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ABSTRACT 

In this paper, a packet switch architecture for mesh-connected multiprocessors based on the use of a set of input 

FIFO buffers and an output register matrix controlled by a novel distributed timing-based scheduling scheme is 

proposed. Simple static routing is assumed, with each packet split into a set of independently routed w-bit-wide 

flits. The device achieves at least 78% throughput for uniformly distributed traffic and an asymptotic higher bound 

of 100%. In contrast to the state-of-the-art VOQ-based switch architectures, the proposed switch is shown to reach 

its maximum throughput with no internal speedup required and has an order of magnitude lower hardware com-
plexity. Compared to existing buffered crossbar non-VOQ switches with typical flit scheduling mechanisms, the 

proposed device demonstrates slightly higher throughput and substantially shorter delays in some practically im-

portant cases. 
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1. INTRODUCTION 

Switching hardware is known to play a crucial role in the operation of a wide class of modern computer 

systems [1]. Mesh-connected multiprocessors are an example of systems whose performance is pro-

foundly affected by the underlying built-in switching apparatus [2]. Inter-processor data exchange speed 
and remote memory access latency significantly depend on the throughput and performance of the 

switches distributed across the multiprocessor mesh [37]-[39].  

The packet switching paradigm is the most widely used in contemporary multiprocessor designs, such 
as chip multiprocessors (e.g., see [3]-[5] and the references therein). Furthermore, hybrid (packet/circuit) 

switching approach has evolved as well (e.g., see [6]-[9]). Packet switches utilized in modern multipro-

cessors are in several respects similar to the asynchronous transfer mode switches employed in computer 
networks and supercomputers [1]. Various switch architectures mainly differ in the arrangement of in-

ternal packet buffers (queues). In input-queued switches, packets are first loaded into the corresponding 

input buffers and then switched to the required outputs via a crossbar. Such switches do not impose hard 

requirements for the internal speed of the switching hardware (crossbar) and, as a rule, have relatively 
low hardware complexity, which allows them to be utilized with a large number of inputs/outputs. How-

ever, it has been shown [10] that input-queued switches with simple FIFO buffers are limited in their 

throughput at approximately 0.64 in practically significant scenarios (or at 2 2 0.586   asymptoti-

cally) due to the occurrence of blocked packets in the head cells of the buffers (known as HOL blocking). 

The highest possible throughput (up to 100%) is achieved in output-queued switches. In such devices, 

packets are immediately switched to the required outputs and then stored in the output buffers before 

being issued, which eliminates HOL blocking. However, output-buffered switches impose strict require-
ments on the internal speed of the switching apparatus, which must be several times higher than the 

external speed at which packets travel between processors. In this regard, their use is feasible with a 

relatively small number of inputs/outputs n and/or if the external switch speed is deliberately decreased. 

To overcome the problems inherent to input- and output-queued switches with ordinary FIFO buffers, 
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several solution methods have been proposed in the recent past (e.g., see [11]-[16] and the references 

therein). Most of these methods are based on the virtual output queue (VOQ) paradigm first proposed 

in [17]. In a VOQ switch with n input and n output trunks, n separate simple FIFO buffers are combined 
in parallel at each input port, each of which corresponds to a given output. Packets arriving at a particular 

input are immediately routed to an input queue corresponding to the required output and are then 

switched to the output line via a crossbar circuit; therefore, packets of the same input queue never require 

to be transferred to different outputs and thus HOL blocking never occurs.  

In order to maximally improve the VOQ switch throughput, a central scheduler is required for contention 

resolution when two or more packets are destined to the same output at the same time slot (e.g., see [18]-

[19]). Moreover, to achieve 100% throughput (or non-blocking performance), a stable scheduling policy 
is needed for any admissible traffic pattern. It is worth noting that adding extra crosspoint buffers to the 

internal crossbar enhances the switch throughput as well [20]. Severe VOQ switch scheduling algo-

rithms, such as maximum size/weight matching [21], have been introduced and studied. Although these 
algorithms are shown to be stable, they are too complicated for efficient hardware implementation in 

multiprocessors. Consequently, suboptimal solution algorithms are usually adopted. The underlying idea 

is to find an input-to-output matching of the maximal size (known as MSM) with no input or output left 
unnecessarily idle. Finding an MSM is more efficient, because it does not require backtracking. Iterative 

scheduling algorithms for finding an MSM have been widely adopted (e.g., see [22]-[24] and the refer-

ences therein). An iterative scheduling algorithm needs to execute up to n iterations to guarantee maxi-

mal size match. However, as far as we know, all existing stable iterative algorithms require a speedup 
of 2, approximately; i.e., the internal speed of the switch must be twice the external speed at which 

packets are transferred between processors. A lower speedup is always desirable, because it reduces the 

implementation cost and increases the external speed of the switch at the same time.  

Furthermore, a load-balanced two-stage-based architecture has been studied in high-speed switch design 

and employed to maximize the switch throughput (e.g., see [25]-[26]). Load-balanced two-stage 

switches are excellent techniques of getting rid of the central scheduler and reducing hardware-level 
complexity. Nevertheless, their main drawback is that packets may be eventually mis-sequenced. Fur-

ther, load-balanced switches suffer from high delay performance under low to medium load. Thus, the 

main challenge of contemporary switch technology is still how to improve the efficiency of the central 

scheduler significantly. 

Although there are no major barriers in the use of wormhole-routed VOQ-based packet switches in 

mesh-connected multiprocessors, specific issues and limitations arise that make the usage less efficient 

compared to multi-computers and computer networks. Because multiprocessor nodes exchange short 
packets split into a small number of w-bit-wide flits transferred via trunks each in one clock cycle, the 

VOQ scheduling time might become a significant portion of the packet transfer duration. The other issue 

is that these packet switches require the internal speedup of about 2, which leads to significantly higher 

implementation cost and makes it impossible to set state-of-the-art external speed values. In this regard, 
it is worth mentioning the Epiphany IV VLSI-multiprocessor architecture as an example, which has 

136-bit-wide packets with 64 bits of data, 64 bits of address and 8 bits of control [5].  

The independently routed flit (IRF) paradigm is one of the alternatives to the traditional wormhole-
routed VOQ-based networking for mesh-connected multiprocessors. With the IRF approach, a packet is 

divided into a set of flits of the same width w, each of which carries both data and address fields in 

addition to some control/identification bits (e.g., see [27]-[28]). In contrast to wormhole-routing, in the 
IRF approach, flits are not grouped to be processed and transferred as an atomic entity; instead, they are 

routed independently based on a simple static strategy. After arriving at a given destination, flits are 

lined up (reassembled) in a packet. If flits arrive in a wrong order, they can be fetched by their identifiers 

to restore the initial ordering, which is a deadlock and livelock free process. If one or more flits are 
missing, a timeout mechanism can help solving this reliability-related problem with no permanent block-

ing taking place. The main advantage of the IRF networking is that it provides more simple hardware 

solutions than wormhole virtual cut-through routing, because no specific wormhole-aware algorithms 

and apparatus are required to support virtual channels and to guarantee deadlock and livelock freedom.  

In this paper, we consider mesh-connected multiprocessors similar to the Epiphany IV [5] or the Tile-

Gx series [4]. Moreover, we employ the IRF-networking-based switch architecture with w-bit-wide flits 
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and simple static routing [28]. Our main contribution is the proposition of a parallel pipelined switch 

architecture (which we further refer to as the PPIRF switch) based on the use of non-VOQ input FIFO 
buffers and an output register matrix (buffered crossbar) controlled by a built-in distributed flit scheduler 

implementing a novel row-wise oldest-flit-first discipline formalized based on the construction and ma-

nipulation of flit consistency graphs. The proposed architecture achieves the throughput of at least 78% 
for all practically significant scenarios and 100% asymptotic switch throughput (assuming Bernoulli 

uniform traffic). The major effect gained is that neither virtual queuing at input ports, nor internal 

speedup is required to achieve up to 100% asymptotic throughput, which leads to a quadratic asymptotic 
hardware complexity—an order of magnitude less than that of VOQ-based switches. Compared to sim-

ilar buffered-crossbar-based switches, the PPIRF switch demonstrates slightly higher throughput and 

significantly shorter delays in some cases (e.g., for heavier flit traffic patterns), resulting from the novel 

scheduling policy employed. In what follows, we formally state the structural organization and operation 
of the proposed parallel pipelined switch; further, we present and briefly discuss some simulation results; 

finally, we make some comparison and present concluding remarks and future directions as well.  

2. THE PARALLEL PIPELINED IRF SWITCH ARCHITECTURE 

Figure 1 shows a formalized structural model of the parallel pipelined IRF switch. The switch has several 

external connections (trunks)—a set of inputs 1 2, , , nI I I  and a set of outputs 1 2, , , nO O O —and is 

composed of input FIFO buffers (queues) 1 2, , , nQ Q Q  of length (size) L, a register matrix 

, , 1,ijB B i j n  , demultiplexers 1 2, , , nR R R , multiplexers 1 2, , , nK K K , 1 2, , , nM M M  and gates 

1 2, , , nG G G . In Figure 1, the solid lines represent flit transfer paths, while the dashed lines indicate the 

control signal paths.  

Input 1I  and output 1O  have a predefined function to connect the switch to the corresponding processor 

core (current tile). The rest of the inputs and outputs link the current node to the neighboring nodes in 

the multiprocessor mesh. This means that for a two-dimensional (2D) mesh multiprocessor, a 5 5  

switch is required ( 5n  ) at each node; in turn, a 3D mesh system would require the use of a 7 7  

switch ( 7n  ).  

The functions of the blocks in Figure 1 are as follows. The input FIFO buffers 1 2, , , nQ Q Q  are used to 

temporarily store flit streams arriving at the corresponding input trunks before they are transferred to 

the register matrix B. It has to be mentioned that the size (L) of the buffers is specified at the switch 

implementation stage and is assumed to be arbitrary. Each input has the only associated FIFO buffer 
structured around a set of static registers, each of which is capable of holding a single w-bit-wide flit. 

The set of demultiplexers 1 2, , , nR R R  implement a predetermined flit routing algorithm . The function 

of the register matrix B is to automatically distribute incoming flit streams between its rows following 

the output directions obtained from the routing algorithm. The multiplexers 1 2, , , nM M M  implement 

a given flit scheduling scheme  (the oldest-flits-go-out-first policy, in our case), which is presented in 

detail below. Furthermore, the multiplexers 1 2, , , nK K K  together with the gates 1 2, , , nG G G  are 

needed to temporarily block flits from being transferred to the register matrix from the corresponding 

queues if their respective target registers still contain unissued flits (HOL blocking). 

3. THE OPERATION OF THE PIRF SWITCH 

The operation of the PPRF switch is generally organized in four cyclically repeating steps, which are as 

follows: 

1. Determine the output directions for all the flits located in the head cells of the input queues (fur-

ther referred to as the head flits) based on the routing algorithm . 

2. Transfer the head flits from the respective input queues to the register matrix B, unless the corre-
sponding target registers in the register matrix contain any other flits; then shift the queues in the 

case of a successful transfer. 

3. Analyze the current flits-to-registers mapping and select a subset of flits, which must be issued from 

the register matrix based on the scheduling scheme  taking into account the time elapsed from the 
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 moments of their arrival. 

4. Issue the selected subset of flits to the respective outputs and reset the corresponding registers of the 

register matrix B. 
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Figure 1. A formalized structural model of the parallel pipelined IRF switch. 

Figure 2 shows a detailed parallel flow-chart representing the operation of the PPIRF switch. The flow-

chart uses some formal constructs and symbols, whose meanings are explained below. 

In Figure 2, kF  stands for the actual set of flits distributed between the registers of the register matrix 

B, where k denotes the current cycle on the switch operation timeline. The flit consistency graph k  

with a set of vertices kF  and a set of edges k k kF F    is introduced to indicate whether a pair of flits 

can be issued from the register matrix in parallel. The following rule formally defines the flit consistency 

relation k : 

      
1 1

, , : ,
n n

q r k q k i j r k i j

j j

f f f S B f S B i i 

 

                                 (1) 

where kS  is an indicator function, such that  k ij qS B f  if the register ijB  contains the flit qf  before  

the kth cycle begins; and  k ijS B   if the register ijB  is empty. Each vertex of the graph k  is given 

a non-negative weight q , which reflects the time elapsed since the flit qf  had arrived at the respective 

input of the switch (measured in cycles). A clique ,k k kF     , k kF F  , k k
    in the graph k  is 

selected, such that the total weight of its vertices becomes the maximum across the set of candidate 

cliques:  

 max.
q k

q

f F 

                                                              (2) 

If the graph k  contains a set of cliques, for each of which condition (2) holds, then any clique k
  of 

this set is picked out assuming uniformly distributed random selection process. It is evident from the 
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above formal statements that the vertices kF   of the clique k
  are consistent based on (1) and the cardi-

nality of kF   is maximal by inclusion.  

In Figure 2, we also employed a new indicator function s, such that   1ls Q  if the queue lQ  currently 

contains at least one flit and   0ls Q  otherwise. The symbol  denotes register/trunk read/write op-

erations. For example,  headi if Q  means the extraction of the head flit if  from the queue iQ  and 

ii jO f  implies that flit 
ij

f  should be issued to output iO . Additionally,  if  stands for the direction 

(i.e., the output trunk) that flit if  is supposed to be routed based on the algorithm . 

The operation of the PPIRF switch according to the algorithm of Figure 2 is organized in a series of 

cycles (loops). Each cycle (kth cycle) consists of vertices 3 to 14 and is performed within a single time 

slot.  

First, condition 3 is checked. If at least one input queue contains flits, the condition holds and the loop 

begins. Otherwise, the algorithm terminates and the switch keeps staying idle.  

Each cycle starts with a parallel section composed of n threads. The ith thread ( 1,i n ) consists of ver-

tices 4.i-8.i and describes how the flits are fetched and transferred from queue iQ  to the ith column of 

the register matrix. First, a flit (referred to as if ) is read from the head register of queue iQ  (vertex 4.i). 

Second, the output trunk (and the corresponding target register of the register matrix) is determined to 

which if  has to be relayed according to the supported routing algorithm (vertex 5.i). Third, the HOL 

blocking condition (vertex 6.i) is checked. If the target register still contains another flit, the ith thread 

terminates and the state of queue iQ  remains unchanged. Otherwise, flit if  is extracted from the head 

cell of queue iQ  and immediately uploaded to the target register. Then, iQ  is shifted by 1 position. 

As soon as all the threads have terminated, the loop proceeds with vertices 9 and 10. According to vertex 

9, graph k  is formed based on the current flit-to-register distribution. In fact, it is a dummy operation, 

because the graph is automatically formed immediately after all the arrived flits have been mapped onto 

the register matrix. Thus, it takes no extra time. Then, according to vertex 10 of the algorithm, a clique 

of the graph is selected based on formula (2). In the selection process, each row of the register matrix is 
examined separately and in parallel to its peers. In each row, a flit is picked out whose vertex in graph 

k  has the maximum weight amongst the flits mapped onto the same row. This process has  O n  

runtime complexity if implemented sequentially. In the case of parallel calculation of the maximum, the 

runtime complexity is  1O  at the cost of parallel hardware. If a pyramidal maximum computation 

circuit is employed, the process will take  logO n  time units. Because the rows of the register matrix 

are examined in parallel, the entire process of picking out a clique requires  1O  time in the best case 

(parallel scheme) and  O n  in the worst case (sequential scheme). Immediately after a clique has been 

picked out, another parallel section begins (vertices 11.j-12.j). In accordance with the jth thread of this 
section, the selected flit of the jth row (the one whose vertex belongs to the clique) is transferred to the 

jth output trunk and the corresponding register is immediately reset (vertex 12.j). 

Hence, the final part of the loop commences, which consists of vertices 13 and 14. In line with vertex 

13, the current graph k  is reconstructed by eliminating all the vertices that correspond to the relayed 

flits and by incrementing the weights of all the remaining vertices corresponding to the flits that could 

not be selected and transferred within the kth loop. And finally, k is incremented (vertex 14) and the 

next loop starts. 

Figure 3 gives an example of how flit consistency graphs are constructed and treated in the operation 

of a PPIRF switch according to the algorithm of Figure 2 (vertices 9 and 10). In Figure 3, a 5 5

switch is considered and the state of the register matrix for 9 consecutive cycles (marked with letters a, 

b, …, i) of the algorithm is presented. Hereinafter in the example, the squares and the circles denote 

the registers of the register matrix and the flits (vertices of graphs k ) being processed, respectively; 
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the designation k

if  stands for a flit extracted from queue iQ  in cycle k; the weights q  of the flits are 

placed inside the corresponding circles.  
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Figure 2. A parallel flow-chart representing the operation of the PPIRF switch. 
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Figure 3. Example of flit consistency graph construction and manipulation in the operation of a 5 5  

PPIRF switch according to the algorithm of Figure 2. 

Figure 3(a)-(i) demonstrates how the cliques  k
  (encircled in dashed curves) of the corresponding 

flit consistency graphs  k  are picked out according to (2) and how the graphs are reconstructed as 

the process evolves step by step. Note that new flits are added to the register matrix at random as if they 

were directed using the routing algorithm . 

4. SIMULATION STUDIES AND RESULTS 

We conducted a series of comprehensive simulation studies to investigate the throughput, delay and 

some other characteristics of the proposed PPIRF switch and compare our solution with similar buffered 
crossbar switches supporting typical packet scheduling policies (uniform and round robin) [29]-[30]. 

Based on the extended Q-chart modeling language—in a similar way as utilized in [31]—we constructed 

a queuing model that represents the behavior of the PPIRF switch and the buffered peers under consid-
eration. The choice of the language we used is determined by the presence of simulation entities such as 

group controls, which greatly simplify the implementation of various switching functions; for example, 

multiplexing and demultiplexing, which allows creating quite compact models for complex devices and 
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systems. To perform the simulation experiments, we employed a dedicated Q-chart-based simulation 

testbed (Visual QChart Simulator) developed by Zotov et al. [32]. The Visual QChart Simulator inte-

grated environment enables the user to input Q-chart models as graphics, automatically check and com-
pile them to C++ code. Further, it generates an executable using a C++ command line compiler/linker 

chain to simulate the behavior of a given unit/system with preset to simulation parameters such as sim-

ulation duration, number of flits issued and flit traffic characteristics, to mention but a few. 

All the switches examined were assumed to be queuing networks, in which flits arriving at the inputs 

were considered as random service request streams. Typically, Bernoulli uniform, Bernoulli hot spot 

and bursty uniform traffic patterns are assumed when studying the throughput and performance of the 

switch architectures [10], [19], [24] and [29]. However, bursty traffic is specific to the ATM-based 
networks and uncommon for the multiprocessors considered in the paper; therefore, we studied the uni-

form and hot spot traffic patterns only. Short-term traffic asymmetry was admitted. In our experiments, 

we set up all simulation conditions as done in [10]. Considering Bernoulli uniform traffic, the probability 

that a flit arrives at the ith input of the switch  1,i n  in the next cycle was assumed to be p; thus, the 

probability of no packet arrival is 1q p  . The supported routing algorithm  was considered a priori 

unknown and therefore we supposed uniformly distributed selection of the register matrix target rows 

to transfer flits from the input buffers. 

In the simulation experiments, the number of inputs/outputs n was selected from the range of 5 to 25 

with one step increment, which corresponds to practically significant scenarios for modern multiproces-

sors such as mesh [4]-[5], torus [33], cube [34], twisted torus [35] and crossed cube [36]. We also studied 

next-generation switches separately, with 25n   (up to 1000) and set the Bernoulli distribution pa-

rameter p equal to 1 for all n inputs to evaluate the throughput of the switch. The duration of the simu-
lation study was assumed to be 10,000 switch flit relay cycles. Besides, the required number of repeti-

tions with fixed parameters was determined by the Student's criterion for the significance level of 

0.02  . 

Figure 4 shows the 5 5  switch Q-chart utilized in our experimental studies (note that the same Q-chart 

structure is used to model both the PPIRF switch and existing buffered crossbar peers [29]-[30], but 

different control logic is employed reflecting the corresponding scheduling policies). Five types of en-

tities (elements) are utilized in the Q-chart: flit generators (denoted as Gx), flit processors (Dx), queues 

(Qx), group controllers (RCx and MCx) and gates (Kx). Table 1 presents a list of the functions of the 
simulation entities. In the chart of Figure 4, the solid lines denote the information links which fix flit 

transmission paths and the dashed lines show control signals (links) that specify the conditions affecting 

the state of the controlled simulation elements that are letting flits pass through or blocking them tem-
porarily. Arrows specify in which directions flits or control signals are transmitted. Furthermore, both 

information and control links are unidirectional. 

The gates are a cornerstone of the Q-chart logic. For the chart shown in Figure 4, the following gate 
enable/disable rules apply: 

 one gate is enabled (open) only among gates K1i1, K2i1, K3i1, K4i1 and K5i1 ( 1,5i  ), with 

the probability of 0.2 (or the probability of 1
n

 for arbitrary n); 

 gate Kji2 ( , 1,5i j  ) is enabled (open) if queue Qji2 is empty;  

 gate Kji3 ( , 1,5i j  ) is enabled (open) subject to Qji2 containing a flit waiting to be issued 

(depending on the time the flit has spent in the switch); 

 gate K_LOAD_i ( 1,5i  ) is enabled (open) if all queues Q1i1, Q2i1, Q3i1, Q4i1 and Q5i1 are 

empty; 

 gate K_LOST_i ( 1,5i  ) is enabled (open) only if queue Q_i has a limited capacity and is full 

of flits (this is useful to identify the conditions when the switch starts losing incoming flits). 

 



143 

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 02, August 2019. 

 

 

  

 

 

F
ig

u
re

 4
. 

Q
-c

h
ar

t 
re

p
re

se
n
ti

n
g
 a

 s
w

it
ch

 w
it

h
 f

iv
e 

in
p
u
t 

an
d
 f

iv
e 

o
u

tp
u
t 

tr
u

n
k
s.

 



144 

"A Parallel Pipelined Packet Switch Architecture for Mesh-connected Multiprocessors with Independently Routed Flits", J. Al-Azzeh, M. 

Agmal and I. Zotov. 
 

 

Table 1. The functions of the simulation entities of the Q-chart given in Figure 4. 

No. Element ID Element function 

Flit generators 

1 G_i ( 1,5i  ) They simulate a flit stream that arrives at input iI  (input traffic). 

Flit processors 

2 Dji ( , 1,5i j  ) They simulate a flit stream initially arrived at input iI  and now 

leaving the jth row of the register matrix via output jO  (output 

traffic). 

Queues 

3 Q_i ( 1,5i  ) They represent input queues iQ . 

4 Qji1 ( , 1,5i j  ) They simulate the transferring of a flit from the queue iQ  to the 

jith register of the register matrix. 

5 Qji2 ( , 1,5i j  ) They simulate the storing of a flit in the jith register of the regis-

ter matrix for flits initially uploaded from the queue iQ  

Group controllers 

6 RC_i ( 1,5i  ) They select a row of the register matrix based on the routing 

algorithm  (with equal probabilities in this study). 

7 MC_j ( 1,5j  ) They select a register in the jth row of the register matrix to issue 

the flit in accordance with the algorithm  (oldest flits are issued 

first in this study). 

Gates 

8 Kji1 ( , 1,5i j  ) They enable/disable the selection of the queue iQ  before up-

loading its head flit to the jith register of the register matrix. 

9 Kji2 ( , 1,5i j  ) They enable/disable the upload of the head flit of the queue iQ  

to the jith register of the register matrix. 

10 Kji3 ( , 1,5i j  ) They enable/disable the issuance of the flit stored in the jith reg-

ister of the register matrix to the output jO . 

11 K_LOAD_i ( 1,5i  ) They enable/disable the transfer of flits from the queue iQ  to the 

register matrix (HOL blocking). 

12 K_LOST_i ( 1,5i  ) They enable/disable the reception of incoming flits for the queue 

iQ  (buffer overflow). 

The group controllers RCx and MCx are key elements of the Q-chart as well. While the RCx controls 

model the supported routing algorithm  (operating like column-wise random selectors), the MCx ele-

ments reflect the implemented row-wise flit scheduling policy. To switch to a different scheduling 

scheme, the MCx controls need to be reconfigured (internally, this means a different C++ subroutine is 

selected to manage the element). 

Figure 5 shows graphs representing the throughput versus the number of inputs/outputs dependencies 

for the PPIRF switch and the buffered crossbar peers implementing the uniform and the round robin 

row-wise scheduling policies resulting from our simulation studies based on the Q-chart of Figure 4. 

Here only low-size switches, with 5 25n  , are considered (we assumed that the cases 5n   are prac-

tically unfeasible for the multiprocessors of the class under consideration). 

By analyzing the obtained graphs, it was found that the throughput of the PPIRF switch has the lower 
bound of approximately 0.78, which was observed to grow smoothly as the number of inputs/outputs of 

the switch increases. Furthermore, it was found that short-term traffic boosts have no significant effect 

on switch throughput. Yet, the PPIRF switch was shown to have about 1.2–2.5% higher throughput 
compared to the buffered crossbar switches controlled by the uniform and the round robin scheduling 

mechanisms. 
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Figure 5. Throughput versus the number of inputs/outputs graphs for the low-size PPIRF switch  

and the buffered crossbar switches with the uniform and round robin flit scheduling  

(the confidence interval is shown for 0.02  ). 

 

Figure 6. Throughput vs. number of inputs/outputs graphs for the high-size PPIRF switch  

and the buffered crossbar switches with the uniform and round robin flit scheduling. 
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We additionally conducted a series of simulation studies considering high-size switches with 

100 1000n  . Figure 6 shows graphs representing the throughput versus the number of inputs/outputs 

dependency for high-size switches obtained from the simulation studies based on the Q-chart of Figure 

4. Since the confidence interval is less than 1% of the throughput average with 0.02  , error bars are 

not shown in Figure 6. Notwithstanding, it was observed that the throughput of the PPIRF switch ex-

ceeds 90% starting at 190n  ; asymptotically, it eventually becomes 100%. This is because for higher 

values of n, the HOL blocking probability BL

iP  smoothly decreases to zero. According to Figure 6, the 

PPIRF switch has approximately 2.5–3.2% and 3.5–3.8% higher throughput compared to the buffered 

crossbar switches with uniform and round robin flit scheduling, respectively. 

Figure 7 presents graphs reflecting the HOL blocking probability versus the Bernoulli distribution pa-

rameter p dependency for PPIRF switches with n input/output trunks (the error bars in this figure are 

not shown, since they are less than 1% of the average). The graphs validate that the probability BL

iP  

decreases with an increase in the number of inputs/outputs n, with the most significant decrease occur-

ring at the maximum intensity of incoming flit streams. For instance, in the case of a 10 10  PPIRF 

switch, the probability is about 1.62 times lower than for a 5 5  switch. However, for a switch having 

15 inputs/outputs, the specified probability is about 1.32 times less. For a 20 20  switch, it decreases 

by about 1.22 times. Further, for a switch with 25 inputs/outputs, a decline of about 1.17 times was 

observed. Further simulation study conducted for large-sized switches revealed a further decrease in the 

probability BL

iP . With 100n  , the maximum probability is at approximately 0.04, while with 500n   

it is at approximately 0.013 and with 1000n  , it is at about 0.0081.  

 

Figure 7. The HOL blocking probability versus the Bernoulli distribution parameter graphs  

for a PPIRF switch having 5 25n  . 

The reason why BL

iP  behaves like it is stated above is that the probability (referred to as 1p ) for a flit 

to be transferred to a particular target register of the register matrix decreases as n grows; in addition, 

the decrease is non-linear. For example, while 1 0.2p   for a 5 5  switch, it goes down to as low as 

0.04 for a 25 25  one (if uniform distribution is assumed and 1 1p n  therefore). Assuming 2p  to be 
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the probability that a register of an arbitrary column is not empty (still contains another flit), we obtain 
BL

1 2iP p p ; i.e., BL

2iP p n  in the case of uniform distribution. Hence, BL

iP  will go down with n 

whatever value of 2p  is given. Our simulation has confirmed that 2p  is significantly less than 1 for any 

admissive traffic patterns.  

Based on extra simulation experiments, we studied the delay of the PPIRF switch and compared it to 
that of the buffered crossbar switches with uniform and round robin flit scheduling (measured in time 

25n  slots, with a time slot corresponding to the switch clock pulse period duration). Figure 8 pre-

sents the corresponding delay versus the Bernoulli distribution parameter p graphs for 5n  , 15n   

and (the error bars in this figure are not shown for the sake of simplicity). According to the graphs, the 

proposed architecture has no speed advantage over the peers for 0.6p  ; however, as the incoming 

traffic grows heavier, the PPIRF switch demonstrates better performance in terms of delay. Moreover, 

the greater the number of input/output trunks, the higher the difference between the compared archi-

tectures. Assume 0.8p  , which is rather heavy traffic. In this case, a 5 5  buffered crossbar switch 

with the uniform scheduling policy shows an average delay of as high as 232 time slots, a 5 5  buff-

ered crossbar switch with round robin scheduling is capable to relay a flit in 177 time slots on the av-

erage, while a 5 5  PPIRF switch has a delay of as low as approximately 141 time slots. For 15 15  

switches, the delay mean values are significantly lower owing to decreased HOL blocking probability 

and are equal to 84, 89 and 18 time slots, respectively. And finally, for 25 25  devices, the average 

delays are as low as 29, 34 and 7 time slots, respectively. In general (for any admissive n), the PPIRF 

architecture is a faster solution than the other switches considered in this study in the case of heavy 

traffic ( 
 
).   

5. A SUMMARY OF COMPARISON OF THE PROPOSED ARCHITECTURE TO VOQ-

BASED SWITCHES 

A comparative study of the PPIRF approach versus the latest VOQ-based (including crosspoint-buff 

ered) approaches is of significant interest as well. Some VOQ-based switches are known to be stable; 

thus, they can achieve up to 100% throughput for any admissible traffic. At the same time, they have a 

hardware complexity of at least  2O n L  (n FIFO buffers of length L at each of n input trunks) and, 

therefore, the implementation cost may not be acceptable for multiprocessors of the considered class.  

Additionally, VOQ-based approaches with no crosspoint buffers require a speedup of about two, which 
increases the implementation cost and decreases the potentially reachable external speed of the switch. 

Table 2 presents a comprehensive summary of the comparison results (uniformly distributed traffic is 

assumed). 

6. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, we have proposed a parallel pipelined flit switch architecture for mesh-connected multi-
processors with independent flit routing (the PPIRF switch) based on non-VOQ input FIFO buffers and 

an output register matrix supporting a novel row-wise oldest-flit-first flit scheduling policy. Via a com-

prehensive simulation study, it was found that the proposed approach allows achieving a throughput of 

at least 78% for practically significant scenarios and up to 100% throughput asymptotically (as n 

) with no internal speedup and square hardware complexity in contrast to existing VOQ-based switch 
architectures. Due to its lower implementation complexity, the PPIRF switch is suitable for large-scale 

designs and complex network topologies, such as twisted torus, crossed cube, to mention but a few (e.g., 

see [34]-[35]), requiring many input/output trunks at each node. Compared to known non-VOQ switches 
with crosspoint buffers, the proposed device demonstrates slightly (1.2–3.8%) higher throughput and 

substantially (up to several times) shorter delays under heavy traffic patterns. 

In the future, it is important to study how to increase the throughput of low-size PPIRF switches by 

adding some modifications to the scheduling policy to alleviate the influence of the HOL blocking prob-
ability and how to efficiently implement our methodology in practical switches taking into account state-

of-the-art limitations. In addition, it would be interesting to study the multiprocessor behavior when 

applying our algorithm to the real communication networks which deliver real-world traffic. 

0.7p 
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5n   

 
 
15n   

 
 
25n   

 

Figure 8. Delay versus the Bernoulli distribution parameter graphs for the low-size PPIRF switch  

and the buffered crossbar switches with the uniform and round robin flit scheduling. 
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Table 2. Summary of the comparison of the proposed switch architecture with several state-of-the-art 

architectures. 

Switch architecture Throughput (uni-

formly distributed 

traffic) 

Hardware complexity Speedup 

iSLIP scheduled VOQ 
switch [19] 

Up to 100% asymptot-
ically 

 2O n L  2 

SQUID VOQ 

crosspoint-buffered 
switch [20] 

Up to 100%  2O n L  1 (not required) 

RR/LQF scheduled 

VOQ switch [24] 

Up to 100%  2O n L  1
2

n
  

Proposed IRF switch 

architecture 

At least 78% for prac-

tical scenarios and up 

to 100% asymptoti-
cally 

  2max ,O n nL  1 (not required) 
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 ملخص البحث:

فييييييالوييييييتملاقتراييييييريل يييييي رلاا ييييييجاتلمتعدر ييييييرلقعه ييييييدتلر    لقعتدق ييييييد لم تيييييي   لم  يييييي رل ت يييييي دل

للإ يييييي لا يييييي   ا لم عتلإييييييرلميييييي لم يييييي  ا لا   ييييييد ل يييييي بتضلفييييييالكييييييك لكييييييبكريلخدقييييييعل مييييييدت 

خم ييييييهتفرلفييييييي   لفييييييالاقع ييييييجلل ل يييييينل  ييييييج لاقيييييي لكرلفيييييياللإعيييييي لاقعه ييييييدتللإيييييي ل ج يييييي ل

م طييييييةلي خقييييييرل ييييييي م لاقيييييي لاق ت  يييييي لاقيممييييييا ل يييييي رلا يييييي   ا ل  يييييي ل د يييييي لخ ييييييي ةلميييييي ل ييييييي ل

يييي لفيييياللإ بييييترلاقعه ييييدتيل ل يييينل  ييييج لفىييييي رلميييي لر  مييييرلاقيييي لم عتلإييييرلميييي لاأ يييييياتلاق ييييالف تي 

لميييييي ى ر  %لق تبيييييترلاقعيييييت   ل78اق  يييييد لاقعى يييييجتل لىييييي ل ييييييبرللإبيييييترل لفىييييي للإييييي ل مييييييدرا ق

% لخقيييييييي  لمىدر يييييييرلاق  ييييييييد ل100 د  ظيييييييد يلخ عكييييييي ل هلفىييييييييدر لفيييييييال يييييييي  ودلاألإ ييييييي ل ييييييييبرل

يلخيييييييي  دل هلاقعه يييييييدتلفييييييي لمييييييي لمهيييييييدف  لاقيييييييج    لاق ى    يييييييراقعى يييييييجتلفيييييييالويييييييتملاق را يييييييرل ع  ا

اقييييي ل ييييييبرلاقتبيييييترلاقى يييييت لقييييي ل خهلاقلدييييييرلاقييييي ل  يييييد  لاقييييييجلإرلاق ا   يييييريللاقعى يييييجتل  ييييي 

 دو يييييعللإييييي ل  ييييي ل اييييي لفتى ييييي ا لمييييي ل  ييييينلاقعتييييي ا لاقعيييييي   مر لخ دقعىدر يييييرلمييييي لمهيييييدف  لفى    يييييرل

لإ بيييييترل عط يييييريلفبييييي  ل هلاقعه يييييدتلاقعى يييييجتل ع  يييييعل ييييييبرللإبيييييترل لإ ييييي لا ييييي    م لف  يييييدل ق يييييد ل

لاق يييييييل  جلف ييييييي لويييييييتل اييييييي ل  ييييييي ك لييييييييتوج لفيييييييال تيييييييضلاقليييييييد  لدا لاأوع يييييييرل ى  ييييييي يلخ ه 

%يلفيييييال ييييي  لميييييدهل8 3%لخل2 1اقت ع ييييير لفىييييي لفجاخ ييييي ل ييييييبرلفهيييييت لاقمعيييييتدللاقعى يييييجتل ييييي  ل

 .مجا لفال تضلاقلد  ل5 جل لتاقالاق ل  جل ا
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