
1

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

J. Al-Azzeh is with Department of Computer Engineering, Al-Balqa Applied University, Al-Salt, Jordan. Email:
jamil.azzeh@bau.edu.jo

DISTRIBUTED MUTUAL INTER-UNIT TEST METHOD

FOR D-DIMENSIONAL MESH-CONNECTED

MULTIPROCESSORS WITH ROUND-ROBIN COLLISION

RESOLUTION

Jamil Al-Azzeh

(Received: 16-Oct.-2018, Revised: 23-Nov.-2018, Accepted: 8-Dec.-2018)

ABSTRACT

A collision-free extension to the mutual inter-unit test methodology for d-dimensional VLSI multiprocessors is

proposed to guarantee that any processor core is tested only by its neighboring node at a time and no special care

needs to be taken to choose those moments when test actions should start. Collision resolution hardware based on

the round-robin arbitration routine is discussed in detail. A parallel collision-resolution-aware mutual inter-unit

test algorithm is formulated and diagrammed. The proposed approach has been shown to improve the testability

of mesh-connected multiprocessors by increasing the probability of successful fault detection as compared with

the distributed self-checking methodology. Further, the new approach drastically reduces extra connectivity in the

multiprocessor with respect to known mutual inter-unit test methods and leads to more easily manufactured

multiprocessor fabric. For example, in a 4-dimensional system, we need 55% less extra connections with our

approach.

KEYWORDS

Multiprocessors, VLSI, Mesh topology, Reliability, Testability, Self-test, Mutual inter-unit test.

1. INTRODUCTION

Continuing VLSI miniaturization has enabled the production of high-performance multicore and many-

core single-chip multiprocessors comprising up to thousands of processor cores [4], [7]. However, the

unreliability of such multiprocessor components has emerged as one of the crucial limitations to future

scaling [12]-[13]. To maintain the correct operations of these multiprocessor systems with unhealthy

components, specific fault-tolerance issues must be addressed when designing the multiprocessor [1],

[3], [11], [15], [23], [27], [34] and [38]-[39]. Detecting the location of faulty components is one of these

issues [2], [17] and [36].

A VLSI multiprocessor containing faulty components can be considered healthy if a dedicated fault

detection and isolation mechanism is deployed [6], [9], [16], [21], [24], [31]-[32], [37]. With no specific

mechanism of spare replacements, the multiprocessor maintains its operation, but its performance

gradually degrades [19]-[20]. If a spare replacement mechanism is assumed [14], [18], the

multiprocessor’s performance is retained in the presence of the unhealthy components.

The detection of faulty components in VLSI multiprocessors is typically solved by built-in distributed

self-checking or neighbor-checking methods [5], [10], [26], [28], [30], [40]. It is important that fault

detection is done in-operation, which means that no long-term interruption of the multiprocessor is

required to pinpoint an unhealthy component. Distributed self-test methods are an efficient, yet simple,

solution to fault detection [8], [22], [25], [29], [33], [35]. However, these methods are characterized by

relatively low testability: they may miss faulty components in some cases and/or treat healthy units as

defective. Thus, the probability that a processor core is properly self-detected as faulty is not high

enough for many practical applications. Another straightforward approach to fault detection is that a

processor occasionally sends probe signals to its neighbors and marks neighbor cores as defective if no

2

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

acknowledgment is received within an established period of time. Such a neighbor-checking approach

is also relatively simple to implement. However, it cannot provide better testability as compared to self-

checking, because processor nodes test their peers independently and healthy/faulty decisions are made

locally with no inter-processor cooperation.

A more complex fault detection mechanism, the mutual inter-unit test, has been specifically designed to

improve multiprocessor testability by employing checking schemes with neighbor cooperation, by

which each processor node is occasionally checked by a number of its neighbors and the final

faulty/healthy decision is made according to the majority operator rule [41]. With this approach and

depending on the topology of the multiprocessor, the probability of successful fault detection can be

increased by at least 10% as compared to self-checking mechanisms. To improve the utilization of

testing the hardware across a multiprocessor mesh and to make an additional increase in the probability

of successful fault detection, a multiplexed mutual inter-unit test method based on a similar checking

scheme to that of [41] and combined with distributed self-checking has been proposed [42]. Each test

unit of each processor is now allowed to check a pair of its neighbors, A and B (not necessarily direct

neighbors). The checking time period is split into two phases. During the first phase, neighbor A is tested

while neighbor B is expected to send a test response. During the second phase, neighbor B is checked

while neighbor A is expected to provide a test response. Thus, idle time is minimized and the testing

hardware is used more efficiently in a time division manner. With this approach, the number of testing

neighbors at each processing node is double of that in [41] with small hardware overhead, allowing a

higher probability of successful fault detection. The main drawback of the multiplexed mutual inter-unit

test is the assumption that each processor node (including those with non-direct processor cores) has

many extra connections, which drastically increases the complexity of the communication network and

may pose a serious problem if more dimensions are assumed. The inter-unit test methods presuppose

that testing neighboring processor subsets check corresponding tested processors asynchronously, which

may lead to collisions (two or more testing cores trying to check the same tested node at the same time);

thus, special care must be taken to eliminate them.

Here, we propose another extension to the mutual inter-unit test methodology for d-dimensional VLSI

multiprocessors by using a similar cooperating neighbor-checking scheme as that of [41]. Our main

contribution is the use of a novel collision resolution mechanism (the round-robin collision resolution

scheme), which guarantees that any processor core is tested by only one neighbor node at a time, so that

no special care need be taken to choose the moments when test actions should start. In the following

sections, we formally state the proposed method for a d-dimensional VLSI multiprocessor to

concurrently detect faulty/defective nodes across a mesh. A parallel inter-unit test algorithm based on

the proposed formal approach is presented and the dedicated test hardware implementing the above

algorithm is diagrammed and briefly discussed. We also take a closer look at the round-robin collision

resolution scheme, which is the cornerstone of our method. At the end of the paper, we compare our

approach to the distributed self-checking technique and existing inter-unit test methods.

2. MUTUAL INTER-UNIT TEST AND COLLISION RESOLUTION FUNDAMENTALS

The idea of the mutual inter-unit test is straightforward. Each processor core is occasionally checked by

its neighbors (referred to as “testing neighbors”). It is also assumed that a processor core periodically

performs self-testing. The faulty/healthy decision for each processor is made according to the majority

operator rule applied to the individual faulty/healthy decisions arriving from the testing neighbors and

self-test hardware. The set of testing neighbors for each processor is formed according to the number of

dimensions (d) of the multiprocessor topology, whose cardinality should be odd to make the majority

operator applicable. The mutual inter-unit test procedure is carried out concurrently across the mesh, so

that the faulty processors are detected and the corresponding signals are immediately transferred to the

physical neighbors in order to isolate the faulty/defective cores in a timely manner. Unlike the distributed

self-checking and neighbor-checking methods, the mutual inter-unit test mechanism provides for the

operability of the test hardware itself to be tested implicitly. For example, if one of the testing processors

issues a wrong faulty/healthy decision for its neighbor, then the tested neighbor (which is, in fact,

healthy) will not be assumed as faulty by mistake, because the resulting faulty signal is formed by the

majority operator. Therefore, the probability of successful fault detection increases.

The problem with the inter-unit test mechanism is that collisions may occur when several testing

3

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

neighbors start checking the same tested processor at the same time. Known inter-unit test schemes do

not introduce any dedicated procedures and hardware to resolve the collisions; so, extra software-level

solutions are necessary to calculate the time windows when a processor is allowed to test its neighbors

with no collisions. However, this may drastically slow down the test process across the mesh, but may

work against the multiprocessor’s reliability. Hence, we propose an extended version of the inter-unit

test with no possible inter-processor collisions. We assume that a hardware-level collision resolution

mechanism, which we refer to as the round-robin arbitration scheme, is added to each processor core.

The idea of the collision resolution mechanism is for each testing neighbor (including the self-test units)

of a given processor to be assigned an arbitration flag whose high value grants permission to start the

test procedure. If this flag is zero, then the corresponding testing neighbor is not permitted to perform

the test. The set of arbitration flags of each tested neighbor are organized as a ring shift register

containing only the high value, which moves along the ring in a given direction and activates only one

testing neighbor at a time. When a testing neighbor is about to initiate the test, it first polls the arbitration

flag. If the flag is high, then the testing neighbor commences the test procedure and the flag stops moving

until the test is finalized. If the flag is low, then the test is not initiated. The testing neighbor may be put

into a queue to spin until the flag clears or simply leaves and tries to initiate the test the next time. With

such an arbitration scheme, each processor is guaranteed to be tested by only one neighbor (or self-test

unit) at a time. Therefore, no extra software-level support is required to pre-determine the time for

initiating the test.

The remainder of the paper is organized as follows. In Section 3, we formally define the construction

rule of the testing neighbor sets for a d-dimensional multiprocessor. Section 4 provides details on the

proposed inter-unit test procedure. In Section 5, a hardware-level implementation of our approach is

discussed. Section 6 provides the necessary details on the round-robin arbitration scheme. Section 7 is

dedicated to the evaluation and comparison of our proposed approach to the distributed self-test and

existing inter-unit test solutions. Section 8 contains the concluding remarks.

3. THE FORMATION OF TESTING NEIGHBOR SETS

We propose a more straightforward rule to form testing neighbor sets for each processor as compared

to those defined in [41] and [42]. We assume that only the direct neighbors of a given core can be its

testing neighbors, thereby eliminating extra diagonal connections among the processors and reducing

the communication hardware complexity of the multiprocessor. With 4 direct neighbors in a 2-

dimensional mesh, each processor has 5 testing neighbors if self-checking capabilities are assumed.

With 6 direct neighbors in a 3-dimensional mesh, there will be 7 testing neighbors at each processor

node. Analogously, in a d-dimensional mesh, each processor will be checked by 2𝑑 + 1 testing

neighbors.

Taking into account the processor nodes at the edges of the mesh, we can formally state the above rule

as follows. Let us first consider a 2-dimensional multiprocessor. Let 𝑈 = {𝑢𝑥𝑦} be the set of its

processors with x and y standing for the coordinates of a processor relative to the leftmost and lowermost

node of the mesh, 𝑥 = 0, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 and 𝑦 = 0, 𝑚 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, respectively. m and n denote the numbers of rows

and columns, respectively, of the mesh structure. Then, the testing neighbor set 𝐾𝑥𝑦
′ of processor 𝑢𝑥𝑦,

𝑥 ∈ {0,1, … , 𝑛 − 1}, 𝑦 = {0,1, … , 𝑚 − 1}, will be formalized as:

 𝐾𝑥𝑦
′ = 𝐾𝑥𝑦 ∪ {𝑢𝑥𝑦}, (1)

          , 1 mod 1 mod , 1 sign 1, , 1 sign 1

, , ,xy x y m x n y x x n y x y y m
K u u u u

       
 . (2)

In Figure 1, different allocations of testing neighbors for the 2-dimensional case are illustrated. The

testing neighbors are shown in grey and the dotted squares denote the testing nodes (which are mapped

onto the corresponding cores at the opposite sides of the mesh) missing at the edges of the mesh.

Rules (1) and (2) can be directly expanded into a d-dimensional multiprocessor case:

 

1 2 1 2 1 2d d dx x x x x x x x xK K u   (3)

4

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

     

        

1 1 2 1 2 2 3 1 2

1 2

1 1 2 1 2 2 3 1 2

1 mod , , , , 1 mod , , , , , , 1 mod

1 sign 1, , , , 1 sign 1, , , , , , 1 sign 1

, , , ,

, , ,

d d d d

d

d d d d

x n x x x x n x x x x x n

x x x

x x n x x x x y n x x x x x y n

u u u
K

u u u

  

        

  
  
  

. (4)

It is evident that

1 2

2
dx x xK d , (5)

1 2

2 1
dx x xK d   . (6)

Formula (6) guarantees an odd number of testing neighbors at each processor and renders the majority

operator applicable to faulty/healthy decisions. The collision resolution mechanism, in turn, guarantees

that any processor
xyu is never checked by more than one peer at a time.

xyu

n-1n-20

xyum-1

m-2

0

xyum-1

m-2

0

n-1n-20

xyu

Figure 1. Possible allocations of testing neighbors 𝐾𝑥𝑦 in a 2-dimensional multiprocessor.

4. MUTUAL INTER-UNIT TEST PROCEDURE

The above conceptual description and formal rules allow the creation of an algorithm representing the

process of the inter-unit test occasionally performed by each processor as we explain in detail below.

We consider a d-dimensional multiprocessor and its arbitrary processor 𝑢𝑥1𝑥2…𝑥𝑑
. For clarity, we

indicate 𝑢𝑥1𝑥2…𝑥𝑑
. with the superscript 0 and enumerate its consecutive neighbors by the

superscripts1,2, … ,2𝑑, respectively. For the 2-dimensional case, we would have 4 neighbors renumbered

as 𝑢𝑥𝑦
1 , 𝑢𝑥𝑦

2 , 𝑢𝑥𝑦
3 , 𝑢𝑥𝑦

4 .

The proposed algorithm is presented in Figure 2. All the symbols used in the flow-chart are explained

in Table 1.

5

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

BEGIN

END

0B 2dB

1 2 dx x x0

1

 1 2: dx x x
T T k

: 0 

  max: 1 mod    

0 

1

0

 
1 2

max: 1 mod
dx x xk k k 

1

3

4

5

6

7

8

10

9

: 0k 

2

1 2
: 0, 1,2 ,

d

i

x x xz i d 
1 2

0 : 1
dx x xz 

1 2
: 1, 0,2 ,

d

i

x x xb i d 

1B

Figure 2. The proposed mutual inter-unit test algorithm.

Table 1. Symbols used in the flowchart shown in Figure 2.

No. Symbol Meaning

1  1 2 dx x x
T k kth test signature issued by processor

1 2 dx x xu

2 k,
1 2

max0, 1
dx x xk k  Test signature counter

3 T

Current test signature to be transferred to the tested neighbors

4
1 2

max

dx x xk Number of test signatures supported by node
1 2 dx x xu

5  Test loop start timer

6
max Time between two adjacent test loops (in clock ticks)

7
1 2 d

i

x x xz Test enable flag for testing node
1 2 dx x xu and tested node

1 2 d

i

x x xu

8
1 2 d

i

x x xb
Test enable flag for tested node

1 2 d

i

x x xu and other testing

neighbors (not including
1 2 dx x xu)

9
1 2 dx x x

Healthy/faulty flag of node

1 2 dx x xu

10 𝐵0, 𝐵1, … , 𝐵2𝑑

Separate parallel test threads corresponding to the tested

neighbors and the self-test hardware of node
1 2 d

i

x x xu

11 := Assignment/transfer operator

6

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

The algorithm contains an outermost loop, including a parallel section and commences execution with

the initialization (see Statement 2) to set up the collision resolution flags properly. Flags
1 2 d

i

x x xz are

reset to zero, which means that no neighbor of the current processor is allowed to start the test routine.

In contrast, flag
1 2

0

dx x xz is set to logical “1,” which means that it is allowed to perform the self-test.

As soon as the initialization ends, the algorithm enters the loop and executes until the current node is

assumed to be healthy (see Condition 3). When the next iteration begins, the test loop timer starts

counting down first (see Vertices 4–6). As soon as the timer has finished (the predefined time interval

𝜏𝑚𝑎𝑥 has elapsed), the next test signature 𝑇𝑥1𝑥2…𝑥𝑑 (𝑘) is fetched to initiate the test actions in the

tested neighbors of the current node. A test signature may be interpreted as a pointer (address) to the test

routine to be executed. All test routines are assumed to have been predefined and distributed among the

processor cores in advance.

As soon as test signature 𝑇𝑥1𝑥2…𝑥𝑑 (𝑘) is read out, the algorithm enters the parallel section and threads

𝐵0, 𝐵1, … , 𝐵2𝑑
to start the execution (see dashed–dotted squares in Figure 2). All these threads are

identical. Thread 𝐵𝑖 corresponds to the ith tested neighbor and thread 𝐵0 is mapped onto the current node

(self-test). When all the threads terminate, Statement 8 executes to increment the test signature counter

k and the next iteration begins. As soon as all
1 2

max

dx x xk test signatures are fetched and processed, the

algorithms roll back to test signature 𝑇𝑥1𝑥2…𝑥𝑑 (0), assuming 𝑘 = 0.

Each thread 𝐵𝑖 (𝑖 = 0,2𝑑̅̅ ̅̅ ̅̅) can be represented as a separate algorithm, as shown in Figure 3. All the

symbols used in the flow-chart of Figure 3 are explained in Table 2.

iB

1 2
:

d

i

x x xu T : 0i 

  max: 1 modi i i    

0i 
0

 
1 2

:

d

i

x x x

R
R k


 
1 2

0 ,0
:

d

i

x x x

R
R k


0R R
1

0

1 2
: 0

d

i

x x x 3i 4i

5i

6i

7i 8i

9i

ai

1

01i

1

1 2 d

i

x x xz

1 2
: 0

d

i

x x xb 

2i

1 2
: 1

d

i

x x xb 

bi

Figure 3. Flow-chart representing thread 𝐵𝑖.

7

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

Table 2. Symbols used in the flowchart shown in Figure 3.

No. Symbol Meaning

1 max , 0,2i i d  Node
1 2 d

i

x x xu response time limit

2 , 0,2i i d  Node
1 2 d

i

x x xu response time counter

3  
1 2 d

i

x x x
R k

Node
1 2 d

i

x x xu response token corresponding to test signature

 1 2 dx x x
T k

4  
1 2

,0

d

i

x x x
R k

Node
1 2 d

i

x x xu expected response corresponding to test

signature  1 2 dx x x
T k

5
1 2 d

i

x x x

Node
1 2 d

i

x x xu faulty/healthy decision made by processor

1 2 dx x xu

6
1 2 d

i

x x xu

ith tested node of the current processor

7 0,R R Extra buffers

In the first step, thread iB starts to spin while waiting for condition
1 2

1
d

i

x x xz  to become true (see

Vertex 1i). Immediately, the test (self-test) routine begins for tested neighbor (current node)
1 2 d

i

x x xu .

Then, flag
1 2 d

i

x x xb is reset (Vertex 2i), leading to no other nodes being allowed to test
1 2 d

i

x x xu . As a

result, no collisions occur, because for any testing unit trying to start checking, the ith tested neighbor

1 2 d

i

x x xz is clear. During the next step, test signature  1 2 dx x x
T k is transferred to

1 2 d

i

x x xu (Statement

3i) and the timer counts down until
max

i elapses (see Vertices 4i–6i). As soon as 0i  , test response

 
1 2 d

i

x x x
R k arrives (or does not in some cases) from tested node

1 2 d

i

x x xu (Statement 7i). Concurrently,

expected test response  1 2 dx x x
R k is fetched (Statement 8i) to be compared to  

1 2 d

i

x x x
R k (see

Condition 9i). If the test response (or whatever has arrived) differs from what is expected to arrive, then

1 2 d

i

x x xu is assumed to be faulty and flag
1 2 d

i

x x x is reset to zero (Statement ai). Otherwise, nothing

happens and
1 2 d

i

x x x remains high. In parallel, flag
1 2 d

i

x x xb is again set high (Statement bi), making it

possible to self-test or for the other neighbors to test node
1 2 d

i

x x xu .

One must mention that all the statements and conditions in the above algorithm are based on simple

atomic operations, such as increment, assignment, set/reset, compare and test for zero/one. Therefore, it

can be directly implemented in hardware.

5. HARDWARE-LEVEL IMPLEMENTATION

In this section, we discuss the possible hardware-level implementation of the above mutual inter-unit

test mechanism. We consider both test units and collision resolution hardware. Taking into account that

all processor cores in the multiprocessor are identical, we pick up an arbitrary node for consideration.

Assuming a 2-dimensional multiprocessor, we can represent the structure of the test hardware, as shown

in Figure 4.

The unit presented in Figure 4 contains 4 identical neighbor check units (NCU1–NCU4) and a self-test

unit (STU). The operation of these units is based on the thread algorithm shown in Figure 3. A test

organization unit (TOU) is needed to store and fetch test signatures mapped onto the current node in

order to control the delay between adjacent test cycles and to coordinate the operation of the NCUs and

8

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

STU. TOU implements all the sections of the proposed test algorithm (Figure 2) except for parallel

threads 𝐵0, 𝐵1, … , 𝐵2𝑑. Arbitration flip-flops AF0–AF4 organized in a ring shift register are required to

perform the proposed round-robin collision resolution scheme to guarantee that two or more neighbors

never start checking the same processor within the overlapping time frames. Only one AF can be high

at a given moment. This high value moves from one flip-flop to its neighbor and lets each neighboring

processor check the current node in a time division manner. A clock pulse generator (CPG) is used to

synchronize the operation of the test hardware components. A separate CPG may be employed or the

processor’s main pulse generator may be considered as a CPG.

The neighbor check units form and issue healthy/faulty flags 𝜑𝑥𝑦
𝑖 for the corresponding neighbor nodes

according to the following rule: 𝜑𝑥𝑦
𝑖 = 1 if processor 𝑢𝑥𝑦 makes a decision that neighbor 𝑢𝑥𝑦

𝑖 is healthy

and 𝜑𝑥𝑦
𝑖 = 0 otherwise (we assume that 𝑢𝑥𝑦

0 ≡ 𝑢𝑥𝑦). The same is carried out by the testing neighbors

of the current processor. As an addition, node 𝑢𝑥𝑦 occasionally performs a self-checking routine that

results in a healthy/faulty flag 𝜑𝑥𝑦
0 . Finally, a generalized faulty/healthy flag 𝜑𝑥𝑦 is calculated by the

majority rule:

  0 1 2 3 4# , , , ,xy xy xy xy xy xy       , (7)

NCU1

NCU2

NCU3

xyu

#

xy

NCU4 STU

TOU

AF

1

AF

2

AF

3

AF

4

AF

0

To neighbor above

To neighbor below

T
o

 l
e

ft
 n

e
ig

h
b

o
r

T
o

 r
ig

h
t
n

e
ig

h
b

o
r

CPG

CLK1

CLK2

Figure 4. The organization of processor node test hardware in a 2-dimensional multiprocessor.

where # denotes the majority operator. If 𝜑𝑥𝑦 = 1, then 𝑢𝑥𝑦 is assumed to be healthy. If 𝜑𝑥𝑦 = 0, then

it is further treated as faulty.

9

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

The structure shown in Figure 4 can be extended to a multiprocessor of any given dimension 𝑑 ≥ 2. In

a general case, a processor’s test hardware includes 2𝑑 NCUs operating in parallel, 2𝑑 bidirectional

links needed to transfer test signatures to the tested neighbors and to receive response tokens, as well as

to receive test signatures from the testing neighbors and transfer response tokens, 2𝑑 input terminals

required to receive healthy/faulty flags from the testing neighbors and 2𝑑 output terminals to issue the

generalized healthy/faulty flag to the direct neighboring processors. The count of the majority gate’s

input terminals is calculated by Formula (7).

6. THE ROUND-ROBIN ARBITRATION MECHANISM

Using the above conceptual representation, we have developed a functional diagram embodying the

round-robin arbitration mechanism necessary to avoid inter-processor test collisions. The scheme of a

2-dimensional multiprocessor is shown in Figure 5, which includes five JK flip-flops with input

invertors needed to store the test enable flags. Consequent flip-flop enumeration is adopted and

corresponds to the enumeration of the neighbor nodes (the ith flip-flop together with its inverter

corresponds to the AFi unit in the block diagram of Figure 4). The flip-flops are connected to each other

to form a ring shift register whose operation is clocked by pulse chain CLK1 issued by CPG (not shown

in Figure 5 for simplicity). The AND gates are introduced to block pulse chain CLK1 from clocking the

flip-flops when the current node is being tested by a neighbor or being self-tested.

RST

CLK1

 
3

, 1 modx y m
z



 
4

1 mod ,x n y
z



  
1

, 1 sign 1x y y m
z

  

  
2

1 sign 1,x x n y
z

  

0

xyz

 
3

, 1 modx y m
b



 
4

1 mod ,x n y
b



  
1

, 1 sign 1x y y m
b

  

0

xyb
  

2

1 sign 1,x x n y
b

  

J

Q

Q

K

SET

CLR

1

J

Q

Q

K

SET

CLR

2

J

Q

Q

K

SET

CLR

3

J

Q

Q

K

SET

CLR

4

J

Q

Q

K

SET

CLR

0

5

4
3

1

2

Figure 5. The round-robin arbitration hardware functional diagram for a 2-dimensional multiprocessor.

Initially, a system reset pulse arrives to initialize the flip-flops. As a result, flip-flop 0 is set to “1” while

the remaining flip-flops are reset to “0.” Thus, the initial state of the test hardware will be in accordance

with Statement 2 of the above algorithm (see Figure 2); i.e., all processors are initialized to start self-

test routines.

If the current processor is about to start a self-test, then STU (see Figure 4) issues flag 𝑏𝑥𝑦
0 = 0 (which

implies that Vertex 2i of thread 𝐵0 will execute). As a result, gate 5 is blocked and no pulse CLK1 is

able to clock the flip-flops. Flip-flop 0 remains set while the rest of the flip-flops are reset until the self-

test routine terminates. As soon as self-test is done, high flag 𝑏𝑥𝑦
0 = 1 arrives (see Vertex bi of the above

algorithm) and the AND gates are unblocked, making it possible to clock the flip-flops. Note that flag

𝑏𝑥𝑦
0 may remain set and the AND gates may be open if the test routine start timer has not finished

counting down yet.

Another pulse CLK1 passes by AND gate 5, feeds the clock inputs of all the flip-flops and transfers the

value of logical “1” to flip-flop 1 from flip-flop 0. In turn, flip-flop 0 is reset to zero because of the low

10

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

state of flip-flop 4. As a result, flip-flop 1 is set while the remaining peers are reset. After that, flag

𝑍𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚
3 = 1 arises and allows neighboring processor 𝑢𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚 to initiate the test process for

the current node (superscript “3” implies that current node 𝑢𝑥𝑦 is the third neighbor of processor

𝑢𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚).

When processor 𝑢𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚 starts checking the current node, its NCU3 issues flag 𝑏𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚
3 =

0 (which corresponds to Vertex 2i in thread 𝐵3 of the proposed algorithm). AND gate 5 becomes blocked

and pulses CLK1 can no longer feed the clock inputs of the flip-flops. Flip-flop 1 stays high while the

rest remain clear until the test terminates. As soon as the test is finished, flag 𝑏𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚
3 = 1 arrives

(corresponding to Vertex bi of our algorithm), the AND gates are unblocked and clock pulses CLK1

start feeding the flip-flops. If flag 𝑏𝑥,(𝑦+1)𝑚𝑜𝑑 𝑚
3 is not reset to zero (the test routine start timer has not

counted down yet), then the AND gates remain open.

Analogously, the high-level value is transferred from flip-flop 1 to flip-flop 2, then travels from flip-

flop 2 to flip-flop 3 and finally returns to flip-flop 0 from flip-flop 4, meaning that another arbitration

loop is complete. The operation of the test hardware stays the same as discussed above. If flip-flop 2

becomes high, then node 𝑢(𝑥+1)𝑚𝑜𝑑 𝑛,𝑦 gains the right to start testing the current processor. In turn, when

flip-flop 3 is high, neighbor 𝑢𝑥,𝑦+(1−𝑠𝑖𝑔𝑛(𝑦))𝑚−1 will check the current processor.

Note that the round-robin arbitration hardware can be easily extended to a d-dimensional case, but would

include more flip-flops, inverters and terminals. For a 3-dimensional multiprocessor, 7 flip-flops are

necessary, whereas 9 flip-flops are required in a 4-dimensional case.

7. COMPARISON OF THE PROPOSED APPROACH

7.1 Probability of Successful Fault Detection Evaluation

To compare the proposed inter-unit test method to the existing alternatives, the probability of successful

fault detection is theoretically evaluated first and its dependencies on the multiprocessor dimension and

reliability of separate test units are explored. The results are compared to the distributed self-checking

and known mutual inter-unit test methods.

We take into account that a faulty node may be erroneously reported as healthy (“hidden fault”) by a

test unit and that a healthy processor may be mistakenly treated as faulty (“false fault”). All faults that

are neither hidden nor false are known as “explicit faults;” i.e., detected faults that really exist. Thus, we

define the probability of successful fault detection as a measure of the probability of properly detecting

faulty nodes that really exist in the multiprocessor.

Let 𝜋(𝑡) be the probability that a separate test unit of a processor properly detects a faulty neighbor node

(or the current node in the case of self-checking). Let 𝜋−(𝑡) and 𝜋0(𝑡) be the probabilities that a separate

test unit is unable to detect a faulty node and claims a healthy node to be faulty, respectively. Then, the

following fundamental relation will take place:

      01t t t      . (8)

Assuming 𝜋(𝑡), 𝜋−(𝑡) and 𝜋0(𝑡) are the same for all the multiprocessor’s nodes across the mesh, we

deduce the probability of successful fault detection formula for the proposed approach.

For the simplest 2-dimensional case, |𝐾𝑥𝑦
′ | = 5 and we obtain:

        
5 5

5

2 5 5

3 3

1
iii i

d

i i

P t P t C t t




 

        , (9)

where 𝑃5
𝑖(𝑡) denotes the probability that i out of |𝐾𝑥𝑦

′ | = 5 testing nodes properly detect a faulty

neighbor and 𝐶5
𝑖 is the number of i item selections out of 5 items. For a 3-dimensional multiprocessor,

|𝐾𝑥𝑦
′ | = 7 and we have:

        
7 7

7

3 7 7

4 4

1
iii i

d

i i

P t P t C t t




 

        , (10)

11

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

where 𝑃7
𝑖(𝑡) denotes the probability that i out of |𝐾𝑥𝑦

′ | = 7 testing nodes properly detect a faulty

neighbor. Using formulae (9) and (10), we deduce

    
 

   
 

2 1 2 1
2 1

2 1 2 1

2 1 2 1
2 2

1
d d

d iii i

d d

d d
i i

P t P t C t t
 

 

 

    
    
   

        . (11)

Using Formula (11), we can investigate the dependencies of the probability of successful fault detection

on the multiprocessor dimension and reliability of the separate test units. Having deduced the same

formulae for existing approaches, it is possible to compare these approaches to our method on various

factors.

Let us first compare our approach to the distributed self-test method. The self-test is able to detect faulty

nodes with probability 𝜋(𝑡),

because there is only one test unit in a given processor across the mesh.

Therefore, this unit is sufficient to evaluate and explore the relation 𝜑(𝑡) = 𝑃(𝑡)/𝜋(𝑡)

in order to

compare the proposed method to the distributed self-test. Figure 6 shows the 𝜑(𝑡) versus probability

𝜋(𝑡) graphs obtained using Formula (11).

Figure 6 shows that the proposed approach has the greatest advantage when 𝜋(𝑡) ≈ 0.7. For a 2-

dimensional multiprocessor, the maximum 𝜑(𝑡) value attained is 1.1956, which takes place at 𝜋(𝑡) =
0.7 and means that the probability of successful fault detection increases by almost 20% as compared to

the distributed self-test approach. The higher the multiprocessor dimension d, the greater the advantage

of our method. For example, in a 5-dimensional mesh-connected multiprocessor, 𝜑(𝑡) becomes higher

than 1.3 at 𝜋(𝑡) = 0.7, which signifies a 30% advantage. For higher values 𝜋(𝑡) ≥ 0.9, our method

becomes less advantageous than a simple self-test. However, higher reliability test units are hard to build

up in practice. For lower values 𝜋(𝑡) ≤ 0.6, our method also works worse and for 𝜋(𝑡) ≤ 0.5, it does

not work at all. However, the case 𝜋(𝑡) ≤ 0.5 corresponds to “extremely unreliable” test units, which

(according to Formula (8)) would claim faulty units to be healthy and/or treat healthy units as faulty in

most cases such that a self-test would not be feasible with such units.

Figure 6. 𝜑(𝑡) versus 𝜋(𝑡)

graphs for fixed 2 ≤ 𝑑 ≤ 9.

Let us now compare our approach to the mutual inter-unit test method presented in [41] under the same

assumptions as those formulated above. Let 𝑃0(𝑡) denote the probability of fault detection attained when

the mutual inter-unit test [41] is employed. Then, it is sufficient to evaluate and explore the relation

𝜓(𝑡) = 𝑃(𝑡)/𝑃0(𝑡) to compare the proposed method to the mutual inter-unit test. Figure 7 presents the

𝜓(𝑡) versus probability 𝜋(𝑡) graphs obtained using Formula (11) and a similar formula found in [41].

12

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

Figure 7. 𝜓(𝑡)versus 𝜋(𝑡) graphs for fixed 2 ≤ 𝑑 ≤ 9.

Analyzing the graphs of Figure 7, we can see that our approach works better for 2-dimensional

multiprocessors. It is evident that these results are from the higher testing neighbor set cardinality. With

𝑑 = 2 and 𝜋(𝑡) = 0.7, the advantage of our approach is about 7%. In the 3-dimensional case, our

method demonstrates the same probability 𝑃(𝑡) values as does the inter-unit test. For 𝑑 ≥ 4, our method

becomes slightly worse than the inter-unit test at 𝜋(𝑡) ≥ 0.7 and loses at 𝜋(𝑡) ≈ 0.6, for which the

probability is actually a bit too low for practical cases.

7.2 Connection Complexity Evaluation

Excessive connectivity is the main drawback of known mutual inter-unit test approaches. To deploy an

inter-unit test environment, each processor node needs many external connections (input and output

terminals) to communicate to its peers while performing test routines. This connectivity depends highly

on the multiprocessor dimension and test unit parameters and so, may become a serious concern when

complex systems are being manufactured.

In what follows below, we compare the connectivity factor in our approach to those in the known mutual

inter-unit test methods and demonstrate that our proposed method can drastically decrease

multiprocessor connectivity. The connection complexity is formally defined as the required number of

extra direct connections between a given processor and all its peers to perform test routines. Only extra

test connections are considered. It is assumed that the “regular” connections required for inter-processor

data exchange and control are the same whichever test method is used, but only external connections

are under consideration. For example, the links between the processor core and STU are not taken into

account, because they are internal.

According to Figs. 4 and 5, ith NCU needs Ω𝑖 = 𝑊𝑅 + 𝑊𝑇 + 4 input/output terminals, where 𝑊𝑅 and

𝑊𝑇 are the widths of response packets and test signatures, respectively. Thus, taking into account the

round-robin arbitration unit connections, the majority gate terminals and the backward test/response

buses, the total number of extra input/output terminals of a processor may be calculated as:

   2 2 4 1R Td W W     . (12)

In the same fashion, the connection complexity of known mutual inter-unit test schemes can be

evaluated. For the inter-unit test method presented in [41], the following formula will take place:

    0 2 1 1 1R Td d W W d        
. (13)

Formula (13) takes into account all extra test connections to the peers of a given processor.

13

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

To compare our approach to the inter-unit test method of [41], we calculate the relation 𝜉 = Ω0/Ω for

different values of the multiprocessor dimension d and fixed 𝑊𝑅 and 𝑊𝑇 (We assume that 𝑊𝑅 = 𝑊𝑇 for

simplicity reasons). In Figure 8,  versus d graphs are shown for 𝑊𝑅 + 𝑊𝑇 ∈ {32,64,128,256}.

According to the graphs of Figure 8, our approach requires a few more extra connections in the 2-

dimensional case. For 𝑑 > 2, our method works better than that of [41]. For example, given a 4-

dimensional multiprocessor, the inter-unit test method would require 55% more extra connections than

does our approach. Thus, with our proposed test method, higher dimension fault-tolerant

multiprocessors would be significantly easier to implement because of the lower extra connectivity.

Figure 8.  versus d graphs for fixed 𝑊𝑅 + 𝑊𝑇 ∈ {32,64,128,256}.

8. CONCLUSION

In this paper, we proposed a new approach of a mutual inter-unit test with round-robin collision

resolution to improve the testability of mesh-connected multiprocessors by increasing the probability of

successful fault detection as compared with simple distributed self-checking. Compared with other

mutual inter-unit test methods, such as [41] and [42], our approach automatically resolves the collision

problem when two or more neighboring processors are about to start checking the same peer during

overlapping time windows. Our method can be applicable to multiprocessors of arbitrary dimensions,

with 2-dimensional ones having the maximum effectiveness, which matches the technological

limitations of modern VLSI multiprocessors. For future scaling, our approach must allow drastic

reduction of the multiprocessor connectivity with respect to known mutual inter-unit test methods. For

example, in a 4-dimensional system, we need 55% less extra connections with our approach, while in a

5-dimensional case, we reduce extra connectivity by over 90%. The new mutual inter-unit test technique

allows for the online hardware-level testing of all processor nodes across the mesh in parallel, thereby

significantly contributing to the performance of the test environment.

REFERENCES

[1] M. Abramovici, M. A. Breuer and A. D. Friedman, "Digital Systems Testing and Testable Design," IEEE

Press, Piscataway, NJ, 1994.

[2] M.K. Aguilera, W. Chen and S. Toueg, "Failure Detection and Consensus in the Crash-Recovery Model,"

Distributed Computing, vol. 13, no. 2, pp. 99–125, 2000.

[3] R. Ahlswede and H. Aydinian, "On Diagnosability of Large Multiprocessor Networks," Discrete Applied

Mathematics, vol. 156, no. 18, pp. 3464–3474, Nov. 2008.

[4] L. Benini and G. De Micheli, "Networks on Chips: A Paradigm," IEEE Transactions on Computers,

14

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

 vol. 35, no. 1, pp. 70–78, 2002.

[5] P. Bernardi, L.M. Ciganda, E. Sanchez and M. Sonza Reorda, "MIHST: A Hardware Technique for

Embedded Microprocessor Functional On-Line Self-Test," IEEE Transactions on Computers, vol. 63, no.

11, pp. 2760–2771, Nov. 2014.

[6] R. Bianchini and R. Buskens, "Implementation of On-Line Distributed System-Level Diagnosis Theory,"

IEEE Transactions on Computers, vol. 41, pp. 616–626, May 1992.

[7] T. Bjerregaard and S. Mahadevan, "A Survey of Research and Practices of Network-on-Chip," ACM

Computing Surveys, vol. 38, no. 1. pp. 1–51, 2006.

[8] D. Blough and H. Brown, "The Broadcast Comparison Model for On-Line Fault Diagnosis in

Multicomputer Systems: Theory and Implementation," IEEE Transactions on Computers, vol. 48, pp.

470–493, May 1999.

[9] B. Ciciani, Ed., Manufacturing Yield Evaluation of VLSI/WSI Systems, Los Alamitos, CA: IEEE

Computer Society Press, 1998.

[10] S. R. Das, "Self-testing of Cores-based Embedded Systems with Built-in Hardware," IEE Proceedings–

Circuits, Devices and Systems, vol. 152, no. 5, pp. 539–546, Oct. 2005.

[11] E. P. Duarte Jr. and T. Nanya, "A Hierarchical Adaptive Distributed System-Level Diagnosis Algorithm,"

IEEE Transactions on Computers, vol. 47, pp. 34–45, Jan. 1998.

[12] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw and D. Sylvester, "Vicis: A Reliable Network for

Unreliable Silicon," Proc. of the 46th DAC, pp. 812–817, Jul. 2009.

[13] S. Furber, "Living with Failure: Lessons from Nature?," Proc. of the 11th IEEE ETS, pp. 4–8, May 2006.

[14] T. Horita and I. Takanami, "Fault-tolerant Processor Arrays based on the 1.5-track Switches with Flexible

Spare Distributions," IEEE Transactions on Computers, vol. 49, no. 6, pp. 542–552, June 2000.

[15] S. Y. Hsieh and C. Y. Kao, "The Conditional Diagnosability of k-Ary n-Cubes under the Comparison

Diagnosis Model," IEEE Transactions on Computers, vol. 62, no. 4, pp. 839 – 843, April 2013.

[16] L. M. Huisman, "Diagnosing Arbitrary Defects in Logic Designs Using Single Location at a Time

(SLAT)," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no.

1, pp. 91–101, 2004.

[17] S. M. A. H. Jafri, S. J. Piestrak, O. Sentieys and S. Pillement, "Design of the Coarse-grained

Reconfigurable Architecture DART with On-line Error Detection," Microprocessors and Microsystems,

vol. 38, no. 2, pp. 124–136, 2014.

[18] G. Jiang, W. Jigang and J. Sun, "Efficient Reconfiguration Algorithm for Three-dimensional VLSI

Arrays," Proc. of the IEEE 26th International Parallel and Distributed Processing Symposium Workshops

& Ph.D. Forum, pp. 261–265, 2012.

[19] W. Jigang, T. Srikanthan, G. Jiang and K. Wang, "Constructing Sub-Arrays with Short Interconnects

from Degradable VLSI Arrays," IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 4,

pp. 929–938, April 2014.

[20] A. Kohler and M. Radetzki, "Fault-tolerant Architecture and Deflection Routing for Degradable NoC

Switches," Proc. of the 3rd ACM/IEEE Int. Symp. NoC, pp. 22–31, May 2009.

[21] E. Kolonis, M. Nicolaidis, D. Gizopoulos, M. Psarakis, J. Collet and P. Zajac, "Enhanced Self-

configurability and Yield in Multicore Grids," Proc. of the 15th IEEE IOLTS, pp. 75–80, Jun. 2009.

[22] A. Krstic, W. C. Lai, K. T. Cheng, L. Chen and S. Dey, "Embedded Software-based Self-test for

Programmable Core-based Designs," IEEE Design and Test of Computers, vol. 19, no. 4, pp. 18–27,

July/Aug. 2002.

[23] J. C. M. Li and E. J. McCluskey, "Diagnosis of Resistive-Open and Stuck-Open Defects in Digital CMOS

Ics," Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 11, pp.

1748–1759, 2005.

[24] L. Lin, S. Zhou, L. Xu and D. Wang, "The Extra Connectivity and Conditional Diagnosability of

Alternating Group Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 8, pp.

2352–2362, Aug. 2015.

[25] S. Lin, W. Shen, C. Hsu, C. Chao and A. Wu, "Fault-tolerant Router with Built-in Self-test/Self-diagnosis

15

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 01, April 2019.

 and Fault-isolation Circuits for 2D Mesh-based Chip Multiprocessor Systems," Proc. Int. Symp. VLSI-

DAT, pp. 72–75, Apr. 2009.

[26] P. Maestrini and P. Santi, "Self-diagnosis of Processor Arrays Using a Comparison Model," Proc. Of the

14th Symp. on Reliable Distributed Systems, pp. 218–228, 1995.

[27] J. Mekkoth, M. Krishna, J. Qian, W. Hsu, C.-H. Chen, Y. S. Chen, N. Tamarapalli, W. T. Cheng, J. Tofte

and M. Keim, "Yield Learning with Layout-Aware Advanced Scan Diagnosis," Proc. of the International

Symposium for Testing and Failure Analysis, pp. 412–418, 2006.

[28] M. Psarakis, D. Gizopoulos, E. Sanchez and M. Sonza Reorda, "Microprocessor Software-based Self-

testing," IEEE Design and Test of Computers, vol. 27, no. 3, pp. 4–19, May/June 2010.

[29] J. Raik and V. Govind, "Low-area Boundary BIST Architecture for Meshlike Network-on-Chip," Proc.

of the 15th IEEE Int’l Symp. DDECS, pp. 95–100, Apr. 2012.

[30] J. Rajski, J. Tyszer, M. Kassab and N. Mukherjee, "Embedded Deterministic Test," IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 5, pp. 776–792, 2004.

[31] S. Rangarajan, A. T. Dahbura and E. Ziegler, "A Distributed System-Level Diagnosis Algorithm for

Arbitrary Network Topologies," IEEE Transactions on Computers, vol. 44, pp. 312–334, Feb. 1995.

[32] S. Rangarajan and D. Fussell, "Diagnosing Arbitrarily Connected Parallel Computers with High

Probability," IEEE Transactions on Computers, vol. 41, pp. 606–615, May 1992.

[33] A. Sengupta and A. T. Dahbura, "On Self-Diagnosable Multiprocessor Systems: Diagnosis by the

Comparison Approach," IEEE Transactions on Computers, vol. 41, pp. 1386–1396, Nov. 1992.

[34] M. Sharma, C. Schuermyer and B. Benware, "Determination of Dominant-Yield-Loss Mechanism with

Volume Diagnosis," Proc. of IEEE Design & Test of Computers, vol. 27, no. 3, pp. 54–61, 2010.

[35] C. Stroud, J. Sunwoo, S. Garimella and J. Harris, "Built-in Self-test for System-on-Chip: A Case Study,"

Proc. of the Int’l Test Conf., pp. 837–846, 2004.

[36] W. C. Tam, O. Poku and R. D. Blanton, "Systematic Defect Identification through Layout Snippet

Clustering," Proc. of the IEEE International Test Conference, pp.1, 2010.

[37] H. Tang, S. Manish, J. Rajski, M. Keim and B. Benware, "Analyzing Volume Diagnosis Results with

Statistical Learning for Yield Improvement," Proc. of the European Test Symp., pp. 145–150, 2007.

[38] Z. Wang, M. Marek-Sadowska, K. H. Tsai and J. Rajski, "Analysis and Methodology for Multiple-Fault

Diagnosis," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25,

no. 3, pp. 558–575, 2006.

[39] L. Zhang, "Fault-Tolerant Meshes with Small Degree," IEEE Transactions on Computers, vol. 51, no. 5,

pp. 553–560, May 2002.

[40] Z. Zhang, D. Refauvelet, A. Greiner, M. Benabdenbi and F. Pecheux, "On-the-Field Test and

Configuration Infrastructure for 2-D-Mesh NoCs in Shared-Memory Many-Core Architectures," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 6, pp. 1364–1376, June 2014.

[41] J. Al-Azzeh, M. E. Leonov, D. E Skopin, E. A. Titenko and I. V. Zotov, "The Organization of Built-in

Hardware-Level Mutual Self-Test in Mesh-Connected VLSI Multiprocessors," International Journal on

Information Technology, vol. 3, no. 2, pp. 29–33, 2015.

[42] J. Al-Azzeh, "A Distributed Multiplexed Mutual Inter-Unit in-Operation Test Method for Mesh-

Connected VLSI Multiprocessors," Jordan Journal of Electrical Engineering, vol. 3, no. 3, pp. 193-207,

2017.

16

"Distributed Mutual Inter-Unit Test Method for D-Dimensional Mesh-Connected Multiprocessors with Round-Robin Collision Resolution",
Jamil Al-Azzeh.

 ملخص البحث:

فيييييييل رييييييي ا تراح يييييييدي ةيييييييال ت اييييييياتو داة يييييييد ةييييييي ر ييييييي تر ا ييييييي ييييييي ترا ييييييي ت فيييييييل

تر ع رجيييييي تر ييييييد داعيييييي تة عيييييي فييييييل جيييييي ذ ك ييييييد ترا ديييييي ت يييييي تر جيييييي ذ يييييي ت ي ريييييي

دعييييي ري ةجيييييا ف قيييييع ف يييييج دييييي ييييي ترع ييييي تر جييييي ح ريييييع ارييييي فيييييل رضييييي ي ي

ترا ييييت تكييييع ي ييييع ر ييييت ر يييي ص ييييد ر يييي ت ةييييد ييييد ا يييي ح تر يييي تراييييل ةجيييي ي

ك ييييي ي ف لييييي ت ييييي تر ييييي ل ع يييييل ي ترجاة يييييد تر اا يييييد ك يييييا يييييا كعييييي ح فيييييل

 ا .ف ترا ت . كل ء اتحزد د د رل ت ترغ

 يييييي يل اييييييت ترجاة ييييييد تر اا ييييييد ي ليييييي ك جييييييا ت ييييييل ك يييييي ر يييييي تر ع رجيييييي تر ييييييد

تر اقيييييي د فييييييل ر خييييييد يييييي دل ديييييي ييييييلأ زةيييييي ت ا ر ييييييد ر يييييي تر يييييي تيييييي تة جيييييي ء

ديييييي يييييي ط يييييياي ك يييييي ترجاة ييييييد تر اا ييييييد د ح ييييييد جاة ييييييد تر يييييي تريييييي تكل تر ازتييييييد.

تريييييي ق ر ت اح ييييييت يييييي رجاذ تة ييييييا يييييي يييييي ديييييي ترا ييييييلأ ترلأزدييييييد فييييييل تر عيييييي ري

تر عا ييييييد ر يييييي تر ا يييييي يييييي ترا يييييي ت ي ديييييي لييييييل فلييييييل ك ييييييل ديييييي ت ييييييد كقيييييي

تر ع رجييييييي تر يييييييد. فع يييييييل ييييييي تر قييييييي ي فيييييييل ييييييي ح ييييييي تل تة عييييييي ي ك يييييييا ترجاة يييييييد

 %.55تر اا د ترل كخ ض ترا لأ تلإض ف د ترلأزدد د

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

