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ABSTRACT

Archaeological images are occasionally captured in environments with non-ideal lighting. This results in
imbalanced illumination and a loss of detail. These problems hinder precise operations, such as analysis,
interpretation, representation, and 3D modeling. This study introduces a non-complex illumination balancing
algorithm called Log-Stat, leveraging logarithmic approaches and statistical methods. It also includes two main
phases, one for illumination balancing and the other for tonality adjustment. The first phase utilizes six
mathematical equations, while the second phase utilizes four equations, processing the V channel of the image in
the HSV color model. Various images have been used to test the algorithm, and a comparison with ten prominent
algorithms is achieved, evaluating the outcomes using six measures. The results have shown the success of Log-
Stat in different aspects, including fidelity recovery and illumination balance. This allowed better visualization of
details, which the unbalanced illumination effect hindered. Integrating appropriate methods and fine-tuning the
parameters enabled the Log-Stat to perform in dissimilar illumination situations.
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1. INTRODUCTION

Digital images are an essential tool in archaeology. They can be utilized for documenting, modeling, or
recording findings [1]. However, their quality is often compromised, as various degradations may be
included. One degradation of interest is the inconsistent illumination. It makes the image appear underlit
(too dark) in certain regions, while appearing overlit (too bright) in the other areas [2]. This yields an
undesirable appearance and loss of central details, such as textures, affecting the overall visibility [3].
Other image aspects, such as colors, are also affected due to uneven illumination. Colors appear
mispresented, leading to struggles in distinguishing and perceiving the actual information precisely [4].
Overall, inconsistent illumination influences the accurate analysis, extraction, and representation of
archaeological subjects. As imaging technology advances, the ability to enhance images has become
considerable in archaeological research [5]. Digital images enable non-invasive inspection of scenes.
This avoids further deterioration and protects integrity. Thus, high-quality images become a key element
[6]. This study addresses the illumination balancing issue by exploring logarithmic and statistical
methods to improve accuracy and visibility. The lighting situations in archaeological settings are usually
far from ideal. This is due to various factors. Natural light can be limited or insufficient, especially in
indoor settings. The nature of the photographed object can also affect the lighting conditions. Reflective
or shiny surfaces cause glare, whereas textured surfaces cause shadows [7]. Likewise, artificial lighting,
such as flashlights, can lead to inconsistent illumination [8].

Uneven illumination poses significant challenges to archaeologists, distorting the colors and obscuring
the details [9]. Without adequate balance, the accuracy of image-based analysis is compromised.
Restoring images must be carried out effectively to obtain improved-quality images without generating
processing errors [10]. Hence, the key contribution of this research is to develop a non-complex
algorithm that rapidly and adequately balances the illumination of archaeological images while avoiding
limitations, such as shadows around edges, brightness amplification (i.e., global increase in brightness),
over-enhancements, and distortions. In this context, balancing the illumination offers the following
benefits: (i) it improves clarity and visibility, leading to more reliable interpretations; (ii) it helps reduce
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distortions caused by glare, shadows, and over- or under-exposure, leading to a more realistic
appearance. Thus, the Log-Stat algorithm is developed, combining logarithmic and statistical processes
for satisfactory illumination balancing. The development aligns with ongoing efforts to create better
methods for the digitalization of cultural heritage. The novelty of Log-Stat lies in its two-stage design,
which jointly addresses illumination balancing and tonality adjustment in an integrated framework. The
first phase redistributes intensity using logarithmic-based approaches infused with statistical measures
to brighten under-lit areas and balance the overall illumination. The phase stage adjusts the tonality
using tailored statistical methods. The unique combination of mathematical equations in both phases has
not been reported in existing algorithms.

When developing Log-Stat, the key objective was to create an expeditious illumination balancing
algorithm that can handle different lighting scenarios. Moreover, it is explicitly designed to preserve the
structural integrity and tonal consistency of vital archeological features. By leveraging logarithmic and
statistical approaches, an integrated framework has been created that mitigates excessive darkness or
brightness. This ensures nuanced features and material variations remain visually distinguishable. The
design also incorporates color preservation, implemented only on the value channel of the Hue,
Saturation, and Value (HSV) color space. This prevented color shifts and preserved saturation fidelity
that can misrepresent the intended appearance of the scene. As a result, Log-Stat is principally suitable
for the archaeological domain, where precise visualization of details is vital. The intended target
audience includes researchers and experts who require an unfailing enhancement method that improves
the perceptibility and interpretability of images without compromising the visual accuracy of the
content. Intensive tests are conducted, and the vital findings are reported. This study incorporates
tailored image processing procedures, enabling the acquisition of more information from captured
images using practical solutions. Ultimately, the findings of this research will have a lasting impact on
archaeology, benefiting both current and future researchers. This paper is organized as follows: Section
2 reviews the related work; Section 3 describes the proposed algorithm; Section 4 provides the results,
comparisons, and required analysis; Section 5 delivers the key conclusions.

2. RELATED WORK

In past years, this topic has been of interest to many researchers, who have developed and introduced
various concepts. In 2015, a probabilistic model (PM) was proposed [11], which utilizes PM as a
maximum a posteriori (MAP) to approximate the illumination and reflectance of the input image in the
linear domain. Then, logarithmic transformations are implemented to determine which transformation
provides better performance. Accordingly, the MAP model is converted into an energy-minimization
domain, and an alternating direction of multiplier model is implemented. In 2016, a fusion-based method
(FbM) was introduced [12], which runs a morphological closing process to estimate the illumination
part. Next, two versions of the illumination part are produced, representing contrast-enhanced and
illumination-enhanced counterparts using the contrast-limited adaptive histogram equalization
(CLAHE) method and a sigmoid function. A customized weight is designed for each version, and a
multi-scale fusion model is implemented to create an adjusted-illumination part. Lastly, the output image
is created by reimbursing the adjusted-illumination part with the reflectance part. In 2017, an algorithm
named LIME was presented [13], in which the illumination part is estimated by finding the maximum
RGB value for each pixel. The illumination part is refined by using a structure prior model to create the
final illumination part. Finally, the refined illumination is used with the reflectance to output the image.

In 2018, another algorithm, called LECARM [14], was offered, which utilizes the response
characteristics of cameras. Initially, a proper response model and its variables are set. After that, the
illumination part is estimated via an exposure-ratio model for every intensity. Using an approximation
ratio map, the selected response model is then used to modify every intensity value to a satisfactory
exposure. In 2019, a gradient-based method (GbM) was developed [15], focusing on improving the
gradients in the dark areas, as they are more sensitive to human vision. In this algorithm, the gradients
of the input image are first extracted to be enhanced using a customized method. Next, optional gradient
filtering is applied, followed by an image-integration process that utilizes intensity-range constraints to
preserve the gradient components while increasing the intensity to a certain amount. In 2020, a semantic-
guided method was delivered [16], focusing on harnessing image semantics. The semantic segmentation
approach initially obtains the image areas with designated semantics. Next, the semantics are combined
and refined with an illumination map estimated from the illumination part. Next, the dark areas are
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enhanced by guiding the semantic information.

In 2021, a reflection model (RM) was introduced for illumination balancing [17], via the aid of the
principal-component analysis (PCA) notion. It first stretches the dynamic range of the color image to
correct the contrast, then converts the image into the HSV color model. The V component is processed
using the multi-scale theory to get the illumination part. Next, the Fechner model is applied to improve
the illumination. After that, a PCA-based fusion process is applied to combine the two images. Then,
the contrast is enhanced using the CLAHE method. Finally, a transformation back to the RGB color
model is attained to create the output image. In 2022, an atmospheric light-based method was proposed
[18], keeping it simple by not requiring training or refinement. This method connects the atmospheric
scattering and retinex models to adjust the illumination. Moreover, the medium transmission is
computed from the saturation information, and the adaptive saturation of scene radiance is approximated
using a non-complex approach. In 2023, a sharpening-smoothing method (ShSm) was developed [19],
which processes the V channel only after converting from RGB into HSV. After that, a multi-scale
decomposition process is applied to estimate the details of the sub-images. Next, the CLAHE method is
applied to the last estimation for contrast enhancement. Moreover, the details of the sub-images are
improved and added to the contrast-enhanced ones. Finally, an RGB image is created by applying the
inverse HSV transform, representing the final image.

In the same year, another concept was presented for illumination balancing; namely, the triangle
similarity model (TSM) [20]. It works in the HSI domain, specifically the S and | channels. It implements
scaling and translation processes to improve saturation and intensity, while preserving the H component
from modifications. It also implements five model-based enhancement procedures to produce images
with better-balanced illumination. In 2024, a generative adversarial network was introduced [21],
comprising two main networks: the generative network and the adversarial network. The first includes
dilated and regular convolutions with max and average pooling, acting as a multi-scale feature extractor
to get better feature information. In addition to these two networks, an illumination attention model is
employed to reduce feature redundancy by assigning higher weights to significant features. An upgraded
loss function is added to decrease color distortions in this context. Many of the reviewed methods utilize
CLAHE as an enhancement module. It works by splitting a given image into small, non-overlapping
tiles, then applying histogram equalization to each tile to reallocate its pixel intensities. Next, each tile’s
histogram is clipped using a predefined clip limit, and the surplus pixels are reallocated evenly across
all histogram bins to prevent intensity over-amplification and suppress noise. Finally, a soft-
interpolation process is applied between neighboring tiles to avoid block artifacts [22].

In recent years, attention has turned to the development of learning [23], coarse-to-fine [24], or Al-based
[25] algorithms. One of the branded learning-based frameworks in this area is the LightenNet, which
was presented in 2018 [26]. It is a convolutional neural network (CNN)-based method that adopts a
retinex-inspired design. In this method, the network learns to approximate the illumination rather than
performing direct processing. This approach enables better illumination balancing with minimized
artifact generation. Another neural-network framework named CIE-XYZ Net was introduced in 2022
[27]. It is designed to map images back to a more meaningful representation, operating under consistent
assumptions of color and illumination. This approach bridges the gap between publicly available
processed images and raw ones. In 2023, a method named Retinexformer was introduced [28]. It is a
deep learning-based algorithm that utilizes a one-step Retinex framework (OSRF) instead of multi-step
frameworks. OSRF initially approximates the illumination components to enhance the dimmed regions
and restore the corrupted parts, delivering the output image. This includes the utilization of an
illumination-guided transformer (IGT) that employs illumination information to guide the modeling of
non-local connections found in non-uniformly-lit regions. Simply put, Retinexformer is obtained by
plugging IGT into OSRF.

In 2024, ConvIR was introduced [29], a lightweight CNN-based algorithm for image restoration. It relies
on the CNN architecture to learn end-to-end mapping from degraded sets to clean targets using a
convolution feature-extraction scheme. Despite its simplicity, it achieved competitive performances.
Still, its effectiveness is based on the alignment between real-world scenarios and training data. In 2025,
UPT-Flow, a multi-scale transformer, was presented [30]. This method utilizes a learning transformer
backbone to model intricate allocations of intensities, allowing controlled mapping to generate
illumination-corrected results. Unlike conventional learning-based approaches, this method uses a
probabilistic-learning framework that preserves structural information when adjusting for illumination.
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As observed from the reviewed methods, various concepts have been developed, ranging from simple
to complex, standard to Al-based. Despite significant advances in this field, not all the introduced
algorithms are perfect, as some introduce artifacts, such as halos and distortions, others are of high
complexity, and others are inapplicable for real-life applications. Thus, existing algorithms still struggle
under non-ideal lighting conditions. Classical algorithms, such as Retinex or histogram equalization,
cannot be used, as they provide blind global processing without considering the spatial context and
delicate details.

Their improved counterparts mitigated these issues, but are still struggling in this context, as artifacts
may still be introduced along with deficient processing abilities in different scenarios. Moreover, despite
the increased use of deep-learning and Al-based methods in recent years, image-processing algorithms
remain critical for archeological images due to their computational efficiency, reproducibility, and
interpretability. In this context, datasets are often limited, making deep-learning methods less practical,
as such methods require extensive training. Besides, they act as a black-box, limiting their
reproducibility. Moreover, image-processing methods are preferred in domains such as archeology,
because they are mathematically transparent, methodical, and reproducible, ensuring long-term
reliability and interpretability. Thus, the door remains open to develop an algorithm that considers the
advantages and avoids the disadvantages of the reviewed methods, tailored to the nature of the
archaeological images. The developed Log-Stat addressed these issues by utilizing a dual-phase
approach for illumination balancing and tonality adjustment, operating in a fully transparent and
parameterizable manner. This allowed experts to comprehend and control the processing procedure,
thereby enabling interpretability, reproducibility, and tracability. Compared to classical, improved, and
deep-learning methods, Log-Stat delivers a principled, transparent, fully explainable solution
customized to the subtle challenges of archaeological lighting conditions.

3. PROPOSED ALGORITHM

Balancing uneven illumination after image capturing is uneasy and requires customized algorithms to
achieve this task successfully. Hence, a tailored algorithm named Log-Stat is developed to balance the
inconstant illumination. The name “Log-Stat” signifies two main aspects: logarithmic operations (Log)
and statistical methods (Stat). This means that the proposed algorithm relies heavily on these aspects to
balance the illumination of a given image. The Log-Stat algorithm starts by changing the input image to
the HSV model and processing only the value channel V (being in a 0 to 1 range) while not modifying
the other channels. All the equations receive images with a zero-to-one range, avoiding issues, such as
under- or overflow during calculations. This aligns well with floating-point arithmetic, which is a
prevalent practice in modern processing frameworks. Although the HSV is a non-perceptual color
model, it is preferred over color models, such as CIELAB, because it provides a more direct way to
enhance the illumination without affecting the colors. In HSV, the V channel corresponds directly to
intensity, while in CIELAB, for example, improving the luminance channel L can alter the chromatic
components and unintentionally affect the colors. Moreover, HSV is computationally more effective,
making it a desirable choice for many real-life applications. The algorithm receives channel V and
parameter y, a numerical value responsible for the illumination level, such that y > 1, and a higher value
leads to less illumination and further adjusted tonality. Channel V is first processed using Eq. (1) [31]:

I, =log(V +¢1) 1)

where |y is the resulting channel, and €1 = 0.001 is a small value to avoid the log of zero, which is
infinity. The log transform expands the intensity range to improve visual details in dark regions while
compressing the intensity range in brighter areas. This makes it particularly useful for balancing uneven
illumination phenomena. Accordingly, a single log transform may help with illumination balancing.
Still, it is frequently insufficient individually, especially for archaeological images where lighting
situations vary substantially, as it applies a unified effect for all intensity values, which is not ideal for
uneven lighting. Thus, a different log transformation is used for bright and dark areas to achieve a more
balanced enhancement. Different transformers were found when searching for another log
transformation that can contribute to providing better adjustments. One transform of interest is the
transform given in [32], which is simple and better compresses higher values while expanding lower
values. The second transformer is expressed in the following manner:
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| max (V)
- log (max (V ) +1)
where - is a multiplication operator, and max denotes the highest value in the array. The log

transformation in Eq. (2) must be adapted to the nature of the research problem to perform a better job
of illumination balancing. Hence, this transformer was heuristically modified to become:

-log(V +1) @)

=) jog((0.925-v)+ e2) )
log(o(V)+1)

where o represents the standard deviation of V and €2 = 0.09. This transformer achieves the following
points. First, it provides better compression for high values and boosts low values, making details in
shadows more noticeable. Second, it reverses the intensities, changing white to black and black to white,
acting as a map, where the dark spots exist and are converted into white for addition in the next step,
thereby achieving better illumination balancing. The standard deviation is used, as it adapts based on
the image tonality, meaning that the effect changes depending on the statistical properties of each input
image. Figure 1 provides an intuitive visual demonstration of why to use Eq. (3) instead of Eq. (2) in
Log-Stat.

S

(a) o T m ' @

Figure 1. Intuitive visual demonstration of utilizing Eq. (3): (a) Under-lit image; (b) Using Eq. (3) with
Log-Stat; (¢) Using Eq. (2) with Log-Stat.

Next, the outputs of Eq. (1) and Eqg. (3) are combined using a logarithmic image-processing (LIP)
addition model. The LIP addition models combine two images to provide a more meaningful output
image. Different models exist in this context, and one model of interest is the one introduced by Jourlin
and Pinoli [33], which can be expressed as:

L=(I1+|2)+(|1'|2) (4)

As simple as it may seem, it has drawbacks. The term (l:-15) causes a noticeable increase in intensity
values, especially the high-intensity ones, leading to over-brightening the bright areas. Thus, this term
is replaced, and the equation is modified to become:

I, =(, +1,)-@—1,)°* 5)

In this context, this model performs a non-linear addition process, enhancing darker areas more
effectively. The term (1-11)%! compresses high-intensity values, ensuring that brightness does not
unnecessarily increase, which occurs in standard LIP models. The LIP model in Eq. (5) improves the
illumination in the dark regions without extremely brightening the bright areas. Figure 2 demonstrates
the sensitivity analysis for Eq. (5).

= — ©
Figure 2. Sensitivity analysis for Eg. (5): (a) Under-lit image; (b) Exponent = 0.1; (c) Exponent = 1.
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As observed in Figure 2, the use of exponent = 0.1 in Eq. (5) helped deliver natural overall illumination
z and did not increase brightness, especially in the cloud area in the sky. However, when employing
exponent = 1, the overall illumination showed a slight increase. Moreover, the brightness in the cloud
area was also increased, which is undesirable. Next, three more models are utilized to balance
illumination, which are the following ones:

[ ls=min(l,) (6)
=1 [max(l3)—min(l3)j

l,=1-(1,-1,) (7)

I, —min(l;) (8)

® max(ls)-min(ly)

Eqg. (6) performs statistical normalization [34] and inversion. Normalization redistributes I; values to the
full range of zero to one, ensuring that the image intensities fall within the proper image range.
Subtraction from one makes dark areas bright, and vice versa, reversing the action of inversion
performed in Eq. (3). As for Eq. (7), it alters l4 by subtracting 1; to ensure the primary illumination
structure is maintained, harmonizing the illumination-balancing process, so that the output does not drift
too far from the input, and ensuring that the balancing effect is not over-darkened or over-brightened to
provide better naturality. In addition, this step is not purely subtractive, but it reconstructs a
compensated-illumination image by reintegrating structural information derived from Is. Eq. (8) rescales
the intensities of Is to a valid image range [34]. At this point, the illumination is balanced, illuminating
the dark regions while maintaining bright regions from being over-illuminated. Still, the totality of the
output image lg is not well-adjusted, and it appears to have foggy and washed-out effects. Thus, a
tonality-enhancement model is applied to lg, which includes four distinct steps, expressed as:

T, =1-exp [—ﬁ} ©)

T (10)
«(3)

T, :(T1+(T1'Tz))7 (11)

T T3—min(T3) (12)

- max (T, )—min(T,)

Eqg. (9) is a modified Rayleigh cumulative distribution function (MRCDF) [35], a statistical method that
acts as a curvy transformation and can enhance the tonality by non-linearly mapping the intensities. It
modifies the dynamic range by increasing lower values, but relatively unchanging higher ones. Eq. (10)
is the gamma-adjusted CDF of the log-logistic distribution (GA-CDF-LLD) [36], a modified statistical
method used to improve mid-tones while preserving very bright and very dark regions, with the help of
the y parameter, in that higher values boost mid-tones. Eq. (11) is the modified LIP model given in Eq.
(4), which combines the output of Eg. (9) and that of Eq. (10), since a single mathematical method
cannot achieve the task of tonality enhancement. This equation performs an overall-tonality refinement
based on the value of the y parameter, providing an adaptive increase in the difference between the
lowest and the highest intensities, attenuating the foggy effect. The T, term is missing from the additive
partin Eq. (11), because when adding it, it slightly dims the overall brightness. That’s why it is removed
to allow better overall-illumination representation and to reduce computations. Eq. (12) is the final
equation, which is the statistical normalization [34] applied to ensure that no intensities fall outside the
display range, preventing loss of dynamic range and improving the overall tonality of the output. The
output of Eqg. (12) is the enhanced value channel. Thus, a conversion into the RGB color model is
applied, generating the output image.

Regarding the coupling role in Egs. (10) and (11), an ablation study has been conducted to prove the
effectiveness of coupling. Accordingly, y was used only for Eg. (10), while fixing it for Eq. (11). The
results in Figure 3 reveal that decoupling led to inconsistent and unstable behavior with different y
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values. Hence, low values (y=1-3) under-enhanced the image and were unsuccessful in recovering
acceptable visibility. Values over 7 (y=10-100), on the other hand, did not affect the output; it's like that
the algorithm lost its adjustment control. This instability arose, because these two equations jointly
regulate the tonal adjustment. When they are decoupled, the two equations respond in conflicting ways,
which makes it unpossible to uphold a balanced enhancement. In contrast, the coupling strategy allowed
intrinsic synchronization between fusion strength and tonal adjustment. As a result, natural, stable, and
visually coherent results are obtained when the coupling strategy is utilized. These findings rationalize
the design choice of enabling the coupling role of y to coordinate the two operations and verify that the
coupling process is vital rather than arbitrary.

Figure 3. Ablation study (justifying the coupling effect): (a) Under-lit image; (b) Standard setting:
coupling effect with y = 7; Decoupling effect using fixing exponent for Eq. (11) at 7 and vy is equal to:

©v=1(d)y=3;(e) y=10; () y=20; (g) v =50; (h) y = 100.

The diagram of the Log-Stat algorithm is given in Figure 4. In sensitive areas, such as archaeology,
classical image-processing frameworks are often chosen, because their operations are transparent and
methodically reproducible. They apply mathematically-defined approaches, permitting one to
understand exactly how each step modifies the image. This clarity helps uphold subtle features without
introducing artifacts or unrealistic details, which can occur in Al or deep learning-based methods.
Classical frameworks also allow accurate parameter control, making it easier to adapt processing to
uneven-illumination challenges, while ensuring that the outcomes remain true to the original scene.
Thus, classical transformations have been utilized with Log-Stat to achieve these targets.

4. RESULTS AND ANALYSIS

This section explains different aspects related to the outcomes. The dataset was collected from
https://unsplash.com/, one of the largest photo-stock websites online, containing millions of
uncopyrighted images that can be used free of charge. A thorough search was conducted on this website,
and 200 images were collected, representing a diverse range of archaeological scenes. In this paper, no
dedicated pre-processing was carried out on the dataset images. This is deliberate, because the purpose
is to evaluate the general applicability and reliability of Log-Stat when used with real-world
archeological images without any form of enhancement. As for the image-selection procedure, it was
conducted in a semi-random manner from the collected images. Moreover, this procedure is
implemented without imposing restrictions on the image content or the severity of lighting. This tactic
ensures that the assessment truly reflects natural and diverse occurring image-lighting conditions rather
than a curated selection tailored to Log-Stat strengths. It is also worth noting that no unified dataset has
been used, as the intention was to evaluate performance under challenging illumination conditions in
real-world scenarios. Such conditions vary widely and cannot be fully signified by a standardized
dataset. Thus, diverse real-world examples were employed intentionally to capture the variability and
complexity of archaeological scenes. This allows a more meaningful assessment of Log-Stat’s practical
effectiveness. Also, it shows its ability to handle challenging illumination conditions posed by the scene
environments.
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Figure 4. lllustrative diagram of the Log-Stat algorithm.

The experimental results are divided into three categories. The first category describes the effects of
changing the value of vy. It is provided to offer a visual understanding of what y does to the image when
it changes, with sample results shown in Figure 5. The second category demonstrates the ability to
process noisy images, and the outcomes are shown in Figure 6. The third category is processing various
archaeology-related images and showing the before and after versions to demonstrate Log-Stat’s
capabilities. The results of this action are shown in Figures from 7 to 9. Besides, the proposed algorithm
is compared with ten contemporary algorithms. The comparison methods are PM, FbM, LIME,
LightenNet, LECARM, GbM, RM, ShSm, TSM, and Retinexformer, which are reviewed in the related
work section. All experiments and comparisons are performed using a laptop equipped with an i5-
1135G7 2.40 GHz processor and 16 GB of RAM. The comparison results are given in Figures from 10
to 13 and Tables from 1 to 6. The image sizes of Figures from 10 to 13 are: (6240%4160), (3200x1975),
(4032x3024), and (4274x3205), respectively. In this context, an insightful analysis of the results of each
category is given. Then, this section ends with key remarks. For performance measurement, six measures
were used, which are: lightness order error (LOE) [37], blind multiple pseudo-reference index (BMPRI)
[38], color-quality measure (CQM) [39], perception-based image-quality evaluator (PIQE) [40],
gradient magnitude with Laplacian of Gaussian(GM-LOG) [41], and runtime (RT) [42].

LOE is a reduced-reference metric used for quantifying the relativity of lightness-order, meaning how
much the brightness grade among neighboring pixels is preserved after enhancement. This reflects
illumination's naturalness and perceptual consistency, in that if LOE is significantly changed, the
enhanced image appears artificial or unnatural. BMPRI is a no-reference metric that measures
naturalness and artifact presence, aiming to reflect how humans perceive the image. CQM is a no-
reference metric that measures color quality using three perceptual attributes: contrast, colorfulness, and
sharpness, aiming to mimic human perception of observing colors. PIQE is a no-reference metric that
evaluates how a given image diverges from undistorted and natural visual features. It measures
perceptual distortions. GM-LOG is also a no-reference metric that evaluates a given image based on the
statistics of gradient information. It assumes that high-quality natural-looking images follow foreseeable
gradient patterns, because they are highly structured, and degradations distort these patterns and deform
the structure. It measures structural naturalness. RT is a measure used to quantify the computational cost
of given algorithms, which is essential to assess their practical usability. Even if the algorithms are based
on dissimilar concepts, RT delivers insight into computational efficiency and suitability for real-life or
resource-limited applications. For LOE, PIQE, and RT, lower scores indicate better performances,
meaning that the enhancement preserved more natural illumination relations for LOE, fewer perceptual
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distortions for PIQE, and faster implementation for RT. In contrast, higher scores indicate better
performances for BMPRI, CQM, and GM-LOG, suggesting more perceptual details, higher color
quality, and better structural naturalness.
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Figure 5. The impact of changing y. (al) unevenly-illuminated image. Log-Stat processed other
images with y equal to: (a2) 1; (a3) 2; (a4) 3; (ab) 4; (ab) 5; (a7) 6; (a8) 7; (a9) 8; (al10) 9.

The results in Figure 5 illustrate the effect of changing y, where the brightness decreases when vy
increases in value, and the tonality further improves. This indicates that there is an inverse relation
between brightness and y, while the relationship is direct when it comes to tonality. Moreover, it is
observed that the visibility of the details, specifically in the highlights and shadows, is enhanced with
mediocre y values. The image appears overly illuminated around (a2) to (a3), which may lead to the loss
of certain fine details and an unnatural appearance. In addition, as y increases, the image progressively
darkens, balancing the illumination and enhancing the tonality. It is noticed that a moderate y value
(around 4-7) appears to provide a well-balanced illumination without over-exposure. Thus, the choice
of'y is image-dependent based on specific features and the required illumination boost level. In this field,
it is often preferred to use a manual enhancement parameter rather than an automatic one, as such images
present unique and highly variable challenges that automation may not address effectively. Shadows,
uneven lighting, and irregularities can confuse automated algorithms, leading to over- or under-
correction. In contrast, manual adjustment enabled fine-tuning, allowing higher accuracy and improved
extraction of meaningful information. Figure 6 shows the performance of Log-Stat when applied to
noisy images. The original images shown in (al, b1) exhibit noticeable illumination non-uniformity,
with their zoomed-in views (a2, b2) revealing pronounced noise and texture degradation. After
processing with Log-Stat at two vy settings (6 and 10), the resulting outputs (a3, b3, a4, b4) show notable
improvement in tonality and illumination balance.

= r 1

(a1) (b2)

) e

§

(b4)

Figure 6. Log-Stat results with noisy images. (al, b1) unevenly-illuminated images. (a2, b2) zoomed-
in regions of (al, b1) images. (a3, b3, a4, b4) processed by Log-Stat with y =6 and 10.

While some noise became more visible, especially in darker and shadowed regions, the structural details
and textures have been improved. This indicates that the algorithm upholds its enhancement capability
under noise conditions, though higher y values may reveal more noise. Despite this, the algorithm does
not introduce edge artifacts or artifacts, keeping the enhancement process structurally reliable even in
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noisy conditions. Moreover, despite mild noise revelation with higher y in some images, this behavior
is anticipated and does not undermine the purpose of Log-Stat. This is due to it being designed
exclusively for illumination balancing, not for denoising. Thus, it processes under the principle of
maintaining the pristine image features while balancing illumination. Accordingly, when the brightness
is increased in the dark regions, the formerly hidden noise logically becomes more visible. This does
not mean that Log-Stat introduces or increases noise, but means that it uncovers existing noise that was
concealed by low brightness. This result is consistent with most illumination-balancing algorithms that
do not utilize a specialized denoising model. More importantly, the goal of Log-Stat is to achieve
consistent, natural, and accurate illumination balancing without amplifying existing noise or introducing
artifacts, which is attained successfully. Integrating a denoising model would risk altering image details,
which is not desirable for archaeological images.

From the experimental results in Figures from 7 to 9, an overall improvement in quality is observed, as
the processed images have balanced illumination and improved tonality compared to the original
versions. Moreover, the shadows in certain areas are attenuated, making details in the dark regions more
visible. Likewise, the fine surface textures appear more distinct and clearer. For example, in the images
containing carvings in Figures 9el and 9e2, the sophisticated features of the sculptures are more
pronounced after filtering. As for colors, the filtered images preserve natural color tones while handling
the undue bright or dark regions, and the Log-Stat does not introduce color distortions.

(a2) ‘ !;2) (c2) : (d2) (e2) - (:2) :
Figure 7. Log-Stat results (Set 1). (al-f1) Images with imbalanced illumination. (a2-f2) Processed with
vy=(3.5,4,6,5,5,and 4.5).

(a2) " b2 T (€2) ] (e2)
Figure 8. Log-Stat results (Set 2). (al-e1) Images with imbalanced illumination. (a2-e2) Processed
withy =(3, 3.5, 6, 6, and 6.5).

As for shadows, original images contain sturdy shadows due to inconsistent lighting conditions. Still,
Log-Stat has weakened such effects, delivering a pleasing appearance across the structures. This
indicates that it effectively corrects these under-exposed areas, making formerly dark areas more
evident. For example, the inner parts of the temple in Figures 8al and 8a2, which were dark, are now
brighter and display more visible structural details. In Figures 8cl and 8c2, the rock archway had a
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darkened foreground. Now, the structure appears uniformly bright. As for illumination, it seems natural
and avoids unnecessary over-exposure, ensuring that details are retained while upholding balance
between tonality and texture. Likewise, a better color balance is observed, especially with warm tones
(sandy and brown). Other colors, such as the blue in the sky, appeared more vibrant without looking
unnatural. Moreover, it did not introduce major color distortions. Such enhancements have improved
the overall scene clarity, achieving the key objective of the algorithm.

| il bt o -V 3 g &
(a2) (b2) (d2) (e2)

Figure 9. Log-Stat results (Set 3). (al-e1) Images with imbalanced illumination. (a2-e2) Processed
withy = (6, 5, 1.5, 6, and 5.5).

Although certain processed images may appear visually similar to over-exposure, this is an unintended
brightness increase, but in fact, it is the effect of illumination balancing. The intended illumination-
balancing process should brighten shadowed areas and adjust the illumination across the scene. This
makes previously obscured surfaces appear brighter and more uniformly illuminated. The illumination
balancing may give certain regions a washed-out appearance when compared to their dimmed
counterparts, but in fact, this is the balancing result that makes certain surfaces appear brighter, even
though intensities remain within a valid range with no saturation occurrence. This also reflects Log-
Stats’s emphasis on revealing hidden details rather than preserving pristine non-uniform lighting. To be
more specific, the textural information is not lost or degraded. However, it becomes more uniformly lit
once shadows are attenuated and under-illuminated areas are brightened.

The comparison results are shown in Figures from 10 to 13. Tables from 1 to 6 demonstrate the
dissimilarity of each algorithm in illumination balancing. All have improved the illumination, each in
its way. The measures used indicate the following: LOE (illumination naturalness), RT (execution
speed), BMPRI (perceptual clarity), CQM (color quality), PIQE (perceptual distortions), and GM-LOG
(structural naturalness).

[0) i ) (i) ' 0)

Figure 10. Results of comparisons (Batch 1): (a) Original image; images (b-l) are processed by: (b)
PM; (c) FbM; (d) LIME; (e) LightenNet; (f) LECARM; (g) GbM; (h) RM; (i) ShSm; (j) TSM;
(K) Retinexformer; (I) Log-Stat.
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The performance ranking is set from worst to best as follows: lowest, below-low, low, above-low,
below-mediocre, mediocre, above-mediocre, below-high, high, above-high, and best. The analysis is
based on these attributes, ranks, and the detected drawbacks. Accordingly, PM provided sub-optimal
illumination with slight brightness amplification in the bright areas. Thus, it scored above high in LOE,
BMPRI, CQM, and GM-LOG, but below mediocre in PIQE, while being the 7% fastest in RT, recording
an average of 48.9 seconds. The FbM introduced shadows to certain image regions due to the use of the
standard CLAHE method. This justifies scoring below high in LOE, lowest in BMPRI, and mediocre in
CQM, above high in PIEQ, and low in GM-LOG, while ranking as the 6'" fastest in RT, with an average
time of 9.8 seconds.

Figure 11. Results of comparisons (Batch 2): (a) Original image; images (b-I) are processed by: (b)
PM; (c) FbM; (d) LIME; (e) LightenNet; (f) LECARM; (g) GbM; (h) RM; (i) ShSm; (j) TSM;
(k) Retinexformer; (1) Log-Stat.

U W

Figure 12. Results of comparisons (Batch 3): (a) Original image; images (b-I) are processed by: (b)
PM; (c) FbM; (d) LIME; (e) LightenNet; (f) LECARM; (g) GbM; (h) RM; (i) ShSm; (j) TSM;
(k) Retinexformer; (I) Log-Stat.
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LIME, on the other hand, provided unnatural highlights and brightness amplification in certain regions
with brightened colors. This is why it attained the lowest in LOE, above mediocre in BMPRI, below
high in CQM, low in PIQE, and below mediocre in GM-LOG, with a relatively fast implementation,
ranking the 2" fastest in RT, with an average speed of 5.2 seconds. The LightenNet, on the other hand,
introduced a haloing effect around edges and unnatural illumination, especially in dark scenes. This
justifies its scoring, low in LOE, below mediocre in BMPRI, above mediocre in CQM, below high in
PIQE, and high in GM-LOG. Speaking of RT, it was the slowest comparison method, operating at an
average of 188.1 seconds. In contrast, LECARM delivered abnormal illumination in the dark areas,
scoring below mediocre in LOE and below low in BMPRI, high in CQM and PIQE, and mediocre in
GM-LOG, while averaging at 8.1 seconds in RT, placing 5™ rank.

As for GbM, it introduced illumination errors, insufficient illumination, and distortions. This explains
the recorded scores above mediocre in LOE and GM-LOG, low in BMPRI, while scoring the lowest in
CQM and PIQE, ranking as the 9" slowest algorithm in the comparison. RM produced shadows and
distortions due to the use of the standard CLAHE method, which rationalizes the performances of above
low in LOE and CQM, mediocre in BMPRI and PIQE, and lowest in GM-LOG, while placing 4" in RT.
ShSm also introduced shadows and distortions because of CLAHE utilization, but with varying levels.
This justifies ranking mediocre in LOE, high in BMPRI, below low in PIQE, and above low in PIQE
and GM-LOG. In terms of RT, it was the 3™ fastest. The TSM generated distortions (Figure 11i) and
insufficient illumination. Yet, it scored high in LOE, above low in BMPRI, below mediocre in CQM,
above mediocre in PIQE, and below high in GM-LOG, placing 8" rank in RT, averaging 50.8 seconds.
Retinexformer provided varying performances as the contrast was deficient, the colors were slightly
pale, and the whiteness in the resulting images tended to be yellowish. This explains scoring below low
in LOE, below high in BMPRI, low in CQM, and below low in PIQE and GM-LOG. As for RT, this
method was the second slowest among the competitors. The proposed Log-Stat algorithm performed the
best in all measures. This is a significant advancement as the resulting images by Log-Stat have natural
illumination, high perceptual clarity, vivid colors, minimal visual distortions, and are obtained in a few
seconds. These qualities are important for accurate archaeological findings, especially when images are
captured in uncontrolled or non-ideal lighting conditions. Moreover, Log-Stat achieves this efficiently,
processing large images in an average of just 2.4 seconds. This rapid execution makes the method highly
practical for real-time or on-site applications. The combination of visual clarity and computational speed
underscores the Log-Stat’s potential for integration into post-processing workflows and fieldwork.

(i) ) ’ o BT
Figure 13. Results of comparisons (Batch 4): (a) Original image; images (b-l) are processed by: (b)
PM; (c) FbM; (d) LIME; (e) LightenNet; (f) LECARM; (g) GbM; (h) RM; (i) ShSm; (j) TSM;
(k) Retinexformer; (I) Log-Stat.
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# | Algorithms Figure 10 Figure 11 Figure 12 Figure 13 Average Rank
1 [ PM 102.824 26.165 27.086 39.589 48.916 70
2 | FbM 21.120 3.548 6.900 7.731 9.824 60
3 | LIME 9.312 2.380 4.537 4.716 5.236 2nd
4 | LightenNet 382.751 72.583 135.895 161.308 188.134 110
5 | LECARM 14.285 3.330 6.491 8.373 8.119 5h
6 | GbM 148.972 39.516 40.288 38.310 66.771 gt
7 | RM 15.047 2.535 5.677 5.766 7.256 4"
8 | ShSm 10.867 2.152 4.202 4.826 5.511 3
9 | TSM 136.140 15.749 46.460 5.212 50.890 g
10 | Retinexformer 308.582 75.814 133.286 61.012 144.673 10"
11 | Log-Stat 4.349 1.070 2.0487 2.147 2.403 1
Table 2. LOE scores | of the comparison.
# | Algorithms Figure 10 Figure 11 Figure 12 Figure 13 Average Rank
1 [ PM 112.653 247.252 194.801 149.699 176.101 2nd
2 | FbM 439.646 435.024 348.447 264.396 371.878 4
3 | LIME 1058.800 1280.200 1134.100 475.512 987.153 11"
4 | LightenNet 672.504 702.240 1020.300 597.401 748.111 ot
5 | LECARM 746.188 741.846 690.645 291.088 617.441 7
6 | GbM 483.855 655.782 359.066 382.355 470.264 5t
7 | RM 584.585 708.174 645.666 601.127 634.888 gn
8 | ShSm 735.189 572,511 407.902 366.432 520.508 6"
9 | TSM 154.698 434.263 169.655 119.474 219.522 34
10 | Retinexformer 531.314 1419.600 1041.400 367.760 840.018 10M
11 | Log-Stat 107.039 204.899 159.521 113.901 146.340 1
Table 3. BMPRI scores 1 of the comparison.
# | Algorithms Figure 10 Figure 11 Figure 12 Figure 13 Average Rank
1 | PM 22.816 19.104 13.248 28.201 20.842 2nd
2 | FbM 20.713 10.737 11.374 24.824 16.912 11"
3 | LIME 22.646 13.114 11.152 29.217 19.032 5
4 | LightenNet 20.594 10.780 11.003 30.091 18.117 7t
5 | LECARM 21.576 11.326 11.161 23.966 17.007 10"
6 | GbM 20.578 10.621 15.729 24.492 17.855 gt
7 | RM 22.130 15.455 13.075 22.724 18.346 6
8 | ShSm 22.312 17.913 13.486 27.271 20.245 3
9 | TSM 18.355 12.289 10.823 30.896 18.090 g
10 | Retinexformer 19.401 11.888 18.368 29.043 19.675 4
11 | Log-Stat 23.232 21.210 13.585 28.924 21.737 1
Table 4. CQM scores 1 of the comparison.
# | Algorithms Figure 10 Figure 11 Figure 12 Figure 13 Average Rank
1 [ PM 0.138 0.203 0.278 0.115 0.183 2nd
2 | FoM 0.139 0.188 0.260 0.107 0.173 [
3 | LIME 0.152 0.199 0.286 0.072 0.177 4
4 | LightenNet 0.133 0.208 0.268 0.092 0.175 5t
5 | LECARM 0.156 0.187 0.274 0.104 0.180 31
6 | Gb™M 0.086 0.103 0.188 0.042 0.104 110
7 | RM 0.140 0.183 0.245 0.103 0.167 g
8 | ShSm 0.098 0.140 0.177 0.062 0.119 10M
9 | TSM 0.146 0.210 0.261 0.064 0.170 7
10 | Retinexformer 0.154 0.157 0.213 0.128 0.163 ot
11 | Log-Stat 0.165 0.227 0.276 0.123 0.197 1
Table 5. PIQE scores | of the comparison.
# | Algorithms Figure 10 Figure 11 Figure 12 Figure 13 Average Rank
1 | PM 24.318 29.515 14.618 23.095 22.886 7
2 | FbM 18.398 30.415 19.509 10.402 19.681 2nd
3 | LIME 21.340 31.495 27.001 12.799 23.158 gt
4 | LightenNet 19.449 30.554 21.613 13.258 21.218 4
5 | LECARM 18.728 29.462 21.564 11.450 20.301 3
6 | GbM 20.874 33.646 26.949 13.164 23.658 110
7 | RM 20.461 33.519 22.114 14.898 22.748 6
8 | ShSm 20.162 35.800 22.861 13.726 23.137 g
9 | TSM 19.717 23.841 19.214 22.715 21.371 5
10 | Retinexformer 18.117 28.735 36.079 9.840 23.192 10"
11 | Log-Stat 18.261 26.137 11.530 13.280 17.302 1%
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Table 6. GM-LOG scores 1 of the comparison.

# | Algorithms Figure 10 Figure 11 Figure 12 Figure 13 Average Rank
1 [ PM 8.041 9.067 7.581 5.392 7.520 2nd
2 | FbM 6.711 7.657 6.200 4.862 6.357 ot
3 | LIME 6.788 8.307 6.555 5.584 6.808 7t
4 | LightenNet 7.946 8.985 6.818 6.118 7.466 3
5 | LECARM 6.635 8.545 6.812 5.278 6.817 [
6 | GbM 6.971 8.592 6.671 5.287 6.880 5t
7 | RM 6.539 6.663 5.623 5.223 6.012 110
8 | ShSm 7.319 7.968 6.266 5.004 6.639 gt
9 | TSM 7.014 8.201 8.542 5.462 7.304 4
10 | Retinexformer 7.183 8.002 5.569 4576 6.332 100
11 | Log-Stat 7.029 10.115 8.553 5.675 7.843 1

Despite the disadvantages, noise still appears when the dark parts are enhanced, because it already exists,
and balancing the illumination further reveals such hidden noise. Therefore, a fast and efficient
denoising method should be utilized to attain better quality results. Illuminance balancing can
significantly contribute to archaeological documentation, analysis, and 3D modeling. In this study,
unevenly-illuminated archaeological images were utilized to facilitate qualitative comparisons with
recognized benchmarks and to ensure objective evaluations with reproducible conditions. The proposed
Log-Stat algorithm was developed with these issues in mind, focusing on robust processing with various
illumination conditions. Furthermore, because Log-Stat is based on mathematical transformations rather
than on data-driven training, it is inherently generalized and not limited to a definite dataset. Improving
details in unevenly-illuminated archaeological photographs can enhance the visibility of petroglyphs,
inscriptions, eroded carvings, or other related subjects. Moreover, when creating 3D models from
images, illumination irregularities can generate artifacts in the model. Thus, balancing illumination
before 3D modeling ensures that textures are constant and more realistic.

5. CONCLUSION

This paper introduces a low-complexity illumination-balancing algorithm that integrates logarithmic
approaches with statistical methods to balance the inconsistent illumination and adjust the tonality of
archeological images. This combination allowed for better revealing of structural details and important
textures. The Log-Stat was tested with various real-world scenes, compared with prominent algorithms,
and the outcomes were evaluated using six measures. The products of experiments demonstrated
substantial enhancements in illumination and visibility, providing more clarity to the resulting images.
Likewise, experiments showed Log-Stat's competence to handle various scenes with different
illumination levels. The comparisons also showed Log-Stat favorability in various visual aspects and
processing speed. This study is beneficial in the field of digitalization, especially in 3D modeling,
analysis, or documentation. For example, if 3D models were created with images having inconsistent
illuminations, the model would have dark regions, making it less desirable for usage. Follow-up research
can aim for automation via perceptual features. This can contribute to making Log-Stat fully automated
using a tailored approach.
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