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ABSTRACT 

 Formal methods play an important role in increasing the quality, reliability, robustness and effectiveness 

of the software. Also, the uses of formal methods, especially in safety-critical systems, help in the early 

detection of software errors and failures which will reduce the cost and effort involved in software 

testing.  

The aim of this paper is to prove the role and effectiveness of formal specification for the cruise control 

system (CCS) as a case study. A CCS formal model is built using Perfect formal specification language, 

and its correctness is validated using the Perfect Developer toolset. We develop a software testing tool in 

order to generate test cases using three different algorithms. These test cases are evaluated to improve 

their coverage and effectiveness.  The results show that random test case generation with full restriction 

algorithm is the best in its coverage results; the average of the path coverage is 77.78% and the average 

of the state coverage is 100%. Finally, our experimental results show that Perfect formal specification 

language is appropriate to specify CCS which is one of the most safety-critical software systems, so the 

process of detecting all future possible cases becomes easier. 
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1. INTRODUCTION  

Generally, the role of software has become increasingly important and is being used in many 

critical applications, such as aircraft flight control systems, medical device systems and nuclear 

systems. Such systems are called safety-critical systems, the most important property of which 

is dependability, which reflects the extent to which users or customers trust the software system. 

It also reflects the degree of user confidence that the system will not fail when operated. A 

failure in these systems may cause significant damage, severe economic consequences or even 

loss of life. Thus, the reliability, safety and correctness of these systems are important issues, 

and testing them is a challenging task.  Tim [23] shows that the formal method is a technique 

that is used to reduce the cost of testing safety-critical systems by examining the behaviour of 

these systems in the early stages of development. One way to reduce the cost and effort of 

software testing is to depend on formal methods, mainly for safety-critical software, because it 

provides many different techniques to describe precisely and accurately the system 

specifications [21]. 

In recent years, there has been an increased tendency to use formal specification and verification 

methods and tools, defined by Tim [23] as "the use of ideas and techniques from mathematics 

and formal logic to specify and reason about computing systems to increase design assurance 
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and eliminate defects". In addition, they are mainly used to provide a standard software 

development process. 

Formal methods, tools and techniques have an important advantage in that they develop formal 

system specifications that facilitate and provide comprehensive system analysis, design and 

implementation as described by Mery and Singh [17]. Mery and Singh [17] adjusted the 

software development life cycle - from the requirements analysis to code generation - to develop 

safety critical systems using formal techniques. Formal methods provide an importantly 

disciplined approach for complex safety-critical systems with many different formal 

specification languages such as Z- [12], VDM [6], B [16], SCR [20] and Perfect Developer [7]. 

The formal method used in our work is Perfect Developer. 

In this paper, we use the Perfect language as the formal language in order to model and test a 

real safety-critical system; a cruise control system (CCS). The CCS must be able to maintain the 

current speed of the car and accelerate it upon the request of the driver. It must also measure the 

current car speed and display the same to the driver. 

In this paper, we present our framework on test case generation using a formal method. 

Application of the approach starts by building the formal model for the cruise control system 

using Perfect formal specification language. We verify the formal model in order to check 

completeness, consistency and validity of the model using the Perfect Developer toolset. Next, 

we build a C# tool to read the Perfect Developer formal model and produce the state-based 

specification graph or the FSM graph in order to automatically create test cases from the model 

according to a transition-based coverage criterion. We evaluate the coverage to test the system’s 

performance and effectiveness. Moreover, we use test case reduction techniques in order to 

reduce the redundant test cases that will be generated by a set of testing algorithms. 

2. RELATED WORK 

2.1 Testing Critical Software Systems 

According to You and Rayadurgam [25], the failure of software systems can cause significant 

damage to the software or its environment, severe economic consequences or even loss of life. 

There are many examples of safety-critical systems, such as aircraft flight control systems, 

medical device systems, nuclear systems and automobile cruise control systems. 

The most important property of the safety-critical system is its dependability, which is shown by 

the extent to which users or customers trust the software system. Moreover, this will reflect the 

degree of user confidence in the system’s ability not to fail when operated. 

Many different formal specification languages and formal verification automated tools have 

been used to express and verify the formal specification of automobile cruise control systems. 

For example, Atlee and Gannon [3], Heitmeyer et al. [10] and Bultan and Heitmeyer [4] used 

the SCR-style (Software Cost Reduction) to specify and verify the safety property of the CCS. 

A formal cruise control B specification is discussed by Krupp et al. [13] in which an adaptive 

cruise control B model and RAVEN model checker are presented. The model is used to improve 

the confidence and understand ability of the system’s behaviour. Another approach presented by 

Iliasov et al. [11], in which the system’s dependability is characterized by rigorous design and 

fault tolerance, is represented by structuring the formal specification in an abstract way in the 

notion of an operation mode that depends on a state-based formalism approach called (Event-B) 

to refine the system modes. To check the effectiveness and safety requirements, Yasmeen et al. 

[24] conducted an experimental analysis which simulated a number of indications of safety 

critical systems. Mishra et al. [18] proposed a model-based testing auto-review tool, which was 

used to partially automate the process of verifying safety-critical systems. You and Rayadurgam 

[25] proposed a constrained random testing framework on a safety-critical embedded system. 

They used the constraints to narrow the possible test cases and cover most of the system’s 
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behaviour. A similar approach to ours was discussed by Nilsson et al. [26]. They proposed 

correct-by-construction control software for Adaptive Cruise Control (ACC) system that is 

guaranteed to satisfy the formal specification in Linear Temporal Logic (LTL). They formalized 

the ACC using a hybrid dynamical system model with two modes: the no lead car and the lead 

car. Then, they constructed two controllers as a solution for the two modes, with the first 

solution based on continuous state space and the other based on a finite-state abstraction. The 

two controllers were tested by running a simulation in Simulink and on a vehicle simulation 

package called CarSim. However, our work depends on the Perfect language for the 

formalization which is easier than LTL, since the syntax in Perfect language is close to the 

programming languages. Moreover, according to Zhao [27], with the use of LTL "experiences 

show that specifications of even moderate-sized systems are too complex". 

2.2 Testing Coverage Criteria 

Coverage criteria on software systems can be defined as the set of conditions and rules that 

impose a set of test requirements on a software test. Ammann and Offutt [2] mentioned that test 

requirements in software testing are a specific set of elements of software artefacts that the 

software test cases must satisfy or cover. 

Categories of coverage criteria include structural coverage, data-flow coverage, decision 

coverage, call graph coverage and transition-based coverage. In the framework for our cruise 

control system, a transition-based coverage criterion is used. For transition-based coverage, 

every precondition in the software’s formal specification should be tested at least once so that 

each transition must be taken as a test requirement. 

Several coverage criteria are used in the literature for testing systems. For example, Offutt et al. 

[20] introduced a technique for state-based specifications to generate test cases for cruise 

control systems. Their technique depends on an SCR formal specification model that represents 

the cruise control functionality and the coverage criteria that are: transition coverage, full 

predicate coverage, transition-pair coverage, complete sequence and structural coverage for 

state-based decision testing. 

An experimental study conducted by Fraser and Gargantini [9] addressed the problem of test 

case generation, optimization and the performance of model checkers. In their study, they 

depended on explicit state model checkers that use a DFS algorithm. A cruise control system 

was studied, with its SRC formal specification being put into the model checker and test cases 

generated according to condition-based and structural coverage criteria. 

Liu [14] used VDL-formal specification language notations in order to automatically generate a 

test prediction to analyze the results from their proposed decompositional approach for 

automatic test case generation. The results indicated that the researcher's approach was effective 

in terms of branch coverage, path coverage and statement coverage. In addition, his test case 

generation algorithm was effective in detecting the defective test cases for his system. 

Liu and Nakajima [15] aimed to improve formal specification completeness and feasibility by 

introducing a new method that depends on verifying completeness and feasibility in the form of 

pre-conditions and post-conditions. This method uses single formal specification operations to 

choose the automated teller machine (ATM) system. SOFL formal specification language was 

used to build the ATM specifications. Appropriate test case generation criteria were used to 

build a question checklist from the ATM SOFL specifications in the test case generation 

process. 

The proposed method improved the ATM operation’s completeness and feasibility through its 

ability to formally define those characteristics. Furthermore, the generated test cases covered 

every aspect of the ATM defined specifications, so that it added the advantage of detecting 

errors in the system and reducing the cost of testing the system. 
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Another usage for SOFL formal specification language was presented in Chen’s [6] research in 

which he addressed the problem of specification-based testing and test case generation for 

concurrent software systems. 

Test cases were generated to cover the produced specification suggestions according to 

appropriate coverage criteria related to concurrent software systems. Each one of the generated 

test cases was executed several times in order to traverse program paths. The proposed approach 

was applied to an online shipping system and proved its usability for concurrent software 

systems. 

Tian et al. [22] realized the problem of automatic test case generation from the pre- and post-

conditional formal specifications (PROMELA formal specification language) by obtaining the 

benefits from connecting specification-based testing and the usage of model checkers (Spin 

model checker). 

Nakatsugawa et al. [19] aimed to facilitate formal specification readability by discussing a new 

specification-based testing framework for interface specifications.  

As with our approach, several others have been used to automatically generate test cases from a 

graph using graph coverage technique, such as: [28]-[30]. 

Gotlieb et al. [28] presented two different algorithms in order to automatically generate 

functional tests for synchronous executable BPEL processes. The first algorithm, 

STRUCRUNS, was used to generate test cases covering lengthy feasible paths up to a given 

length. The second algorithm, RANDOMRUNS, was derived from the desired number of test 

cases covering a random selection of feasible paths limited by a predetermined length. 

Yan et al. [29] implemented a prototype that is used to automatically generate test data based on 

a constraint solving technique. In their approach, they transformed the procedure into a 

constraint system using static single assignment. Then, the constraint system was solved to 

check whether at least one feasible path through the selected point existed. Finally, test cases 

were generated corresponding to one of these paths. 

Jehan et al. [30] proposed an approach that is used to automatically generate BPEL test cases 

that handle concurrent features. In their approach, they represented the BPEL program in an 

extended control graph. After that, they generated all the sequential test paths from XCFG 

before combining all the sequential test paths into concurrent test paths. Finally, they used the 

BoNus solver to solve the constraints of the test paths and then generate feasible test cases. 

Utting and Legeard [31] in their book "Practical Model-based Testing: A Tools Approach" 

presented a commercial tool called LTG/UML which is a model-based testing tool that can be 

used to automatically generate test cases from a UML state machine using different coverage 

criteria. The tool has been demonstrated on examples and case studies from a variety of 

software domains, including embedded software and information systems. 

3. PERFECT DEVELOPER 

Many formal methods have been used to model safety-critical systems in the literature, such as 

Event-B Abrial [1], Z-formal specification [12], VDM [6], B-specifications [16], SCR 

specification [20] and a number of other formal languages.  Most formal methods only involve 

the specification of the system; however, some continue the development process until a 

running code is obtained. However, according to Crocker [7], those formal methods take a long 

time to produce the running program. In this paper, Perfect Developer is used as a formal 

method and starts its process by describing the system, verifying a formal specification, refining 

it to the code within the same notation using a set of algorithms, verifying the refinement by 

checking its correctness and completeness and translating it into a set of high-level 

programming languages such as C++, Java and Ada. 
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Perfect Developer (PD) is an automated tool developed by Escher Technology to verify the 

Perfect specification software system.  Perfect is an expressive language that describes system 

specification in an object-oriented model style using object-oriented terms and concepts such as 

classes, functions and constant variables. Perfect, like many object-oriented languages such as 

Java and C++, supports object concepts, such as encapsulation and inheritance, through object 

classes and message passing. 

Perfect language has the ability to describe software system behaviours without any details of 

how the behaviour will be performed. It also includes certain design principles, including design 

by contract, which is the main structural rule or principle which Perfect depends on; it uses the 

contract to define the input-output relationships for class methods. The contract has two main 

parts; pre-conditions and post-conditions. The pre-conditions determine what must be true for 

the call feature, while the post-conditions determine what is guaranteed to be true at the 

termination of a successful Perfect feature as presented by Carter and Monahan [5]. 

An investigation was undertaken by Crocker and Carlton [8] to see if the automated reasoning 

using Perfect developer for the embedded software has the ability to provide the same degree of 

success in verification of a handwritten C code. The study made use of two small C programs 

with their specification annotations. As a result, they found that automated reasoning can 

discharge a very high proportion of verification conditions that arise from specification and 

software refinement. The number of test cases required was reduced. 

4. METHODOLOGY 

Our framework consists of seven phases shown in Figure 1. We first understand the cruise 

control requirements and then write the informal specification description for our system. The 

main reason for writing the informal specifications is to reflect its different states and transitions 

and the different conditions that enforce each transition in the system. In the second step, we 

develop the cruise control formal model, using Perfect formal specification language depending 

on the informal description of our system. The third step reflects the formal model verification 

using Perfect developer. After that, we manually extract the CCS formal model adjacency 

matrix, and then develop a C# tool to read our verified model and extract the different system 

paths and states in order to generate test cases using a set of proposed algorithms. The 

evaluation process for our generated test cases is discussed in phase seven. Moreover, we 

analyze the effectiveness of each algorithm used in the process of the test case generation. We 

will now discuss each of these steps in detail. 
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Figure 1. A framework for test case generation using the formal method. 

4.1 Informal Specifications of Cruise Control System 

The cruise control system (CCS) is a safety-critical system that can be described by a set of 

behaviours, modes, states and transition variable state quantifiers. Such quantifiers are the 

ignition switch, cruise control button, automobile speed and cruise control target speed. 

CCS transition modes that occur between the system and the driver are started by the initial 

state when the system ignition is “OFF”. The current speed is at zero and the cruise state is 

“OFF”. When the driver switches the ignition to “ON”, then the CC state can be “ON” or 

“OFF” depending on whether the driver wants to switch on the CC button or not. When the CC 

is switched to “ON” and the driver starts driving, then the cruise state can be “active”, 

“cruising” or “standby”. The main role of the CCS is to maintain the automobile’s speed as 

close as possible to the target speed. The target speed is determined by the driver when the CCS 

is “ON” and the target speed can be increased or decreased by the driver. 

The automobile’s actual speed should not exceed a restricted limit and should also not exceed 

the target speed, so that the driver has an allowance interval that defines how much the actual 

speed could deviate from the target speed. Where the difference between the two speeds is 

acceptable, the CC will maintain the current speed. If the driver’s current speed exceeds the 

target speed, then the CCS will take measures to maintain the target speed. 

The CCS states can be affected by a set of factors like: pressing the brake, accelerator and the 

“ON” / “OFF” button for the CC. In addition, various failures could affect the CCS states, such 

as a low battery; some of these faults are handled by returning the control to the driver to take 

certain measures. As a result, the CC could be activated (the state will be changed from 

“standby” to “active”) or the driver could drive without activating the CC.  Figure 2 describes 

the CCS finite state machine diagram. 
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Figure 2. Cruise control system finite state machine diagram. 

4.2 CCS Formal Model Using Perfect Language 

In the second phase of our methodology, we build the CCS formal model from the informal 

specifications of the CCS using Perfect language. The formal specification consists of two main 

classes; the first one is the speed control class and the second is the controller class.  The speed 

control class describes the system-related speed variables and schemas (functions). The 

controller class describes the related CCS variables and schemas. Due to space limitation, Table 

1 shows the CCS formal model of the control class only. 

4.3 Formal Model Verification Using Perfect Developer Toolset 

In the third phase, the Perfect CC specification that is described in subsection 2.2 is verified by 

Perfect developer toolset in order to check the syntax, the semantic correctness and the validity 

of the model. The verifier in Perfect Developer is static analysis and automated theorem proving 

that collects and attempts to discharge proof obligations for the software with which it is 

presented. 
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4.4 FSM Adjacency Matrix for CCS Formal Model 

The fourth phase involves the process of adjacency matrix extraction from the verified formal 

CCS model, which is shown in Table 2. The adjacency matrix reflects the system’s states and 

what the adjacent state to each state in the system is. In the adjacency matrix, ‘one’ indicates 

what other states each state can go to. For example: “Engine Off” state can go to “Engine On”' 

state only, while “Engine On” can go to “Accelerator” state only. Zero indicates that there is no 

transition between the two states. 

Table 1. Part of CCS Perfect formal model 

class CONTROLLER ^= 

abstract 

const Inactive_st : int ^= 0; 

const Active_st   : int ^= 1; 

const Cruising_st : int ^= 2; 

const Standby_st  : int ^= 3; 

var   ControlState: int ;  

var sp_con: SPEED_CONTROL ; 

var getten_target_speed: int ; 

var engin : bool ; 

var cruise : bool; 

build{!sp_con: SPEED_CONTROL } 

post 

ControlState != Inactive_st , 

engin != true ,cruise != false , 

getten_target_speed !sp_con.TargetSpeed; 

schema !Break 

pre 

 sp_con.TargetSpeed <sp_con.CarSpeed , 

 engin = true ,cruise = true , 

 ControlState = Cruising_st   

post 

 sp_con!DisableControl ,   

 ControlState != Standby_st ; 

  schema !Accelerator 

 pre 

 engin = true ,cruise = true , 

 sp_con.TargetSpeed > sp_con.CarSpeed , 

 ControlState = Cruising_st 

 post 

 sp_con!EnableControl , 

 ControlState != Cruising_st ; 

 schema !EnginOff  

 pre 

 ControlState = Active_st |ControlState 

= Cruising_st  | ControlState = 

Standby_st | ControlState = Inactive_st 

 post  

 ([ControlState = Cruising_st]: 

(ControlState != Inactive_st , 

sp_con!DisableControl , engin != false) 

, []: engin != false ) , 

 ([ControlState =  Active_st]: 

(ControlState != Inactive_st , 

sp_con!DisableControl , engin != false) 

, []: engin != false ), 

 ([ControlState = Standby_st]: 

(ControlState != Inactive_st , 

sp_con!DisableControl , engin != false) 

, []: engin != false ) ,    

 ([ControlState = Inactive_st ]: 

(ControlState != Inactive_st , 

sp_con!DisableControl , engin != false) 

, []: engin != false );  

schema !EnginOn 

pre 

 ControlState = Inactive_st 

post 

 sp_con!ClearSpeed,  

 ControlState != Inactive_st ; 

  schema !CruiseOn 

 pre 

 ControlState = Inactive_st 

   post 

getten_target_speed != sp_con.TargetSpeed 

 ,  

sp_con!EnableControl ,  

ControlState != Active_st ; 

schema !Cruise_Crusing 

pre  

engin = true , 

ControlState = Active_st, 

sp_con.CheckSpeed = true  

post 

ControlState != Cruising_st ; 

schema !Cruise_Active 

pre  

engin = true ,cruise = true, 

sp_con.TargetSpeed > 0 , 

sp_con.CarSpeed > 0  

post 

ControlState != Active_st ; 

schema !Cruise_Inactive 

pre  

engin = true , 

cruise = false, 

sp_con.TargetSpeed = 0 , 

sp_con.CarSpeed > 0  

post 

ControlState != Inactive_st ; 

schema !Cruise_Standby 

pre  

engin = true , 

cruise = true, 

sp_con.TargetSpeed > 0 , 

sp_con.CarSpeed > 0  

post 

sp_con!DisableControl , 

ControlState != Standby_st ;       

  schema !CruiseOff 

 pre 

 ControlState = Cruising_st | engin = 

false   

  post 

sp_con!DisableControl , 

ControlState != Standby_st ; 

 schema !CruiseResume 

 pre 

 engin = true, 

 cruise = true , 

 ControlState = Standby_st 

 post 

 sp_con!EnableControl, 

 ControlState != Cruising_st ;  

end;  // the end of class CONTROLLER 
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Table 2. CCS adjacency matrix.

 

4.5 Extraction CC Formal Model Paths, States and Edges 

The testing C# tool develops an algorithm called “extractPath” in order to extract the CCS finite 

state machine paths, states and edges. The “extractPath” algorithm depends on the CCS 

adjacency matrix and the pseudo code shown in Figure 3. In this phase, the verified formal 

Perfect specification is put into our C# testing tool and the structure of the cruise control system 

is prepared using the adjacency matrix that is shown in the previous phase.  From the matrix, the 

algorithm in Figure 3 is used to extract the different system states, paths between system states 

and edges between states.  

The extraction process depends on transition-based coverage criteria that focus on the transition 

sequence between the system states. The transition-based coverage criteria are represented by 1. 

all system states, 2. all pair-transitions where each state can go and 3. all system paths.  

The algorithm shown in Figure 3 starts by identifying a list of strings (P) that contains all 

system state paths extracted from the adjacent matrix for a given state. Each state is given a 

number; for example, Engine Off =1, Engine On=2 … and so on.  Then, we find all the adjacent 

states (by checking the adjacent matrix) for the current state, calling the function find_adjacent 

(). This function will add the adjacent state numbers to the paths in list P. For example, when 

list P contains an item (1,2), it means that there is a path from state 1 to state 2. Then, the 

algorithm continues by finding the adjacent state to the previous state in the path, in this 

example state 2.  Adjacent to state 2 is state 3 (Accelerator). So, state 3 is added to the path (1,2) 

and the new path (1,2,3) is added to P ; P=[(1,2), (1,2,3)]. In this case, P has two paths. Next, 

the algorithm finds the adjacent states for state 3 which are states 4 and 5, which are both added 

to the current path. List P is now equal to [(1,2), (1,2,3),(1,2,3,4), (1,2,3,5)]. The algorithm 

continues until all paths that each state can reach are found. 

Finally, the algorithm extracts the test paths (TP) from list P. A test path is a path that starts 

from the initial state which is state 1 and ends with the final state which is state 8. 

State 
Engine 

Off 

Engine 

On 
Accelerator 

Driver 

Mode 

Cruise 

Active 
Cursing 

Cruise 

Standby 
Break 

Engine Off 0 1 0 0 0 0 0 0 

Engine On 0 0 1 0 0 0 0 0 

Accelerator 0 0 0 1 1 0 0 0 

Driver Mode 0 0 0 0 1 0 0 1 

Cruise Active 0 0 0 0 0 1 0 1 

Cursing 0 0 0 1 0 0 1 1 

Cruise Standby 0 0 0 0 1 0 0 1 

Break 0 0 0 0 0 0 0 0 
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Figure 3. The algorithm of path extraction. 

4.6 Automatic Test Case Generation 

After the system paths are extracted and system states counted, we automatically generate test 

cases from the verified cruise control system formal specification through the developed C# 

testing tool. Test cases will be generated from the test paths generated in the previous phase.  

For the process of test case generation, we use three algorithms: 

Algorithm (1): random test case generation process that generates test cases without any 

restrictions. So, some of the test cases are considered to be redundant test cases. Algorithm 1 is 

presented in Figure 4. In the algorithm, TCR1 is a list that contains a set of test cases that are 

randomly generated from the test path (TP). 

 

Figure 4. Algorithm1. 

Algorithm (2): random test case generation with pure restrictions. This algorithm depends on a 

random generation process with partial restrictions on the generated test cases. This algorithm 

restricts the results by which a set of randomly unique system paths must be generated for the 

results each time. In Figure 5, the algorithm randomly generates N test cases from the test path 

(TP) in such a way that M of them must be unique paths; where M is less than N. The others (N-

M) could be redundant.  
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Figure 5. Algorithm 2. 

Algorithm (3): random test generation with full and optimal restrictions. The algorithm restricts 

the selected paths by which all system paths must be chosen in the algorithm random process. 

Moreover, the algorithm forces the generation process to uniquely generate a number of test 

cases. In other words, if we need N test cases, then we have to generate them randomly and each 

one should be unique (redundancy in test cases is not allowed). Figure 6 shows algorithm 3.  

 

Figure 6. Algorithm 3. 

4.7 Coverage Evaluation for the Generated Test Cases 

Finally, the test cases generated in the previous phase are evaluated to determine the system 

path coverage, state coverage (node coverage) and transition coverage (edge coverage). A set of 

coverage measurements is used here to evaluate path, state and transition coverage. 

5. EXPERIMENTS AND EVALUATION 

In our experiments, we use our framework to automatically generate the test cases using the 

three algorithms for the CCS. Subsection 5.1 discusses the coverage evaluation measures used 

in our framework. Subsection 5.2 makes a comparison between the three developed test case 

generation algorithms in terms of coverage and performance evaluation used in this framework. 

5.1 Evaluation Measures 

The evaluation process of our C# testing tool depends on three matrices in terms of coverage 

evaluation measurement. The three matrices shown in Figure 7 are state (node) coverage matrix, 

path coverage matrix and edge coverage matrix. The coverage value for each of the three types 

depends on the related value of executed state, executed paths and executed edges, respectively, 

in which the smaller execution value type achieves a smaller coverage value. The number of 

extracted states, paths and edges represents the number of states, paths and edges, respectively, 
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from the formal model. The number of executed states, executed paths and executed edges 

represents the number of states, paths and edges, respectively, that will be processed according 

to a specific number of test cases. For example, if we have eight states extracted from the 

system but the test cases that we have used only executed six of the states, then the coverage 

will be 6/8=75%. 

 

Figure 7. Coverage matrix measurements. 

5.2 Comparisons and Evaluation Results 

5.2.1 CCS Test Case Evaluation 

The process of test case generation from the CCS model depends on three algorithms, as 

described in the previous section. The developed algorithms depend on a random generation 

process and are evaluated to five numbers of fixed test cases. Moreover, the three algorithms are 

compared with each other to determine their effectiveness. 

As we have seen from Figure 2, the CCS extracted states were eight, the extracted test paths 

were nine and the extracted edges were twelve. The three random test case generation 

algorithms were evaluated to five numbers of test cases with 3, 5, 9, 12 and 15 test cases. The 

evaluation of state coverage results is shown in Table 3. 

Table 3. CCS State coverage algorithm results.  

T.C#/Algo.# Algo.#1 Algo.#2 Algo.#3 
3 Test Cases 75% 87% 100% 

5 Test Cases 100% 100% 100% 

9 Test Cases 87.5% 100% 100% 
12 Test Cases 100% 100% 100% 

15 Test Cases 100% 100% 100% 

Average 92.5% 97.4% 100% 

Table 3 shows that, for example, when we generate nine test cases by algorithm #1, the CCS 

state coverage is 87.5%. This means that the nine test cases execute seven system states from all 

eight extracted system states. When the nine test cases are generated using algorithm #2 (as well 

as algorithm #3), the state coverage is 100% which means that the nine test cases pass all 

system states. The averages of the state coverage for algorithm #1, algorithm #2 and algorithm 

#3 are 92.5%, 97.4% and 100%, respectively, which represents the average from generating 3, 

5, 9, 12 and 15 test cases by each algorithm. 

Table 4 shows the evaluation results for path coverage using the three algorithms. 
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Table 4. CCS path coverage algorithm results. 

T.C#/Algo.# Algo.#1 Algo.#2 Algo.#3 
3 Test Cases 11.12% 33.34% 33.34% 
5 Test Cases 33.34% 55.55% 55.55% 
9 Test Cases 33.34% 55.55% 100% 

12 Test Cases 44.45% 66.66% 100% 

15 Test Cases 55.56% 77.77% 100% 
Average 35.558% 57.774% 77.778% 

Table 4 shows that, for example, when we generate nine test cases by algorithm #1, the CCS 

path coverage is 33.34%.  This means that the nine test cases execute only three test paths from 

all nine extracted test paths. With the nine test cases generated using algorithm #2, the path 

coverage is 55.55% which mean that only five test paths from all extracted test paths were 

executed. For algorithm #3, the path coverage with nine test cases is 100%. This means that 

those nine test cases execute all nine test paths in the system. The averages of the path coverage 

for algorithm #1, algorithm #2 and algorithm #3 are 35.558%, 57.774% and 77.778%, 

respectively. Table 5 shows the evaluation results for edge coverage using the three algorithms. 

Table 5. CCS edge coverage algorithm results. 

T.C#/Algo.# Algo.#1 Algo.#2 Algo.#3 
3 Test Cases 41.66% 66.67% 75% 

5 Test Cases 83.33% 91.67% 100% 

9 Test Cases 66.67% 100% 100% 

12 Test Cases 83.33% 100% 100% 

15 Test Cases 83.33% 100% 100% 

Average 71.66% 91.7% 95% 

Table 5 shows that, for example, when we generate nine test cases by algorithm #1, the CCS 

edge coverage is 66.67%.  This means that eight edges of the 12 extracted system edges are 

passed or executed. With the nine test cases generated using algorithm #2 and algorithm #3, the 

edge coverage was 100% which means that all the 12 extracted system edges are executed. The 

averages of the edge coverage for algorithm #1, algorithm #2 and algorithm #3 are 71.66%, 

91.7% and 95%, respectively. 

5.2.2 Test Case Generation Algorithm Results 

In this section, we compare the three test case algorithm results. Figure 8 shows the coverage 

averages obtained from the three algorithms. 

 

Figure 8. A comparison between the three test case algorithms. 
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From the results, we can see that algorithm #3 is the best, achieving the most effective coverage 

values in terms of state, path and edge coverage. Algorithm #2 is better than algorithm #1 in its 

average results, from which we can conclude that more restriction in the process of test case 

generation provides more effective coverage results. 

6. LIMITATIONS AND FUTURE WORK 

Our framework suggests there are benefits in the use of the Perfect formal model for efficiently 

testing a safety-critical system. However, it is important to note the limitations of our evaluation 

experiments and framework. First, our framework accepts only the CCS Perfect model and no 

other safety-critical systems. Moreover, more experimentation is necessary to strengthen the 

evaluation of our framework, ideally using a safety-critical system used in industry. Second, the 

finite state machine adjacency matrix was built manually. However, the automation of this 

process should be possible. 

7. CONCLUSIONS 

In this paper, we have reflected the importance and role of formal methods in developing safety-

critical system formal models. The cruise control system was chosen for this study as a safety-

critical system and its state machine diagram was built to reflect the system’s states, transitions 

and variables.  

Perfect formal specification language was used to develop the CCS formal model due to its 

reliability and effectiveness in presenting transition state systems’ formal models, which is 

important in reducing software development costs. We built a consistent and reliable formal 

model that will play a role in increasing system quality and reducing system testing cost and 

effort.  

We proposed three algorithms to generate test cases from the CCS Perfect formal model. The 

generated test cases were evaluated according to three coverage matrices; state coverage matrix, 

path coverage matrix and edge coverage matrix. We proved that using formal methods through 

the safety-critical software development life cycle plays a significant role in improving the 

testing stage, making it more effective in terms of both effort and cost. 
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 :البحث ملخص

    تهبببببببعت   دإ   لرب مج ببببببب  فببببببب  ودببببببب     ببببببب     مهّ ببببببب    ل  تلعببببببب  لرسببببببب   لر  ببببببب       

ل صبببببب  فبببببب  ب  ، ببببببتلطلق لرسبببببب   لر  بببببب   لن أضببببببذ إربببببب   ربببببب  أ .تهبببببب  فع ر  تهبببببب مت ن

خسبببببب   ألر بكبببببب  عبببببب   لركشببببببذلبببببب عط فبببببب  دمبببببب  نبببببب ن  أن  ،نظ بببببب  لرلبببببب م  لر   بببببب أ

 قبببببب لر    لرجهببببببط   لركلفبببببب  إختصبببببب   إربببببب  دبببببب   لربببببب    للأمبببببب  ع  بهبببببب ،   لرب مج بببببب  

 .لرب مج    لختب   دتسلبه  لرت 

فبببببب    ل بببببب  ف عل تهبببببب    ثببببببب       لر  لصببببببف   لر  بببببب    إربببببب  إدهببببببطا ببببببب ل لرب بببببب  

   ببببب  ج تببببا بنببببب   ن ببببب  قبببببط   .   لرببببت كا بهببببب  ق ببببب    لرلببببب   ل أنظ بببب   مببببب نظببببب ق رح ربببب  

مبببببب  صبببببب ت   لرت قبببببب   رل  لصببببببف   لر  بببببب      كببببببرهبببببب ل لرنظبببببب ق ب  ببببببتلطلق ر بببببب  ب  ف

 رف بببببببج لرب مج ببببببب     لأتبببببببا بنببببببب    كببببببب ر ،  ل  تسببببببب د  ر ببببببب  ب  فكببببببب . أ بببببببتلطلق  ب

ثبببببب ز خ ل وم بببببب   ملتلفبببببب . ط دبببببب   عبببببب لإنتبببببب ج حبببببب    ف ببببببج ل ببببببتلطلمه    بببببب  

 ت ل   ت س ته   فع ر ته . تل  م  أ ل  لرف جتق  ا ح      تاّ 

   بببببب  مبببببب   لرف ببببببجن خ ل وم بببببب  لرت ر ببببببط لرعشبببببب ل   ر بببببب    ألرنتبببببب    لربببببب    نبببببب  أ

 نلببببببب ك نبببببب   فقببببببط ؛ رت س بببببب ب لرل صبببببب تبببببب    لرن ح بببببب  مبببببب فضببببببل  ل  ك نبببببب  للألر  ببببببطّ 

  %.100  لر  رح   بل   نلب  ت س      ف %77.78 ت س   لر ل  

ر بببببب  ب  فكبببببب   نّ ألرتبببببب  تببببببا لر صبببببب   عل هبببببب   لرتج دب بببببب نتبببببب    لر ب نبببببب  فقببببببط أخ بببببب ل ،  

لرببببببت كا بهبببببب ،   نظبببببب ق ق بببببب    لرلبببببب   ل  فبببببب   ر  ببببببتلطلق م   بببببب رل  لصببببببف   لر  بببببب    

. ك بببب  مكّبببب   ربببب  ل  ببببتلطلق مبببب  ر   بببب لنظ بببب  لرلبببب م  أمبببب  أبببببا ب مج بببب    طلربببب   دعبّببب

  . ه ر    دل ل   أكث  لر لتقبل   لر         تصبح ع ل   لركشذ ع   نأ
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