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ABSTRACT 

This paper aims to describe the design and implementation of an Unmanned Ground Vehicle (UGV) and a smart 

phone virtual reality (VR) head mounted display (HMD) which enables visual situation awareness by giving the 

operator the feel of "head on rover" while sending the video feeds to separate operator computer for object 

detection and 3-D model creation of the UGV surrounding objects. The main contribution of this paper is of 

three folds: (i) the novel design of the HMD; the paper proposes an alternative design to the 3-D interface 

designs recently used in tele-operated search and rescue (SAR) UGVs. Unlike other designs that suggest to 

automatically move the whole UGV about two axes (pitch and yaw) with the movement of the head, this design 

suggests to let a separate unit of the UGV automatically move with the movement of the head and provide the 

user with VR. (ii) the distributed feature; the design allows multiple users to connect to the UGV using a 

wireless link in a secure way to receive video feeds from three on-board cameras. This feature facilitates 

cooperative team work in urban search and rescue (USAR) applications (a contemporary research issue in SAR 

UGV). (iii) a novel feature of the design is the simultaneous video feeds which are sent to the operator station 

computer for object detection using the scale-invariant feature transform (SIFT) algorithm and 3-D model 

construction of the UGV’s surrounding objects from 2-D images of these objects. The design was realized using 

a smart phone-based HMD, which captures head movements in real time using its inertial measurement unit 

(IMU) and transmits it to three motors mounted on a rover to provide the movement about three axes (pitch, yaw 

and roll). The operator controls the motors via the HMD or a gamepad. Three on-board cameras provide video 

feeds which are transmitted to the HMD and operator computer. A software performs object detection and 

builds a 3-D model from the captured 2-D images. The realistic design constraints were identified, then the 

hardware/software functions that meet the constraints were listed. The UGV was implemented in a laboratory 

environment. It was tested over soft and rough terrain. Results showed that the UGV has higher visual-

inspection capabilities compared to other existing SAR UGVs. Furthermore, it was found that the maximum 

speed of 3.3 m/s, six-wheel differential-drive chassis and spiked air-filled rubber tires of the rover gave it high 

manoeuvrability in open rough terrain compared to other SAR UGVs found in literature. The high visual 

inspection capabilities and relatively high speed of the UGV make it a good choice for planetary exploration 

and military reconnaissance. The three-motors and stereoscopic camera can be easily mounted as a separate 

unit on a chassis that uses different locomotion mechanism (e.g. leg type or tracked type) to extend the 

functionality of a SAR UGV. The design can be used in building disparity maps and in constructing 3-D models, 

or in real time face recognition, real time object detection and autonomous driving based on disparity maps. 
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1. INTRODUCTION 

In tele-operated SAR UGV, the visual perception of the UGV environment and its presentation to the 

operator has a deep impact on human-robot-interaction (HRI) awareness of the UGV environment [1]-

[2]. Many tele-operated SAR UGV designs rely on gathering as much data as possible from the UGV's 

surrounding via sensors and transferring this along with a video feed from an on-board camera to the 

operator's base station using wired and/or wireless communication links to enhance the cognitive 

ability of the UGV. [3]-[7]. The data is usually presented to the operator using a 2-D screen, hence 

only a proportion of the screen is used for video and the rest is used for displaying the data collected 

by the sensors in a user-friendly way. For example, in RAPOSA [8], only 29% of the total screen is 
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(a) Two cameras behind a barrier (b) After rotating by 60 degrees, one 

camera is on top of the barrier 

Figure 1. Two-camera design, where software rotation of images is not suitable. 

used for video display. In addition to that, in many designs, if the operator wants to visually inspect 

the environment from a different viewpoint, he/she has to move the whole UGV. Similarly, Adora [9] 

uses a sensor box with single camera all mounted on a movable arm. More screen area was dedicated 

for the video feed, but some is reserved for viewing data collected from sensors. It has been found that 

a dichotomy in this type of research projects exists: either concentrating on conducting research on 

UGV mobility in rough terrain or increasing the cognitive/intelligent behaviour of the robotic assets, 

but rarely on both research domains [10]. 

Some implementations of user interfaces mitigated the problem by having a command for hiding all 

the clutter in the interface, leaving simply a clear cut view from the UGV visual output. The point of 

this is to quickly reduce sensory overload during complex situations [1]. Other implementations 

adopted a 3-D interface, for example, an attempt was made to increase the visual perception in 

RAPOSA using a 3-D interface [11]. This interface design is based on an HMD equipped with a head 

tracker; the HMD displays the images from a pair of video cameras located in the UGV frontal body, 

where the video stream of each camera is displayed to each operator eye. Because these two video 

feeds pertain to two slightly different viewpoints, it is possible with image rectification to endow the 

operator with depth perception (stereopsis). The pitch angle is used to control the UGV frontal body 

up/down, the yaw angle is used to rotate the UGV and the roll angle is used to rotate the images (the 

HMD has to counter-rotate the images to compensate for head movement in this direction). The 

shortcoming of this approach in our opinion is of two folds: first, the HMD highly depends on the type 

of the UGV in use, and second, is the inability to compensate for head movement in the roll direction 

by software-rotating the images in case more than one camera is used. To illustrate the latter point, we 

consider the situation depicted in Figure 1. a, where two cameras are initially behind a barrier, then 

after rotating by 60 degrees as shown in Figure 1. b, one of the cameras is positioned on top of the 

barrier and thus can provide a different view. We therefore conclude that the software compensation 

approach in [11] is suitable for a single camera, but not for multiple-camera design. 

This paper proposes an alternative design to the 3-D interface designs recently used in tele-operated 

search and rescue (SAR) UGVs. Unlike other designs that suggest to automatically move the whole 

UGV about two axes (pitch and yaw) with the movement of the head, this design suggests to let a 

separate unit of the UGV automatically move with the movement of the head. A smart phone-based 

headset with VR capability captures head movements in real time using the built-in IMU in the smart 

phone and transmits it to three motors mounted on the same vertical axis on a six-wheel rover. The 

three motors are arranged to allow free movement about three axes (pitch, yaw and roll). The motors' 

vertical axis is equipped with a stereoscopic camera (i.e. two cameras separated by a distance) with 

the motors, constituting one separate unit, which captures video and transmits it in real time back to 

the headset. This gives the operator the flexibility to control the UGV view direction by just moving 

his/her head in the desired direction. We refer to this mode of operation as "automatic mode", in 

contrast to the "manual mode", where the operator can control the motors by a gamepad. The operator 

can switch between the two modes by pressing a button on the gamepad. A third camera in the 

midpoint between the two cameras is used to capture pictures on-demand by pressing a certain button 

on the gamepad. The resultant pictures are saved on an on-board SD-card and can be transmitted 

using a wireless connection to the operator's computer. Two special computer programs run on the 
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operator's computer: one is for object detection using the SIFT algorithm and the other is for 3-D 

model creation from the 2-D captured pictures of the UGV's surrounding objects. Further, the 

operator can control the six-wheel rover based on the visual feedback using a gamepad. The six-

wheel rover offers relatively high climbing capabilities and performes very well over soft and rough 

terrain. The design allows multiple users to connect to the UGV in a secure way and receive the video 

feed from the cameras which facilitate cooperative team work in USAR applications. 

The rest of the paper is divided as follows: the section "Design Requirements" describes the required 

specifications of the UGV; the section "Abridged Design" describes in a concise way the overall 

design; the section "Mechanical Design & Control" gives details about the hardware of the UGV, 

including the 3-axis rotating platform and chassis and how they are electrically controlled; the section 

"Stereoscopic Camera Set & Pi camera" describes the set-up of the cameras and their functions and 

means of communication with the operator station; the section "Data Processing Unit & Video 

Transmission" describes the hardware of the UGV's on-board processing unit and the software used 

to transmit the video to the operator station; the section "VR Headset" gives details about the HMD; 

whereas the section "Operator's Station" describes the operator station computer and the programs 

that run on it to handle the image processing; finally the section "Conclusion and Future Work" 

concludes the paper and gives an outline about future work. 

(a) Basic design concept                                                       (b) Main components   
 

  (c) Climbing                                                                      (d) On tough terrain 

Figure 2. The UGV. 

2. DESIGN REQUIREMENTS 

Our work aims to achieve a set of design requirements. A brief description of each design 

requirement is provided below: 

(i) Build an UGV able to hold a minimum weight of 3 kilograms: for a UGV to be able to carry heavy 

weights, its wheels and suspension systems need to be flexible enough so that they do not break if a 

heavy weight is applied on them. Also, the chassis needs to be rigid enough for not to break or bend 

due to heavy weight. 

(ii) Build a UGV that can move at an approximate speed of 4 m/s: to be able to achieve this  
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requiremet, the UGV motors need to have enough torque to rotate the wheels that carry the UGV body 

and the other components that are placed on the UGV. Also, the motors are required to rotate at an 

approximate speed of 4 m/s while a load is applied on their shafts. To achieve such a torque, high 

power motors with gear reduction ratio or motors that deliver high torque and decent rotation speed 

are needed. 

(iii) Build a 3-axis rotating platform that is able to rotate in the three Euler angles (Yaw, Pitch and 

Roll): the 3-axis rotating platform must have two cameras mounted on it to simulate human eyes and a 

third special purpose camera. The average total weight of cameras must be approximately 120 grams; 

high-precision motors must be used in order to rotate at a speed close to normal human-head rotating 

speed. 

(iv) Transmit video feed from the UGV to a smartphone, with a transmission delay less than 1 second: 

wireless transmission is to be used to transmit video to the head set and operator's station, fast 

transmission to the headset is crucial to maintain synchronization between head movement and video 

feed. This requires the use of a wireless link with high date rates, large bandwidth, low latency and 

low interference. 

(v) Operational radial distance from the operator's station is 50 meters: this requires a wireless link of 

low latency, high data rate and high signal power to operate efficiently over the required distance. 

(vi) Minimum UGV trip time of 15 minutes: this requirement depends totally on the power source, the 

power supply must deliver enough current and voltage to drive all of the on-board circuitry and motors 

for the required operational time. 

3. ABRIDGED DESIGN 

The developed system consists of three subsystems: the operator's station, the VR headset and the 

UGV, all connected via an access point as depicted in Figure 2. a. The operator's station consists of a 

laptop and a gamepad, while the VR headset consists of a smart phone. Each of these two subsystems 

runs different software capable of controlling two different parts of the UGV. The laptop software 

reads the control data from a gamepad; this data can be used to simultaneously drive the UGV and 

move the stereoscopic camera by moving three control motors which constitute a 3-axis rotating 

platform. The smart phone (VR headset) runs different software which tracks head motion using the 

smart phone's IMU and transmits it to the UGV to control the 3-axis rotating platform. The operator 

can seamlessly switch between the manual mode (using the gamepad) and the automatic mode (using 

VR headset) to control the 3-axis rotating platform. 

(a) Communication protocol overview                       (b) Assembly of the 3-axis rotating platform 

Figure 3. 3-axis rotating platform. 

Two video feeds are provided from the stereoscopic camera and Pi camera; the stereoscopic-camera 

video feed goes to the smart phone which in turn displays it to the operator using a VR software and to 

the operator's station for object detection, whereas the Pi camera video feed goes to the operator's 

station for 3-D model construction. The subsystems communicate using managed Wi-Fi (IEEE 802.11 

standards). Network programming using Python and Java programming languages was used to create 

transmission control protocol (TCP) connections between the operator's station and the UGV on one 
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side and between the VR-headset and the UGV on the other side. Figure 2. b shows the main 

components of the UGV and Figures 2. c and 2. d show the UGV in real test over tough terrain. 

4. MECHANICAL DESIGN & CONTROL 

4.1 3-AXIS ROTATING PLATFORM 

The 3-axis rotating platform is an essential part of the UGV; it mimics the human head movements. 

The platform was implemented using Dynamixel AX-12 actuator which consists of a gear reducer (to 

produce high torque), a high-precision DC motor and an internal controller for networking 

functionality. Table 1 shows the specifications of Dynamixel AX-12 actuator. 

Table 1. Dynamixel AX-12 actuator specifications.  
 

 Dynamixel AX-12 
  

Weight (g) 55 
Gear Reduction Ratio 1/254 
Input Voltage 7V or 10V 
Final Max Holding Torque (kgf.cm) 12 @7V and 16.5 @10V 
Sec/60 degree 0.269 @7V and 0.196 @10V 

  

The actuator has the ability to detect internal conditions, such as excessive voltage and internal 

temperature, using a built-in controller. Communication with the actuator is achieved by means of half 

duplex asynchronous serial communication channel, which uses only one wire for both transmitting 

and receiving the data. The size of a serial frame is 9-bits; 8-bits for data and one bit for parity. To 

control the Dynamixel actuator, a packet of bytes is sent through the half-duplex serial channel which 

contains the control command; this packet is called the "instruction packet". After the actuator's 

controller receives the packet, it performs the command the packet contains, afterwards, the actuator 

sends back a feedback packet called the "status packet", which contains either an error flag if an error 

occurred or data from the controllers’ registers. An overview of the communication protocol is  

 (a)Schematic diagram of the actuators, powering source of the USB2AX device and  

(b) Implementation of the 3-axis rotating platform with the stereoscopic camera mounted on it. 

Figure 4. Design and implementation of the 3-axis rotating platform. 

illustrated in Figure 3. a. In order to let the 3-axis rotating platform rotate in the three Euler rotation 

angles (Yaw, Pitch and Roll), the three Dynamixel AX-12 actuators were assembled as shown in 

Figure 3. b. Each actuator was given a unique ID which was written on the register of address 0x03 

using the broadcast ID instruction; this was separately done for each actuator. The format of the 

instruction packet is as follows: 

 0xFF     0xFF     ID     LENGTH     INSTRUCTION     PARAMETER 1   . . .    PARAMETER N     

CHECKSUM 
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- 0xFF: These two bytes indicate the beginning of an instruction packet. 

- ID: This byte contains the unique ID of a Dynamixel actuator in the network; there are only 254 

available ID values. 

A broadcast ID is the when transmitted ID value is equal to 0xFE, which means that any instruction 

packet with this ID gets transmitted to all actuators connected in the network, and the actuators do not 

return a status packet. 

- Length: This byte hold the length of packet; its value is calculated as (# of parameters + 2). 

- Instruction: This byte contains the instruction that the actuator is required to perform; it can hold one 

of these values. 

- Parameters: These bytes contain the parameters needed for the instruction (e.g.: Angle, Torque, ...). 

- Checksum: A Check Sum byte is added at the end of the instruction packet to insure integrity of data 

being delivered. The check sum value is calculated as follows. 

Checksum = ~[ID + Length + Instruction + Parameter1 + … + ParameterN] 

where  (~) represents the NOT logic operation. 

The instruction packet sent to each actuator was of the following format:  

0xFF     0xFF     0xFE     0x04     0x03     0x03     0x01     0xF6 

- 0xFF: These two bytes indicate the beginning of an instruction word. 

- 0xFE: This ID is the broadcast ID defined above and is used to send instruction packets to all the 

connected Dynamixel actuators in the network regardless of their ID values. 

- 0x04: This byte represents the length of the instruction packet (2 parameters + 2 = 4). 

- 0x03: This byte indicates a WRITE DATA instruction. 

- 0x03: This byte represents the first parameter which is the address of the wanted registers for this 

packet. In this case it is the ID register. 

- 0x01: This byte represents the second parameter which is the data to be written in the desired 

register (0x01, 0x02  and 0x03), respectively, for each actuator. 

- 0xF6: This byte represents the checksum for the instruction packet. 

(a) Chassis dimensions                                                    (b) Chassis dissemble view 

Figure 5. Six-wheel rover model. 

The on-board processing unit is a load-balancing cluster of two Raspberry Pi 3 model B: #1 Pi and #2 

Pi. The actuators are connected to #2 Pi using a half-duplex asynchronous USB-to-TTL module 

(Xevelabs mini USB2AX v3.2a). The schematic diagram of the connection is illustrated in Figure 4. 
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(a) and the implementation in Figure 4. (b). Since the processing unit has native support for Python, 

the library Pyax12 was used in conjunction with Python’s native socket library to continuously 

construct instruction packets and send them to the 3-Axis rotating platform actuators. 

The processing unit has two modes for operating the 3-axis rotating platform; VR-headset mode and 

manual mode, (i) VR-headset mode: The processing unit uses the data extracted from the movement of 

the operator's head in the operator's station to rotate the actuators accordingly; this mode is the default 

mode. (ii) Manual mode: The processing unit uses the data received from the gamepad at the 

operator's station to rotate the actuators accordingly. 

The processing unit initializes the serial port of the Xevelabs USB2AX device, with a baud rate of 1 

Mbps. Then, it sends an instruction word to all the actuators to set the compliance slope value to 0x92, 

in order to avoid damage to the actuator’s shafts due to continuous change in direction. The processing 

unit then initializes two network sockets: one for the VR mode and one for the manual mode. The 

sockets then listen for incoming connections. Once a connection has been established between the 

operator's station or VR headset and the UGV, the UGV processing unit begins receiving data (Yaw, 

Pitch and Roll values) via wireless link continuously as a stream of 12 bytes for each frame, then it 

reconstructs the Yaw, Pitch and Roll integer values using the native "struct" library, where each 

integer value consists of 4 bytes. Afterwards, the processing unit constructs an instruction packet for 

each of the Yaw, Pitch and Roll values and transmits each packet to its corresponding actuator on the 

3-axis platform. If the operator's station sends a switch mode command via the wireless link by 

pressing a certain button on the gamepad, the processing unit stops constructing instruction packets 

from the Yaw, Pitch and Roll values and starts using the data coming from the gamepad of the 

operator's station instead. Sending another switch mode command toggles the operation mode again. 

The 3-axis rotation platform is powered by the main power source of the UGV, which is a LiPo 

battery. The LiPo battery has a full-charge voltage of 13.4 volts. This voltage cannot be directly 

connected to the actuators because the operational voltage range of the actuators is 7-12 volts; 

therefore, a variable-voltage regulator was used to regulate the voltage of the LiPo battery to 10.5 volts 

so that the actuators can operate properly. 

4.2 UGV Chassis 

The locomotion mechanism used in the UGV is enhanced wheel type; particularly, a six-wheel driven 

rover with a differential-drive chassis. Vehicle-turning is accomplished by driving the motors on the 

two sides of the platform at different directions and speeds. For example, to rotate the rover around 

itself in counter-clockwise direction, the right-side tires should be moved clockwise and the left-side 

tires should be moved counter-clockwise. The wheels are spiked-rubber tires filled with air. The rover 

is "6-Wheels Wild Thumper", from Pololu [12]; the driving motors included in the chassis have a gear 

reduction ratio of 34:1, which provides the required speed and torque. Also, every two opposing tires 

are connected with a unique "super-twist" suspension system which gives the rover climbing 

capability. Figure 5. (a) shows the rover’s dimensions and Figure 5. (b) shows a disassemble view of 

its 3-D model. The main specifications of the rover are listed in Table 2. 

We added six DC motors; three motors on each side controlled by two H-bridge module, one for each 

side. The rover's controller (an Arduino UNO board) is connected to # 2 Pi by an USB-to-TTL module 

(CH340G). The Arduino UNO board is programmed to receive two bytes from #2 Pi each time the 

operator moves the joystick of the gamepad; the first byte defines the direction of the rover's 

movement according to Table 3, where the second byte defines the speed of the rover's movement 

which is a value from 0 to 9; a value of 0 means the rover is stopped and a value of 9 means that 

highest speed in the specified direction. Speed data is dictated to the board from # 2 Pi; accordingly, 

the board controls the speed of the motors using Pulse Width Modulation (PWM); that is, by adjusting 

the duty cycle. 

The Arduino UNO board first initializes serial communication port with a baud rate of 9600 bits per 

second, then initializes the PWM duty cycle of all motors to zero. Once data is available on the serial 

communication channel, the Arduino reads two bytes. Then, the Arduino starts increasing/decreasing 

the PWM duty cycle factor with value of one each three milliseconds. In this way, the Arduino UNO 

keeps the motors safe from current spikes and instant torque on the gearbox of the motors shaft. 
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 Table 2. UGV rover specifications. 

  Size 420 x 300 x 130 mm (16.5" x 12" x 5"). 
Weight 2.7 kg (6.0 lb) (including wheels and motors only). 
Max. payload 5 kg (11 lb). 
Motor voltage 2 -- 7.5 V. 
Stall current 6.6 A per motor. 
No-load current 420 mA per motor. 
No-load speed 350 RPM for the 34:1 gear reduction motors. 
Stall torque at 7.2V 5 kg-cm (70 oz-in) per motor for the 34:1 gear reduction motors. 

  

 

Table 3. Bytes sent to the rover's microcontroller. 

First byte Corresponding direction 
  

0x00 Forward 
0x01 Backward 
0x02 Left 
0x03 Right 

  

Two H-bridge modules (two IBT-2 H-bridge modules each having two In neon BTS7960B half 

bridges) were used; each H-bridge controls three wheels on the same side. The module has a large heat 

sink and can withstand currents up to 43 amperes, with a maximum drive voltage of 27 volts. The 

module also has a built-in voltage regulator that provides 5 volts for the user to use in other 

applications. However, since the motors require 7.2 volts to operate, a DC-DC voltage step down 

converter was used to convert the battery's 12.4 volts (full-charge voltage) to 7.2 volts. 

5. STEREOSCOPIC CAMERA SET & PI CAMERA 
 

(a) Stereoscopic camera model, (b) Actual developed design of the stereoscopic camera set 

Figure 6. Stereoscopic camera. 

Two types of camera were used: a stereoscopic camera (Genius F100 widecam 12-megapixel sensor) 

and a Pi camera. The former is used to get video feed of the UGV point of view (POV), while the 

latter is used to take high-resolution pictures used to build a 3-D model of the rover's surrounding 

objects.  

The stereoscopic camera set consists of two cameras aligned horizontally and separated by a distance 

of 10.5 cm measured from the centre of each lens as shown in Figure 6. (a). The distance between 

human eyes is usually referred to as the "Pupillary Distance"; the average value of this distance is 6.5 

cm. However, larger distance results in more depth that can be felt when using the VR application. 

The stereoscopic camera is mounted on a "Plexiglass" plate that has a thickness of 4 mm, a length of 

15.5 cm and a width of 5.5 cm. The plexiglass plate is mounted on the 3-axis rotating platform as 

depicted in Figure 6. (b). The plexiglass plate can be seen underneath the cameras. The two cameras 

were chosen mainly for their wide-angle lens, high-resolution and manual focus lens. These three 

specifications are crucial for any VR application. Table 4 lists the specifications of the cameras. Serial 

communication is achieved via a USB-2 cable connected to # 1 Pi. 

The UGV is equipped with additional camera (Pi Camera Module v2 based on Sony IMX219 8-

megapixel sensor); this camera is located at the mid-point between the two other cameras (see Figure 
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Table 4. Stereoscopic camera specifications. 

 
 Genius F100 WideCam 
  

Image sensor 1080p full HD pixel CMOS 
Focus type Manual focus lens 
Interface type USB-2 
View angle 120 degrees 
Body weight (g) 82 

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

            (a) Network set-up                                               (b) Raspberry Pi boards’ cluster set-up 

Figure 7. Network & cluster set-up. 

2. (b)) and connected to #1 Pi using the on-board 15-pin camera serial interface (CSI-2). The camera 

is activated in the manual mode and is used to capture pictures for the purpose of creating a 3-D model 

of the UGV surrounding objects. The Python script which controls the 3-axis rotating platform is also 

used to capture the pictures using the Pi Camera. This is done when the operator presses the manual 

mode button on the gamepad then presses the capture button on the gamepad. If the operator did so, 

each captured picture is saved as an image le in a folder stored in an on-board storage SD card on #1 

Pi board. To retrieve the captured images, a secure le transfer protocol (SFTP) server was created on 

#1 Pi board, where the operator can access this SFTP server by using an SFTP client software on the 

operator-station laptop. After the operator accesses the SFTP server, he/she can copy the images to the 

operator-station laptop and pass the images to dedicated software (RealityCapture) to process the 

images and create a 3-D model of the UGV surrounding objects. It is worth to emphasise that each 

camera has a separate TCP connection to the operator's laptop. that is, the stereoscopic camera has a 

dedicated connection to TCP port number “41222” at the laptop, while the Pi camera connects to TCP 

port number 22 (SFTP).  Two feeds from the stereoscopic camera are sent to the HMD; one per eye. 

There are lenses which are placed between the operator’s eyes and the screen of the smart phone.  

These lenses focus and reshape the image for each eye and create a stereoscopic 3D image by angling 

the two 2D images to mimic how each of the operator’s two eyes views the UGV surrounding. 

6. DATA PROCESSING UNIT & VIDEO TRANSMISSION 

The data processing unit consists of a cluster of two Raspberry Pi 3 model B boards connected back-to 

-back using a tethered Ethernet link. As shown in Figure 7. (b), a number of devices are attached to the 

two boards: 

1. USB-to-TTL device, which communicates with the UGV chassis microcontroller. 

2. USB-to-TTL device, which communicates with the internal microcontrollers of each motor in the 

3-axis rotating platform. 

3. USB cable of the stereoscopic camera set. 

4. USB Wi-Fi dongle, which connects #1 Pi board to the access point. 

5. The Ethernet cable, which connects the Pi boards together. 
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For a general overview of the network set-up, a network diagram was drawn in Figure 7. (a) to aid 

the illustration in this section. The #1 Pi board was programmed using Java programming language 

and utilizing OpenCV library to transmit two video feeds; one from the stereoscopic camera to the 

VR headset and another from the Pi camera to the operator-station laptop.  In video transmission, 

we can tolerate a certain amount of packet loss for low delays, that is no need for retransmission 

which increases delay. For this reason, UDP or RTP (unreliable data transfer) are usually used 

instead of TCP (reliable data transfer) when transmitting audio and/or video. Delay and jitter are the 

important factors when transmitting audio/video. However, in our case we used an optimised 

version of TCP congestion control algorithm (TCP-BBR [21]) that has low latency, yet insures 

reliable data transfer. TCP was used as a transmission protocol for reliable data transfer of both 

control commands – where reliable data transfer is necessary – and video. Inthis way, one 

connection and one protocol were used for data transfer. Figure 8 shows a flowchart of the main 

thread which runs on the #1 Pi. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Flowchart of the main thread which runs on #1 Pi. 

The main thread starts another two threads: the "client's handler" thread and the frames’ "capturing 

thread". Another thread called the "video transmission thread", however, is started by the client's 

handler thread. When the main thread starts, it creates data containers for the compressed cameras' 

frames, then it starts the capturing thread and the client's handler thread. Finally, it stays in wait mode 

until the program is terminated. 

When the capturing thread starts, it loads the OpenCV library, then it initializes the stereoscopic 

camera set by setting the resolution of the camera frames to 640x480 pixels. This resolution is 

relatively low and provides the required frame rate. To illustrate, the Raspberry Pi CPU, can process a 

maximum of 15 frames/second at this resolution. At higher resolutions, the frame-processing rate 

drops drastically. After initialization, the CPU starts receiving frames from the stereoscopic camera 

set. Eeach time it receives a frame, it checks the size of the frame, then it compresses the captured 

frame using JPEG lossy compression with a compression factor of 78%. Incorrect frame size results in 

the frame being dropped. Figure 9. a shows the flowchart of this thread. 

The client’s handler thread runs concurrently with the capturing thread, yet the CPU time is shared 

between the two threads. The client’s handler thread is responsible for initializing a server on the #1 

Pi, which accepts connections from the VR headset and the operator's station. The flow chart of the 

thread is shown in Figure 9. b. When the thread starts, it initializes a server socket and binds it to port 

number "41222", then it keeps listening on this port for incoming connections from the VR headset 

and/or the operator's laptop. Any new connection is passed to the video transmission thread. It is worth 

noting that the design can allow multiple VR headsets or operator laptops to connect and receive video 

feeds from the cameras, which facilitates cooperative team work in SAR operations. 

The video transmission thread transmits the compressed frames by first checking whether the 

compressed frame's container is accessible; that is because the container is also accessible by the 

capturing thread and it cannot be accessed simultaneously by two threads. If the container is 

accessible, the thread further checks whether the container is empty or not. In case it is empty, no data 
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is sent. On the other hand, if the container is not empty, the thread writes the frame's bytes on the 

socket output stream. The #2 Pi board was programmed to deliver commands to all on-board 

microcontrollers through the USB-to-TTL serial interfaces. 

7. VR HEADSET 

The VR headset consists of two parts: the VR glasses (Arealer virtual reality glasses headset) and the 

smart mobile phone (Samsung S7 edge). The smart phone is used to receive video feed from the UGV 

stereoscopic camera and view it on a vertically split screen. The VR glasses use two lenses to correct 

the light angle that comes out of the smart phone screen which is placed inside the VR glasses as 

shown in Figure 10. a. This gives the operator a 3-D view. 

The smart mobile phone runs a software which traces the user head movement based on the angles' 

data gathered from the built-in IMU. This data is then transmitted to the UGV. The same software is 

also responsible for receiving and displaying video feed from the stereoscopic camera. The two main 

parts of this software are discussed in the following sub-sections. 

7.1 Head-Movement Tracking & Transmitting Thread 

The software which runs on the smart phone runs a head-movement tracking thread which captures the 

Yaw, Pitch and Roll rotation angles of the smart phone using the data gathered from the 

Accelerometer and Geomagnetic Field Sensor of the smart phone's IMU. The data of the three angles 

is then transmitted to the UGV's #1 Pi board which in turn sends it to #2 Pi board. We adhere to the 

following definitions of the three rotation angles (we refer the reader to Figure 10.b for the orientation 

of the axes): 

(i) Yaw (degrees of rotation about the z-axis): "This is the angle between the device's current 

compass direction and magnetic north. If the top edge of the device faces magnetic north, the 

azimuth is 0 degrees; if the top edge faces south, the azimuth is 180 degrees. Similarly, if the top 

edge faces east, the azimuth is 90 degrees and if the top edge faces west, the azimuth is 270 

degrees". 

(ii) Pitch (degrees of rotation about the x-axis): "This is the angle between a plane parallel to the 

device's screen and a plane parallel to the ground. If you hold the device parallel to the ground 

with the bottom edge closest to you and tilt the top edge of the device toward the ground, the 

pitch angle becomes positive. Tilting in the opposite direction and moving the top edge of the 

device away from the ground causes the pitch angle to become negative. The range of values is -

180 degrees to 180 degrees". 

(iii) Roll (degrees of rotation about the y-axis): "This is the angle between a plane perpendicular 

to the device's screen and a plane perpendicular to the ground. If you hold the device parallel to 

the ground with the bottom edge closest to you and tilt the left edge of the device toward the 

ground, the roll angle becomes positive. Tilting in the opposite direction and moving the right 

edge of the device toward the ground causes the roll angle to become negative. The range of 

values is -90 degrees to 90 degrees". 

The android development environment has a native hardware support library for the IMU, which 

contains a number of classes: Sensor, Sensor Event, Sensor Event Listener and Sensor Manager. The 

thread is based on these classes: 

(i) Sensor: this class is used to register the sensors in the device. It should be noted that not all 

android devices contain the same sensors and features. 

(ii) Sensor Event: this class represents a Sensor event and holds information such as the sensor's 

type, accuracy and of course the sensor's data. 

(iii) Sensor Event Listener: this class is used for receiving notifications from the Sensor Manager 

when there is new sensor data. 

(iv) Sensor Manager: this class allows access to the device's sensors. Initializing an instance of 

this class is done by calling Context.getSystemService() with the argument SENSOR_SERVICE. 
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(a) Capturing thread                                                             (b) Client’s handler thread 

Figure 9. Flowcharts of threads. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) VR head mounted display                                       (b) Axes orientation of the smart phone 

Figure 10. VR Headset. 

The flowchart of the thread is depicted in Figure 11. When the thread starts, it initializes an instance of 

type "Sensor Manager" in order to register the sensors which the thread wants to use. In our case, 

these are the Accelerometer and Geomagnetic Field Sensors. A method (onSensroChanged()) is called 

each time the sensors' values change to pass the new values to the getRotationMatrix() method, which 
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in turn computes the inclination matrix and the rotation matrix, transforming a vector from the device 

coordinate system to the world's coordinate system (direct orthonormal basis). The rotation matrix is 

then passed to another method (getOrientation()) to compute and return the three rotation angles 

(Yaw,Pitch and Roll angles) according to the mathematical formulae described in [13]. Once the 

angles are obtained, they are parsed into three integers which are then sent to the UGV #2 Pi board via 

#1 Pi board to rotate the 3-axis rotation platform accordingly. 

7.2 Headset Video Receiver Thread 

Another thread was developed to handle the video feed from the stereoscopic camera. Initially, the 

software asks the operator to enter the internet protocol (IP) addresses of the Pi boards (see Figure 

12.a), subsequently control is moved to the video feed receiver thread to create a socket and establish 

a connection with the #1 Pi board. Afterwards, the headset starts receiving video feed and transmitting 

the head movement data. Figure 12.b illustrates the flowchart of the thread. Once the operator taps the 

connect button on the smart phone, the application starts a new activity that projects the received 

video feed in a vertically split screen, where each portion of the screen shows a different camera feed 

in full screen mode, then two threads are started; a thread that receives the data from the UGV and 

projects it on the screen, and another thread (discussed in the previous sub-section) which tracks the 

head movement and transmits it to the UGV. 

The video feed receiver thread creates a client socket and establishes a connection to the UGV (#1 Pi) 

using TCP protocol. The thread then starts reading the transmitted frames from the socket's input 

stream: a frame of the right camera, then a second frame of the left camera, and so forth. The frames 

are then decompressed and displayed on the smart phone screen using Android ImageView class. 

8. OPERATOR’S STATION 

The operator's station consists of one processing unit and a laptop computer (Lenovo Y700, Core i7 

6700HQ CPU, 16GB RAM, 1TB HDD). This unit is responsible for two operations: First, reading 

control data from the gamepad – which is attached to the laptop – and transmitting it to #2 Pi via #1 

Pi. Second, receiving video feed from the Pi camera and performing the required image processing 

for: object detection using the SIFT algorithm [14] and 3-D model construction using RealityCapture 

software. 

8.1 SIFT Algorithm 

The SIFT algorithm extracts distinctive key points from images that can be used to match images of 

the same objects, but with different viewpoints. The algorithm is invariant to scaling and rotation and 

very robust for matching over affine changes, change in 3D viewpoint, noise and illumination.  The 

extracted key points can be used for object recognition, in fact, it has been shown [14] that the 

algorithm is capable of robustly identifying objects among clutter and occlusion in near real-time. We 

give a brief overview of the SIFT algorithm steps below.  

(i) Scale-space Extrema Detection 

A corner may not be a corner if the image is scaled. To illustrate; in the image in Diagram – 1, a curve 

in the left image within a small window is linear when it is zoomed in the same window. It is 

therefore, obvious that we cannot use the same window to detect key points with different scale. In 

order to detect larger corners, larger windows are needed.  SIFT algorithm uses scale-space filtering 

for this purpose.  The scale space L(x,y, σ) is defined as: 

     ,yx,Iσy,x,G=σy,x,L   

where, I(x,y) is the input image,  the “*” is the convolution operator and  the G(x,y, σ) is the Gaussian 

kernel function, defined as: 

    22 2/

2

1 σy+
e

πσ
=σy,x,G

2x
 

In principle, σ acts as a scaling parameter. For example, in Diagram 1 , a Gaussian kernel with low σ 

gives high value for small corner, while Gaussian kernel with high σ  gives high values for larger 
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corner. So, local maxima across the scale and space can be found, which produces a list of (x,y,σ) 

values that act as a good candidates for  key point at (x,y) at σ scale. 

Figure 11. Flowchart of the head-tracking thread. 

 

 

 

 

 

Diagram 1.  Basic idea of scaling. 

To improve the performance, SIFT algorithm uses Difference of Gaussians (DoG), illustrated 

mathematically by the following equation:  

        

     σy,x,Lkσy,x,L=σy,x,D

yx,Iσy,x,Gkσy,x,G=σy,x,D




 

DoG is obtained as the difference of Gaussian blurring of an image with two different σ; that is σ and 

kσ. This process is done for different octaves of the image in Gaussian Pyramid, as shown in Diagram 

2. 

Once this DoG is found, images are searched for local extrema over scale and space. For example, one 

pixel in an image is compared with its 8 neighbours as well as 9 pixels in the next scale and 9 pixels in 

the previous scales – see Diagram 2. If it is a local extrema, it is a potential key point. In fact, this 

means that key point is best represented in that scale. 

(ii) Key point Localization 

The potential key points found in the first step are refined for higher accuracy. The algorithm uses 

Taylor series expansion of the scale space to get more accurate location of extrema. In addition to that, 

if the intensity at this extrema is less than a predefined threshold (0.03), it is rejected. It is worth noting 

that DoG has higher response for edges; so, edges also need to be removed. This is achieved by the 
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algorithm using a 2x2 Hessian matrix to compute the principal curvature. For edges, one eigen value is 

larger than the other. If the ratio of one eigen value to the other is greater than a threshold (10), the key 

point of the edge is discarded. 

 

 

Diagram 2. Difference of Gaussians between images (Adopted from [14]). 

(iii) Orientation Assignment 

The orientation of each key point is then assigned to make the algorithm invariant to image rotation. 

Depending on the scale, a neighbourhood is taken around the key point; the gradient is then calculated 

in the vicinity of the key point and orientation histogram with 36 bins the width of each is 10 degrees 

(i.e., covering 360 degrees) is established. This is weighted by gradient magnitude and Gaussian-

weighted circular window with σ equal to 1.5 times the scale of the key point. The orientation is 

determined using the angles that belong to the bins with peaks more than 80% of the maximum peak. 

(iv) Key Point Descriptor 

A key point descriptor for each key point is created by first taking 16x16 neighbourhood around the 

key point which is further divided into 16 sub-blocks of 4x4 size. Then, for each sub-block, 8-bin 

orientation histogram is created (i.e., total of 128 bin values). Finally, this is represented as a vector to 

form the key point descriptor.  

(v) Key point Matching 

Matching between key points is achieved by means of identifying their nearest neighbours. Due to 

noise, it is possible to have cases where the second closest-match is very near to the first. In that case, 

ratio of closest-distance to second-closest distance is taken and if it is greater than 0.8, they are 
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rejected. This eliminates approximately 90% of false matches while discarding only 5% of the correct 

matches [14]. 

8.2 The Gamepad 

The gamepad used in our work is "Logitech F310". It is attached to the laptop and is used to control 

the 3-axis rotation platform in the manual mode. The gamepad consists of three analog joysticks; two 

of them move in two axes (see Figure 13.a) and the third one moves in one axis (Figure 13.b). One of 

the two-axes analog joysticks is used to drive the UGV and the other one with the one-axis analog 

joystick is used to move the 3-axis rotation platform in the manual mode. 

A software was developed (see Figure 14) using Java programming language and utilizing the "Jinput" 

library to communicate with the gamepad using serial communication. Also, the software uses Java 

stream sockets to communicate with the UGV #2 Pi board using a dedicated TCP connection. Initially, 

the software searches for all input devices which are attached to the laptop. When the gamepad is 

recognized, it initializes a connection to the gamepad and starts receiving data from it through the 

USB port; at this stage, it also establishes a TCP connection to #2 Pi board. The gamepad sends data 

whenever the operator does an action on any of the buttons or joysticks of the gamepad. The data 

which is read from the gamepad contains information about the ID of the part that was moved and the 

movement (both magnitude and direction). The ID is checked by the software to determine which part 

was moved, e.g. if the ID matches the ID of the left joystick, this means that the operator wants to 

move the UGV; the software then determines the direction which the joystick was moved in (see Table 

3) and maps the value of the analog joystick to a number in the range of 0-9; where number 0 means 

slowest speed (rover is stopped) and number 9 means the highest speed. Subsequently, the software 

sends the information about the magnitude and direction to the UGV #2 Pi board. 

The software is also responsible for moving the 3-axis rotating platform in the manual mode. The 

toggling between manual mode and VR-headset mode is done by pressing the "A" button on the 

gamepad (see Figure 13.a). When the operator presses the button, the software sends a toggling 

command to the UGV #2 Pi board; subsequently, the software detects any movements of the relevant 

joysticks (mentioned in the first paragraph of this sub-section) and transmits the information to UGV 

#2 Pi board using the same TCP connection. 

8.3 Object Detection & 3-D Model Creation 

The operator-station laptop receives a video feed from both the stereoscopic camera and the Pi camera 

and applies image processing as follows: 

1. The SIFT algorithm is used to compare the features extracted from right and left pictures 

received from the stereoscopic camera with the features of a reference object which the operator 

want to detect. To illustrate, for any object in a picture, interesting points on the object can be 

extracted to provide a "feature description" of the object. This description, extracted from a 

training reference image, can then be used to identify the object when attempting to locate the 

object in the pictures captured by the camera which contain many other objects. Technically 

speaking, this is implemented in two threads (flowcharts of which are shown in Figure 15.a and 

Figure 15.b). The receiving thread saves the pictures in a "List of Mat". In OpenCV library, the 

class "Mat" represents an n-dimensional array, which is used to store gray-scale or color images. 

Then, the SIFT algorithm computes key points and descriptors for both the reference image and 

the captured image; the distance is computed and if it is less than or equal to 25 – found 

experimentally to be a good match – the object is considered detected. 

2. Another software (RealityCapture) is used to build a 3-D model of the UGV's surrounding 

environment from multiple of 2-D pictures taken by the operator using the Pi camera. The 2-D 

pictures are stored on an on-board SD card on #1 Pi and retrieved by the operator using a secure 

shell (SSH) connection. The software then automatically aligns images and detects matching 

keypoints of the images to create a 3-D mesh map. Finally, the operator can either choose to 

obtain a coloured or gray-scale high-quality texture of the object. Figure 16.a shows multiple 2-D 

images taken from the Pi camera in one of the rover trips, and Figure 16.b shows the 3-D model 

that was created from these images. 
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9. RESULTS & DISCUSSION 

The diversity in UGV designs and specifications (e.g. weight, payload, speed, size, ...) renders a 

comprehensive performance evaluation of existing UGVs a none-trivial task. We restricted our 

comparison to the ADORA [9] and RAPOSA [11] UGVs, since both have similar design objectives as 

our UGV, specifically: mobility, victim identification, mapping (i.e., ability to generate 3D maps, of 

the surrounding areas and present them in an intuitive way), and HRI (i.e., ability to provide the 

operator with visual information about the robots’ immediate surroundings). In addition to that, since 

delay is an important factor in teleoperated UGVs [23, 24] and because our UGV relies on TCP for 

transmitting video over WiFi, we studied the effect of delay on received video over a range of 

distances.  

(a) Initial activity                                             (b) Video feed receiver 

Figure 12. Flowcharts showing initial activity and video feed receiver. 

(a) Gamepad buttons assignment (top view)                     (b) Gamepad buttons assignment (front view) 

Figure 13. Gamepad top and front views. 
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We have found that the developed UGV outperforms ADORA UGV in terms of speed, which is 

depicted in Figure 17.b. The developed UGV has a speed of 3.3 m/s, while ADORA UGV has a speed 

of 0.61 m/s. However, ADORA UGV can handle around 1kg extra payload compared to the developed 

UGV, as illustrated in Figure 17.c. We look at this as a trade-off between speed and payload weight.  

Figure 17.a shows the weight of each UGV; a large difference in weight can be seen between the 

developed UGV and the other two UGVs. Subject to transmission delay constraints, we believe that 

the relatively light weight and high speed of the developed UGV give it high manoeuvrability. 

We considered the effect of transmission delay on the quality of received video. Particularly, we 

studied TCP performance over a range of distances (5m – 70m) with increments of 5m. This range is 

the typical operational range of the developed UGV. In each experiment, we transferred a total of 5 

MB from the UGV to the laptop at the operator’s station and recorded the round trip time (RTT), 

average packet size and TCP throughput.  The results are shown in Figure 17(d-f). The RTT was 

stable in the operation range with an average value around 50µs. The perceived quality of video over 

this range at this value was acceptable. The throughput and average packet size are depicted in Figure 

17.e and Figure 17.f, respectively.  The average packet size is around 1500 byte and the throughput is 

approximately 2Mbps. No packet loss or packet time-outs were reported. However, it is worth to 

mention that we invoked TCP-BBR [21] congestion control algorithm to manage the congestion 

window of TCP.  TCP-BBR is optimized to achieve significant bandwidth improvements and lower 

latency.    

Figure 14. Flowchart of the gamepad software. 

10. CONCLUSION & FUTURE WORK 

A SAR UGV with high visual inspection capabilities and relatively high speed was designed and 

implemented. The main contribution of the work dwells in the design of a separate user-interface unit 

constituting of a 3-axis rotating platform with three cameras: a stereoscopic camera and a Pi camera. 

The unit has two control modes, one is automatic through a smart phone-based VR-headset and the 

other is manual through a gamepad attached to the operator-station laptop. Video feeds from the unit 

are transmitted over a wireless link to both the VR-headset to provide visual feedback and to the 

operator-station laptop for: object detection – in the images captured by the stereoscopic camera – 

using the SIFT algorithm and 3-D model creation from 2-D images captured by the Pi camera. 
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Multiple computers can connect simultaneously to the unit to receive video feeds and since the 

wireless connection is realized by means of managed Wi-Fi, a team of operators can cooperate using a 

shared video conferencing session while viewing the video feed from the unit on their computers.  

(a) Operator-station laptop video feed receiving and viewing, b) SIFT workflow thread 

Figure 15. Flowcharts of Threads. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 2-D pictures taken by the Pi camera           (b) 3-D model created by the software 

Figure 16. 3-D model creation. 

A wheel-type rover was designed to hold the separate unit; the relatively high-speed of the rover (3.3 

m/s) six-wheel differential-drive chassis and spiked air-filled rubber tires gave the rover high 

manoeuvrability in open rough terrain compared to other SAR UGVs found in literature.   

The UGV was designed and implemented in a laboratory environment. It was tested over soft and 

rough terrain and results showed its suitability for civil defence search and rescue applications, as well 

as for hazard areas (e.g. military) reconnaissance applications. Future work of this project goes in two 

directions: First, enhancing the night-vision capabilities of the UGV which can be done by connecting  
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(a) Total Weight (kg)                                                  (b) Velocity (m/s) 
 

 

 

 

 

 

 

 

 

(c) Maximum Payload (kg)                                     (d) Round Trip Time (seconds) 

 

(e) Throughput (bps)                                                              (f) Average Packet Size (bytes) 

Figure 17. Comparison of relevant UGV (a-c) and Performance measures of communication protocol 

(d-f). 

an infra-red camera (Raspberry Pi Infra-red Night Vision Camera Module V2.1 IMX219 8-megapixel 

sensor) to #2 Pi using the on-board 15-pin CSI-2. Also, a LED torch can be mounted on top of the 3-

axis platform which can be controlled by the operator through the gamepad in critical situations (e.g. 

in a dark pipe). Second, enhancing the exploratory capabilities of the UGV by implementing a 

general-purpose robotic arm. For instance, the arm can hold a special bucket to collect samples of soil, 

liquid, etc. Also, a separate sensor box can be added on the rover to sense temperature, humidity and 

gas. The data of the sensor box can be sent to a dedicated computer – other than the one used for 

displaying the video feed – for further analysis of the UGV's surrounding environment. Finally, 
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enhancing the processing power to make use of advanced software; for instance, using a dedicated 

graphical processing unit (GPU) such as for example NVidia Jetson development kit, which can 

increase the retrieved frame rate of camera, and allow to run software for real-time face recognition 

and autonomous driving. 
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 ملخص البحث:

ةاتصففففف الفففففالاحثية ففففف احثنفيذففففف اتصفففففيذ اأاتلةذفففففااظهانففففف ا ة فففففذ ا ذفففففهاظ ليثففففف اأأ ففففف  ا   ففففف 

لفففففف ت اكاففففففلاتهاففففففااراففففففعاحثففففففه ياتيففففففيلا فففففف  ةح احثي فففففف احثنصففففففه  ا فذفففففف ا فففففف  ا ة فففففف  ا

صففففففيةاحثةذفففففف  يا ثففففففعا   ففففففيشاظلةصففففففثاثالأفففففف اح  ففففففذ  اأا  لأفففففف  ا يففففففيك ا   ففففففلاح   فففففف  ا

اا    اثلأ ذ  احثيفذط ا   .ثيفذطاحثيهان اظناحثصيةا ل ئذ اح 

اأ فففففف اتفففففف اتفاذففففففباحث صففففففيذ احثيطاففففففيشا   فففففف ط ح اأ فففففف  ا   فففففف ةاظ صففففففا ا  فففففف ت اكاففففففلاتافففففف اط

 هاففففف أاحثفففففه يالفففففلاحثفففففمظناحثفاذافففففلاأته فففففا  اظفففففنا ففففف ا ثفففففعا   ففففف اظفهاففففف أاظهانففففف ارافففففعا

 ذليفففففف ا  يففففففثاحثيلأفففففف ثاراففففففعاحثفففففف فا ا  افففففف اره فففففف اث ففففففيلذهاحثفهافففففف ا ففففففي ا   فففففف اظففففففف أة ا

حثيفهاففففف أا ظففففف ارنفففففهاأ ففففف  ا   ففففف ةاظ صفففففا ا  ففففف ت اكافففففلا أارفففففنا ه فففففباثي ففففف ا ث ففففف ش.اأا

 ث  ات يفففففثا ففففف مااففففف ظذهحأاظفييثففففف ارافففففعاظففففف ناحثيهانففففف ارافففففعاحث اففففف  احثصفففففيةاحث فففففلا ففففف  ا ة ففففف

ذفففففف ا ثففففففعاأ فففففف  احة  فففففف ةاحثي صففففففا ا  ث فففففف ت احثففففففاالاأا ثففففففعا   ففففففيشاحثيلأفففففف ث.اأاتاففففففي ا هظ 

     .ثاحثصيةا ل ئذ اح     احثيا اط اثيفذطاحثيهان ا ثعا ييك ا   لاح   في 

ثاففففف اتففففف اتلةذفففففااحثيهانففففف الفففففلا ذبففففف اظطنه ففففف اأظفففففنا ففففف الفصففففف  .اأ ذلففففف احثل ففففف ئ احث فففففلا فففففه ا

حثفصفففففي اراذ ففففف ا ااحثيهانففففف احثيا ه ففففف اتي اففففف ا صففففف ئ ا ل فففففثاثا ة فففففذ احثنصفففففه اظا ة ففففف ا

أا  هزلفففففف ا ففففففهر اا–تافففففف احثطصفففففف ئ اا  صفففففف ظذ ا  ففففففه اثيهانفففففف أاظي  افففففف .اأا فففففف اظلف  فففففف 

 /م اأالذافففففففثا لفففففف اتة  فففففففالا يفففففف ار ففففففف أ اأا  فففففف ةحأاظط  ذففففففف اا3.3 صففففففي اظافففففف حةل ا

 فففففف ةحأار ثذفففففف اراففففففعاحثيلفففففف أة  اظيفففففف ا   ا فففففف ا ذفففففف ةحاظ ئيفففففف ا   الأفففففف  اا–ظياففففففي  ا فففففف ث يح ا

حثايحاففففففففااأاح  ففففففففهحكاحث يففففففففاه  .اأا ياففففففففناتهاذففففففففااحثيفهافففففففف أاأاحثافففففففف ظذهحأا يفففففففف يث ا

ت  ففففففينالففففففذا ا يفففففف ط  ازثذفففففف أا طففففففهاظط اةفففففف اثم فففففف   ال  ثذفففففف اريففففففثااراففففففعاأ فففففف  اظلةصففففففا 

أا يافففففففناثا صفففففففيذ احثيا فففففففهلا اا يففففففف ط  الفففففففلا لففففففف  احثطفففففففهحئط اأ  لأففففففف  احثليففففففف ك ااحثيهانففففففف .

أحث  فففففه ارافففففعاحثي فففففيلالفففففلاحثفففففمظنالفففففلاحثفففففمظناحثفاذافففففل اا   ذففففف اح   ففففف   اأالأففففف اح  فففففذ  

 حثاذ   احثاحتذ .أحثفاذال ا
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