
15

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 1, No. 1, December 2015.

USING FORMAL METHODS FOR TEST CASE

GENERATION ACCORDING TO TRANSITION-BASED

COVERAGE CRITERIA

Ahmad A. Saifan1 and Wafa Bani Mustafa2

Computer Information Systems Department, Faculty of IT, Yarmouk University,

Irbid, Jordan.
ahmads@yu.edu.jo1, w_banimustafa@yahoo.com2

 (Received: 15-Sep.-2015, Revised: 01-Nov.-2015, Accepted: 08-Nov.-2015)

ABSTRACT

 Formal methods play an important role in increasing the quality, reliability, robustness and effectiveness

of the software. Also, the uses of formal methods, especially in safety-critical systems, help in the early

detection of software errors and failures which will reduce the cost and effort involved in software

testing.

The aim of this paper is to prove the role and effectiveness of formal specification for the cruise control

system (CCS) as a case study. A CCS formal model is built using Perfect formal specification language,

and its correctness is validated using the Perfect Developer toolset. We develop a software testing tool in

order to generate test cases using three different algorithms. These test cases are evaluated to improve

their coverage and effectiveness. The results show that random test case generation with full restriction

algorithm is the best in its coverage results; the average of the path coverage is 77.78% and the average

of the state coverage is 100%. Finally, our experimental results show that Perfect formal specification

language is appropriate to specify CCS which is one of the most safety-critical software systems, so the

process of detecting all future possible cases becomes easier.

KEYWORDS

Formal method, Perfect developer, Test case generation, Cruise control system (CCS).

1. INTRODUCTION

Generally, the role of software has become increasingly important and is being used in many

critical applications, such as aircraft flight control systems, medical device systems and nuclear

systems. Such systems are called safety-critical systems, the most important property of which

is dependability, which reflects the extent to which users or customers trust the software system.

It also reflects the degree of user confidence that the system will not fail when operated. A

failure in these systems may cause significant damage, severe economic consequences or even

loss of life. Thus, the reliability, safety and correctness of these systems are important issues,

and testing them is a challenging task. Tim [23] shows that the formal method is a technique

that is used to reduce the cost of testing safety-critical systems by examining the behaviour of

these systems in the early stages of development. One way to reduce the cost and effort of

software testing is to depend on formal methods, mainly for safety-critical software, because it

provides many different techniques to describe precisely and accurately the system

specifications [21].

In recent years, there has been an increased tendency to use formal specification and verification

methods and tools, defined by Tim [23] as "the use of ideas and techniques from mathematics

and formal logic to specify and reason about computing systems to increase design assurance

16

"Using Formal Methods for Test Case Generation According to Transition-Based Coverage Criteria", Ahmad A. Saifan and Wafa

Bani Mustafa.

and eliminate defects". In addition, they are mainly used to provide a standard software

development process.

Formal methods, tools and techniques have an important advantage in that they develop formal

system specifications that facilitate and provide comprehensive system analysis, design and

implementation as described by Mery and Singh [17]. Mery and Singh [17] adjusted the

software development life cycle - from the requirements analysis to code generation - to develop

safety critical systems using formal techniques. Formal methods provide an importantly

disciplined approach for complex safety-critical systems with many different formal

specification languages such as Z- [12], VDM [6], B [16], SCR [20] and Perfect Developer [7].

The formal method used in our work is Perfect Developer.

In this paper, we use the Perfect language as the formal language in order to model and test a

real safety-critical system; a cruise control system (CCS). The CCS must be able to maintain the

current speed of the car and accelerate it upon the request of the driver. It must also measure the

current car speed and display the same to the driver.

In this paper, we present our framework on test case generation using a formal method.

Application of the approach starts by building the formal model for the cruise control system

using Perfect formal specification language. We verify the formal model in order to check

completeness, consistency and validity of the model using the Perfect Developer toolset. Next,

we build a C# tool to read the Perfect Developer formal model and produce the state-based

specification graph or the FSM graph in order to automatically create test cases from the model

according to a transition-based coverage criterion. We evaluate the coverage to test the system’s

performance and effectiveness. Moreover, we use test case reduction techniques in order to

reduce the redundant test cases that will be generated by a set of testing algorithms.

2. RELATED WORK

2.1 Testing Critical Software Systems

According to You and Rayadurgam [25], the failure of software systems can cause significant

damage to the software or its environment, severe economic consequences or even loss of life.

There are many examples of safety-critical systems, such as aircraft flight control systems,

medical device systems, nuclear systems and automobile cruise control systems.

The most important property of the safety-critical system is its dependability, which is shown by

the extent to which users or customers trust the software system. Moreover, this will reflect the

degree of user confidence in the system’s ability not to fail when operated.

Many different formal specification languages and formal verification automated tools have

been used to express and verify the formal specification of automobile cruise control systems.

For example, Atlee and Gannon [3], Heitmeyer et al. [10] and Bultan and Heitmeyer [4] used

the SCR-style (Software Cost Reduction) to specify and verify the safety property of the CCS.

A formal cruise control B specification is discussed by Krupp et al. [13] in which an adaptive

cruise control B model and RAVEN model checker are presented. The model is used to improve

the confidence and understand ability of the system’s behaviour. Another approach presented by

Iliasov et al. [11], in which the system’s dependability is characterized by rigorous design and

fault tolerance, is represented by structuring the formal specification in an abstract way in the

notion of an operation mode that depends on a state-based formalism approach called (Event-B)

to refine the system modes. To check the effectiveness and safety requirements, Yasmeen et al.

[24] conducted an experimental analysis which simulated a number of indications of safety

critical systems. Mishra et al. [18] proposed a model-based testing auto-review tool, which was

used to partially automate the process of verifying safety-critical systems. You and Rayadurgam

[25] proposed a constrained random testing framework on a safety-critical embedded system.

They used the constraints to narrow the possible test cases and cover most of the system’s

17

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 1, No. 1, December 2015.

behaviour. A similar approach to ours was discussed by Nilsson et al. [26]. They proposed

correct-by-construction control software for Adaptive Cruise Control (ACC) system that is

guaranteed to satisfy the formal specification in Linear Temporal Logic (LTL). They formalized

the ACC using a hybrid dynamical system model with two modes: the no lead car and the lead

car. Then, they constructed two controllers as a solution for the two modes, with the first

solution based on continuous state space and the other based on a finite-state abstraction. The

two controllers were tested by running a simulation in Simulink and on a vehicle simulation

package called CarSim. However, our work depends on the Perfect language for the

formalization which is easier than LTL, since the syntax in Perfect language is close to the

programming languages. Moreover, according to Zhao [27], with the use of LTL "experiences

show that specifications of even moderate-sized systems are too complex".

2.2 Testing Coverage Criteria

Coverage criteria on software systems can be defined as the set of conditions and rules that

impose a set of test requirements on a software test. Ammann and Offutt [2] mentioned that test

requirements in software testing are a specific set of elements of software artefacts that the

software test cases must satisfy or cover.

Categories of coverage criteria include structural coverage, data-flow coverage, decision

coverage, call graph coverage and transition-based coverage. In the framework for our cruise

control system, a transition-based coverage criterion is used. For transition-based coverage,

every precondition in the software’s formal specification should be tested at least once so that

each transition must be taken as a test requirement.

Several coverage criteria are used in the literature for testing systems. For example, Offutt et al.

[20] introduced a technique for state-based specifications to generate test cases for cruise

control systems. Their technique depends on an SCR formal specification model that represents

the cruise control functionality and the coverage criteria that are: transition coverage, full

predicate coverage, transition-pair coverage, complete sequence and structural coverage for

state-based decision testing.

An experimental study conducted by Fraser and Gargantini [9] addressed the problem of test

case generation, optimization and the performance of model checkers. In their study, they

depended on explicit state model checkers that use a DFS algorithm. A cruise control system

was studied, with its SRC formal specification being put into the model checker and test cases

generated according to condition-based and structural coverage criteria.

Liu [14] used VDL-formal specification language notations in order to automatically generate a

test prediction to analyze the results from their proposed decompositional approach for

automatic test case generation. The results indicated that the researcher's approach was effective

in terms of branch coverage, path coverage and statement coverage. In addition, his test case

generation algorithm was effective in detecting the defective test cases for his system.

Liu and Nakajima [15] aimed to improve formal specification completeness and feasibility by

introducing a new method that depends on verifying completeness and feasibility in the form of

pre-conditions and post-conditions. This method uses single formal specification operations to

choose the automated teller machine (ATM) system. SOFL formal specification language was

used to build the ATM specifications. Appropriate test case generation criteria were used to

build a question checklist from the ATM SOFL specifications in the test case generation

process.

The proposed method improved the ATM operation’s completeness and feasibility through its

ability to formally define those characteristics. Furthermore, the generated test cases covered

every aspect of the ATM defined specifications, so that it added the advantage of detecting

errors in the system and reducing the cost of testing the system.

18

"Using Formal Methods for Test Case Generation According to Transition-Based Coverage Criteria", Ahmad A. Saifan and Wafa

Bani Mustafa.

Another usage for SOFL formal specification language was presented in Chen’s [6] research in

which he addressed the problem of specification-based testing and test case generation for

concurrent software systems.

Test cases were generated to cover the produced specification suggestions according to

appropriate coverage criteria related to concurrent software systems. Each one of the generated

test cases was executed several times in order to traverse program paths. The proposed approach

was applied to an online shipping system and proved its usability for concurrent software

systems.

Tian et al. [22] realized the problem of automatic test case generation from the pre- and post-

conditional formal specifications (PROMELA formal specification language) by obtaining the

benefits from connecting specification-based testing and the usage of model checkers (Spin

model checker).

Nakatsugawa et al. [19] aimed to facilitate formal specification readability by discussing a new

specification-based testing framework for interface specifications.

As with our approach, several others have been used to automatically generate test cases from a

graph using graph coverage technique, such as: [28]-[30].

Gotlieb et al. [28] presented two different algorithms in order to automatically generate

functional tests for synchronous executable BPEL processes. The first algorithm,

STRUCRUNS, was used to generate test cases covering lengthy feasible paths up to a given

length. The second algorithm, RANDOMRUNS, was derived from the desired number of test

cases covering a random selection of feasible paths limited by a predetermined length.

Yan et al. [29] implemented a prototype that is used to automatically generate test data based on

a constraint solving technique. In their approach, they transformed the procedure into a

constraint system using static single assignment. Then, the constraint system was solved to

check whether at least one feasible path through the selected point existed. Finally, test cases

were generated corresponding to one of these paths.

Jehan et al. [30] proposed an approach that is used to automatically generate BPEL test cases

that handle concurrent features. In their approach, they represented the BPEL program in an

extended control graph. After that, they generated all the sequential test paths from XCFG

before combining all the sequential test paths into concurrent test paths. Finally, they used the

BoNus solver to solve the constraints of the test paths and then generate feasible test cases.

Utting and Legeard [31] in their book "Practical Model-based Testing: A Tools Approach"

presented a commercial tool called LTG/UML which is a model-based testing tool that can be

used to automatically generate test cases from a UML state machine using different coverage

criteria. The tool has been demonstrated on examples and case studies from a variety of

software domains, including embedded software and information systems.

3. PERFECT DEVELOPER

Many formal methods have been used to model safety-critical systems in the literature, such as

Event-B Abrial [1], Z-formal specification [12], VDM [6], B-specifications [16], SCR

specification [20] and a number of other formal languages. Most formal methods only involve

the specification of the system; however, some continue the development process until a

running code is obtained. However, according to Crocker [7], those formal methods take a long

time to produce the running program. In this paper, Perfect Developer is used as a formal

method and starts its process by describing the system, verifying a formal specification, refining

it to the code within the same notation using a set of algorithms, verifying the refinement by

checking its correctness and completeness and translating it into a set of high-level

programming languages such as C++, Java and Ada.

19

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 1, No. 1, December 2015.

Perfect Developer (PD) is an automated tool developed by Escher Technology to verify the

Perfect specification software system. Perfect is an expressive language that describes system

specification in an object-oriented model style using object-oriented terms and concepts such as

classes, functions and constant variables. Perfect, like many object-oriented languages such as

Java and C++, supports object concepts, such as encapsulation and inheritance, through object

classes and message passing.

Perfect language has the ability to describe software system behaviours without any details of

how the behaviour will be performed. It also includes certain design principles, including design

by contract, which is the main structural rule or principle which Perfect depends on; it uses the

contract to define the input-output relationships for class methods. The contract has two main

parts; pre-conditions and post-conditions. The pre-conditions determine what must be true for

the call feature, while the post-conditions determine what is guaranteed to be true at the

termination of a successful Perfect feature as presented by Carter and Monahan [5].

An investigation was undertaken by Crocker and Carlton [8] to see if the automated reasoning

using Perfect developer for the embedded software has the ability to provide the same degree of

success in verification of a handwritten C code. The study made use of two small C programs

with their specification annotations. As a result, they found that automated reasoning can

discharge a very high proportion of verification conditions that arise from specification and

software refinement. The number of test cases required was reduced.

4. METHODOLOGY

Our framework consists of seven phases shown in Figure 1. We first understand the cruise

control requirements and then write the informal specification description for our system. The

main reason for writing the informal specifications is to reflect its different states and transitions

and the different conditions that enforce each transition in the system. In the second step, we

develop the cruise control formal model, using Perfect formal specification language depending

on the informal description of our system. The third step reflects the formal model verification

using Perfect developer. After that, we manually extract the CCS formal model adjacency

matrix, and then develop a C# tool to read our verified model and extract the different system

paths and states in order to generate test cases using a set of proposed algorithms. The

evaluation process for our generated test cases is discussed in phase seven. Moreover, we

analyze the effectiveness of each algorithm used in the process of the test case generation. We

will now discuss each of these steps in detail.

20

"Using Formal Methods for Test Case Generation According to Transition-Based Coverage Criteria", Ahmad A. Saifan and Wafa

Bani Mustafa.

Figure 1. A framework for test case generation using the formal method.

4.1 Informal Specifications of Cruise Control System

The cruise control system (CCS) is a safety-critical system that can be described by a set of

behaviours, modes, states and transition variable state quantifiers. Such quantifiers are the

ignition switch, cruise control button, automobile speed and cruise control target speed.

CCS transition modes that occur between the system and the driver are started by the initial

state when the system ignition is “OFF”. The current speed is at zero and the cruise state is

“OFF”. When the driver switches the ignition to “ON”, then the CC state can be “ON” or

“OFF” depending on whether the driver wants to switch on the CC button or not. When the CC

is switched to “ON” and the driver starts driving, then the cruise state can be “active”,

“cruising” or “standby”. The main role of the CCS is to maintain the automobile’s speed as

close as possible to the target speed. The target speed is determined by the driver when the CCS

is “ON” and the target speed can be increased or decreased by the driver.

The automobile’s actual speed should not exceed a restricted limit and should also not exceed

the target speed, so that the driver has an allowance interval that defines how much the actual

speed could deviate from the target speed. Where the difference between the two speeds is

acceptable, the CC will maintain the current speed. If the driver’s current speed exceeds the

target speed, then the CCS will take measures to maintain the target speed.

The CCS states can be affected by a set of factors like: pressing the brake, accelerator and the

“ON” / “OFF” button for the CC. In addition, various failures could affect the CCS states, such

as a low battery; some of these faults are handled by returning the control to the driver to take

certain measures. As a result, the CC could be activated (the state will be changed from

“standby” to “active”) or the driver could drive without activating the CC. Figure 2 describes

the CCS finite state machine diagram.

21

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 1, No. 1, December 2015.

Figure 2. Cruise control system finite state machine diagram.

4.2 CCS Formal Model Using Perfect Language

In the second phase of our methodology, we build the CCS formal model from the informal

specifications of the CCS using Perfect language. The formal specification consists of two main

classes; the first one is the speed control class and the second is the controller class. The speed

control class describes the system-related speed variables and schemas (functions). The

controller class describes the related CCS variables and schemas. Due to space limitation, Table

1 shows the CCS formal model of the control class only.

4.3 Formal Model Verification Using Perfect Developer Toolset

In the third phase, the Perfect CC specification that is described in subsection 2.2 is verified by

Perfect developer toolset in order to check the syntax, the semantic correctness and the validity

of the model. The verifier in Perfect Developer is static analysis and automated theorem proving

that collects and attempts to discharge proof obligations for the software with which it is

presented.

22

"Using Formal Methods for Test Case Generation According to Transition-Based Coverage Criteria", Ahmad A. Saifan and Wafa

Bani Mustafa.

4.4 FSM Adjacency Matrix for CCS Formal Model

The fourth phase involves the process of adjacency matrix extraction from the verified formal

CCS model, which is shown in Table 2. The adjacency matrix reflects the system’s states and

what the adjacent state to each state in the system is. In the adjacency matrix, ‘one’ indicates

what other states each state can go to. For example: “Engine Off” state can go to “Engine On”'

state only, while “Engine On” can go to “Accelerator” state only. Zero indicates that there is no

transition between the two states.

Table 1. Part of CCS Perfect formal model

class CONTROLLER ^=

abstract

const Inactive_st : int ^= 0;

const Active_st : int ^= 1;

const Cruising_st : int ^= 2;

const Standby_st : int ^= 3;

var ControlState: int ;

var sp_con: SPEED_CONTROL ;

var getten_target_speed: int ;

var engin : bool ;

var cruise : bool;

build{!sp_con: SPEED_CONTROL }

post

ControlState != Inactive_st ,

engin != true ,cruise != false ,

getten_target_speed !sp_con.TargetSpeed;

schema !Break

pre

 sp_con.TargetSpeed <sp_con.CarSpeed ,

 engin = true ,cruise = true ,

 ControlState = Cruising_st

post

 sp_con!DisableControl ,

 ControlState != Standby_st ;

 schema !Accelerator

 pre

 engin = true ,cruise = true ,

 sp_con.TargetSpeed > sp_con.CarSpeed ,

 ControlState = Cruising_st

 post

 sp_con!EnableControl ,

 ControlState != Cruising_st ;

 schema !EnginOff

 pre

 ControlState = Active_st |ControlState

= Cruising_st | ControlState =

Standby_st | ControlState = Inactive_st

 post

 ([ControlState = Cruising_st]:

(ControlState != Inactive_st ,

sp_con!DisableControl , engin != false)

, []: engin != false) ,

 ([ControlState = Active_st]:

(ControlState != Inactive_st ,

sp_con!DisableControl , engin != false)

, []: engin != false),

 ([ControlState = Standby_st]:

(ControlState != Inactive_st ,

sp_con!DisableControl , engin != false)

, []: engin != false) ,

 ([ControlState = Inactive_st]:

(ControlState != Inactive_st ,

sp_con!DisableControl , engin != false)

, []: engin != false);

schema !EnginOn

pre

 ControlState = Inactive_st

post

 sp_con!ClearSpeed,

 ControlState != Inactive_st ;

 schema !CruiseOn

 pre

 ControlState = Inactive_st

 post

getten_target_speed != sp_con.TargetSpeed

 ,

sp_con!EnableControl ,

ControlState != Active_st ;

schema !Cruise_Crusing

pre

engin = true ,

ControlState = Active_st,

sp_con.CheckSpeed = true

post

ControlState != Cruising_st ;

schema !Cruise_Active

pre

engin = true ,cruise = true,

sp_con.TargetSpeed > 0 ,

sp_con.CarSpeed > 0

post

ControlState != Active_st ;

schema !Cruise_Inactive

pre

engin = true ,

cruise = false,

sp_con.TargetSpeed = 0 ,

sp_con.CarSpeed > 0

post

ControlState != Inactive_st ;

schema !Cruise_Standby

pre

engin = true ,

cruise = true,

sp_con.TargetSpeed > 0 ,

sp_con.CarSpeed > 0

post

sp_con!DisableControl ,

ControlState != Standby_st ;

 schema !CruiseOff

 pre

 ControlState = Cruising_st | engin =

false

 post

sp_con!DisableControl ,

ControlState != Standby_st ;

 schema !CruiseResume

 pre

 engin = true,

 cruise = true ,

 ControlState = Standby_st

 post

 sp_con!EnableControl,

 ControlState != Cruising_st ;

end; // the end of class CONTROLLER

23

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 1, No. 1, December 2015.

Table 2. CCS adjacency matrix.

4.5 Extraction CC Formal Model Paths, States and Edges

The testing C# tool develops an algorithm called “extractPath” in order to extract the CCS finite

state machine paths, states and edges. The “extractPath” algorithm depends on the CCS

adjacency matrix and the pseudo code shown in Figure 3. In this phase, the verified formal

Perfect specification is put into our C# testing tool and the structure of the cruise control system

is prepared using the adjacency matrix that is shown in the previous phase. From the matrix, the

algorithm in Figure 3 is used to extract the different system states, paths between system states

and edges between states.

The extraction process depends on transition-based coverage criteria that focus on the transition

sequence between the system states. The transition-based coverage criteria are represented by 1.

all system states, 2. all pair-transitions where each state can go and 3. all system paths.

The algorithm shown in Figure 3 starts by identifying a list of strings (P) that contains all

system state paths extracted from the adjacent matrix for a given state. Each state is given a

number; for example, Engine Off =1, Engine On=2 … and so on. Then, we find all the adjacent

states (by checking the adjacent matrix) for the current state, calling the function find_adjacent

(). This function will add the adjacent state numbers to the paths in list P. For example, when

list P contains an item (1,2), it means that there is a path from state 1 to state 2. Then, the

algorithm continues by finding the adjacent state to the previous state in the path, in this

example state 2. Adjacent to state 2 is state 3 (Accelerator). So, state 3 is added to the path (1,2)

and the new path (1,2,3) is added to P ; P=[(1,2), (1,2,3)]. In this case, P has two paths. Next,

the algorithm finds the adjacent states for state 3 which are states 4 and 5, which are both added

to the current path. List P is now equal to [(1,2), (1,2,3),(1,2,3,4), (1,2,3,5)]. The algorithm

continues until all paths that each state can reach are found.

Finally, the algorithm extracts the test paths (TP) from list P. A test path is a path that starts

from the initial state which is state 1 and ends with the final state which is state 8.

State
Engine

Off

Engine

On
Accelerator

Driver

Mode

Cruise

Active
Cursing

Cruise

Standby
Break

Engine Off 0 1 0 0 0 0 0 0

Engine On 0 0 1 0 0 0 0 0

Accelerator 0 0 0 1 1 0 0 0

Driver Mode 0 0 0 0 1 0 0 1

Cruise Active 0 0 0 0 0 1 0 1

Cursing 0 0 0 1 0 0 1 1

Cruise Standby 0 0 0 0 1 0 0 1

Break 0 0 0 0 0 0 0 0

24

"Using Formal Methods for Test Case Generation According to Transition-Based Coverage Criteria", Ahmad A. Saifan and Wafa

Bani Mustafa.

Figure 3. The algorithm of path extraction.

4.6 Automatic Test Case Generation

After the system paths are extracted and system states counted, we automatically generate test

cases from the verified cruise control system formal specification through the developed C#

testing tool. Test cases will be generated from the test paths generated in the previous phase.

For the process of test case generation, we use three algorithms:

Algorithm (1): random test case generation process that generates test cases without any

restrictions. So, some of the test cases are considered to be redundant test cases. Algorithm 1 is

presented in Figure 4. In the algorithm, TCR1 is a list that contains a set of test cases that are

randomly generated from the test path (TP).

Figure 4. Algorithm1.

Algorithm (2): random test case generation with pure restrictions. This algorithm depends on a

random generation process with partial restrictions on the generated test cases. This algorithm

restricts the results by which a set of randomly unique system paths must be generated for the

results each time. In Figure 5, the algorithm randomly generates N test cases from the test path

(TP) in such a way that M of them must be unique paths; where M is less than N. The others (N-

M) could be redundant.

25

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 1, No. 1, December 2015.

Figure 5. Algorithm 2.

Algorithm (3): random test generation with full and optimal restrictions. The algorithm restricts

the selected paths by which all system paths must be chosen in the algorithm random process.

Moreover, the algorithm forces the generation process to uniquely generate a number of test

cases. In other words, if we need N test cases, then we have to generate them randomly and each

one should be unique (redundancy in test cases is not allowed). Figure 6 shows algorithm 3.

Figure 6. Algorithm 3.

4.7 Coverage Evaluation for the Generated Test Cases

Finally, the test cases generated in the previous phase are evaluated to determine the system

path coverage, state coverage (node coverage) and transition coverage (edge coverage). A set of

coverage measurements is used here to evaluate path, state and transition coverage.

5. EXPERIMENTS AND EVALUATION

In our experiments, we use our framework to automatically generate the test cases using the

three algorithms for the CCS. Subsection 5.1 discusses the coverage evaluation measures used

in our framework. Subsection 5.2 makes a comparison between the three developed test case

generation algorithms in terms of coverage and performance evaluation used in this framework.

5.1 Evaluation Measures

The evaluation process of our C# testing tool depends on three matrices in terms of coverage

evaluation measurement. The three matrices shown in Figure 7 are state (node) coverage matrix,

path coverage matrix and edge coverage matrix. The coverage value for each of the three types

depends on the related value of executed state, executed paths and executed edges, respectively,

in which the smaller execution value type achieves a smaller coverage value. The number of

extracted states, paths and edges represents the number of states, paths and edges, respectively,

26

"Using Formal Methods for Test Case Generation According to Transition-Based Coverage Criteria", Ahmad A. Saifan and Wafa

Bani Mustafa.

from the formal model. The number of executed states, executed paths and executed edges

represents the number of states, paths and edges, respectively, that will be processed according

to a specific number of test cases. For example, if we have eight states extracted from the

system but the test cases that we have used only executed six of the states, then the coverage

will be 6/8=75%.

Figure 7. Coverage matrix measurements.

5.2 Comparisons and Evaluation Results

5.2.1 CCS Test Case Evaluation

The process of test case generation from the CCS model depends on three algorithms, as

described in the previous section. The developed algorithms depend on a random generation

process and are evaluated to five numbers of fixed test cases. Moreover, the three algorithms are

compared with each other to determine their effectiveness.

As we have seen from Figure 2, the CCS extracted states were eight, the extracted test paths

were nine and the extracted edges were twelve. The three random test case generation

algorithms were evaluated to five numbers of test cases with 3, 5, 9, 12 and 15 test cases. The

evaluation of state coverage results is shown in Table 3.

Table 3. CCS State coverage algorithm results.

T.C#/Algo.# Algo.#1 Algo.#2 Algo.#3
3 Test Cases 75% 87% 100%

5 Test Cases 100% 100% 100%

9 Test Cases 87.5% 100% 100%
12 Test Cases 100% 100% 100%

15 Test Cases 100% 100% 100%

Average 92.5% 97.4% 100%

Table 3 shows that, for example, when we generate nine test cases by algorithm #1, the CCS

state coverage is 87.5%. This means that the nine test cases execute seven system states from all

eight extracted system states. When the nine test cases are generated using algorithm #2 (as well

as algorithm #3), the state coverage is 100% which means that the nine test cases pass all

system states. The averages of the state coverage for algorithm #1, algorithm #2 and algorithm

#3 are 92.5%, 97.4% and 100%, respectively, which represents the average from generating 3,

5, 9, 12 and 15 test cases by each algorithm.

Table 4 shows the evaluation results for path coverage using the three algorithms.

27

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 1, No. 1, December 2015.

Table 4. CCS path coverage algorithm results.

T.C#/Algo.# Algo.#1 Algo.#2 Algo.#3
3 Test Cases 11.12% 33.34% 33.34%
5 Test Cases 33.34% 55.55% 55.55%
9 Test Cases 33.34% 55.55% 100%

12 Test Cases 44.45% 66.66% 100%

15 Test Cases 55.56% 77.77% 100%
Average 35.558% 57.774% 77.778%

Table 4 shows that, for example, when we generate nine test cases by algorithm #1, the CCS

path coverage is 33.34%. This means that the nine test cases execute only three test paths from

all nine extracted test paths. With the nine test cases generated using algorithm #2, the path

coverage is 55.55% which mean that only five test paths from all extracted test paths were

executed. For algorithm #3, the path coverage with nine test cases is 100%. This means that

those nine test cases execute all nine test paths in the system. The averages of the path coverage

for algorithm #1, algorithm #2 and algorithm #3 are 35.558%, 57.774% and 77.778%,

respectively. Table 5 shows the evaluation results for edge coverage using the three algorithms.

Table 5. CCS edge coverage algorithm results.

T.C#/Algo.# Algo.#1 Algo.#2 Algo.#3
3 Test Cases 41.66% 66.67% 75%

5 Test Cases 83.33% 91.67% 100%

9 Test Cases 66.67% 100% 100%

12 Test Cases 83.33% 100% 100%

15 Test Cases 83.33% 100% 100%

Average 71.66% 91.7% 95%

Table 5 shows that, for example, when we generate nine test cases by algorithm #1, the CCS

edge coverage is 66.67%. This means that eight edges of the 12 extracted system edges are

passed or executed. With the nine test cases generated using algorithm #2 and algorithm #3, the

edge coverage was 100% which means that all the 12 extracted system edges are executed. The

averages of the edge coverage for algorithm #1, algorithm #2 and algorithm #3 are 71.66%,

91.7% and 95%, respectively.

5.2.2 Test Case Generation Algorithm Results

In this section, we compare the three test case algorithm results. Figure 8 shows the coverage

averages obtained from the three algorithms.

Figure 8. A comparison between the three test case algorithms.

28

"Using Formal Methods for Test Case Generation According to Transition-Based Coverage Criteria", Ahmad A. Saifan and Wafa

Bani Mustafa.

From the results, we can see that algorithm #3 is the best, achieving the most effective coverage

values in terms of state, path and edge coverage. Algorithm #2 is better than algorithm #1 in its

average results, from which we can conclude that more restriction in the process of test case

generation provides more effective coverage results.

6. LIMITATIONS AND FUTURE WORK

Our framework suggests there are benefits in the use of the Perfect formal model for efficiently

testing a safety-critical system. However, it is important to note the limitations of our evaluation

experiments and framework. First, our framework accepts only the CCS Perfect model and no

other safety-critical systems. Moreover, more experimentation is necessary to strengthen the

evaluation of our framework, ideally using a safety-critical system used in industry. Second, the

finite state machine adjacency matrix was built manually. However, the automation of this

process should be possible.

7. CONCLUSIONS

In this paper, we have reflected the importance and role of formal methods in developing safety-

critical system formal models. The cruise control system was chosen for this study as a safety-

critical system and its state machine diagram was built to reflect the system’s states, transitions

and variables.

Perfect formal specification language was used to develop the CCS formal model due to its

reliability and effectiveness in presenting transition state systems’ formal models, which is

important in reducing software development costs. We built a consistent and reliable formal

model that will play a role in increasing system quality and reducing system testing cost and

effort.

We proposed three algorithms to generate test cases from the CCS Perfect formal model. The

generated test cases were evaluated according to three coverage matrices; state coverage matrix,

path coverage matrix and edge coverage matrix. We proved that using formal methods through

the safety-critical software development life cycle plays a significant role in improving the

testing stage, making it more effective in terms of both effort and cost.

REFERENCES

[1] J. R. Abrial, Modeling in Event-B: System and Software Engineering, 1st Edition, Cambridge

University Press, New York, NY, USA, 2010.

[2] P. Ammann and J. Offutt, "Introduction to Software Testing," 2008, Available at:

http://www.cs.gmu.edu/~offutt/softwaretest/.

[3] J. Atlee and J. Gannon, "State-Based Model Checking of Event-Driven System Requirements,"

IEEE Transactions on Software Engineering, vol. 19, issue 1, pp. 24-40, Jan. 1993.

[4] T. Bultan and C. L. Heitmeyer, "Applying Infinite State Model Checking and Other Analysis

Techniques to Tabular Requirements Specifications of Safety-Critical Systems," Design

Automation for Embedded Systems, vol. 12, issue 1, pp. 97-137, June 2008.

 URL http://dx.doi.org/10.1007/s10617-008-9014-2.

[5] G. Carter and R. Monahan, "Software Refinement with Perfect Developer," 3rd IEEE International

Conference on Software Engineering and Formal Methods (SEFM’05), pp. 363-373, 2005.

[6] Y. Chen, "Generation of Test Cases for Concurrent Software Systems Based on Data-Flow-Oriented

Specifications," IEEE 2011 First ACIS/JNU International Conference on Computers, Networks,

Systems and Industrial Engineering (CNSI), pp. 170-177, 23-25 May.

[7] D. Crocker, "Teaching Formal Methods with Perfect Developer," 2003,

http://www.eschertech.com/papers/teaching_formal_methods.pdf.

http://www.cs.gmu.edu/~offutt/softwaretest/
http://www.eschertech.com/papers/teaching_formal_methods.pdf

29

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 1, No. 1, December 2015.

[8] D. Crocker and J. Carlton, "Verification of C Programs Using Automated Reasoning," in: SEFM

'07: Proceedings of the 5th IEEE International Conference on Software Engineering and Formal

Methods, 2007 IEEE Computer Society, Washington, DC, USA, pp. 7-14.

[9] G. Fraser and A. Gargantini, "An Evaluation of Model Checkers for Specification Based Test Case

Generation," 2013 IEEE 6th International Conference on Software Testing, Verification and

Validation, pp. 41-50, Denver, Colorado, 1-4 April 2009.

[10] C. Heitmeyer, J. Kirby and B. Labaw, "Tools for Formal Specification, Verification and Validation

of Requirements," Proceedings of the IEEE 12th Annual Conference on Computer Assurance

(COMPASS '97), pp. 35-47, 16-19 June 1997.

[11] A. Iliasov, A. Romanovsky and F. Dotti, "Structuring Specifications with Modes," 4th IEEE Latin-

American Symposium on Dependable Computing (LADC '09), PP. 81-88, 1-4 Sept. 2009.

[12] S. Kanwal and N. Zafar, "Formal Model of Automated Teller Machine System Using Z Notation,"

IEEE International Conference on Emerging Technologies (ICET 2007), pp. 131-136, 12-13 Nov.

2007.

[13] A. Krupp, O. Lundkvist, T. Schattkowsky and C. Snook, "The Adaptive Cruise Controller Case

Study Visualization, Validation and Temporal Verification," in UML-B System Specification for

Proven Electronic Design, 9 Dec. 2004, Kluwer Academic Publishers 2005.

[14] S. Liu, "Utilizing Test Case Generation to Inspect Formal Specifications for Completeness and

Feasibility," 9th IEEE International Symposium on High-Assurance Systems Engineering

(HASE'05), pp. 349-356, 2005.

[15] S. Liu and S. A. Nakajima, "A Decompositional Approach to Automatic Test Case Generation

Based on Formal Specifications," IEEE 2010 4th International Conference on Secure Software

Integration and Reliability Improvement (SSIRI), pp. 147-155, Singapore, 9-11 June 2010.

[16] Q. Malik, J. Lilius and L. Laibinis, "Scenario-Based Test Case Generation Using Event-B Models,"

IEEE 1st International Conference of Advances in System Testing and Validation Lifecycle (VALID

'09), pp. 31-37, 20-25 Sept. 2009.

[17] D. Mery and N. K. Singh, "Critical Systems Development Methodology Using Formal Techniques,"

in: Proceedings of the 3rd Symposium on Information and Communication Technology (SoICT '12),

pp. 3-12, Viet Nam, 23 – 24 August 2012. URL http://doi.acm.org/10.1145/2350716.2350720.

[18] A. Mishra, M. Rao, C. Cu, V. Rao, Y. Jeppu and N. Murthy, "An Auto-Review Tool for Model-

Based Testing of Safety-Critical Systems," in: Proceedings of the 2013 International Workshop on

Joining AcadeMiA and Industry Contributions to Testing Automation, JAMAICA 2013, pp. 47-52,

ACM, New York, NY, USA, 2013.

[19] Y. Nakatsugawa, P. Kurita and K. Araki, "A Framework for Formal Specification Considering

Review and Specification-Based Testing," 2010 IEEE Region 10 Conference-TENCON 2010, pp.

2444 – 2448, ISBN: 978-1-4244-6889-8, Fukuoka, 21-24 Nov. 2010.

[20] J. Offutt, Y. Xiong and S. Liu, "Criteria for Generating Specification-Based Tests," 5th IEEE

International Conference on Engineering of Complex Computer Systems (ICECCS'99), pp. 119-

131, Las Vegas, Nevada, USA, 18-21 October 1999.

[21] I. Sommerville, Software Engineering, 9th Edition. Addison-Wesley, Haelow, England, 2010.

[22] C. Tian, S. Liu and S. Nakajima, "Utilizing Model Checking for Automatic Test Case Generation

from Conjunctions of Predicates," Proceedings of the 2011 IEEE 4th International Conference on

Software Testing, Verification and Validation Workshops (ICSTW 2011), pp. 304-309.

[23] G. Tim, "Object-Z to Perfect Developer", 2007, Available at:

http://www.doc.ic.ac.uk/~tk106/ObjectZ_project.pdf.

[24] A. Yasmeen, K. M. Feigh, G. Gelman and E. L. Gunter, "Formal Analysis of Safety-Critical System

Simulations," in: Proceedings of the 2nd International Conference on Application and Theory of

Automation in Command and Control Systems (ATACCS '12), pp.71-81, London, UK, 29-31 May

2012.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4850
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4850
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4850
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4509978
http://doi.acm.org/10.1145/2350716.2350720
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5680734
http://www.doc.ic.ac.uk/~tk106/ObjectZ_project.pdf

30

"Using Formal Methods for Test Case Generation According to Transition-Based Coverage Criteria", Ahmad A. Saifan and Wafa

Bani Mustafa.

[25] D. You and S. Rayadurgam, "Practical Aspects of Building a Constrained Random Test Framework

for Safety Critical Embedded Systems," in: Proceedings of the 1st International Workshop on

Modern Software Engineering Methods for Industrial Automation (MoSEMInA 2014), pp. 17-25,

ACM, New York, NY, USA, 2014.

[26] P. Nilsson, O. Hussien, Y. Chen, A. Balkan, M. Rungger, A. D. Ames, J. Grizzle, N. Ozay, H. Peng

and P. Tabuada, "Preliminary Results on Correct-by-Construction Control Software Synthesis for

Adaptive Cruise Control," Proc. 53rd IEEE Conference on Decision and Control (CDC), Dec. 2014.

[27] Y. Zhao, "Intuitive Representations for Temporal Logic Formulas," in Proc. of Forum on

Specification and Design Language (FDL’03), pp. 405–413, Frankfurt, Germany, September 2003.

[28] A. Gotlieb, B. Botella and M. Rueher, "Automatic Test Data Generation Using Constraint Solving

Techniques," in Proceedings of the 1998 ACM SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA '98), Will Tracz (Ed.), pp. 53-62, FL, USA, 02 – 04 March 1998.

[29] J. Yan, Z. Li, Y. Yuan, W. Sun and J. Zhang, "BPEL4WS Unit Testing: Test Case Generation Using

a Concurrent Path Analysis Approach," IEEE 17th International Symposium on Software Reliability

Engineering (ISSRE ’06), pp. 75 – 84, 7-10 Nov. 2006.

[30] S. Jehan, I. Pill and F. Wotawa, "BPEL Integration Testing," 18th International Conference on

Fundamental Approaches to Software Engineering (FASE), pp. 69-83, London, UK, 11-18 April

2015.

[31] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach, Morgan Kaufman

Publishers Inc. San Francisco, CA, USA, 2007, ISBN:0123725011 9780080466484.

 :البحث ملخص

 تهبببببببعت دإ لرب مج ببببببب فببببببب ودببببببب ببببببب مهّ ببببببب ل تلعببببببب لرسببببببب لر ببببببب

ل صبببببب فبببببب ب ، ببببببتلطلق لرسبببببب لر بببببب لن أضببببببذ إربببببب ربببببب أ .تهبببببب فع ر تهبببببب مت ن

خسبببببب ألر بكبببببب عبببببب لركشببببببذلبببببب عط فبببببب دمبببببب نبببببب ن أن ،نظ بببببب لرلبببببب م لر بببببب أ

 قبببببب لر لرجهببببببط لركلفبببببب إختصبببببب إربببببب دبببببب لربببببب للأمبببببب ع بهبببببب ، لرب مج بببببب

 .لرب مج لختب دتسلبه لرت

فبببببب ل بببببب ف عل تهبببببب ثببببببب لر لصببببببف لر بببببب إربببببب إدهببببببطا ببببببب ل لرب بببببب

 ببببب ج تببببا بنببببب ن ببببب قبببببط . لرببببت كا بهببببب ق ببببب لرلببببب ل أنظ بببب مببببب نظببببب ق رح ربببب

مبببببب صبببببب ت لرت قبببببب رل لصببببببف لر بببببب كببببببرهبببببب ل لرنظبببببب ق ب ببببببتلطلق ر بببببب ب ف

 رف بببببببج لرب مج ببببببب لأتبببببببا بنببببببب كببببببب ر ، ل تسببببببب د ر ببببببب ب فكببببببب . أ بببببببتلطلق ب

ثبببببب ز خ ل وم بببببب ملتلفبببببب . ط دبببببب عبببببب لإنتبببببب ج حبببببب ف ببببببج ل ببببببتلطلمه بببببب

 ت ل ت س ته فع ر ته . تل م أ ل لرف جتق ا ح تاّ

 بببببب مبببببب لرف ببببببجن خ ل وم بببببب لرت ر ببببببط لرعشبببببب ل ر بببببب ألرنتبببببب لربببببب نبببببب أ

 نلببببببب ك نبببببب فقببببببط ؛ رت س بببببب ب لرل صبببببب تبببببب لرن ح بببببب مبببببب فضببببببل ل ك نبببببب للألر ببببببطّ

 %.100 لر رح بل نلب ت س ف %77.78 ت س لر ل

ر بببببب ب فكبببببب نّ ألرتبببببب تببببببا لر صبببببب عل هبببببب لرتج دب بببببب نتبببببب لر ب نبببببب فقببببببط أخ بببببب ل ،

لرببببببت كا بهبببببب ، نظبببببب ق ق بببببب لرلبببببب ل فبببببب ر ببببببتلطلق م بببببب رل لصببببببف لر بببببب

. ك بببب مكّبببب ربببب ل ببببتلطلق مبببب ر بببب لنظ بببب لرلبببب م أمبببب أبببببا ب مج بببب طلربببب دعبّببب

 . ه ر دل ل أكث لر لتقبل لر تصبح ع ل لركشذ ع نأ

This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

