
116

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 02, August 2018.

J. Al-Azzeh is with Department of Computer Engineering, Al-Balqa Applied University, Al-Salt, Jordan. Email:
jamil.azzeh@bau.edu.jo

IMPROVED TESTABILITY METHOD FOR MESH-
CONNECTED VLSI MULTIPROCESSORS

Jamil Al-Azzeh

(Received: 04-Feb.-2018, Revised: 27-Mar.-2018 and 16-Apr.-2018, Accepted: 25-Apr.-2018)

ABSTRACT

The problem of in-operation embedded hardware-level fault detection in mesh-connected VLSI multiprocessors is

considered. A new approach to the multiprocessor test based on the mutual inter-unit checking is presented, which

allows increasing the successful fault detection probability. Formal rules are defined for forming sets of testing

and tested neighbors for each unit which are invariant to the location of the unit within the topological structure

of the multiprocessor and its dimension. The final test result for each processor unit is formed by applying the

majority operator to the individual faulty/healthy tags calculated by all testing neighbors. The formulae to

determine the number of testing neighbors for each unit depending on the dimension of the multiprocessor are

given. The successful fault detection probability is evaluated in the case when the proposed approach is used; the

successful fault detection probability vs. multiprocessor dimension and the successful fault detection probability

vs. the individual test unit reliability dependencies are investigated. The proposed approach is shown to provide

increased successful fault detection probability compared to the self-test for all practically significant cases.

KEYWORDS

Mesh-connected VLSI multiprocessors, Fault tolerance, Testability, Built-in self-test, Mutual inter-unit test,

Majority operator.

NOMENCLATURE

D The number of dimensions in the multiprocessor mesh

1 2 dx x xu

A unit of a d-dimensional multiprocessor

x The horizontal coordinate of a unit in the mesh

y The vertical coordinate of a unit in the mesh

z The “depth” coordinate of a unit in the 3D mesh

m The number of rows in the multiprocessor mesh

n The number of columns in the multiprocessor mesh

p The “depth” of the 3D multiprocessor mesh

1 2 dx x xC The set of neighbors tested by processor unit
1 2 dx x xu

1 2 dx x xK The set of neighbors testing processor unit
1 2 dx x xu

1 2 dx x x

The faulty/non-faulty flag of processor unit
1 2 dx x xu

1 2

1 2

d

d

x x x

x x x

  


The partial faulty/non-faulty flag of a tested processor unit
1 2 dx x xu    formed by testing processor unit

1 2 dx x xu

1 2
i i i

dx x x
u

An ith tested neighbor of processor unit

1 2 dx x xu

117

"Improved Testability Method for Mesh-connected VLSI Multiprocessors", Jamil Al-Azzeh.

iB

An ith parallel thread of the mutual inter-unit test algorithm

 1 2 dx x x
T k

A kth test signature produced by testing unit

1 2 dx x xu

1 2

max

dx x xk

The number of test signatures supported by testing unit
1 2 dx x xu

 1 2
i i i

dx x x
R k

The test response signature issued by a tested unit

1 2
i i i

dx x x
u after  1 2 dx x x

T k is received

 1 2

0

i i i
dx x x

R k

The reference test response signature expected to be issued by a tested unit
1 2
i i i

dx x x
u after receiving test signature

 1 2 dx x x
T k

max

0

The interval of time between two adjacent test loops

0

Next test loop wait counter

max

i
The maximum time needed to form the test response by an ith tested unit

1 2
i i i

dx x x
u

i

Test response wait counter

 t

The probability that a processor unit is properly detected as faulty by a separate test unit

 P t

The probability that a processor unit is properly detected as faulty by a set of testing neighbors

i

jC

The number of combinations of i elements out of j

The majority operator

1. INTRODUCTION

Many modern computer applications require the use of high performance VLSI-based embedded

systems to attain desired efficiency, low cost and high flexibility [1]-[22]. VLSI multiprocessors (VLSI

MPs), also known as multicore processors, represent a highly efficient solution for implementing such

high performance embedded systems, combining fine-grain concurrency with decentralized and

logically distributed architecture [23]. Increasing complexity of VLSI MPs becomes a problem, because

the probability that a processor unit or a link in a multiprocessor may appear faulty (defective) grows

relatively high as the number of processor units increases [24]-[25].

A VLSI multiprocessor containing defective units (and links) can be made healthy as a whole subject to

dedicated defect detection and isolation mechanism is employed [26]-[27]. If a certain redundancy, e.g.,

a set of spare units is introduced and specific methods are used to make it possible to detect and logically

replace defect units with spare ones, then the VLSI MP may be treated as defect-free and retains its

performance at the same time. In both cases, a multiprocessor with physical defects is logically

reconfigured and VLSI MP fabrication yield loss is reduced as a result.

For successful VLSI MP logical reconfiguration [26], it is important that every faulty node is properly

detected and isolated to let the rest of the multiprocessor operate [27], possibly, with slightly decreased

performance [28]. This problem is typically solved based on the usage of self-checking or self-test

methods [29]-[41]. Self-test technique allows detecting both manufacturing defects and local faults and

is a suitable solution to provide fast fault/defect detection that does not require powering off and un-

mounting the multiprocessor for repair. However, relatively low testability is the main problem of the

118
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 02, August 2018.

self-test approach, because test hardware itself is not 100% reliable; yet, self-checking algorithms may

miss many faults/defects and sometimes treat healthy units as defective. To significantly alleviate the

above problem, mutual inter-unit test can be employed, meaning that each multiprocessor unit is checked

by some other units and the final faulty/non-faulty decision is made based on a certain formal rule, which

takes into account the local decisions made by particular test units [39]-[41]. This approach is developed

in the present paper.

The aim of the manuscript is to expand the VLSI multiprocessor mutual inter-unit test method initially

presented in [39]-[41]. In the following sections, we formally state the mutual inter-unit test approach

for the d-dimensional VLSI MP architecture, which makes it possible to concurrently detect

faulty/defective units across a mesh-connected VLSI multiprocessor. A parallel inter-unit test algorithm

is presented based on the proposed formal approach and dedicated test hardware implementing the above

algorithm is diagrammed and briefly discussed. At the end of the paper, we demonstrate that the mutual

inter-unit test environment provides increased testability compared to the self-checking technique.

2. THE MUTUAL INTER-UNIT TEST APPROACH

The key idea of the mutual inter-unit test is that each processor unit of the multiprocessor is periodically

checked by a subset of its physical neighbors (so called “testing neighbors”) and, at the same time, this

processor unit tests another subset of its physical neighbors (so called “tested neighbors”) and the final

faulty/non-faulty decision for each processor unit is made based on the majority operator result obtained

from the partial results returned by the testing neighbors.

The set of “testing neighbors” for each processor unit is formed depending on the number of dimensions

(d) of the VLSI multiprocessor topology and should satisfy the odd cardinality requirement to make the

majority operator applicable to produce the final test result. The same applies to the formation of the set

of “tested neighbors”, except that the cardinality of the set may not be odd. The process of mutual inter-

unit test is carried out simultaneously in all the units across the mesh, so that a faulty signal is

simultaneously transferred to the physical neighbors of the corresponding faulty processor unit, which

makes it possible to efficiently isolate (or replace) faulty/defective units in a timely manner.

The mutual inter-unit test mechanism may be considered as an advanced form of self-checking, because

the operability of the test hardware itself is also tested. For example, if one of the testing processor units

produces a wrong faulty/non-faulty decision, then the tested unit (which is in fact non-faulty) will not

be necessarily detected as faulty by mistake as the resulting faulty signal is formed by the majority

operator applied to a set of partial fault detection signals. This means that the mutual inter-unit test

mechanism testability is better compared to the self-test technique. A more formal demonstration is

shown at the end of the paper.

3. THE FORMATION OF TESTING AND TESTED NEIGHBOR SETS

The formation of testing and tested neighbor sets is one of the key problems in the organization of mutual

inter-unit test. In this section, we provide formal rules to define these sets for a VLSI MP of arbitrary

dimension 𝑑 ≥ 2.

Let us first consider a 2-dimensional multiprocessor. Let 𝑈 = {𝑢𝑥𝑦} be the set of its processor units,

where x and y are coordinates (indices) of a particular unit in the mesh in the horizontal and vertical

dimensions, respectively, 𝑥 = 0, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑦 = 0, 𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, with m and n standing for the number of rows

and columns of the mesh, respectively. Let 𝐶𝑥𝑦 and 𝐾𝑥𝑦 designate the sets of tested and testing neighbors

of processor unit 𝑢𝑥𝑦, respectively. Then, for given arbitrary 𝑥 ∈ {0,1, … 𝑛 − 1} and 𝑦 =
{0,1, … 𝑚 − 1}, we can formulate the following rules:

 

   

 

1 mod ,

1 mod , 1 mod

, 1 mod

,

,

x n y

xy x n y m

x y m

u

C u

u



 



 
  

  
 
  

 (1)

119

"Improved Testability Method for Mesh-connected VLSI Multiprocessors", Jamil Al-Azzeh.

  

     

  

, 1 sign() 1

1 sign() 1 , 1 sign() 1

1 sign() 1 ,

,

,

x y y m

xy x x n y y m

x x n y

u

K u

u

  

     

  

 
 
 

  
 
  

(2)

Equations (1) and (2) above take into account the fact that leftmost, rightmost, topmost and bottommost

processor units have fewer physical neighbors than those located in the other parts of the mesh. For

example, a topmost unit has no neighbor above, that’s why its tested neighbor set should include the

bottommost unit in the same column. The same applies to a leftmost unit that has no neighbor on its left;

its testing neighbor set should include the rightmost unit in the same row. Figure 1 illustrates rules (1)

and (2) in detail. Note that rules (1) and (2) give just one of several possible testing/tested neighbor

allocations around each unit, providing the minimal number of neighbors involved.

1 2 3

1

y

y-1

x-1 x nn-10

m-1

0

xyK

0xK

0xK

0 yK

0 yK

00K

00K
00K

00K

m-2

m-3

m-4

xyu

1 2 3

m-2

m-3

m-4

1

y+1

y

x x+1 n-1n-20

m-1

0

xyC

 1x m
C



 1x m
C



  1 1n m
C

 

 1n y
C



  1 1n m
C

 

 1n y
C



  1 1n m
C

    1 1n m
C

 

xyu

Figure 1. The formation of tested and testing neighbor sets in a 2-dimensional mesh multiprocessor.

120
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 02, August 2018.

If set xyK is defined for each processor unit xyu , then the faulty/non-faulty decision may be made

according to the following rule:

   

       

   

1 sign 1 ,

1 sign 1 , 1 sign 1

, 1 sign 1

,

,

x x n y

xy

x x n y y m

xy xy

x y y m

xy

  

     

  

 
 
 

   
 

 
 

 (3)

where # denotes the majority operator, 𝜑𝑥𝑦
𝑥′𝑦′

= 1, if unit 𝑢𝑥𝑦 ‘is considered’ non-faulty by unit 𝑢𝑥′,𝑦′

and 𝜑𝑥𝑦
𝑥′𝑦′

= 0 otherwise, where 𝑥′, 𝑦′ are the placeholders standing for the corresponding upper indices

in Equation (3). According to (3), unit 𝑢𝑥𝑦 is treated as faulty and needs to be isolated from the mesh,

if 𝜑𝑥𝑦 = 0.

The rules (1)-(3) may be easily extended to mesh topologies of higher dimensions. For example, for a

3-dimensional multiprocessor they could be formulated as follows:

   

     

   

   

     

1 mod , , , 1 mod ,

, , 1 mod 1 mod , 1 mod ,

1 mod , , 1 mod

, 1 mod , 1 mod

1 mod , 1 mod , 1 mod

, ,

, ,

,

,

x n y z x y m z

x y z p x n y m z

xyz x n y z p

x y m z p

x n y m z p

u u

u u

C u

u

u

 

  

 

 

  

 
 
 
  

  
 
 
 
  

(4)

  

  

  

     

     

     

     

1 sign() 1 , ,

, 1 sign() 1 ,

, , 1 sign() 1

1 sign() 1 , 1 sign() 1 ,

1 sign() 1 , , 1 sign() 1

, 1 sign() 1 , 1 sign() 1

1 sign() 1 , 1 sign() 1 , 1 s

,

,

,

,

,

,

x x n y z

x y y m z

x y z z p

xyz x x n y y m z

x x n y z z p

x y y m z z p

x x n y y m z

u

u

u

K u

u

u

u

  

  

  

     

     

     

       



  ign() 1z p

 
 
 
 
 
  
 
 
 
 
 
 
  

 (5)

  

  

  

     

     

     

  

1 sign() 1 , ,

, 1 sign() 1 ,

, , 1 sign() 1

1 sign() 1 , 1 sign() 1 ,

1 sign() 1 , , 1 sign() 1

, 1 sign() 1 , 1 sign() 1

1 sign() 1 , 1 s

,

,

,

,

,

,

x x n y z

xy

x y y m z

xy

x y z z p

xy

x x n y y m z

xyz xy

x x n y z z p

xy

x y y m z z p

xy

x x n y

xy

  

  

  

     

     

     

    







  






     ign() 1 , 1 sign() 1y m z z p   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(6)

121

"Improved Testability Method for Mesh-connected VLSI Multiprocessors", Jamil Al-Azzeh.

where m, n and p are the sizes of the mesh in X, Y and Z dimensions, respectively. To define sets

𝐶𝑥1𝑥2…𝑥𝑑
 and 𝐾𝑥1𝑥2…𝑥𝑑

 for a general cased-dimension mesh, it is necessary to extend Equations (4)-(6)

by adding extra properly indexed elements (u and ) and all possible combinations. The d-dimensional

case equations are not stated here for evident reasons. One can prove that:

 

1 2 1 2
1 1

d dx x x x x xC K d d   
 (7)

Thus, |𝐾𝑥1𝑥2…𝑥𝑑
| = 1(𝑚𝑜𝑑2); i.e., each processor unit has an odd number of testing neighbors that

makes it possible to apply the majority operator to produce the resulting faulty/non-faulty flag.

According to (7), the number of testing neighbors in 2-dimensional meshes is minimal: |𝐾𝑥𝑦| = 3. In a

3-dimensional array, each unit has |𝐾𝑥𝑦𝑧| = 7 testing neighbors.

4. THE MUTUAL INTER-UNIT TEST PROCEDURE

The process of mutual inter-unit test may be represented as a parallel algorithm including a set of threads

𝐵1, 𝐵2, … , 𝐵𝑑(𝑑−1)+1, where thread 𝐵𝑖 defines a test statement sequence corresponding to tested

neighbor 𝑢
𝑥1

𝑖 𝑥2
𝑖 …𝑥𝑑

𝑖 (see Figure 2). The algorithm applies to a VLSI MP of any dimension 𝑑 ≥ 2.

START

END

1B
iB

 1 1d d
B

 

0k 

1 2 dx x x0 1

 1 2 dx x x
T T k

1 2
i i i

dx x x
u T 0i 

0 0 

  max

0 0 01 mod    

0 0 

1

0

  max1 modi i i    

0i 
0

 1 2
i i i

dx x x
R

R k


 1 2

0

0

i i i
dx x x

R
R k


0R R
1

0

1 2

1 2

0d
i i i

d

x x x

x x x
 

 
1 2

max1 mod
dx x xk k k 

1

2

3

4

5

67

8 9

10

11

12 13

14

15

16

17

A

1

B

C

17

Figure 2. Flow-chart of the mutual inter-unit test algorithm.

122
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 02, August 2018.

The algorithm in Figure 2 includes the main test loop which is executed while the corresponding

Processor unit (which is meant to be 𝑢𝑥1𝑥2…𝑥𝑑
) is considered healthy by its testing neighbors 𝐾𝑥1𝑥2…𝑥𝑑

(see condition 3). As another loop begins, a new test signature 𝑇𝑥1𝑥2…𝑥𝑑(𝑘) is formed (see statement 7),

which is simultaneously transferred to tested neighbors 𝐶𝑥1𝑥2…𝑥𝑑
= {𝑢

𝑥1
𝑖 𝑥2

𝑖 …𝑥𝑑
𝑖 } (see statement 8). After

all the tested neighbors have returned corresponding response signatures {𝑅
𝑢

𝑥1
𝑖 𝑥2

𝑖 …𝑥𝑑
𝑖

(𝑘)} (see statement

12), a decision is made by the processor 𝑢𝑥1𝑥2…𝑥𝑑
 whether a particular tested neighbor 𝑢

𝑥1
𝑖 𝑥2

𝑖 …𝑥𝑑
𝑖 is faulty

or healthy (see condition 14 and statement 15).

The algorithm in Figure 2 consists of three main sections: A, B and C (see the dash lines). Section A is

necessary to spin 𝜏0
𝑚𝑎𝑥 clock ticks until the next test loop begins and another test signature 𝑇𝑥1𝑥2…𝑥𝑑(𝑘)

gets ready for transfer. Section B is responsible for transferring the test signature to tested unit 𝑢
𝑥1

𝑖 𝑥2
𝑖 …𝑥𝑑

𝑖

and performs counting 𝜏𝑖
𝑚𝑎𝑥 clock ticks until a response from the tested processor is supposed to arrive.

Section C first controls the arrival of test response 𝑅
𝑢

𝑥1
𝑖 𝑥2

𝑖 …𝑥𝑑
𝑖

(𝑘) from unit 𝑢
𝑥1

𝑖 𝑥2
𝑖 …𝑥𝑑

𝑖 and then generates

reference test response 𝑅𝑥1𝑥2…𝑥𝑑(𝑘) to compare it to 𝑅𝑥1
𝑖 𝑥2

𝑖 …𝑥𝑑
𝑖

(𝑘). If the above are equal, then tested

neighbor 𝑢
𝑥1

𝑖 𝑥2
𝑖 …𝑥𝑑

𝑖 is assumed to be healthy; otherwise, it is considered faulty and the partial faulty/non-

faulty decision flag 𝜑
𝑥1

𝑖 𝑥2
𝑖 …𝑥𝑑

𝑖
𝑥1𝑥2…𝑥𝑑 is reset to zero. This flag is then used in Equations like (3) and (6)

(depending on the value of d) to produce the final decision flag 𝜑
𝑥1

𝑖 𝑥2
𝑖 …𝑥𝑑

𝑖 . The meaning of the symbols

used in the flowchart of Figure 2 is presented in Table 1.

Table 1. The meaning of the symbols used in Figure 2.

Symbol Meaning

1 2

max

dx x xk The number of test signatures supported by processor unit
1 2 dx x xu

k,

1 2

max0, 1
dx x xk k 

Test signature counter of processor unit
1 2 dx x xu

max

0

The interval (in clock ticks) between two adjacent test loops

0

Next test loop wait counter

 max , 1, 1 1i i d d   

The maximum time needed to form a test response by tested processor unit
1 2
i i i

dx x x
u

 , 1, 1 1i i d d   

Test response wait counter

 1 2 dx x x
T k

kth test signature supported by processor unit
1 2 dx x xu

 1 2
i i i

dx x x
R k

Test response signature issued by tested processor unit
1 2
i i i

dx x x
u after  1 2 dx x x

T k

is received

 1 2

0

i i i
dx x x

R k

The reference test response signature expected to be issued by processor unit

1 2
i i i

dx x x
u after receiving  1 2 dx x x

T k

0, ,T R R

Temporarily used variables



The value assignment/transfer operator

123

"Improved Testability Method for Mesh-connected VLSI Multiprocessors", Jamil Al-Azzeh.

In the algorithm diagrammed in Figure 2, much work is done in parallel, which makes it possible to

concurrently test processor units across the entire multiprocessor structure. All the conditions and

statements of the algorithm are simple enough to be implemented in hardware, which additionally

contributes to the mutual inter-unit test environment performance. Yet, the test response signature

mechanism used in the presented algorithm allows configuring test actions performed by tested

neighbors taking into account the test complexity/duration trade-off.

5. THE MUTUAL INTER-UNIT TEST HARDWARE

The mutual inter-unit test algorithm of Figure 2 may be directly presented as a hardware-level

implementation. The logic diagram of the embedded test hardware constructed according to the above

algorithm is shown in Figure 3.

Figure 3. Logic diagram of the embedded test hardware implementing the mutual inter-unit test

algorithm.

124
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 02, August 2018.

The device of Figure 3 is supposed to be a part of each processor unit; it consists of the device core and

𝑑(𝑑 − 1) + 1 neighbor test units (NTUs). The device core executes the initial and final sequential

threads of the mutual inter-unit test algorithm, while NTUi implements thread 𝐵𝑖, 𝑖 = 1, 𝑑(𝑑 − 1) + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

(see Figure 2).Taking into account the fact that the NTUs are identical, only NTU1 is detailed in Figure

3. The adopted input/output numbering scheme helps understand the connections between the device

core and the NTUs. The functions of the units and logic gates shown in Figure 3 are detailed in Table 2.

Table 2. The functions of the units and gates presented in Figure 3

Unit or gate Function

Memory unit 1 Stores the test signatures issued by the processor unit

Circular binary counter 2 Counts the clock pulses that arrived between two adjacent test loops

performed by the processor unit

Circular binary counter 3 Points to the next test signature in memory 1 to be issued by the processor unit

Flip-flop 4 Indicates whether counter 2 has zeroed or not

AND gate 5 Stops clock pulses from arriving at counter 2

AND gate 6 Stops clock pulses from arriving at counter 3

NORgate 7 together with univibrator9 Detect whether counter 2 has re-entered the zero state

OR gate 8 Necessary to OR the pulses clearing flip-flop 4

Univibrator 10 Produces a pulse which forces the NTUs to start operation

Memory unit 11 Stores the ref. response signatures for the tested neighbors of the current

processor

Circular binary counter 12 Counts the clock pulses that arrived until the corresponding tested neighbor

sends a response signature

Flip-flop 13 Indicates whether counter 12 has zeroed or not

Flip-flop 14 Indicates whether the corresponding tested neigh. is currently healthy or faulty

Comparator 15 Compares the test response sent by the tested neighbor to the corresponding

reference test response read from memory 11

AND gate 16 Stops clock pulses from arriving at counter 12

AND gate 17 Stops reset pulses from arriving at counter 14

NOR gate 18 combined with

univibrator 20

Detect whether counter 12 has re-entered the zero state

OR gate 19 Necessary to OR the pulses clearing flip-flop 13

Univibrator 21 Produces a pulse to clear flip-flop 14

125

"Improved Testability Method for Mesh-connected VLSI Multiprocessors", Jamil Al-Azzeh.

6. COMPARING THE MUTUAL INTER-UNIT TEST APPROACH TO SELF-CHECKING

The mutual inter-unit test approach is a good alternative to the self-checking technique, providing better

multiprocessor testability, which is demonstrated in the present section.

Let 𝜋+(𝑡) be the probability that a processor unit of the multiprocessor is properly detected as faulty by

a separate test unit (NTU). Taking into account that there are 𝐶𝑗
𝑖 =

𝑗!

𝑖!(𝑗−𝑖)!
 possible combinations of

testing neighbors correctly reporting that the current processor is faulty, the following Equation may be

deduced:

       
 

 

 1 1
1 1

1 1
1 1

2

1
d d

d d iii

d d
d d

i

P t C t t 
 

  
  

 
  

 
 

   

(8)

 Equation (8) gives the probability 𝑃+(𝑡)

that a processor unit is properly detected as faulty

subject to the mutual inter-unit test approach employed.

To evaluate the effect provided by the mutual inter-unit test, we assume that 𝜋+(𝑡) equals the

probability of successful self-test (we presuppose that each processor has a built-in NTU or

similar hardware to check its state) and then calculate 𝑃+(𝑡)/𝜋+(𝑡) depending on d and 𝜋+(𝑡)

with fixed 𝜋+(𝑡)

and d, respectively (see Figure 4).

(a) 𝑃+(𝑡)/𝜋+(𝑡) (b) 𝑃+(𝑡)/𝜋+(𝑡)

d 𝜋+(𝑡)

Figure 4. (a) 𝑃+(𝑡)/𝜋+(𝑡) versus d and (b) 𝑃+(𝑡)/𝜋+(𝑡)

versus 𝜋+(𝑡)

graphs for fixed

𝜋+(𝑡)

and d, respectively.

The graphs in Figure 4 demonstrate that the mutual inter-unit test approach is effective as long as

𝜋+(𝑡) ∈ [0.6; 0.9]. If 𝜋+(𝑡) → 1 or 𝜋+(𝑡) → 0.5, then 𝑃+(𝑡)/𝜋+(𝑡) → 1, thus the effectiveness

gracefully degrades. Our approach provides minimal effect for 2-dimensional multiprocessors (8% to

12% better than self-checking with 𝜋+(𝑡) ∈ [0.6; 0.9]). If more dimensions are added, then with

𝜋+(𝑡) ∈ [0.6; 0.8],

it is possible to get 20% or more effectiveness growth. Note that 𝜋+(𝑡) = 0.6 is

approximately the point of maximum effectiveness as the number of dimensions increases.

7. THE AREA COST OF THE TEST HARDWARE

In our investigation, we have evaluated the area cost added by the test hardware. We assumed different

VLSI MP dimensions d and calculated the area occupied by the logic gates in the test unit hardware. We

fixed the number of test instructions supported by each processor unit 𝑘𝑚𝑎𝑥.

1

1.1

1.2

1.3

1.4

1.5

1.6

2 3 4 5 6 7 8 9

0.9
0.8
0.7
0.6
0.55

1

1.1

1.2

1.3

1.4

1.5

1.6

0.5 0.6 0.7 0.8 0.9 1

d=2
d=3
d=4
d=5
d=6
d=7
d=8
d=9

126
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 02, August 2018.

The graphs shown in Figure 5 demonstrate the VLSI area penalty versus VLSI MP dimension d. For

low-dimension multiprocessors, the extra area remains as low as O(10000) logic gates, which is much

lower than the area occupied by the processor core. For example, in a 3-dimensional multiprocessor,

less than 18000 extra gates need to be added to each processor unit to support up to 32 test routines at

each unit. If we add more test scenarios, then the VLSI area penalty will increase drastically. For

example, a 3-dimensional VLSI MP needs over 260000 extra logic gates at each unit to support up to

512 different test routines.

d

Figure 5. VLSI area (C) versus d graphs for a fixed number of test instructions supported by a

particular unit (𝑘𝑚𝑎𝑥).

As a consequence, a limited number of test instructions supported are a good option to decrease the

VLSI area penalty of the test hardware. Note that each test instruction provides a specific test procedure,

thus the selection of a set of test routines becomes a key issue to cover up possible fault patterns.

8. CONCLUSION

In the present paper, we have presented a new approach, the mutual inter-unit test mechanism, which

makes it possible to improve testability of mesh-connected VLSI multiprocessors by increasing the

successful fault detection probability with respect to traditional self-checking. We have shown that our

approach is applicable to multiprocessors of arbitrary dimension; yet, its effectiveness grows higher as

the number of dimensions increases which is important for future generation VLSI MPs. The mutual

inter-unit test technique allows hardware-level testing of all the processor units across the mesh in

parallel, thus significantly contributing to the test environment performance.

REFERENCES

[1] Jie-qiong Chen and Guo-qiang Mao, "Capacity of Cooperative Vehicular Networks with Infrastructure

Support: Multi-user Case," IEEE Trans. on Vehicular Technology, vol. 67, no. 2, pp. 1546-1560, 2018.

[2] X. D. Song and X. Wang, "Extended AODV Routing Method Based on Distributed Minimum

Transmission (DMT) for WSN," Int. Jou. of Electronics and Comm., vol. 69, no. 1, pp. 371-381, 2015.

4096

16384

65536

262144

1048576

4194304

16777216

2 3 4 5 6 7 8 9

kmax=16 kmax=32

kmax=64 kmax=128

kmax=256 kmax=512

127

"Improved Testability Method for Mesh-connected VLSI Multiprocessors", Jamil Al-Azzeh.

[3] S. Zhou, J. Chen and S. Liu, "New Mixed Adaptive Detection Algorithm for Moving Target with Big

Data, " Journal of Vibroengineering, vol. 18, no. 7, pp. 4705-4719, 2016.

[4] H. L. Niu and S. Liu, "Novel Positioning Service Computing Method for WSN, " Wireless Personal

Communications Journal, vol. 92, no. 4, pp. 1747-1769, 2017.

[5] Z. Ma, "A Novel Compressive Sensing Method Based on SVD Sparse Random Measurement Matrix in

Wireless Sensor Network, " Engineering Computations, vol. 33, no. 8, pp. 2448-2462, 2016.

[6] D. Zhang, S. Zhou and Ya-meng Tang, "A Low Duty Cycle Efficient MAC Protocol Based on Self-

adaption and Predictive Strategy, " Mobile Networks & Applications Jour., DOI: 10.1007/s11036-017-

0878-x, 2017.

[7] S. Liu and T. Zhang, "Novel Unequal Clustering Routing Protocol Considering Energy Balancing Based

on Network Partition & Distance for Mobile Education, " Journal of Network and Computer Applications,

vol. 88, no. 15, pp. 1-9, DOI: 10.1016/j.jnca.2017.03.025, 2017.

[8] K. Zheng and D. Zhao, "Novel Quick Start (QS) Method for Optimization of TCP, " Wireless Networks,

vol. 22, no. 1, pp. 211-222, 2016.

[9] D. Zhang, X. J. Kang and J. Wang, "A Novel Image De-noising Method Based on Spherical Coordinates

System," EURASIP Journal on Advances in Signal Processing, no. 110, pp. 1-10, DOI: 10.1186/1687-

6180-2012-110, 2012.

[10] X. Wang and X. Song, "New Clustering Routing Method Based on PECE for WSN, " EURASIP Journal

on Wireless Communications and Networking, no. 162, pp. 1-13, DOI: 10.1186/s13638-015-0399-x,

2015.

[11] X. Song and X. Wang, "New Agent-based Proactive Migration Method and System for Big Data

Environment (BDE), " Engineering Computations, vol. 32, no. 8, pp. 2443-2466, 2015.

[12] H. L. Niu and S. Liu, "Novel PEECR-based Clustering Routing Approach, " Soft Computing, vol. 21, no.

24, pp. 7313-7323, 2017.

[13] Y. Liang, "A Kind of Novel Method of Service-aware Computing for Uncertain Mobile Applications, "

Mathematical and Computer Modelling, vol. 57, no. 3-4, pp. 344-356, 2013.

[14] C. P. Zhao, "A New Medium Access Control Protocol Based on Perceived Data Reliability and Spatial

Correlation in Wireless Sensor Network," Comp. & Elect. Engineering, vol. 38, no. 3, pp. 694-702, 2012.

[15] W. B. Li, "Novel Fusion Computing Method for Bio-Medical Image of WSN Based on Spherical

Coordinate, " Journal of Vibroengineering, vol. 18, no. 1, pp. 522-538, 2016.

[16] Z. Ma, "Shadow Detection of Moving Objects Based on Multisource Information in Internet of Things,"

Journal of Experimental & Theoretical Artificial Intelligence, vol. 29, no. 3, pp. 649-661, 2017.

[17] Z. Ma, "A Novel Compressive Sensing Method Based on SVD Sparse Random Measurement Matrix in

Wireless Sensor Network," Engineering Computations, vol. 33, no. 8, pp. 2448-2462, 2016.

[18] S. Liu and T. Zhang, "Novel Unequal Clustering Routing Protocol Considering Energy Balancing Based

on Network Partition & Distance for Mobile Education, " Journal of Network and Computer Applications,

vol. 88, no. 15, pp. 1-9, DOI: 10.1016/j.jnca.2017.03.025, 2017.

[19] G. Li and K. Zheng, "An Energy-balanced Routing Method Based on Forward-aware Factor for Wireless

Sensor Network," IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 766-773, 2014.

[20] H. L. Niu and S. Liu, "Novel PEECR-based Clustering Routing Approach, " Soft Computing, vol. 21, no.

24, pp. 7313-7323, DOI: 10.1007/s00500-016-2270-3, 2017.

[21] H. L. Niu and S. Liu, "Novel Positioning Service Computing Method for WSN," Wireless Personal

Communications, vol. 92, no. 4, pp. 1747-1769, DOI: 10.1007/s11277-016-3632-y, 2017.

[22] S. Zhou, J. Chen and S. Liu, "New Mixed Adaptive Detection Algorithm for Moving Target with Big

Data," Journal of Vibroengineering, vol. 18, no. 7, pp. 4705-4719, 2016.

[23] Th. Rauber and G. Runger, Parallel Programming for Multicore and Cluster Systems, Springer 2013,

XIII, 516 p.

[24] Z. Wang, VLSI, InTech, 464 p, 2010.

[25] S. Furber, "Living with Failure: Lessons from Nature?," Proc. of the 11th IEEE European Test Symposium

(ETS ‘06), pp. 4-8, May 2006.

128
Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 04, No. 02, August 2018.

[26] E. Kolonis, M. Nicolaidis, D. Gizopoulos, M. Psarakis, J. Collet and P. Zajac, "Enhanced Self-

configurability and Yield in Multicore Grids," Proc. of the 15th IEEE Int. On-line Testing Symposium

(IOLTS), pp. 75-80, Jun. 2009.

[27] G. Jiang, W. Jigang and J. Sun, "Efficient Reconfiguration Algorithm for Three-dimensional VLSI

Arrays," Proc. of the 26th IEEE International Parallel and Distributed Processing Symposium Workshops

& PhD Forum, pp. 261-265, 2012.

[28] W. Jigang, T. Srikanthan, G. Jiang and K. Wang, "Constructing Sub-arrays with Short Interconnects from

Degradable VLSI Arrays, " IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 4, pp.

929-938, April 2014.

[29] S. M. A. H. Jafri, S. J. Piestrak, O. Sentieys and S. Pillement, "Design of the Coarse-grained

Reconfigurable Architecture DART with On-line Error Detection," Microprocessors and Microsystems,

vol.38, no. 2, pp. 124-136, 2014.

[30] P. Bernardi, L. M .Ciganda, E. Sanchez and M. Sonza Reorda, "MIHST: A Hardware Technique for

Embedded Microprocessor Functional On-line Self-Test," IEEE Transactions on Computers, vol. 63, no.

11, pp. 2760-2771, Nov. 2014.

[31] S. R. Das, "Self-testing of Core-based Embedded Systems with Built-in Hardware, " IEEE Proceedings:

Circuits, Devices and Systems, vol. 152, no. 5, pp. 539-546, 7 Oct. 2005.

[32] S. Lin, W. Shen, C. Hsu, C. Chao and A. Wu, "Fault-tolerant Router with Built-in Self-test/Self-diagnosis

and Fault-isolation Circuits for 2-D Mesh-Based Chip Multiprocessor Systems," Proc. of the IEEE

International Symposium on VLSI Design, Automation and Test (VLSI-DAT '09), pp. 72–75, Apr. 2009.

[33] C. Stroud, J. Sunwoo, S. Garimella and J. Harris, "Built-in Self-test for System-on-Chip: A Case Study,"

Proc. of the IEEE International Test Conf. (ITC), pp. 837-846, 2004.

[34] Z. Zhang, D. Refauvelet, A. Greiner, M. Benabdenbi and F. Pecheux, "On-the-Field Test and

Configuration Infrastructure for 2-D-Mesh NoCs in Shared-Memory Many-Core Architectures, " IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 6, pp. 1364-1376, June 2014.

[35] R. Ahlswede and H. Aydinian, "On Diagnosability of Large Multiprocessor Networks," Discrete Applied

Mathematics, vol. 156, no. 18, pp. 3464-3474, Nov. 2008.

[36] G. Miorandi, A. Celin, M. Favalli and D. Bertozzi, "A Built-in Self-testing Framework for Asynchronous

Bundled-Data NoC Switches Resilient to Delay Variations," Proc. of the 10th IEEE/ACM International

Symposium on Networks-on-Chip (NOCS 2016), pp.1-8, Aug. 31-Sep. 2, 2016.

[37] L. Huang, J. Wang, M. Ebrahimi, M. Daneshtalab, X. Zhang, G. Li and A. Jantsch, "Non-blocking Testing

for Network-on-Chip," IEEE Transactions on Computers, vol. 13, no. 9, pp. 679 - 692, Sep. 2014.

[38] E. Cota, F. Kastensmidt, M. Cassel and M. Herve, "A High-fault Coverage Approach for the Test of Data,

Control and Handshake Interconnects in Mesh Networks-on-Chip, " IEEE Transactions on Computers,

vol. 57, no. 9, pp. 1202-1215, 2008.

[39] J. S. Al-Azzeh, M. E. Leonov, D. E. Skopin, E. A. Titenko and I. V. Zotov, "The Organization of Built-

in Hardware-Level Mutual Self-test in Mesh-Connected VLSI Multiprocessors, " International Journal on

Information Technology, vol.3, no. 2, pp. 29-33, 2015.

[40] J. S. Al-Azzeh, “Fault-tolerant routing in mesh-connected multicomputers based on majority-operator-

produced transfer direction identifiers”, Jordan Journal of Electrical Engineering, vol.3, no. 2, pp. 102-

111, 2017.

[41] J. S. Al-Azzeh, “A Distributed Multiplexed Mutual Inter-Unit in-Operation Test Method for Mesh-

Connected VLSI Multiprocessors”, Jordan Journal of Electrical Engineering, vol.3, no. 3, pp. 193-207,

2017.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5128899
http://www.arc.ics.keio.ac.jp/nocs16/program.html
http://www.arc.ics.keio.ac.jp/nocs16/program.html

129

"Improved Testability Method for Mesh-connected VLSI Multiprocessors", Jamil Al-Azzeh.

 ملخص البحث:

يتناااااذا لاااااسأ أ كشاااااط ء اااااس و اااااات أي ااااااذل شغااااا ء ااااات أ ااااا أ ااااا أ ناااااذل أ تاااااا ااااا

أ ذ جاااااذ أ ت ااااا كا لأ أ تطذءااااا شغااااا تااااااذ ش اأشااااافش ااااا أ أ ت اااااغو شغااااا اااااط اااااكطو ااااا

تاااااي ت ااااا يي ة ي اااااو يااااا ا ت تكاااااذة أ ذ جاااااذ أ ت ااااا كا ءكن اااااو شغااااا أ شااااا أ تكاااااذك ااااا

ذكا أحت ذ ااااااو أ طااااااات أ نااااااذ شاااااا أي اااااااذل ااااااذ تااااااي أ حاااااا أ أيءاااااا أ ااااااس ي اااااا ياااااا

تش يااااا أشااااا تااااااط ءج شاااااذ ذح اااااو ال ااااا ء ش اااااو ءااااا "أ ج ااااا أ " طااااا احااااا ا

ءااااا أ حااااا أ ت تطااااا ذ تاااااو ذ ن اااااكو اااااف أ حااااا ا دااااا أ كن اااااو أ ت ك اااااو غ اااااذ أ ت ااااا ك

 ة ياااااي تاك اااااي اشااااا ك ل اااااذكا اتتااااااط أ نت جاااااو أ ندذ اااااو تكاااااذة طااااا احااااا ا ء اااااذ شااااا

شذءاااا أيةغك ااااو شغاااا اااا اأحاااا ا ءاااا أ كاذ ااااذ أ تاااا ت اااا اااا ك اااااس لا شاااا ا اااا ك اااااس

 ء ذتب ف أ ح أ أ جذاةا أ ذح و اأ ت تي ح ذ دذ

ءاااااا دااااااو ل اااااا ت ي اااااا ب أ كشااااااط أ ااااااذكت أ ذ ااااااو تش ياااااا شاااااا ك أ حاااااا أ أ جااااااذاةا

ك أ اااااذ أ ت ااااا ك اااااس تاااااي ت ااااا ي أ ذح اااااو طااااا احااااا ا ء اااااذ أشت اااااذكأ شغااااا شااااا ك ل اااااذ

أحت ذ ااااااو أ طااااااات أ نااااااذ شاااااا أي اااااااذل شغاااااا ء ااااااو احاااااا أ أ شاااااا ءن اااااا كا ا اااااا

لظدااااا أ ا ي اااااو أ ت حاااااو لتداااااذ تااااا أ يااااا ءااااا أحت ذ اااااو أ طاااااات أ ناااااذ شااااا أي ااااااذل

 إلأ ةتت ذت تكذة أ سأت ج ف أ شذت لأ أيل و أ غ و

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

