
10 

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 4, No. 1, April 2018. 

 

 
This paper is an extended version of a short paper that was presented at the International Conference "New Trends in Computing Sciences 
(ICTCS) 2017", 11-13 October 2017, Amman, Jordan. 

N. Al-Najdawi is with Computer Science Department, Al-Balqa Applied University, Salt, Jordan. Email: n.al-najdawi@bau.edu.jo 

HIGH-PERFORMANCE BLOCK MATCHING 

ALGORITHM FOR HIGH BIT-RATE REAL-TIME VIDEO 

COMMUNICATION 

Nijad Al-Najdawi 

(Received: 22-Nov.-2017, Revised: 04-Jan.-2018 and 27-Jan.-2018, Accepted: 15-Feb.-2018) 

ABSTRACT 

Although the advancements in hardware solutions are growing exponentially along with the communication 

channels capacity, high quality video encoders for real-time applications are still considered an open area of 

research. The majority of researchers interested in video encoders target their investigations towards motion 

estimation and block matching algorithms. Many algorithms that aim to reduce the total number of required 

mathematical operations when compared to Full Search have been proposed. However, the results often 

converge to local minima and a significant amount of computations is still required. Therefore, in this research, 

a hierarchy-based block matching method that facilitates the transmission of high bit-rate videos over standard 

communication methods is proposed. The proposed algorithm is based on the frequency domain, where the 

algorithm examines the similarities between a chosen frequency subset, which significantly reduces the total 

number of comparisons and the total mathematical computations required per block. 
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1. INTRODUCTION 

Digital videos consist of successive frames sampled over a period of time. Those successive frames 

carry high data redundancy. Therefore, eliminating bits of redundant data can be extremely helpful in 

reducing the size of digital video and compressing the video. Several types of compression techniques 

have been proposed in the past few decades. Those compression techniques are classified as being 

either lossless or lossy. The former type is achieved by eliminating redundant bits and reproduces 

exact original dataset. The latter is achieved by eliminating least important bits and reproduces a 

similar copy that might be indistinguishable by the human visual system from the original. Lossy 

compression techniques achieve better compression and are more applicable to digital videos; while, 

lossless techniques are in their nature more applicable for digital images. Lossless image compression 

allows the use of human visual system limits, by producing data that is sufficient to be classified as 

"good enough". The latest compression standards have set the architectures for video codecs as 

consisting of the following basic blocks: prediction, transform and entropy coding. Prediction includes 

estimates for the position of a current block inside a video frame. Transform process converts a block 

of pixels into frequency domain. Entropy coding involves encoding video data into a compressed bit 

stream.   

Usually, consecutive frames have the same still or moving objects, creating a high correlation between 

consecutive frames. Therefore, researchers have investigated the use of methods that examine the 

object movements in a video sequence in order to produce motion vectors that represent the estimated 

motion. On the other hand, those estimated vectors are forwarded to the proper motion compensation 

methods that use those vectors to simulate the object movement, achieving data compression. Motion 

estimation and compensation methods are considered the most important techniques that eliminate 

temporal redundancy in successive video frames. However, those techniques are more applicable to 

translational motion and still have their limits when applied to rotational motion which is difficult to 

estimate and requires other techniques for processing. Therefore, motion estimation algorithms usually 
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assume the following: objects movement is translational, illumination is uniform across spatial and 

temporal domains, occlusions of objects by others are neglected, and finally uncovered background is 

not to be considered. 

Various methods for coding have been proposed for video compression. Those coding techniques 

include intra-frame and inter-frame coding which are used to minimize the total number of bits 

required to transmit or store videos. In intra-frame coding, each frame is separately coded and this type 

of coding includes: transformation quantization and frame encoding. Inter-frame coding investigates 

the temporal redundancy and is usually applied in video coding in order to achieve the actual 

compression. In this type of coding, motion estimation and compensation algorithms are normally 

applied to eliminate the temporal redundancy that exists between successive frames. Various motion 

estimation approaches were proposed in literature; amongst those approaches, block matching 

algorithms were proven to be more suitable because of their reliability and simplicity. Block matching 

algorithms are used to estimate the object’s motion in successive frames on the basis of rectangular 

blocks. These algorithms assume that all the pixels within a block have the same motion behaviour [8].  

In block matching algorithms, frames are divided into NN blocks; where all blocks in the current 

frame are matched with candidate blocks within a search area (window) on the reference frame 

(considering that candidate blocks have a translation movement in other frames) and the displacement 

motion vector is recorded for the best matched candidate. In inter-frame coding, the motion vector and 

the residual frame (resulting from subtracting input frame from the prediction of the reference frame) 

are usually transmitted.  At the receiver side, the decoder builds the frame difference and adds it to the 

reconstructed reference frame. Therefore, data compression is achieved by eliminating inter-frame 

redundancy. This demonstrates the fact that better prediction methods give smaller error signals and a 

reduced transmission bit-rate [19].  

In this paper, in addition to the introduction section, section 2 provides an up-to-date literature review 

of motion estimation algorithms. Section 3 introduces the transformation process. In section 4, the 

proposed hierarchical search algorithm is described along with the proposed matching criterion. 

Section 5 provides the experimental results and analysis. Finally, section 6 concludes this research. 

2. LITERATURE REVIEW 

A large number of block matching algorithms have been proposed over the last decades, such as the 

traditional methods found in [2]-[5], [7], [11], [15]-[16] and [24]. Amongst the available block 

matching algorithms, full search leads to the best possible match of the block in the reference frame 

with a block in another frame by calculating the cost function at each possible location in the search 

window. The resulting motion compensated frame has the highest peak signal-to-noise ratio when 

compared to any other block matching algorithm. However, this is the most computationally extensive 

block matching algorithm [8].  

Optimized block matching algorithms speed up the exhaustive search required by full search 

algorithms based on fixed search patterns. Researchers in this domain have investigated the use of 

many algorithms in order to enhance the traditional search algorithms. In [33], Diaz Cortes et al. 

proposed a block matching algorithm that combines harmony search with a fitness approximation 

model. The authors considered the motion vectors in search window as potential matches.  The authors 

applied a fitness function in order to evaluate the matching quality of each motion vector in addition to 

a strategy to decide which motion vectors can be estimated amongst the rest of the motion vectors. In 

[34], the authors proposed a hierarchy-based motion estimation algorithm using Gaussian image 

pyramid and unidirectional estimates of motion vectors at the top level. In their work, the authors 

proposed the use of five candidates for each motion vector. At the bottom level of the hierarchy, the 

motion vectors are corrected based on the sum of absolute difference values of the blocks. Moreover, 

in their work, the unidirectional motion vectors are assigned to bidirectional motion vectors.   

In [35], Abdelazim et al. proposed the use of cross search algorithm in the H.265 standard that deals 

with high-efficiency video coding. In their work, the authors proposed a speed optimization technique 

in the frequency domain phase-correlation that enables compressing the videos rapidly while 

maintaining the video quality. In [36], Jia and Ding proposed a fast sub-pixel motion estimation 

algorithm. In their work, the authors proposed a scheme to skip sub-pixel search process in smooth 
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prediction units. Moreover, the authors proposed a fast sub-pixel search algorithm based on texture 

direction analysis in order to reduce the computational complexity. In [37], the authors presented a 

low computational complexity systolic hardware architecture for full search block matching algorithm. 

In their work, the proposed architecture is based on one-bit transform-based full search algorithm. The 

proposed motion estimation hardware architecture performs full search for four macro-blocks in 

parallel, where the proposed architecture was implemented in VHDL.  In [38], the authors presented a 

three-step searching method in order to estimate the motion vectors of high-resolution image 

sequences using low number of computations. The searching strategy of this algorithm is carried in 

three steps, where the first search is performed in the large areas, the second is performed in the 

adaptive directional search and the last is performed in the small area search.  

In [39], Arora et al. proposed a dynamic zero motion pre-judgment technique along with an adaptive 

diamond pattern search-based algorithm in order to enhance the search efficiency and accuracy of 

motion estimation. The dynamic zero motion pre-judgment is used for early identification of the 

stationary blocks. However, for the rest of the stationary blocks, an initial search center is used which 

has a high probability to be near actual motion vector. The variable size diamond pattern is used to 

obtain the global minima. In [40], Kovacevic et al. presented a motion estimation technique that 

combines recursive block-matching and customized phase plane correlation. In [41], Kamble et al. 

developed an approach for video coding using a modified three-step search block matching algorithm 

and weighted finite automata coding. In their work, the proposed block matching algorithm is based 

on the combination of rectangular and hexagonal search patterns and is used to compute motion 

vectors. The proposed weighted finite automata are used for the coding with a focus on reducing the 

encoding time. In order to reduce the encoding time, the authors in [47] proposed another approach for 

fractal coding using the weighted finite automata.  The authors of [42] proposed a motion estimation 

method for image stabilization, integrating the speeded up robust features algorithm, modified random 

sample consensus and the Kalman filter. The authors achieved video stabilization with filtered motion 

parameters using the modified adjacent frame compensation.  

In [43], the authors presented an enhanced version of the dynamic pattern search algorithm by means 

of reducing the search point computation. In their work, the algorithm starts by identifying the 

stationary blocks; then, the search points within the search area were evaluated for minimum 

distortion. The proposed work has been compared with other techniques like full search, diamond 

search and hexagon search. In [44], the authors proposed a two-step approach for enhancing the 

accuracy of initial search center prediction that is applied in the H.264 standard, in order to improve 

the motion estimation speed in video encoding. In their work, candidate blocks are identified in the 

first step for initial search center prediction. In the next step, the search is refined to obtain best 

possible initial search center.  

In [45], the authors presented a hybrid approach for motion estimation. The hybrid method combines 

the dynamic zero motion pre-judgment technique with the initial search centers technique. In their 

work, calculating the initial search centers shifts according to the process of zero motion pre-

judgment.  In [46], the authors analyzed various tools involved in fast motion estimation algorithms. 

Moreover, the authors proposed a number of improvements in order to achieve a fast hybrid algorithm.  

However, fewer researchers have investigated applying motion estimation algorithms in the frequency 

domain, such as the work of Young and Kingsbur [22] who proposed an alternate block matching 

method by applying a motion estimation technique based on overlapped transforms. Argyriou and 

Vlachos [1] in their work, proposed the use of gradient correlation in the frequency domain. Edrem et 

al. [6] estimated the motion parameters using a harmonic retrieval approach. Tzimiropoulos et al. [21] 

proposed a method for detecting symmetries in real images in the frequency domain. In their 

approach, the authors used motion estimation techniques to sequentially determine associated 

parameters. Pingault and Pellerin [17] tested motion transparency phenomena in video sequences 

based on the frequency domain. Their method contains an algorithm that introduces a new statistical 

model.  

Hierarchical motion estimation algorithms are widely used for their accuracy; where in such 

algorithms several searching methods at different levels are applied. These types of algorithms are 

widely used due to their accuracy. However, applying those algorithms in the frequency domain has 

not yet been investigated properly. In hierarchical block matching techniques, the reliability of motion 
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vectors is related to the block size, where large blocks are more likely to converge on local minima. 

Moreover, in such algorithms, the advantages of selecting large blocks with small blocks at different 

levels are combined. Various research topics on the hierarchical search algorithms have been tackled 

in literature [25]-[29], [31]. 

In this work, a motion estimation algorithm based on a two-level hierarchy is proposed with a new 

block matching criterion to be applied at both levels of the hierarchy, as can be seen in Figure 1. The 

next section introduces the transformation method applied in this research. 

Encode Residual

Motion Compensation
The Proposed Motion 

Estimation Algorithm

Decode Residual Reconstructed Frame

Fast Fourier Transform

Reference Frame BlockCurrent Frame Block

 
 

Figure 1. The architecture of general video encoders (the right side of the figure highlights the 

contribution in this research). 

3. TRANSFORM DOMAIN 

Video compression reduces the spatio-temoral redundancy that exists in the frame data and between 

consecutive frames using intra-frame and inter-frame coding methods. Intra-frame coding involves 

spatial to frequency transformation of the video frame and quantizing the frame frequencies by means 

of removing high frequencies that represent insignificant visual details in a given frame. Regardless of 

the transformation method that has been applied, it should be computationally acceptable and 

revertible [18]. In inter-frame coding, compression is achieved by utilizing the temporal redundancy 

using proper motion estimation and compensation algorithms. Various spatio-temporal transformation 

methods have been proposed in literature and are either image-based or block-based methods [9].  

Block-based transformation methods are most applicable for use in video coding, since motion 

estimation algorithms are based on block matching methods. In this work, the Discrete Fourier 

Transform (DFT) is chosen, as it allows working in the frequency domain comparable to other 

transformation methods available in literature. 

3.1 The Discrete Fourier Transform 

Based on the Fourier theory, a complex signal can be decomposed into infinite series of cosine and 

sine terms and a group of coefficients that can be determined. The original function )(tf can be 

decomposed into a series of basis states, based on (1).  

)
2

sin(

1

)
2

cos(

1
02

1
)(

T

nt

n
n

b
T

nt

n
n

aatf












                                       (1) 



14 

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 4, No. 1, April 2018. 
 

 where 
2/

2/
)

2
cos()(

2 T

Tn dt
T

nt
tf

T
a


,  

2/

2/
)

2
sin()(

2 T

Tn dt
T

nt
tf

T
b


. 

The relationship above can be simplified as shown in (2) 

)
2

exp()(
T

nt
ictf

n
n


 





                                                                 (2) 

where 
2/

2/
)

2
exp()(

1 T

Tn dt
T

nt
itf

T
c


, such that 00

2

1
ac  , )(

2

1
nnn ibac   and )(

2

1
nnn ibac  . 

In order to use Fourier transform with discrete input data such as the data available in digital videos 

and images, integrals are replaced by sums, T is replaced by N, )(tf  changes to nx  and nc  is replaced 

by nX , which represents the Digital Fourier Transform shown in (3) and its inverse shown in (4). The 

DFT reveals periodicities in input data as well as the relative strengths of any periodic components 

[32]. 
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Using (3), the N input samples (pixels) in a given block are converted into N frequency samples. The 

DFT is a coefficient matrix multiplication as shown in (5).  
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The above calculation is of order 2N . In order to reduce the DFT complexity, a number of researchers 

investigated the use of different patterns in nkW . Amongst those approaches, the Fast Fourier 

Transform or FFT is proposed as a computational method in the order of NN log . In this research, the 

Cooley–Tukey algorithm is used, as it is the most common FFT algorithm available in this domain 

[32] to transform the video frames with different block sizes at different levels of the two-level 

hierarchy. Moreover, only part of the frequencies is considered in the block matching criterion to get 

the best match as will be demonstrated in the next section. 

4. THE PROPOSED HIERARCHICAL SEARCH ALGORITHM 

Hierarchical block matching algorithms normally start the search process with small blocks and use 

their motion vectors as starting points to search for larger blocks in next hierarchies (the selected block 

sizes at each hierarchy affect the reliability of the produced motion vectors, where large blocks result 

in local minima.). Generally, in the spatial domain, three level hierarchical searches are used, as the 

data in its original form (pixel domain) is highly correlated. However, given the fact that data in the 

frequency domain is decorrelated, this facilitates the reduction of hierarchical levels needed to perform 

the matching process. Therefore, in this research, a two-level hierarchy in the frequency domain is 

used and proven to be sufficient. The proposed algorithm contains well-known algorithms in each 

level of the hierarchy with a new matching criterion (described in section 4.1.1) to be used at each 

level. The steps of the proposed algorithm are summarized in Algorithm-1 and visually represented in 

Figure 2. 

4.1 The Proposed Matching Criterion 

In order to compare algorithms in this domain, the standard Sum of Absolute Differences (SAD) 

shown in (6) is applied over all the possible searching positions.  
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Algorithm-1 

Step 1: sub-sampling level-1 (the lowest level that consists of the video frame at its full resolution) 

by a factor of 2 in vertical and horizontal directions to produce level-2. 

Step 2: transforming the frames at level-1 and level-2 into the frequency domain using the FFT 

with 44  block size at level-2 and 88  at level-1.  

Step 3: the search process starts from level-2 with 44  block sizes, with the TSS search algorithm 

(described in section 4.1.2) to get a coarse motion vector that will be passed to level-1, based on 

the proposed matching criterion described in section 4.1. 

Step 4: the two-dimensional logarithmic search algorithm (described in section 4.1.3) with 88  

block sizes is applied, based on the proposed matching criterion described in section 4.1. 

in order to get the final motion vector. 

Step 5: the resulting motion vectors from step-4 are added to the previous image in order to obtain 

the next predicted image frame. 

 

 

 

Figure 2. The proposed hierarchical search algorithm. 

where ),( yxfA t    is the block location coordinates, ),(   is the current block coordinates at 

the reference frame, ),(1 ynxmfB t    is defined as the candidate block in the 

previous frame within the window size WnmW  , . The performance of the algorithm is highly 

dependent on the matching criterion. However, when applying the matching criterion in the spatial 

domain, the number of required computations cannot be reduced, as this will directly affect the 

matching results, since frame pixels are highly correlated. Therefore, in the frequency domain (where 

frame data is highly decorrelated), reducing the number of required computations is more appropriate.  

In full-search algorithms, ),( nmSAD is computed at all 2)12( W  block positions within the search 

window. This results in a huge number of subtractions, additions and comparisons for each reference 

block. This massive number of computations can be reduced with fast search motion estimation 

techniques, where comparison criterion shown in (6) can be effectively reduced for search location.  

The FFT produces frequency coefficients arranged in a pattern where the corners of coefficients block 

contain the lowest frequencies that describe the general vertical and horizontal information in the pixel 

block. However, the rest of the coefficients in the block include high frequencies that describe vertical 

and horizontal details in the pixel block.  In this research, the coefficients at the four corners of the 

transformed block are only considered in the SAD matching criterion. Therefore, the total number of 

computations is reduced to a constant of 4 subtractions and 4 additions for each candidate block at 

each search position, instead of 2N  operations required by other algorithms in the spatial domain. 
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Information in these parts of the block is adequate to distinguish the desired block from the rest of the 

surrounding blocks as can be seen later in the experimental results section. 

4.2 The TSS Algorithm 

The steps of the TSS algorithm are applied at level-1 of the hierarchy in both of the current and 

previous frames as shown in Algorithm-2.  

Algorithm-2 

Step 1: Set the window size (W) to 12 N , where 2N  (N= number of levels in the hierarchical 

search). 

Step 2:  Set the step size (S) to N2 size, where 2N . 

Step 3: Start with search location at the center and apply the following: 

a) The eight locations at +/- S around location (0, 0) are to be searched and the one with the 

minimum SAD is selected based on the matching criterion described in section 4.1. 

b) The search origin is set to the above selected location and the step size is reduced by a 

factor of 2 

c) The search repeats until S = 1 and the location with minimum SAD is considered as the 

best match in level-1. 

     Step 4: Pass the obtained coarse motion vector to level-2.  

In the TSS algorithm, the total number of computations is reduced when compared to the full search 

algorithm by a factor of 9. Instead of evaluating 225 blocks, the TSS only evaluates 25 blocks. 

4.3 The Two-Dimensional Logarithmic Search Algorithm 

The two-dimensional logarithmic search algorithm is closely related to the three-step search algorithm. 

This algorithm requires more steps than the three-step search; however, it has a better accuracy. The 

two-dimensional logarithmic search algorithm is described in Algorithm-3: 

Algorithm-3 

Step 1: Set the window size to 14 N , 2N  (N= number of levels in the hierarchical search). 

Step 2:  Set the step size to N4 , where 2N .  

Step 3: Start with search location at the center and apply the following: 

a) Search the 4 locations at S distance from the center on the vertical and horizontal 
directions. 

b) Amongst the searched locations, select the one with minimum SAD based on the matching 
criterion described in section 4.1. 

c) If a point other than center has the minimum SAD, then this point is considered as the new 
center. 

d) Repeat steps b and c 

e) If the minimum SAD is given by the center point, then set S = S/2. 

f) If S = 1, search the eight locations surrounding the center at S distance. 

g) Set the motion vector as the point with the minimum SAD. 

 

The resulting motion vectors from this step will be added to the previous frame in order to obtain the 

next predicted image frame. The TDLS algorithm is related to the TSS algorithm; however, it is used 
for a large search window size. 
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5. EXPERIMENTAL RESULTS AND DISCUSSION 

In order to test the efficiency of the proposed methods, two sets of standard testing videos are used in 

this research (shown in Table 1 and Table 2). The first set comprises a total of six standard videos of 

type CIF with an aspect ratio of 4:3. The CIF (Common Interchange Format) is a video format initially 

proposed in the H.261 standard. This video format is used to standardize the horizontal and vertical 

resolutions of YCbCr sequences in video signals. This type of video is used in standard video 

teleconferencing systems. CIF defines a video sequence with a resolution of 352 × 288 and a frame 

rate of 30 frames per second with color encoding using the YCbCr 4:2:0 standard, where the selected 

video sequences consist of 300 frames in each sequence. The second set of videos comprises a total of 

3 High Definition (HD) videos (1080p) with an aspect ratio of 16:9 and color encoding using the 

YCbCr 4:4:4 standard, where the selected video sequences consist of 500 frames in each sequence. 

The selected videos from both sets are well-known standard videos that are used to test the efficiency 

and compare the work with other benchmark algorithms. These video sequences from both sets are 

selected with increasing motion complexity ranging from slow to high motion complexity. More than 

3300 video frames from the different sequences were used in the experiments and are listed in Table 1 

and Table 2. The well-known PSNR is used to evaluate the proposed motion estimation algorithm 

performance. The )/(log10 2
10 MSELPSNR  , where L represents the range of pixel values. The Mean 

Square Error comparison criterion measures the similarity between the frame pixels and is measured 

as follows:  


N

i ii yxNMSE
1

2)(/1 , where N represents the number of pixels inside the frame, ii yx ,  

represent the pixel value inside the original and predicted frames, respectively. High PSNR values 

indicate better quality. A PSNR result above 30dB means that changes caused by compression 

algorithms cannot be visually recognized.  

Applying the PSNR between the original and reconstructed frames measures the efficiency of the 

proposed work. Therefore, Table 1 compares the obtained PSNR values of the proposed algorithm 

with those from other state-of-the-art algorithms in this domain using videos from the first set. Figure 

3 and Figure 4 visually represent the results in Table 1. Table 2 shows and compares the PSNR results 

of the proposed work with those of state-of the-art algorithms using HD videos (1080p) in the second 

set. Using the first set of test videos (CIF), and as can be seen in Table 1, the proposed work 

outperforms the standard three-step search [13], two-dimensional logarithmic search [10] and the 

diamond search algorithm [23] with 22%, 28% and 23% average enhancement, respectively. 

Moreover, when compared to the well-know KSHS algorithm [20], ETSS [12], CDMHS [14] and 

FHFS [30], the proposed algorithm outperforms those algorithms with 12%, 16%, 7% and 2%, 

respectively.   

Using the HD (1080p) videos set, the proposed work outperforms the standard three-step search [13], 

two-dimensional logarithmic search [10] and the diamond search algorithm [23] with 12%, 26% and 

24% average enhancement, respectively. Moreover, when compared to the well-know KSHS 

algorithm [20], ETSS [12], CDMHS [14] and FHFS [30], the proposed algorithm outperforms those 

algorithms with 11%, 10%, 9% and 5%, respectively.  Figure 5 provides a visual representation of the 

average PSNR values shown in Table 1 and Table 2 and represents the results of the proposed 

algorithm compared to the rest of the state-of-the-art algorithms when applied to HD (1080p) high-

resolution videos and normal CIF standard videos. Figure 6 shows samples of the reconstructed frames 

from the HD (1080p) videos listed in set 2. Figure 7, Figure 8 and Figure 9 provide samples of the 

reconstructed frames listed in set 1 that contains the standard CIF well-known videos. 

The complexity of the proposed work is compared against the benchmark block-based motion 

estimation algorithms. Let w be the search window size, N  represents the block size (hierarchy-based 

algorithms use various block sizes at each level of the hierarchy), the full search algorithm requires 

)12()12( 22  Nw  additions and 22)12( Nw   absolute differences, a. The cross diamond modified 

hierarchical search requires )12()12( 22  Nw  additions at level-1, )12(8 2  N additions at level-2 

and )12(23 2  N  additions at level-3; in addition to 22)12( Nw   absolute differences at level-1, 
28 N  and 28 N at level-2 and level-3, respectively. The Kalman simplified hierarchical search 

requires )12()12( 22  Nw , )12(8 2  N  and )12(8 2  N  at level-1, level-2 and level-3, 
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respectively. In terms of the number of absolute differences, the algorithm requires 22)12( Nw  , 

28 N  and 28 N at each level, respectively. The proposed algorithm requires )1)2/((15 2  N  and 

)1)2/((23 2  N  additions at level-1 and level-2, respectively and )4/(8 2N , )4/(23 2N  

comparisons at both levels. Using an appropriately sized search window ( w ( and an appropriate block 

size ( N ) for each algorithm, the proposed algorithm requires less than 1% of the total number of 

additions and the total number of absolute differences compared to the full search algorithm. When 

compared to the rest of the algorithms, the algorithm requires less than 5% of the total complexity 

required by the cross-diamond modified hierarchical search algorithm and less than 15% of the total 

complexity required by the Kalman simplified hierarchical search. This complexity reduction can be 

attributed to the substantial reduction in the total number of operations required in the proposed 

matching criterion.  

Generally, in order to evaluate the use of motion estimation algorithms in the frequency domain, a 

performance comparison is conducted that evaluates the standard full search algorithm when applied 

in both pixel and frequency domains. Table 3 presents the resulted PSNR values of the full search 

algorithm implemented in both domains based on the standard set of HD (1080p) test videos (first 50 

frames of each video are included in the test). As shown in this table (Table 3), the resulting average 

PSNR in the frequency domain is slightly better than that in the pixel domain. This small enhancement 

does not cover the cost of the extra complexity caused by the transformation process. However, it can 

achieve far better results (in terms of complexity reduction) when accompanied with proper search and 

matching techniques.      

The direct implementation of Discrete Fourier Transform (DFT) requires )( 2NO operations. However, 

when using Fast Fourier Transform (FFT), this can be reduced to ))log(( NNO , resulting in a 

substantial difference in the tractability of the DFT. The fact that the transition between the domains 

can be computed efficiently allows for more efficient implementations of the DFT. 

Table 1. The resulting PSNR values of the proposed algorithm and the rest of the standard algorithms 

when applied to the standard set of CIF test video sequences from set-1. 

Standard Videos       

(CIF 352x288) 

TSS 

[13] 

2DLS 

[10] 

DS 

[23] 

KSHS 

[2] 

ETSS 

[12] 

CDMHS 

[14] 

FHFS 

[30] 
Proposed 

work 

Akiyo 31.9 29.5 30.8 34.2 32.6 36.3 35.2 36.4 

Mother and Daughter 32.0 30.8 31.7 34.7 31.2 36.2 37.5 36.5 

News 30.2 29.4 30.2 33.9 32.6 34.3 36.2 37.2 

Hall 30.9 28.8 30.0 32.4 32.9 33.8 35.9 37.7 

Flower Garden 28.3 28.0 29.2 30.8 30.5 32.4 36.1 36.8 

Football 27.1 25.7 27.5 31.9 30.7 33.0 35.7 36.0 

Average PSNR 30.1 28.7 29.9 33.0 31.8 34.3 36.1 36.8 

Table 2. The resulting PSNR values of the proposed algorithm and the rest of the standard algorithms 

when applied to the standard set of HD test video sequences from set-2. 

Standard Videos HD 

(1080p) 

TSS 

[13] 

2DLS 

[10] 

DS 

[23] 

KSHS 

[2] 

ETSS 

[12] 

CDMHS 

[14] 

FHFS 

[30] 
Proposed 

work 

Park_Joy 42.8 39.1 39.8 40.5 43.2 43.4 42.1 43.8 

In-To-Tree  38.6 35.9 36.1 42.8 39.6 32.9 44.6 45.2 

Station 36.7 32.4 33.3 38.4 36.9 42.3 43.7 45.7 

Blue_Sky 41.2 34.7 35.2 39.0 42.2 45.2 40.4 44.1 

Average PSNR 39.8 35.5 36.1 40.2 40.1 41.0 42.7 44.7 
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Table 3. The PSNR values of the full search algorithm implemented in pixel and frequency domains 

based on the standard set of HD (1080p) test videos. 

Full Search Algorithm 

 Implementation  

Park_Joy In-To-Tree  Station Blue_Sky Average PSNR 

Pixel domain 45.19 47.78 46.31 46.46 46.44 

Frequency domain 46.24 46.93 45.70 47.81 46.67 

 

 
(a) 

 

 
(b) 

  

 
(c) 

 

 
(d) 

Figure 3. Visual representation that compares the proposed work with well-known algorithms as 

follows: (a) three-step search, (b) two-dimensional logarithmic search, (c) diamond search, (d) Kalman 

simplified hierarchical search. 

 

  
(a) (b) 
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(c) 

Figure 4.  Visual representation that compares the proposed work with well-known algorithms as 

follows: (a) enhanced three-step search, (b) cross diamond modified hierarchical search, (c) 

frequency-based fast hierarchical search. 

 
Figure 5. Visual representation of the average PSNR values shown in Table 1 and Table 2, that 

represents the results of the proposed algorithm compared to the rest of the state-of-the-art algorithms 

when applied to HD (1080p) high-resolution videos and normal CIF standard videos. 

 
 

 

  

Figure 6.  From top to bottom and from left to right, the reconstructed frames from "Park_Joy", "In-

To-Tree", "Station" and "Blue_Sky" video sequences. 
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Figure 7.  Sample of standard videos consisting of low motion activities, from left to right, 

reconstructed “Akiyo” and reconstructed “Mother and Daughter” video frames. 

  

Figure 8. Sample of standard videos consisting of moderate motion activities, from left to right, 

reconstructed “News” and reconstructed “Hall” video frames. 

  

Figure 9. Sample of standard videos consisting of high complex motion activities, from left to right, 

reconstructed “Flower Garden” and the reconstructed “Football” video, frames. 

6. CONCLUSIONS 

Digital videos consist of successive frames sampled over a period of time and carry high data 

redundancy. Digital video sizes can be massively reduced by eliminating redundant bits which can be 

achieved by proper compression methods. Various types of compression methods have been proposed 

in literature and during the last few years, many algorithms have been proposed to compress the 

massive amount of data available in digital videos while maintaining as much of the visual quality as 

possible. Motion estimation techniques based on block matching algorithms have been widely used for 

this purpose. In block matching techniques, each video frame is divided into blocks of similar sizes 

that contain frame pixels. Object movements successive video frames are searched and investigated on 
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block basis. In this work, block matching is applied in the frequency domain, where a group of 

carefully chosen frequencies that correctly identify each block distinctively is tested.  The algorithm 

proposed in this research has reduced the total number of required operations, significantly reducing 

the algorithm’s complexity. The proposed algorithm has been tested using standard test videos and has 

proven to outperform other state-of-the-art algorithms. Two sets of standard test videos were used in 

this work, the first set is comprised of the standard CIF videos and the other set is comprised of the 

standard HD (1080p) videos. Using the standard set of CIF videos, the proposed work outperforms the 

standard three-step search, two-dimensional logarithmic search and the diamond search algorithms 

with 22%, 28% and 23% average enhancement, respectively. Moreover, when compared to the well-

know Kalman simplified hierarchical search algorithm, the enhanced three-step search algorithm, the 

cross diamond modified hierarchical search and the frequency-based Hierarchical fast search, the 

proposed algorithm outperforms those algorithms with 12%, 16%, 7% and 2%, respectively.  

Moreover, using the standard HD (1080p) videos set, the proposed work outperforms the standard 

three-step search, two-dimensional logarithmic search and the diamond search algorithms with 12%, 

26% and 24% average enhancement, respectively. When compared to the well-know Kalman 

simplified hierarchical search algorithm, the enhanced three-step search algorithm, the cross diamond 

modified hierarchical search and the frequency-based hierarchical fast search, the proposed algorithm 

outperforms those algorithms with 11%, 10%, 9% and 5%, respectively. The complexity of the 

proposed work is compared against the benchmark block-based motion estimation algorithms. Results 

show that the proposed algorithm requires less than 1% of the total number of additions and the total 

number of absolute differences when compared to the full search algorithm. Moreover, when 

compared to the rest of the algorithms, the proposed work requires less than 5% of the total 

complexity required by the cross-diamond modified hierarchical search algorithm and less than 15% 

of the total complexity required by the Kalman simplified hierarchical search. 
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 ملخص البحث:

لىىىىى د ت ىىىىىد    م ع ىىىىى  علىىىىىغ  مىىىىىطور تىىىىى   م  ىىىىى      م ىىىىى   ىىىىى ، تىىىىىع   مىىىىىت دثت فىىىىى  تُىىىىىعد   

ىىىىىىىي    مالىىىىىىىدة  ععملىىىىىىىق  مُىىىىىىى قي  ممعاىىىىىىىق ً   ل ىىىىىىىع   مىىىىىىىيت   م  ل ىىىىىىى  تُىىىىىىىع   تا   ىىىىىىىع   طت ِّ ت 

عىىىىىىدق  مل  ىىىىىى ت ف ىىىىىىد عىىىىىىر  خ ىىىىىىط ا  م دةىىىىىىد تىىىىىى   مم    تلىىىىىىع   م ىىىىىى  ع ىىىىىىد   مىىىىىىغ  م  للىىىىىى  تىىىىىى 

 ىىىىىىد خىىىىىىلر اىىىىىى ط  ت للىىىىىىق وع ىىىىىى مط ععل  ىىىىىى  وكعنىىىىىىت  م  ىىىىىىع    . م مللىىىىىىع   مطةعمىىىىىىلق  مم ل ًىىىىىىق

م ىىىىق  ع  ىىىىطا قىىىىقق  م  خىىىىق  طة ىىىىق   م عجىىىىق  مىىىىغ دجىىىىط ن عىىىىدق ك لىىىىط تىىىى   م مللىىىىع   م  ىىىىعًلقت

ت  نتىىىىىىق قطتلىىىىىىق ع ىىىىىى   ن ىىىىىى   مالىىىىىىدة قع  ععملىىىىىىق  م اعاىىىىىىل  ًعمم ع نىىىىىىق تىىىىىى   ىىىىىىط    ع ىىىىىىعد 

 م  ىىىىىىى   م ىىىىىىىطقق   د   مم لع ةىىىىىىىقت و مُىىىىىىىدةط ًعمىىىىىىىقكط حة   مم    تلىىىىىىىق  مم  ط ىىىىىىىق ت  لىىىىىىىق علىىىىىىىغ 

عا ىىىىىىا  مم    تلىىىىىىق  م جىىىىىىعً ع  ًىىىىىىل  تُم عىىىىىىق فطعلىىىىىىق تم ىىىىىىع ي تىىىىىى   م ىىىىىىطقق  ، تمىىىىىىع ة لىىىىىى  

 مىىىىىغ  ىىىىىد ك لىىىىىط تىىىىى   م ىىىىىدق  متلىىىىى  تىىىىى   مم ع نىىىىىع  و م  ىىىىىعًع   مطةعمىىىىىلق   جمعملىىىىىق  مم ل ًىىىىىق 
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