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ABSTRACT 

The problem of in-operation embedded hardware-level fault detection in mesh-connected VLSI multiprocessors is 

considered. A new approach to the multiprocessor test based on the mutual inter-unit checking is presented, which 

allows increasing the successful fault detection probability. Formal rules are defined for forming sets of testing 

and tested neighbors for each unit which are invariant to the location of the unit within the topological structure 

of the multiprocessor and its dimension. The final test result for each processor unit is formed by applying the 

majority operator to the individual faulty/healthy tags calculated by all testing neighbors. The formulae to 

determine the number of testing neighbors for each unit depending on the dimension of the multiprocessor are 

given. The successful fault detection probability is evaluated in the case when the proposed approach is used; the 

successful fault detection probability vs. multiprocessor dimension and the successful fault detection probability 

vs. the individual test unit reliability dependencies are investigated. The proposed approach is shown to provide 

increased successful fault detection probability compared to the self-test for all practically significant cases.  

KEYWORDS 

Mesh-connected VLSI multiprocessors, Fault tolerance, Testability, Built-in self-test, Mutual inter-unit test, 

Majority operator. 

NOMENCLATURE 

D The number of dimensions in the multiprocessor mesh 

1 2 dx x xu
 

A unit of a d-dimensional multiprocessor 

x The horizontal coordinate of a unit in the mesh 

y The vertical coordinate of a unit in the mesh 

z The “depth” coordinate of a unit in the 3D mesh 

m The number of rows in the multiprocessor mesh 

n The number of columns in the multiprocessor mesh 

p The “depth” of the 3D multiprocessor mesh 

1 2 dx x xC  The set of neighbors tested by processor unit 
1 2 dx x xu  

1 2 dx x xK  The set of neighbors testing processor unit 
1 2 dx x xu  

1 2 dx x x
 

The faulty/non-faulty flag of processor unit 
1 2 dx x xu  

1 2

1 2

d

d

x x x

x x x

  


 

The partial faulty/non-faulty flag of a tested processor unit 
1 2 dx x xu     formed by testing processor unit 

1 2 dx x xu  

1 2
i i i

dx x x
u

 
An ith tested neighbor of processor unit 

1 2 dx x xu  
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iB
 

An ith parallel thread of the mutual inter-unit test algorithm 

 1 2 dx x x
T k

 
A kth test signature produced by testing unit 

1 2 dx x xu  

1 2

max

dx x xk
 

The number of test signatures supported by testing unit 
1 2 dx x xu  

 1 2
i i i

dx x x
R k

 
The test response signature issued by a tested unit 

1 2
i i i

dx x x
u  after  1 2 dx x x

T k  is received 

 1 2

0

i i i
dx x x

R k
 

The reference test response signature expected to be issued by a tested unit 
1 2
i i i

dx x x
u  after receiving test signature 

 1 2 dx x x
T k  

max

0  

The interval of time between two adjacent test loops 

0  

Next test loop wait counter 

max

i  
The maximum time needed to form the test response by an ith tested unit 

1 2
i i i

dx x x
u  

i
 

Test response wait counter 

 t
 

The probability that a processor unit is properly detected as faulty by a separate test unit 

 P t

 

The probability that a processor unit is properly detected as faulty by a set of testing neighbors 

i

jC
 

The number of combinations of i elements out of j 

# The majority operator 

1. INTRODUCTION 

Many modern computer applications require the use of high performance VLSI-based embedded 

systems to attain desired efficiency, low cost and high flexibility [1]-[22]. VLSI multiprocessors (VLSI 

MPs), also known as multicore processors, represent a highly efficient solution for implementing such 

high performance embedded systems, combining fine-grain concurrency with decentralized and 

logically distributed architecture [23]. Increasing complexity of VLSI MPs becomes a problem, because 

the probability that a processor unit or a link in a multiprocessor may appear faulty (defective) grows 

relatively high as the number of processor units increases [24]-[25]. 

A VLSI multiprocessor containing defective units (and links) can be made healthy as a whole subject to 

dedicated defect detection and isolation mechanism is employed [26]-[27]. If a certain redundancy, e.g., 

a set of spare units is introduced and specific methods are used to make it possible to detect and logically 

replace defect units with spare ones, then the VLSI MP may be treated as defect-free and retains its 

performance at the same time. In both cases, a multiprocessor with physical defects is logically 

reconfigured and VLSI MP fabrication yield loss is reduced as a result. 

For successful VLSI MP logical reconfiguration [26], it is important that every faulty node is properly 

detected and isolated to let the rest of the multiprocessor operate [27], possibly, with slightly decreased 

performance [28]. This problem is typically solved based on the usage of self-checking or self-test 

methods [29]-[41]. Self-test technique allows detecting both manufacturing defects and local faults and 

is a suitable solution to provide fast fault/defect detection that does not require powering off and un-

mounting the multiprocessor for repair. However, relatively low testability is the main problem of the 
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self-test approach, because test hardware itself is not 100% reliable; yet, self-checking algorithms may 

miss many faults/defects and sometimes treat healthy units as defective. To significantly alleviate the 

above problem, mutual inter-unit test can be employed, meaning that each multiprocessor unit is checked 

by some other units and the final faulty/non-faulty decision is made based on a certain formal rule, which 

takes into account the local decisions made by particular test units [39]-[41]. This approach is developed 

in the present paper. 

The aim of the manuscript is to expand the VLSI multiprocessor mutual inter-unit test method initially 

presented in [39]-[41]. In the following sections, we formally state the mutual inter-unit test approach 

for the d-dimensional VLSI MP architecture, which makes it possible to concurrently detect 

faulty/defective units across a mesh-connected VLSI multiprocessor. A parallel inter-unit test algorithm 

is presented based on the proposed formal approach and dedicated test hardware implementing the above 

algorithm is diagrammed and briefly discussed. At the end of the paper, we demonstrate that the mutual 

inter-unit test environment provides increased testability compared to the self-checking technique.  

2. THE MUTUAL INTER-UNIT TEST APPROACH 

The key idea of the mutual inter-unit test is that each processor unit of the multiprocessor is periodically 

checked by a subset of its physical neighbors (so called “testing neighbors”) and, at the same time, this 

processor unit tests another subset of its physical neighbors (so called “tested neighbors”) and the final 

faulty/non-faulty decision for each processor unit is made based on the majority operator result obtained 

from the partial results returned by the testing neighbors. 

The set of “testing neighbors” for each processor unit is formed depending on the number of dimensions 

(d) of the VLSI multiprocessor topology and should satisfy the odd cardinality requirement to make the 

majority operator applicable to produce the final test result. The same applies to the formation of the set 

of “tested neighbors”, except that the cardinality of the set may not be odd. The process of mutual inter-

unit test is carried out simultaneously in all the units across the mesh, so that a faulty signal is 

simultaneously transferred to the physical neighbors of the corresponding faulty processor unit, which 

makes it possible to efficiently isolate (or replace) faulty/defective units in a timely manner. 

The mutual inter-unit test mechanism may be considered as an advanced form of self-checking, because 

the operability of the test hardware itself is also tested. For example, if one of the testing processor units 

produces a wrong faulty/non-faulty decision, then the tested unit (which is in fact non-faulty) will not 

be necessarily detected as faulty by mistake as the resulting faulty signal is formed by the majority 

operator applied to a set of partial fault detection signals. This means that the mutual inter-unit test 

mechanism testability is better compared to the self-test technique. A more formal demonstration is 

shown at the end of the paper. 

3. THE FORMATION OF TESTING AND TESTED NEIGHBOR SETS 

The formation of testing and tested neighbor sets is one of the key problems in the organization of mutual 

inter-unit test. In this section, we provide formal rules to define these sets for a VLSI MP of arbitrary 

dimension 𝑑 ≥ 2. 

Let us first consider a 2-dimensional multiprocessor. Let 𝑈 = {𝑢𝑥𝑦} be the set of its processor units, 

where x and y are coordinates (indices) of a particular unit in the mesh in the horizontal and vertical 

dimensions, respectively, 𝑥 = 0, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑦 = 0, 𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, with m and n standing for the number of rows 

and columns of the mesh, respectively. Let 𝐶𝑥𝑦 and 𝐾𝑥𝑦 designate the sets of tested and testing neighbors 

of processor unit 𝑢𝑥𝑦, respectively. Then, for given arbitrary 𝑥 ∈ {0,1, … 𝑛 − 1} and 𝑦 =
{0,1, … 𝑚 − 1}, we can  formulate the following rules: 

 

   

 

1 mod ,

1 mod , 1 mod

, 1 mod

,

,

x n y

xy x n y m

x y m

u

C u

u



 



 
  

  
 
  

                                                     (1) 
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  

     

  

, 1 sign( ) 1

1 sign( ) 1 , 1 sign( ) 1

1 sign( ) 1 ,

,

,

x y y m

xy x x n y y m

x x n y

u

K u

u

  

     

  

 
 
 

  
 
                                                    

(2) 

Equations (1) and (2) above take into account the fact that leftmost, rightmost, topmost and bottommost 

processor units have fewer physical neighbors than those located in the other parts of the mesh. For 

example, a topmost unit has no neighbor above, that’s why its tested neighbor set should include the 

bottommost unit in the same column. The same applies to a leftmost unit that has no neighbor on its left; 

its testing neighbor set should include the rightmost unit in the same row. Figure 1 illustrates rules (1) 

and (2) in detail. Note that rules (1) and (2) give just one of several possible testing/tested neighbor 

allocations around each unit, providing the minimal number of neighbors involved.  

1 2 3

1

y

y-1

x-1 x nn-10

m-1

0

xyK

0xK

0xK

0 yK

0 yK

00K

00K
00K

00K

m-2

m-3

m-4

xyu

1 2 3

m-2

m-3

m-4

1

y+1

y

x x+1 n-1n-20

m-1

0

xyC

 1x m
C



 1x m
C



  1 1n m
C

 

 1n y
C



  1 1n m
C

 

 1n y
C



  1 1n m
C

    1 1n m
C

 

xyu

 

Figure 1. The formation of tested and testing neighbor sets in a 2-dimensional mesh multiprocessor. 
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If set  xyK  is defined for each processor unit xyu   , then the faulty/non-faulty decision may be made 

according to the following rule: 

   

       

   

1 sign 1 ,

1 sign 1 , 1 sign 1

, 1 sign 1

,

# ,

x x n y

xy

x x n y y m

xy xy

x y y m

xy

  

     

  

 
 
 

   
 

 
 

                                           (3) 

where # denotes the majority operator, 𝜑𝑥𝑦
𝑥′𝑦′

= 1, if unit 𝑢𝑥𝑦 ‘is considered’ non-faulty by unit 𝑢𝑥′,𝑦′ 

and 𝜑𝑥𝑦
𝑥′𝑦′

= 0 otherwise, where 𝑥′, 𝑦′ are the placeholders standing for the corresponding upper indices 

in  Equation (3). According to (3), unit 𝑢𝑥𝑦 is treated as faulty and needs to be isolated from the mesh, 

if 𝜑𝑥𝑦 = 0. 

The rules (1)-(3) may be easily extended to mesh topologies of higher dimensions. For example, for a 

3-dimensional multiprocessor they could be formulated as follows: 

 

   

     

   

   

     

1 mod , , , 1 mod ,

, , 1 mod 1 mod , 1 mod ,

1 mod , , 1 mod

, 1 mod , 1 mod

1 mod , 1 mod , 1 mod

, ,

, ,

,

,

x n y z x y m z

x y z p x n y m z

xyz x n y z p

x y m z p

x n y m z p

u u

u u

C u

u

u

 

  

 

 

  

 
 
 
  

  
 
 
 
                                             

(4) 

 

  

  

  

     

     

     

     

1 sign( ) 1 , ,

, 1 sign( ) 1 ,

, , 1 sign( ) 1

1 sign( ) 1 , 1 sign( ) 1 ,

1 sign( ) 1 , , 1 sign( ) 1

, 1 sign( ) 1 , 1 sign( ) 1

1 sign( ) 1 , 1 sign( ) 1 , 1 s

,

,

,

,

,

,

x x n y z

x y y m z

x y z z p

xyz x x n y y m z

x x n y z z p

x y y m z z p

x x n y y m z

u

u

u

K u

u

u

u

  

  

  

     

     

     

       



  ign( ) 1z p

 
 
 
 
 
  
 
 
 
 
 
 
  

                                 (5) 
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     

     

     

  

1 sign( ) 1 , ,

, 1 sign( ) 1 ,

, , 1 sign( ) 1

1 sign( ) 1 , 1 sign( ) 1 ,

1 sign( ) 1 , , 1 sign( ) 1

, 1 sign( ) 1 , 1 sign( ) 1

1 sign( ) 1 , 1 s

,

,

,

# ,

,

,

x x n y z

xy

x y y m z

xy

x y z z p

xy

x x n y y m z

xyz xy

x x n y z z p

xy

x y y m z z p

xy

x x n y

xy

  

  

  

     

     

     

    







  






     ign( ) 1 , 1 sign( ) 1y m z z p   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     

(6) 
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where m, n and p are the sizes of the mesh in X, Y and Z dimensions, respectively. To define sets 

𝐶𝑥1𝑥2…𝑥𝑑
 and 𝐾𝑥1𝑥2…𝑥𝑑

 for a general cased-dimension mesh, it is necessary to extend  Equations (4)-(6) 

by adding extra properly indexed elements (u and ) and all possible combinations. The d-dimensional 

case equations are not stated here for evident reasons. One can prove that:  

 
 

1 2 1 2
1 1

d dx x x x x xC K d d   
                                                    (7) 

Thus, |𝐾𝑥1𝑥2…𝑥𝑑
| = 1(𝑚𝑜𝑑2); i.e., each processor unit has an odd number of testing neighbors that 

makes it possible to apply the majority operator to produce the resulting faulty/non-faulty flag. 

According to (7), the number of testing neighbors in 2-dimensional meshes is minimal: |𝐾𝑥𝑦| = 3. In a 

3-dimensional array, each unit has |𝐾𝑥𝑦𝑧| = 7 testing neighbors. 

4. THE MUTUAL INTER-UNIT TEST PROCEDURE 

The process of mutual inter-unit test may be represented as a parallel algorithm including a set of threads 

𝐵1, 𝐵2, … , 𝐵𝑑(𝑑−1)+1, where thread 𝐵𝑖 defines a test statement sequence corresponding to tested 

neighbor 𝑢
𝑥1

𝑖 𝑥2
𝑖 …𝑥𝑑

𝑖  (see Figure 2). The algorithm applies to a VLSI MP of any dimension 𝑑 ≥ 2. 

START

END

1B
iB

 1 1d d
B

 

0k 

1 2 dx x x0 1

 1 2 dx x x
T T k

1 2
i i i

dx x x
u T 0i 

0 0 

  max

0 0 01 mod    

0 0 

1

0

  max1 modi i i    

0i 
0

 1 2
i i i

dx x x
R

R k


 1 2

0

0

i i i
dx x x

R
R k


0R R
1

0

1 2

1 2

0d
i i i

d

x x x

x x x
 

 
1 2

max1 mod
dx x xk k k 

1

2

3

4

5

67

8 9

10

11

12 13

14

15

16

17

A

1

B

C

17

 

Figure 2. Flow-chart of the mutual inter-unit test algorithm. 
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The algorithm in Figure 2 includes the main test loop which is executed while the corresponding 

Processor unit (which is meant to be 𝑢𝑥1𝑥2…𝑥𝑑
) is considered healthy by its testing neighbors 𝐾𝑥1𝑥2…𝑥𝑑

 

(see condition 3). As another loop begins, a new test signature 𝑇𝑥1𝑥2…𝑥𝑑(𝑘) is formed (see statement 7), 

which is simultaneously transferred to tested neighbors 𝐶𝑥1𝑥2…𝑥𝑑
= {𝑢

𝑥1
𝑖 𝑥2

𝑖 …𝑥𝑑
𝑖 } (see statement 8). After 

all the tested neighbors have returned corresponding response signatures {𝑅
𝑢

𝑥1
𝑖 𝑥2

𝑖 …𝑥𝑑
𝑖

(𝑘)} (see statement 

12), a decision is made by the processor 𝑢𝑥1𝑥2…𝑥𝑑
 whether a particular tested neighbor 𝑢

𝑥1
𝑖 𝑥2

𝑖 …𝑥𝑑
𝑖  is faulty 

or healthy (see condition 14 and statement 15).  

The algorithm in Figure 2 consists of three main sections: A, B and C (see the dash lines). Section A is 

necessary to spin 𝜏0
𝑚𝑎𝑥 clock ticks until the next test loop begins and another test signature 𝑇𝑥1𝑥2…𝑥𝑑(𝑘) 

gets ready for transfer. Section B is responsible for transferring the test signature to tested unit 𝑢
𝑥1

𝑖 𝑥2
𝑖 …𝑥𝑑

𝑖  

and performs counting 𝜏𝑖
𝑚𝑎𝑥 clock ticks until a response from the tested processor is supposed to arrive. 

Section C first controls the arrival of test response 𝑅
𝑢

𝑥1
𝑖 𝑥2

𝑖 …𝑥𝑑
𝑖

(𝑘) from unit 𝑢
𝑥1

𝑖 𝑥2
𝑖 …𝑥𝑑

𝑖  and then generates 

reference test response 𝑅𝑥1𝑥2…𝑥𝑑(𝑘) to compare it to 𝑅𝑥1
𝑖 𝑥2

𝑖 …𝑥𝑑
𝑖

(𝑘). If the above are equal, then tested 

neighbor 𝑢
𝑥1

𝑖 𝑥2
𝑖 …𝑥𝑑

𝑖  is assumed to be healthy; otherwise, it is considered faulty and the partial faulty/non-

faulty decision flag 𝜑
𝑥1

𝑖 𝑥2
𝑖 …𝑥𝑑

𝑖
𝑥1𝑥2…𝑥𝑑 is reset to zero. This flag is then used in  Equations like (3) and (6) 

(depending on the value of d) to produce the final decision flag 𝜑
𝑥1

𝑖 𝑥2
𝑖 …𝑥𝑑

𝑖 . The meaning of the symbols 

used in the flowchart of Figure 2 is presented in Table 1.  

Table 1. The meaning of the symbols used in Figure 2. 

Symbol Meaning 

1 2

max

dx x xk  The number of test signatures supported by processor unit 
1 2 dx x xu  

k, 

1 2

max0, 1
dx x xk k 

 

Test signature counter of processor unit 
1 2 dx x xu  

max

0  

The interval (in clock ticks) between two adjacent test loops 

0
 

Next test loop wait counter 

 max , 1, 1 1i i d d   
 

The maximum time needed to form a test response by tested processor unit 
1 2
i i i

dx x x
u  

 , 1, 1 1i i d d   
 

Test response wait counter 

 1 2 dx x x
T k

 

kth test signature supported by processor unit 
1 2 dx x xu  

 1 2
i i i

dx x x
R k

 

Test response signature issued by tested processor unit 
1 2
i i i

dx x x
u  after  1 2 dx x x

T k  

is received 

 1 2

0

i i i
dx x x

R k
 

The reference test response signature expected to be issued by processor unit 

1 2
i i i

dx x x
u  after receiving  1 2 dx x x

T k  

0, ,T R R
 

Temporarily used variables 


 

The value assignment/transfer operator 
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In the algorithm diagrammed in Figure 2, much work is done in parallel, which makes it possible to 

concurrently test processor units across the entire multiprocessor structure. All the conditions and 

statements of the algorithm are simple enough to be implemented in hardware, which additionally 

contributes to the mutual inter-unit test environment performance. Yet, the test response signature 

mechanism used in the presented algorithm allows configuring test actions performed by tested 

neighbors taking into account the test complexity/duration trade-off.  

5. THE MUTUAL INTER-UNIT TEST HARDWARE 

The mutual inter-unit test algorithm of Figure 2 may be directly presented as a hardware-level 

implementation. The logic diagram of the embedded test hardware constructed according to the above 

algorithm is shown in Figure 3. 

 

Figure 3. Logic diagram of the embedded test hardware implementing the mutual inter-unit test 

algorithm. 
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The device of Figure 3 is supposed to be a part of each processor unit; it consists of the device core and 

𝑑(𝑑 − 1) + 1 neighbor test units (NTUs). The device core executes the initial and final sequential 

threads of the mutual inter-unit test algorithm, while NTUi implements thread 𝐵𝑖, 𝑖 = 1, 𝑑(𝑑 − 1) + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

(see Figure 2).Taking into account the fact that the NTUs are identical, only NTU1 is detailed in Figure 

3. The adopted input/output numbering scheme helps understand the connections between the device 

core and the NTUs. The functions of the units and logic gates shown in Figure 3 are detailed in Table 2. 

Table 2. The functions of the units and gates presented in Figure 3 

Unit or gate Function 

Memory unit 1 Stores the test signatures issued by the processor unit 

Circular binary counter 2 Counts the clock pulses that arrived between two adjacent test loops 

performed by the processor unit 

Circular binary counter 3 Points to the next test signature in memory 1 to be issued by the processor unit 

Flip-flop 4 Indicates whether counter 2 has zeroed or not 

AND gate 5 Stops clock pulses from arriving at counter 2 

AND gate 6 Stops clock pulses from arriving at counter 3 

NORgate 7 together with univibrator9 Detect whether counter 2 has re-entered the zero state 

OR gate 8 Necessary to OR the pulses clearing flip-flop 4 

Univibrator 10 Produces a pulse which forces the NTUs to start operation 

Memory unit 11 Stores the ref. response signatures for the tested neighbors of the current 

processor 

Circular binary counter 12 Counts the clock pulses that arrived until the corresponding tested neighbor 

sends a response signature 

Flip-flop 13 Indicates whether counter 12 has zeroed or not 

Flip-flop 14 Indicates whether the corresponding tested neigh. is currently healthy or faulty 

Comparator 15 Compares the test response sent by the tested neighbor to the corresponding 

reference test response read from memory 11 

AND gate 16 Stops clock pulses from arriving at counter 12 

AND gate 17 Stops reset pulses from arriving at counter 14 

NOR gate 18 combined with 

univibrator 20 

Detect whether counter 12 has re-entered the zero state 

OR gate 19 Necessary to OR the pulses clearing flip-flop 13 

Univibrator 21 Produces a pulse to clear flip-flop 14 
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6. COMPARING THE MUTUAL INTER-UNIT TEST APPROACH TO SELF-CHECKING 

The mutual inter-unit test approach is a good alternative to the self-checking technique, providing better 

multiprocessor testability, which is demonstrated in the present section. 

Let 𝜋+(𝑡) be the probability that a processor unit of the multiprocessor is properly detected as faulty by 

a separate test unit (NTU). Taking into account that there are 𝐶𝑗
𝑖 =

𝑗!

𝑖!(𝑗−𝑖)!
 possible combinations of 

testing neighbors correctly reporting that the current processor is faulty, the following  Equation may be 

deduced: 

 

       
 

 

 1 1
1 1

1 1
1 1

2

1
d d

d d iii

d d
d d

i

P t C t t 
 

  
  

 
  

 
 

   

                     

(8) 

 Equation (8) gives the probability 𝑃+(𝑡)
 
that a processor unit is properly detected as faulty 

subject to the mutual inter-unit test approach employed. 

To evaluate the effect provided by the mutual inter-unit test, we assume that 𝜋+(𝑡) equals the 

probability of successful self-test (we presuppose that each processor has a built-in NTU or 

similar hardware to check its state) and then calculate 𝑃+(𝑡)/𝜋+(𝑡) depending on d and 𝜋+(𝑡)
 

with fixed 𝜋+(𝑡)
 
and d, respectively (see Figure 4).  

(a) 𝑃+(𝑡)/𝜋+(𝑡) (b) 𝑃+(𝑡)/𝜋+(𝑡) 

 

 

d 𝜋+(𝑡)
 

Figure 4. (a) 𝑃+(𝑡)/𝜋+(𝑡) versus d  and (b) 𝑃+(𝑡)/𝜋+(𝑡)
 
versus 𝜋+(𝑡)

 
graphs for fixed  

𝜋+(𝑡)
 
and d, respectively.

 

The graphs in Figure 4 demonstrate that the mutual inter-unit test approach is effective as long as 

𝜋+(𝑡) ∈ [0.6; 0.9]. If 𝜋+(𝑡) → 1 or 𝜋+(𝑡) → 0.5, then 𝑃+(𝑡)/𝜋+(𝑡) → 1, thus the effectiveness 

gracefully degrades. Our approach provides minimal effect for 2-dimensional multiprocessors (8% to 

12% better than self-checking with 𝜋+(𝑡) ∈ [0.6; 0.9]). If more dimensions are added, then with 

𝜋+(𝑡) ∈ [0.6; 0.8],
 
it is possible to get 20% or more effectiveness growth. Note that 𝜋+(𝑡) = 0.6 is 

approximately the point of maximum effectiveness as the number of dimensions increases. 

7. THE AREA COST OF THE TEST HARDWARE 

In our investigation, we have evaluated the area cost added by the test hardware. We assumed different 

VLSI MP dimensions d and calculated the area occupied by the logic gates in the test unit hardware. We 

fixed the number of test instructions supported by each processor unit 𝑘𝑚𝑎𝑥. 
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The graphs shown in Figure 5 demonstrate the VLSI area penalty versus VLSI MP dimension d. For 

low-dimension multiprocessors, the extra area remains as low as O(10000) logic gates, which is much 

lower than the area occupied by the processor core. For example, in a 3-dimensional multiprocessor, 

less than 18000 extra gates need to be added to each processor unit to support up to 32 test routines at 

each unit. If we add more test scenarios, then the VLSI area penalty will increase drastically. For 

example, a 3-dimensional VLSI MP needs over 260000 extra logic gates at each unit to support up to 

512 different test routines.  

d 

Figure 5. VLSI area (C) versus d graphs for a fixed number of test instructions supported by a 

particular unit (𝑘𝑚𝑎𝑥).
 

As a consequence, a limited number of test instructions supported are a good option to decrease the 

VLSI area penalty of the test hardware. Note that each test instruction provides a specific test procedure, 

thus the selection of a set of test routines becomes a key issue to cover up possible fault patterns. 

8. CONCLUSION 

In the present paper, we have presented a new approach, the mutual inter-unit test mechanism, which 

makes it possible to improve testability of mesh-connected VLSI multiprocessors by increasing the 

successful fault detection probability with respect to traditional self-checking. We have shown that our 

approach is applicable to multiprocessors of arbitrary dimension; yet, its effectiveness grows higher as 

the number of dimensions increases which is important for future generation VLSI MPs. The mutual 

inter-unit test technique allows hardware-level testing of all the processor units across the mesh in 

parallel, thus significantly contributing to the test environment performance.  
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 ملخص البحث:

يتناااااذا  لاااااسأ أ كشاااااط ء اااااس و  اااااات أي ااااااذل شغااااا  ء ااااات   أ   ااااا أ   ااااا  أ ناااااذل أ تاااااا     ااااا  

أ   ذ جاااااذ  أ  ت ااااا كا لأ  أ تطذءااااا  شغااااا  تااااااذ ش اأشااااافش  ااااا أ  أ  ت اااااغو شغااااا   اااااط   اااااكطو    ااااا  

تاااااي ت ااااا يي ة ي اااااو   يااااا ا ت تكاااااذة أ   ذ جاااااذ  أ  ت ااااا كا ءكن اااااو شغااااا  أ  شااااا  أ  تكاااااذك   ااااا   

ذكا أحت ذ  ااااااو أ طااااااات أ نااااااذ   شاااااا  أي اااااااذل    ااااااذ تااااااي أ  حاااااا أ   أيءاااااا  أ ااااااس  ي اااااا     ياااااا

تش يااااا    أشااااا   تااااااط   ءج  شاااااذ   ذح اااااو ال ااااا   ء ش  اااااو ءااااا  "أ ج ااااا أ "  طااااا  احااااا ا 

ءااااا  أ  حااااا أ ت تطااااا    ذ تاااااو  ذ ن اااااكو     اااااف أ  حااااا ا دااااا   أ كن اااااو أ ت   ك اااااو  غ  اااااذ   أ  ت ااااا ك 

  ة ياااااي تاك اااااي اشااااا ك ل  اااااذكا  اتتااااااط  أ نت جاااااو أ ندذ  اااااو    تكاااااذة  طااااا  احااااا ا ء اااااذ   شااااا

شذءاااا  أيةغك ااااو شغاااا   اااا  اأحاااا ا ءاااا  أ كاذ ااااذ  أ تاااا  ت  اااا     اااا ك  اااااس لا شاااا   ا اااا ك  اااااس 

 ء   ذتب    ف أ  ح أ  أ  جذاةا أ  ذح و اأ ت  تي ح ذ دذ 

ءاااااا   دااااااو ل اااااا  ت ي اااااا ب أ كشااااااط أ   ااااااذكت  أ  ذ ااااااو  تش ياااااا  شاااااا ك أ  حاااااا أ  أ  جااااااذاةا 

ك أ   اااااذ   أ  ت ااااا ك   اااااس   تاااااي ت  ااااا ي أ  ذح اااااو  طااااا  احااااا ا ء اااااذ   أشت اااااذكأ  شغااااا  شااااا ك ل  اااااذ

أحت ذ  ااااااو أ طااااااات أ نااااااذ   شاااااا  أي اااااااذل شغاااااا  ء     ااااااو احاااااا أ  أ  شاااااا  ءن اااااا كا  ا اااااا  

لظدااااا   أ ا ي اااااو أ   ت حاااااو لتداااااذ تااااا    أ   يااااا  ءااااا  أحت ذ  اااااو أ طاااااات أ ناااااذ   شااااا  أي ااااااذل 

 إلأ   ةتت  ذت تكذة أ سأت   ج  ف أ شذت  لأ  أيل  و أ   غ و 
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