SVMs, while lightweight and energy-efficient, failed to generalize 

effectively across non-IID vehicular data distributions. The CNN model achieved the best overall trade-

off, offering superior detection accuracy, reduced inference latency and lower energy consumption, 

which makes it suitable for deployment on On-Board Units (OBUs) with limited power budgets. 

8.2 Energy and Computational Trade-offs 

To assess energy sustainability, average energy consumption was measured per local training round 

across 1,000 vehicular clients. The CNN model consumed about 35 percent less energy than the GNN 

model due to its lower parameter count and computational simplicity. The SVM model demonstrated 

slightly lower energy use, but with a substantial reduction in classification accuracy. 

The CNN use of one-dimensional convolutional filters reduced redundant computations while retaining 

temporal and spatial message correlations. Model quantization (8-bit) and partial client participation 

further reduced energy usage to approximately 0.61 joule per inference cycle. This value fits within the 

operational limits of an average OBU, where communication and learning tasks should not exceed 5 

percent of the vehicle's daily energy capacity. 

8.3 Balancing Accuracy, Latency and Energy Impact 

The comparison highlights that CNNs represent the most practical compromise between model 

complexity and energy feasibility in large-scale vehicular environments. While GNNs offer richer 

relational insights, their energy demands and communication overhead make them less suitable for 

resource-constrained OBUs. CNN-based federated learning maintains competitive accuracy and latency 

while minimizing computational cost, providing a sustainable solution for real-world VANET 

deployments. Future work will explore hybrid CNN-GNN architectures to combine spatial awareness 

with the lightweight nature of CNNs. 

9. DISCUSSION

In this section, we analyze the implications of our results, highlight the advantages and limitations of 

our approach and discuss potential deployment challenges in real-world VANET environments. 

9.1 Comparative Analysis 

The experimental results show that FL-IDS outperforms centralized and traditional FL-based IDSs in 

multiple aspects. Key improvements include: 

 Higher Detection Accuracy: FL-IDS achieves 96.2% accuracy, primarily due to trust-aware

filtering and robust aggregation mechanisms. 

 Reduced Latency: By offloading detection tasks to RSUs and minimizing cloud interaction,

detection latency was reduced to 86 ms on average. 

 Scalability: The framework successfully scaled from 25 to 100 clients with minimal increase in

convergence time and overhead. 
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These improvements demonstrate that federated intrusion detection is feasible for latency-sensitive and 

privacy-aware vehicular networks. 

9.2 Real-world Deployment Considerations 

Deploying FL-IDS in live VANET environments introduces several challenges: 

 Client Participation Variability: Vehicles may drop out of training due to movement, network

instability or energy constraints. Future designs may incorporate asynchronous FL mechanisms 

to mitigate this problem. 

 Hardware Heterogeneity: OBUs differ in computational capabilities, which could impact

training consistency. Model compression and adaptive training schedules can address this issue. 

 RSU Trust and Security: While RSUs serve as aggregators, ensuring their integrity is vital.

Integration with blockchain or trusted execution environments (TEEs) could strengthen their 

role. 

 Legal and Ethical Compliance: Adhering to regional data-privacy laws (e.g. GDPR, CCPA) is

essential even if raw data is not shared. The use of differential privacy enhances compliance. 

9.3 Trade-offs in System Design 

While our FL-based approach offers privacy and scalability, it comes with trade-offs: 

 Model Accuracy vs. Privacy: Increasing the level of differential privacy (smaller  ) improves

data protection, but can reduce model accuracy. 

 Security vs. Communication Overhead: Adding secure aggregation and trust validation

increases communication payloads and processing time, although our results show that this is 

still below practical thresholds. 

 Centralization vs. Distribution: A fully decentralized system maximizes resilience, but may lead

to model fragmentation. Our hybrid architecture balances local autonomy with periodic global 

synchronization. 

9.4 Potential Use Cases 

Our proposed framework is applicable to several real-world scenarios: 

1. Autonomous Vehicle Swarms: Where real-time anomaly detection is critical for platooning

safety. 

2. Military Convoy Security: Distributed intrusion detection without reliance on cloud

infrastructure. 

3. Smart-city Integration: Where RSUs coordinate with urban control centers for threat prediction

and traffic regulation. 

9.5 Lessons Learned 

Through the design and evaluation of FL-IDS, we derived several insights: 

 Trust-aware filtering significantly improves robustness against poisoning attacks.

 Lightweight CNNs are sufficient for detecting common VANET threats without requiring deep

architectures. 

 Non-IID data handling and adaptive aggregation are crucial for consistent model convergence.

 Energy-efficient FL training is achievable using optimized training schedules and client

selection. 

9.6 Ethical Considerations 

While FL promotes user privacy, ethical concerns may arise if: 

 Clients are misclassified and unfairly penalized (false positives).

 Models are biased due to data imbalance (e.g. rural vs. urban driving).

Mitigation requires inclusive datasets, fairness-aware loss functions and transparent model explain 

ability (e.g. SHAP, LIME). 
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10. CONCLUSION

This study demonstrates that federated learning provides a viable and efficient foundation for 

decentralized security in vehicular ad hoc networks. The proposed framework successfully integrated 

privacy-preserving aggregation with distributed model training, allowing vehicles to collaboratively 

detect and mitigate network threats without compromising sensitive local data. The evaluation under 

realistic VANET conditions confirmed that the system maintains high detection accuracy, rapid 

convergence and stable performance even in large-scale deployments exceeding one thousand vehicles. 

The results further indicated strong resilience against various attack scenarios, including mobility-based 

and collusive adversaries, while preserving communication efficiency and energy sustainability. A 

comparative investigation between CNN, GNN and SVM architectures showed that the CNN-based 

model achieves an optimal balance between computational complexity and accuracy, offering low 

latency and minimal energy impact suitable for resource-constrained on-board units. These outcomes 

collectively reinforce the suitability of CNN-driven federated learning as a practical mechanism for real-

time intrusion detection in dynamic vehicular environments. 

Beyond its immediate application to vehicular-intrusion detection, the findings highlight broader 

implications for the future of intelligent transportation systems. The proposed framework establishes a 

foundation for scalable, privacy-aware cooperation among autonomous and connected vehicles, which 

could extend to applications, such as cooperative perception, adaptive routing and decentralized traffic 

optimization. Nonetheless, several open challenges remain, including synchronization delays among 

roadside units and potential communication bottlenecks during large-scale aggregation. Addressing 

these limitations will require the development of adaptive and asynchronous-aggregation strategies 

capable of balancing model accuracy with communication constraints. Future research should explore 

hybrid CNN–GNN architectures to enhance spatial awareness while maintaining energy efficiency, as 

well as real-world testing across heterogeneous vehicular networks to validate long-term stability and 

robustness. The continued advancement of such approaches will contribute to building secure, energy-

conscious and intelligent vehicular ecosystems capable of supporting next-generation transportation 

technologies. 
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ملخص البحث:

اثةدددددداك   بدددددداكات ا دددددد كات اي دددددداكات ّة ددددددا ك  دددددد ك ددددددة للكاتباتاتدددددداكتّبويةددددددللكنّقّددددددوّكاتحا تعُددددددّبكات ا

لا كات    دددد كّدددد  كاتبويةددددللكثاتة  دددداكات ا   دددداكتّ ا ددددل  كثلادددد ك تدددد  ك تبُ ادددد كلادددد كايتاتددددلاك دددد كاتددددحا

كات دددددددة للكاتباتاتددددددداكتّبويةدددددددللكتقعّ دددددددلكُ و دددددددا ك ددددددد  ا طة عددددددداكاتبا دنددددددداكثاتّاة للا   ددددددداكتّ ا

كتّ ا ّةّالكاتب عّا اكّل لا كاتسا ةوا   

بل كت  سددددد  ك لاددددد ك كلاة  دددددوا كة ددددددُ ك ّددددد كاتددددد اعّب كاتا دددددُّات كلُاتدددددبا ك بددددد ل ُّ هددددد ركاتدُقددددداكتُ دددددّا كرادددددل

دددددد كلادددددد ك كتبُ ا كاتباتاتدددددداكتّبويةددددددللك دددددد كاوةدددددد كتددددددد  وك ت ددددددللل ددددددة للص ي ددددددركايت واقددددددللكات ا

ك ةوكات اة ا كلا كات اوي حك ّ ك  كت دّ كتّ كالآت للكلادزا ا كثنل  ا كتّاتدص ا 

ثت ددددددّا كاتدُقددددددداكت ّدددددد ش كلدددددددللاش كثلاعبا دددددددل كة دددددد ب ك ّددددددد كّص   ددددددداكات ا ددددددل  كث ب  ددددددداكات ا ّةدددددددّال ك

لا ك ددددداكّ ادددددلُكاتعبددددد  كثت  ددددد  ك لامددددد  كر دددددل ا كرتددددد كتطة  لتددددد ك ددددد كاتدددددحا ثتتدددددلمنكا لاددددد كاتالصا

ك    ات  

ك لت دددددداكتتدددددد كرتدددددد ك كات ابددددددد تكاتب  ددددددو كة ب ادددددد كّّقاددددددال % ك2 96ثقددددددّك تة دددددداك  ددددددلمّكاتب ليددددددلتك  ا

قددددددل ك ّدددددد ك بددددددل تكاتدددددد اعّب كالآتدددددد كات لمبدددددداكاتب ددددددلّ اك ك ددددددّاا  كلا ادا كلادددددد اامل لادددددد كزلادددددد كتدددددد،ت ول

كاتبويحةاكثات ا ّ ّةا 
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