
135

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 02, August 2019.

1. J. Al-Azzeh is with Dep. of Computer Eng., Al-Balqa Applied University, Al-Salt, Jordan. Email: azzehjamil18@gamil.com
2. M. Agmal and I. Zotov are with Southwest State University, Russia. Emails: MohammedAgmaAbdo@gamil.com and zoto-

vigor@yandex.ru

A PARALLEL PIPELINED PACKET SWITCH

ARCHITECTURE FOR MESH-CONNECTED

MULTIPROCESSORS WITH INDEPENDENTLY ROUTED

FLITS

Jamil Al-Azzeh1, Mohammed Agmal2 and Igor Zotov2

(Received: 27-Apr.-2019, Revised: 30-Jun.-2019, Accepted: 22-Jul.-2019)

ABSTRACT

In this paper, a packet switch architecture for mesh-connected multiprocessors based on the use of a set of input

FIFO buffers and an output register matrix controlled by a novel distributed timing-based scheduling scheme is

proposed. Simple static routing is assumed, with each packet split into a set of independently routed w-bit-wide

flits. The device achieves at least 78% throughput for uniformly distributed traffic and an asymptotic higher bound

of 100%. In contrast to the state-of-the-art VOQ-based switch architectures, the proposed switch is shown to reach

its maximum throughput with no internal speedup required and has an order of magnitude lower hardware com-
plexity. Compared to existing buffered crossbar non-VOQ switches with typical flit scheduling mechanisms, the

proposed device demonstrates slightly higher throughput and substantially shorter delays in some practically im-

portant cases.

KEYWORDS

Multiprocessor, Mesh topology, Packet switching, Input-queued switch, FIFO-buffer, Flit, Pipelining, Through-

put.

1. INTRODUCTION

Switching hardware is known to play a crucial role in the operation of a wide class of modern computer

systems [1]. Mesh-connected multiprocessors are an example of systems whose performance is pro-

foundly affected by the underlying built-in switching apparatus [2]. Inter-processor data exchange speed
and remote memory access latency significantly depend on the throughput and performance of the

switches distributed across the multiprocessor mesh [37]-[39].

The packet switching paradigm is the most widely used in contemporary multiprocessor designs, such
as chip multiprocessors (e.g., see [3]-[5] and the references therein). Furthermore, hybrid (packet/circuit)

switching approach has evolved as well (e.g., see [6]-[9]). Packet switches utilized in modern multipro-

cessors are in several respects similar to the asynchronous transfer mode switches employed in computer
networks and supercomputers [1]. Various switch architectures mainly differ in the arrangement of in-

ternal packet buffers (queues). In input-queued switches, packets are first loaded into the corresponding

input buffers and then switched to the required outputs via a crossbar. Such switches do not impose hard

requirements for the internal speed of the switching hardware (crossbar) and, as a rule, have relatively
low hardware complexity, which allows them to be utilized with a large number of inputs/outputs. How-

ever, it has been shown [10] that input-queued switches with simple FIFO buffers are limited in their

throughput at approximately 0.64 in practically significant scenarios (or at 2 2 0.586  asymptoti-

cally) due to the occurrence of blocked packets in the head cells of the buffers (known as HOL blocking).

The highest possible throughput (up to 100%) is achieved in output-queued switches. In such devices,

packets are immediately switched to the required outputs and then stored in the output buffers before

being issued, which eliminates HOL blocking. However, output-buffered switches impose strict require-
ments on the internal speed of the switching apparatus, which must be several times higher than the

external speed at which packets travel between processors. In this regard, their use is feasible with a

relatively small number of inputs/outputs n and/or if the external switch speed is deliberately decreased.

To overcome the problems inherent to input- and output-queued switches with ordinary FIFO buffers,

136

"A Parallel Pipelined Packet Switch Architecture for Mesh-connected Multiprocessors with Independently Routed Flits", J. Al-Azzeh, M.

Agmal and I. Zotov.

several solution methods have been proposed in the recent past (e.g., see [11]-[16] and the references

therein). Most of these methods are based on the virtual output queue (VOQ) paradigm first proposed

in [17]. In a VOQ switch with n input and n output trunks, n separate simple FIFO buffers are combined
in parallel at each input port, each of which corresponds to a given output. Packets arriving at a particular

input are immediately routed to an input queue corresponding to the required output and are then

switched to the output line via a crossbar circuit; therefore, packets of the same input queue never require

to be transferred to different outputs and thus HOL blocking never occurs.

In order to maximally improve the VOQ switch throughput, a central scheduler is required for contention

resolution when two or more packets are destined to the same output at the same time slot (e.g., see [18]-

[19]). Moreover, to achieve 100% throughput (or non-blocking performance), a stable scheduling policy
is needed for any admissible traffic pattern. It is worth noting that adding extra crosspoint buffers to the

internal crossbar enhances the switch throughput as well [20]. Severe VOQ switch scheduling algo-

rithms, such as maximum size/weight matching [21], have been introduced and studied. Although these
algorithms are shown to be stable, they are too complicated for efficient hardware implementation in

multiprocessors. Consequently, suboptimal solution algorithms are usually adopted. The underlying idea

is to find an input-to-output matching of the maximal size (known as MSM) with no input or output left
unnecessarily idle. Finding an MSM is more efficient, because it does not require backtracking. Iterative

scheduling algorithms for finding an MSM have been widely adopted (e.g., see [22]-[24] and the refer-

ences therein). An iterative scheduling algorithm needs to execute up to n iterations to guarantee maxi-

mal size match. However, as far as we know, all existing stable iterative algorithms require a speedup
of 2, approximately; i.e., the internal speed of the switch must be twice the external speed at which

packets are transferred between processors. A lower speedup is always desirable, because it reduces the

implementation cost and increases the external speed of the switch at the same time.

Furthermore, a load-balanced two-stage-based architecture has been studied in high-speed switch design

and employed to maximize the switch throughput (e.g., see [25]-[26]). Load-balanced two-stage

switches are excellent techniques of getting rid of the central scheduler and reducing hardware-level
complexity. Nevertheless, their main drawback is that packets may be eventually mis-sequenced. Fur-

ther, load-balanced switches suffer from high delay performance under low to medium load. Thus, the

main challenge of contemporary switch technology is still how to improve the efficiency of the central

scheduler significantly.

Although there are no major barriers in the use of wormhole-routed VOQ-based packet switches in

mesh-connected multiprocessors, specific issues and limitations arise that make the usage less efficient

compared to multi-computers and computer networks. Because multiprocessor nodes exchange short
packets split into a small number of w-bit-wide flits transferred via trunks each in one clock cycle, the

VOQ scheduling time might become a significant portion of the packet transfer duration. The other issue

is that these packet switches require the internal speedup of about 2, which leads to significantly higher

implementation cost and makes it impossible to set state-of-the-art external speed values. In this regard,
it is worth mentioning the Epiphany IV VLSI-multiprocessor architecture as an example, which has

136-bit-wide packets with 64 bits of data, 64 bits of address and 8 bits of control [5].

The independently routed flit (IRF) paradigm is one of the alternatives to the traditional wormhole-
routed VOQ-based networking for mesh-connected multiprocessors. With the IRF approach, a packet is

divided into a set of flits of the same width w, each of which carries both data and address fields in

addition to some control/identification bits (e.g., see [27]-[28]). In contrast to wormhole-routing, in the
IRF approach, flits are not grouped to be processed and transferred as an atomic entity; instead, they are

routed independently based on a simple static strategy. After arriving at a given destination, flits are

lined up (reassembled) in a packet. If flits arrive in a wrong order, they can be fetched by their identifiers

to restore the initial ordering, which is a deadlock and livelock free process. If one or more flits are
missing, a timeout mechanism can help solving this reliability-related problem with no permanent block-

ing taking place. The main advantage of the IRF networking is that it provides more simple hardware

solutions than wormhole virtual cut-through routing, because no specific wormhole-aware algorithms

and apparatus are required to support virtual channels and to guarantee deadlock and livelock freedom.

In this paper, we consider mesh-connected multiprocessors similar to the Epiphany IV [5] or the Tile-

Gx series [4]. Moreover, we employ the IRF-networking-based switch architecture with w-bit-wide flits

137

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 02, August 2019.

and simple static routing [28]. Our main contribution is the proposition of a parallel pipelined switch

architecture (which we further refer to as the PPIRF switch) based on the use of non-VOQ input FIFO
buffers and an output register matrix (buffered crossbar) controlled by a built-in distributed flit scheduler

implementing a novel row-wise oldest-flit-first discipline formalized based on the construction and ma-

nipulation of flit consistency graphs. The proposed architecture achieves the throughput of at least 78%
for all practically significant scenarios and 100% asymptotic switch throughput (assuming Bernoulli

uniform traffic). The major effect gained is that neither virtual queuing at input ports, nor internal

speedup is required to achieve up to 100% asymptotic throughput, which leads to a quadratic asymptotic
hardware complexity—an order of magnitude less than that of VOQ-based switches. Compared to sim-

ilar buffered-crossbar-based switches, the PPIRF switch demonstrates slightly higher throughput and

significantly shorter delays in some cases (e.g., for heavier flit traffic patterns), resulting from the novel

scheduling policy employed. In what follows, we formally state the structural organization and operation
of the proposed parallel pipelined switch; further, we present and briefly discuss some simulation results;

finally, we make some comparison and present concluding remarks and future directions as well.

2. THE PARALLEL PIPELINED IRF SWITCH ARCHITECTURE

Figure 1 shows a formalized structural model of the parallel pipelined IRF switch. The switch has several

external connections (trunks)—a set of inputs 1 2, , , nI I I and a set of outputs 1 2, , , nO O O —and is

composed of input FIFO buffers (queues) 1 2, , , nQ Q Q of length (size) L, a register matrix

, , 1,ijB B i j n  , demultiplexers 1 2, , , nR R R , multiplexers 1 2, , , nK K K , 1 2, , , nM M M and gates

1 2, , , nG G G . In Figure 1, the solid lines represent flit transfer paths, while the dashed lines indicate the

control signal paths.

Input 1I and output 1O have a predefined function to connect the switch to the corresponding processor

core (current tile). The rest of the inputs and outputs link the current node to the neighboring nodes in

the multiprocessor mesh. This means that for a two-dimensional (2D) mesh multiprocessor, a 5 5

switch is required (5n ) at each node; in turn, a 3D mesh system would require the use of a 7 7

switch (7n ).

The functions of the blocks in Figure 1 are as follows. The input FIFO buffers 1 2, , , nQ Q Q are used to

temporarily store flit streams arriving at the corresponding input trunks before they are transferred to

the register matrix B. It has to be mentioned that the size (L) of the buffers is specified at the switch

implementation stage and is assumed to be arbitrary. Each input has the only associated FIFO buffer
structured around a set of static registers, each of which is capable of holding a single w-bit-wide flit.

The set of demultiplexers 1 2, , , nR R R implement a predetermined flit routing algorithm . The function

of the register matrix B is to automatically distribute incoming flit streams between its rows following

the output directions obtained from the routing algorithm. The multiplexers 1 2, , , nM M M implement

a given flit scheduling scheme  (the oldest-flits-go-out-first policy, in our case), which is presented in

detail below. Furthermore, the multiplexers 1 2, , , nK K K together with the gates 1 2, , , nG G G are

needed to temporarily block flits from being transferred to the register matrix from the corresponding

queues if their respective target registers still contain unissued flits (HOL blocking).

3. THE OPERATION OF THE PIRF SWITCH

The operation of the PPRF switch is generally organized in four cyclically repeating steps, which are as

follows:

1. Determine the output directions for all the flits located in the head cells of the input queues (fur-

ther referred to as the head flits) based on the routing algorithm .

2. Transfer the head flits from the respective input queues to the register matrix B, unless the corre-
sponding target registers in the register matrix contain any other flits; then shift the queues in the

case of a successful transfer.

3. Analyze the current flits-to-registers mapping and select a subset of flits, which must be issued from

the register matrix based on the scheduling scheme  taking into account the time elapsed from the

138

"A Parallel Pipelined Packet Switch Architecture for Mesh-connected Multiprocessors with Independently Routed Flits", J. Al-Azzeh, M.

Agmal and I. Zotov.

 moments of their arrival.

4. Issue the selected subset of flits to the respective outputs and reset the corresponding registers of the

register matrix B.

1

1Q

2Q

nQ

1I

2I

nI

1O

2O

nO

11B

2

n

n21

12B 1nB

21B 22B 2nB

1nB 2nB nnB

1G

2G

nG

1R 2R nR

1K

2K

nK

1M

2M

nM

Figure 1. A formalized structural model of the parallel pipelined IRF switch.

Figure 2 shows a detailed parallel flow-chart representing the operation of the PPIRF switch. The flow-

chart uses some formal constructs and symbols, whose meanings are explained below.

In Figure 2, kF stands for the actual set of flits distributed between the registers of the register matrix

B, where k denotes the current cycle on the switch operation timeline. The flit consistency graph k

with a set of vertices kF and a set of edges k k kF F   is introduced to indicate whether a pair of flits

can be issued from the register matrix in parallel. The following rule formally defines the flit consistency

relation k :

      
1 1

, , : ,
n n

q r k q k i j r k i j

j j

f f f S B f S B i i 

 

      (1)

where kS is an indicator function, such that  k ij qS B f if the register ijB contains the flit qf before

the kth cycle begins; and  k ijS B  if the register ijB is empty. Each vertex of the graph k is given

a non-negative weight q , which reflects the time elapsed since the flit qf had arrived at the respective

input of the switch (measured in cycles). A clique ,k k kF     , k kF F  , k k
   in the graph k is

selected, such that the total weight of its vertices becomes the maximum across the set of candidate

cliques:

 max.
q k

q

f F 

  (2)

If the graph k contains a set of cliques, for each of which condition (2) holds, then any clique k
 of

this set is picked out assuming uniformly distributed random selection process. It is evident from the

139

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 02, August 2019.

above formal statements that the vertices kF  of the clique k
 are consistent based on (1) and the cardi-

nality of kF  is maximal by inclusion.

In Figure 2, we also employed a new indicator function s, such that   1ls Q  if the queue lQ currently

contains at least one flit and   0ls Q  otherwise. The symbol  denotes register/trunk read/write op-

erations. For example,  headi if Q means the extraction of the head flit if from the queue iQ and

ii jO f implies that flit
ij

f should be issued to output iO . Additionally,  if stands for the direction

(i.e., the output trunk) that flit if is supposed to be routed based on the algorithm .

The operation of the PPIRF switch according to the algorithm of Figure 2 is organized in a series of

cycles (loops). Each cycle (kth cycle) consists of vertices 3 to 14 and is performed within a single time

slot.

First, condition 3 is checked. If at least one input queue contains flits, the condition holds and the loop

begins. Otherwise, the algorithm terminates and the switch keeps staying idle.

Each cycle starts with a parallel section composed of n threads. The ith thread (1,i n) consists of ver-

tices 4.i-8.i and describes how the flits are fetched and transferred from queue iQ to the ith column of

the register matrix. First, a flit (referred to as if) is read from the head register of queue iQ (vertex 4.i).

Second, the output trunk (and the corresponding target register of the register matrix) is determined to

which if has to be relayed according to the supported routing algorithm (vertex 5.i). Third, the HOL

blocking condition (vertex 6.i) is checked. If the target register still contains another flit, the ith thread

terminates and the state of queue iQ remains unchanged. Otherwise, flit if is extracted from the head

cell of queue iQ and immediately uploaded to the target register. Then, iQ is shifted by 1 position.

As soon as all the threads have terminated, the loop proceeds with vertices 9 and 10. According to vertex

9, graph k is formed based on the current flit-to-register distribution. In fact, it is a dummy operation,

because the graph is automatically formed immediately after all the arrived flits have been mapped onto

the register matrix. Thus, it takes no extra time. Then, according to vertex 10 of the algorithm, a clique

of the graph is selected based on formula (2). In the selection process, each row of the register matrix is
examined separately and in parallel to its peers. In each row, a flit is picked out whose vertex in graph

k has the maximum weight amongst the flits mapped onto the same row. This process has  O n

runtime complexity if implemented sequentially. In the case of parallel calculation of the maximum, the

runtime complexity is  1O at the cost of parallel hardware. If a pyramidal maximum computation

circuit is employed, the process will take  logO n time units. Because the rows of the register matrix

are examined in parallel, the entire process of picking out a clique requires  1O time in the best case

(parallel scheme) and  O n in the worst case (sequential scheme). Immediately after a clique has been

picked out, another parallel section begins (vertices 11.j-12.j). In accordance with the jth thread of this
section, the selected flit of the jth row (the one whose vertex belongs to the clique) is transferred to the

jth output trunk and the corresponding register is immediately reset (vertex 12.j).

Hence, the final part of the loop commences, which consists of vertices 13 and 14. In line with vertex

13, the current graph k is reconstructed by eliminating all the vertices that correspond to the relayed

flits and by incrementing the weights of all the remaining vertices corresponding to the flits that could

not be selected and transferred within the kth loop. And finally, k is incremented (vertex 14) and the

next loop starts.

Figure 3 gives an example of how flit consistency graphs are constructed and treated in the operation

of a PPIRF switch according to the algorithm of Figure 2 (vertices 9 and 10). In Figure 3, a 5 5

switch is considered and the state of the register matrix for 9 consecutive cycles (marked with letters a,

b, …, i) of the algorithm is presented. Hereinafter in the example, the squares and the circles denote

the registers of the register matrix and the flits (vertices of graphs k) being processed, respectively;

140

"A Parallel Pipelined Packet Switch Architecture for Mesh-connected Multiprocessors with Independently Routed Flits", J. Al-Azzeh, M.

Agmal and I. Zotov.

the designation k

if stands for a flit extracted from queue iQ in cycle k; the weights q of the flits are

placed inside the corresponding circles.

BEGIN

END

0k 

1k k 

 1f  2f  nf

   1kS B f

1Shift Q

  1 1

1 0

B f f 

 

  2 2

2 0

B f f 

 

  
0

n n

n

B f f 

 

 1 1headf Q  2 2headf Q  headn nf Q

   

 
0

n

l
l

s Q



0

1

Construct graph

,k k kF  

Pick out clique

: max
q k

k q

f F 

  

  
 

1

1

1

1

1

Select register :j

j
k

j k

B

S B

f F

 

 

1

1

1

1 0
j

j

O f

B





2Shift Q Shift nQ

  
 

2

2

2

2

2

Select register :j

j
k

j k

B

S B

f F

 

 

  
 

Select register :
n

n

n

nj

nj
k

j k

B

S B

f F

 

 

2

2

2

2 0
j

j

O f

B



 0
n

n

n j

nj

O f

B





   2kS B f    k nS B f

1

2

3

4.1

5.1

6.1

7.1

8.1

4.2

5.2

6.2

7.2

8.2

4.n

5.n

6.n

7.n

8.n

9

10

11.1

12.1

11.2

12.2

11.n

12.n

14

15

1

\

r r

r k kf F F

   

 

13

Figure 2. A parallel flow-chart representing the operation of the PPIRF switch.

141

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 02, August 2019.

1 2 3 4 5

1

2

3

4

5

0


0

1f

0

0

2f 0

0

3f0

0

4f0

0

5f

0

(a) 1 2 3 4 5

1

2

3

4

5

1


1

1f

0

0

2f

1

5f0

1

4f
01

1

3f
0

(b) 1 2 3 4 5

1

2

3

4

5

2


2

2f

2

1f
2

5f
1

4f 1

2

3f

(c)

00

0

0

1 2 3 4 5

1

2

3

4

5

3


3

3f

2

1f
2

5f

3

4f

1

3

2f

(d)

0

0

1

0

1 2 3 4 5

1

2

3

4

5

4


3

3f

2

1f
4

4f

4

3f4

2f

(e)

0

2

0

1

0

0
4

5f

1 2 3 4 5

1

2

3

4

5

5


5

4f5

1f

5

3f

4

3f

4

2f

(f)

0

1

0

1

0

5

5f

5

2f 0

0

1 2 3 4 5

1

2

3

4

5 6
 6

4f

5

1f

5

3f

6

3f6

1f

(g)

1

0

6

5f
5

2f

0

001

1
6

2f
0

1 2 3 4 5

1

2

3

4

5

7


7

4f

7

2f

6

3f7

1f

(h)

1

0

6

5f

0

0

1

6

2f
1

1 2 3 4 5

1

2

3

4

5

8


8

2f

8

4f

6

3f7

1f

(i)

0

8

5f
0

0

2

1

8

1f

0

8

3f
0

Figure 3. Example of flit consistency graph construction and manipulation in the operation of a 5 5

PPIRF switch according to the algorithm of Figure 2.

Figure 3(a)-(i) demonstrates how the cliques  k
 (encircled in dashed curves) of the corresponding

flit consistency graphs  k are picked out according to (2) and how the graphs are reconstructed as

the process evolves step by step. Note that new flits are added to the register matrix at random as if they

were directed using the routing algorithm .

4. SIMULATION STUDIES AND RESULTS

We conducted a series of comprehensive simulation studies to investigate the throughput, delay and

some other characteristics of the proposed PPIRF switch and compare our solution with similar buffered
crossbar switches supporting typical packet scheduling policies (uniform and round robin) [29]-[30].

Based on the extended Q-chart modeling language—in a similar way as utilized in [31]—we constructed

a queuing model that represents the behavior of the PPIRF switch and the buffered peers under consid-
eration. The choice of the language we used is determined by the presence of simulation entities such as

group controls, which greatly simplify the implementation of various switching functions; for example,

multiplexing and demultiplexing, which allows creating quite compact models for complex devices and

142

"A Parallel Pipelined Packet Switch Architecture for Mesh-connected Multiprocessors with Independently Routed Flits", J. Al-Azzeh, M.

Agmal and I. Zotov.

systems. To perform the simulation experiments, we employed a dedicated Q-chart-based simulation

testbed (Visual QChart Simulator) developed by Zotov et al. [32]. The Visual QChart Simulator inte-

grated environment enables the user to input Q-chart models as graphics, automatically check and com-
pile them to C++ code. Further, it generates an executable using a C++ command line compiler/linker

chain to simulate the behavior of a given unit/system with preset to simulation parameters such as sim-

ulation duration, number of flits issued and flit traffic characteristics, to mention but a few.

All the switches examined were assumed to be queuing networks, in which flits arriving at the inputs

were considered as random service request streams. Typically, Bernoulli uniform, Bernoulli hot spot

and bursty uniform traffic patterns are assumed when studying the throughput and performance of the

switch architectures [10], [19], [24] and [29]. However, bursty traffic is specific to the ATM-based
networks and uncommon for the multiprocessors considered in the paper; therefore, we studied the uni-

form and hot spot traffic patterns only. Short-term traffic asymmetry was admitted. In our experiments,

we set up all simulation conditions as done in [10]. Considering Bernoulli uniform traffic, the probability

that a flit arrives at the ith input of the switch  1,i n in the next cycle was assumed to be p; thus, the

probability of no packet arrival is 1q p  . The supported routing algorithm  was considered a priori

unknown and therefore we supposed uniformly distributed selection of the register matrix target rows

to transfer flits from the input buffers.

In the simulation experiments, the number of inputs/outputs n was selected from the range of 5 to 25

with one step increment, which corresponds to practically significant scenarios for modern multiproces-

sors such as mesh [4]-[5], torus [33], cube [34], twisted torus [35] and crossed cube [36]. We also studied

next-generation switches separately, with 25n  (up to 1000) and set the Bernoulli distribution pa-

rameter p equal to 1 for all n inputs to evaluate the throughput of the switch. The duration of the simu-
lation study was assumed to be 10,000 switch flit relay cycles. Besides, the required number of repeti-

tions with fixed parameters was determined by the Student's criterion for the significance level of

0.02  .

Figure 4 shows the 5 5 switch Q-chart utilized in our experimental studies (note that the same Q-chart

structure is used to model both the PPIRF switch and existing buffered crossbar peers [29]-[30], but

different control logic is employed reflecting the corresponding scheduling policies). Five types of en-

tities (elements) are utilized in the Q-chart: flit generators (denoted as Gx), flit processors (Dx), queues

(Qx), group controllers (RCx and MCx) and gates (Kx). Table 1 presents a list of the functions of the
simulation entities. In the chart of Figure 4, the solid lines denote the information links which fix flit

transmission paths and the dashed lines show control signals (links) that specify the conditions affecting

the state of the controlled simulation elements that are letting flits pass through or blocking them tem-
porarily. Arrows specify in which directions flits or control signals are transmitted. Furthermore, both

information and control links are unidirectional.

The gates are a cornerstone of the Q-chart logic. For the chart shown in Figure 4, the following gate
enable/disable rules apply:

 one gate is enabled (open) only among gates K1i1, K2i1, K3i1, K4i1 and K5i1 (1,5i ), with

the probability of 0.2 (or the probability of 1
n

 for arbitrary n);

 gate Kji2 (, 1,5i j ) is enabled (open) if queue Qji2 is empty;

 gate Kji3 (, 1,5i j ) is enabled (open) subject to Qji2 containing a flit waiting to be issued

(depending on the time the flit has spent in the switch);

 gate K_LOAD_i (1,5i ) is enabled (open) if all queues Q1i1, Q2i1, Q3i1, Q4i1 and Q5i1 are

empty;

 gate K_LOST_i (1,5i ) is enabled (open) only if queue Q_i has a limited capacity and is full

of flits (this is useful to identify the conditions when the switch starts losing incoming flits).

143

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 02, August 2019.

F
ig

u
re

 4
.

Q
-c

h
ar

t
re

p
re

se
n
ti

n
g
 a

 s
w

it
ch

 w
it

h
 f

iv
e

in
p
u
t

an
d
 f

iv
e

o
u

tp
u
t

tr
u

n
k
s.

144

"A Parallel Pipelined Packet Switch Architecture for Mesh-connected Multiprocessors with Independently Routed Flits", J. Al-Azzeh, M.

Agmal and I. Zotov.

Table 1. The functions of the simulation entities of the Q-chart given in Figure 4.

No. Element ID Element function

Flit generators

1 G_i (1,5i ) They simulate a flit stream that arrives at input iI (input traffic).

Flit processors

2 Dji (, 1,5i j ) They simulate a flit stream initially arrived at input iI and now

leaving the jth row of the register matrix via output jO (output

traffic).

Queues

3 Q_i (1,5i ) They represent input queues iQ .

4 Qji1 (, 1,5i j ) They simulate the transferring of a flit from the queue iQ to the

jith register of the register matrix.

5 Qji2 (, 1,5i j ) They simulate the storing of a flit in the jith register of the regis-

ter matrix for flits initially uploaded from the queue iQ

Group controllers

6 RC_i (1,5i ) They select a row of the register matrix based on the routing

algorithm  (with equal probabilities in this study).

7 MC_j (1,5j ) They select a register in the jth row of the register matrix to issue

the flit in accordance with the algorithm  (oldest flits are issued

first in this study).

Gates

8 Kji1 (, 1,5i j ) They enable/disable the selection of the queue iQ before up-

loading its head flit to the jith register of the register matrix.

9 Kji2 (, 1,5i j ) They enable/disable the upload of the head flit of the queue iQ

to the jith register of the register matrix.

10 Kji3 (, 1,5i j ) They enable/disable the issuance of the flit stored in the jith reg-

ister of the register matrix to the output jO .

11 K_LOAD_i (1,5i ) They enable/disable the transfer of flits from the queue iQ to the

register matrix (HOL blocking).

12 K_LOST_i (1,5i ) They enable/disable the reception of incoming flits for the queue

iQ (buffer overflow).

The group controllers RCx and MCx are key elements of the Q-chart as well. While the RCx controls

model the supported routing algorithm  (operating like column-wise random selectors), the MCx ele-

ments reflect the implemented row-wise flit scheduling policy. To switch to a different scheduling

scheme, the MCx controls need to be reconfigured (internally, this means a different C++ subroutine is

selected to manage the element).

Figure 5 shows graphs representing the throughput versus the number of inputs/outputs dependencies

for the PPIRF switch and the buffered crossbar peers implementing the uniform and the round robin

row-wise scheduling policies resulting from our simulation studies based on the Q-chart of Figure 4.

Here only low-size switches, with 5 25n  , are considered (we assumed that the cases 5n  are prac-

tically unfeasible for the multiprocessors of the class under consideration).

By analyzing the obtained graphs, it was found that the throughput of the PPIRF switch has the lower
bound of approximately 0.78, which was observed to grow smoothly as the number of inputs/outputs of

the switch increases. Furthermore, it was found that short-term traffic boosts have no significant effect

on switch throughput. Yet, the PPIRF switch was shown to have about 1.2–2.5% higher throughput
compared to the buffered crossbar switches controlled by the uniform and the round robin scheduling

mechanisms.

145

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 02, August 2019.

Figure 5. Throughput versus the number of inputs/outputs graphs for the low-size PPIRF switch

and the buffered crossbar switches with the uniform and round robin flit scheduling

(the confidence interval is shown for 0.02 ).

Figure 6. Throughput vs. number of inputs/outputs graphs for the high-size PPIRF switch

and the buffered crossbar switches with the uniform and round robin flit scheduling.

146

"A Parallel Pipelined Packet Switch Architecture for Mesh-connected Multiprocessors with Independently Routed Flits", J. Al-Azzeh, M.

Agmal and I. Zotov.

We additionally conducted a series of simulation studies considering high-size switches with

100 1000n  . Figure 6 shows graphs representing the throughput versus the number of inputs/outputs

dependency for high-size switches obtained from the simulation studies based on the Q-chart of Figure

4. Since the confidence interval is less than 1% of the throughput average with 0.02  , error bars are

not shown in Figure 6. Notwithstanding, it was observed that the throughput of the PPIRF switch ex-

ceeds 90% starting at 190n  ; asymptotically, it eventually becomes 100%. This is because for higher

values of n, the HOL blocking probability BL

iP smoothly decreases to zero. According to Figure 6, the

PPIRF switch has approximately 2.5–3.2% and 3.5–3.8% higher throughput compared to the buffered

crossbar switches with uniform and round robin flit scheduling, respectively.

Figure 7 presents graphs reflecting the HOL blocking probability versus the Bernoulli distribution pa-

rameter p dependency for PPIRF switches with n input/output trunks (the error bars in this figure are

not shown, since they are less than 1% of the average). The graphs validate that the probability BL

iP

decreases with an increase in the number of inputs/outputs n, with the most significant decrease occur-

ring at the maximum intensity of incoming flit streams. For instance, in the case of a 10 10 PPIRF

switch, the probability is about 1.62 times lower than for a 5 5 switch. However, for a switch having

15 inputs/outputs, the specified probability is about 1.32 times less. For a 20 20 switch, it decreases

by about 1.22 times. Further, for a switch with 25 inputs/outputs, a decline of about 1.17 times was

observed. Further simulation study conducted for large-sized switches revealed a further decrease in the

probability BL

iP . With 100n  , the maximum probability is at approximately 0.04, while with 500n 

it is at approximately 0.013 and with 1000n  , it is at about 0.0081.

Figure 7. The HOL blocking probability versus the Bernoulli distribution parameter graphs

for a PPIRF switch having 5 25n  .

The reason why BL

iP behaves like it is stated above is that the probability (referred to as 1p) for a flit

to be transferred to a particular target register of the register matrix decreases as n grows; in addition,

the decrease is non-linear. For example, while 1 0.2p  for a 5 5 switch, it goes down to as low as

0.04 for a 25 25 one (if uniform distribution is assumed and 1 1p n therefore). Assuming 2p to be

147

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 02, August 2019.

the probability that a register of an arbitrary column is not empty (still contains another flit), we obtain
BL

1 2iP p p ; i.e., BL

2iP p n in the case of uniform distribution. Hence, BL

iP will go down with n

whatever value of 2p is given. Our simulation has confirmed that 2p is significantly less than 1 for any

admissive traffic patterns.

Based on extra simulation experiments, we studied the delay of the PPIRF switch and compared it to
that of the buffered crossbar switches with uniform and round robin flit scheduling (measured in time

25n  slots, with a time slot corresponding to the switch clock pulse period duration). Figure 8 pre-

sents the corresponding delay versus the Bernoulli distribution parameter p graphs for 5n  , 15n 

and (the error bars in this figure are not shown for the sake of simplicity). According to the graphs, the

proposed architecture has no speed advantage over the peers for 0.6p  ; however, as the incoming

traffic grows heavier, the PPIRF switch demonstrates better performance in terms of delay. Moreover,

the greater the number of input/output trunks, the higher the difference between the compared archi-

tectures. Assume 0.8p  , which is rather heavy traffic. In this case, a 5 5 buffered crossbar switch

with the uniform scheduling policy shows an average delay of as high as 232 time slots, a 5 5 buff-

ered crossbar switch with round robin scheduling is capable to relay a flit in 177 time slots on the av-

erage, while a 5 5 PPIRF switch has a delay of as low as approximately 141 time slots. For 15 15

switches, the delay mean values are significantly lower owing to decreased HOL blocking probability

and are equal to 84, 89 and 18 time slots, respectively. And finally, for 25 25 devices, the average

delays are as low as 29, 34 and 7 time slots, respectively. In general (for any admissive n), the PPIRF

architecture is a faster solution than the other switches considered in this study in the case of heavy

traffic (

).

5. A SUMMARY OF COMPARISON OF THE PROPOSED ARCHITECTURE TO VOQ-

BASED SWITCHES

A comparative study of the PPIRF approach versus the latest VOQ-based (including crosspoint-buff

ered) approaches is of significant interest as well. Some VOQ-based switches are known to be stable;

thus, they can achieve up to 100% throughput for any admissible traffic. At the same time, they have a

hardware complexity of at least  2O n L (n FIFO buffers of length L at each of n input trunks) and,

therefore, the implementation cost may not be acceptable for multiprocessors of the considered class.

Additionally, VOQ-based approaches with no crosspoint buffers require a speedup of about two, which
increases the implementation cost and decreases the potentially reachable external speed of the switch.

Table 2 presents a comprehensive summary of the comparison results (uniformly distributed traffic is

assumed).

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we have proposed a parallel pipelined flit switch architecture for mesh-connected multi-
processors with independent flit routing (the PPIRF switch) based on non-VOQ input FIFO buffers and

an output register matrix supporting a novel row-wise oldest-flit-first flit scheduling policy. Via a com-

prehensive simulation study, it was found that the proposed approach allows achieving a throughput of

at least 78% for practically significant scenarios and up to 100% throughput asymptotically (as n 

) with no internal speedup and square hardware complexity in contrast to existing VOQ-based switch
architectures. Due to its lower implementation complexity, the PPIRF switch is suitable for large-scale

designs and complex network topologies, such as twisted torus, crossed cube, to mention but a few (e.g.,

see [34]-[35]), requiring many input/output trunks at each node. Compared to known non-VOQ switches
with crosspoint buffers, the proposed device demonstrates slightly (1.2–3.8%) higher throughput and

substantially (up to several times) shorter delays under heavy traffic patterns.

In the future, it is important to study how to increase the throughput of low-size PPIRF switches by

adding some modifications to the scheduling policy to alleviate the influence of the HOL blocking prob-
ability and how to efficiently implement our methodology in practical switches taking into account state-

of-the-art limitations. In addition, it would be interesting to study the multiprocessor behavior when

applying our algorithm to the real communication networks which deliver real-world traffic.

0.7p 

148

"A Parallel Pipelined Packet Switch Architecture for Mesh-connected Multiprocessors with Independently Routed Flits", J. Al-Azzeh, M.

Agmal and I. Zotov.

5n 

15n 

25n 

Figure 8. Delay versus the Bernoulli distribution parameter graphs for the low-size PPIRF switch

and the buffered crossbar switches with the uniform and round robin flit scheduling.

149

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 02, August 2019.

Table 2. Summary of the comparison of the proposed switch architecture with several state-of-the-art

architectures.

Switch architecture Throughput (uni-

formly distributed

traffic)

Hardware complexity Speedup

iSLIP scheduled VOQ
switch [19]

Up to 100% asymptot-
ically

 2O n L 2

SQUID VOQ

crosspoint-buffered
switch [20]

Up to 100%  2O n L 1 (not required)

RR/LQF scheduled

VOQ switch [24]

Up to 100%  2O n L 1
2

n


Proposed IRF switch

architecture

At least 78% for prac-

tical scenarios and up

to 100% asymptoti-
cally

  2max ,O n nL 1 (not required)

ACKNOWLEDGEMENTS

The authors would like to thank the Editor-in-Chief Prof. Ahmad Hiasat and four anonymous reviewers

for their detailed and insightful comments, which helped to significantly improve the quality of the

paper.

REFERENCES

[1] S. Misra and S. Goswami, Network Routing: Fundamentals, Applications and Emerging Technologies,

Wiley Telecom, 2014.

[2] A. A. Jerraya and W. Wolf, Multiprocessor Systems-on-Chips, San Francisco, Elsevier, Inc., 2005.

[3] Z. Yu, R. Xiao et al., "A 16-Core Processor with Shared-Memory and Message-Passing Communica-

tions," IEEE Trans. Circ. Syst. I: Regular Papers, vol. 61, no. 4, pp. 1081-1094, 2014.

[4] Tilera Corp., "Tile Processor Architecture Overview for The TILE-Gx Series," [Online], Available:

 http://www.mellanox.com/repository/solutions/tile-scm/docs/UG130-ArchOverview-TILE-Gx.pdf, (ac-

cess date: 30.06.2019).

[5] A. Olofsson, "Epiphany-V: A 1024 Processor 64-bit RISC System-on-Chip," [Online]: Available:

 https://www.parallella.org/docs/e5_1024core_soc.pdf, (access date: 30.06.2019).

[6] P. Lotfi-Kamran, M. Modarressi and H. Sarbazi-Azad, "An Efficient Hybrid-Switched Network-on-Chip

for Chip Multiprocessors," IEEE Trans. Comput., vol. 65, no. 5, pp. 1656-1662, 2016.

[7] G. Chen, M. A. Anders et al., "A 340 mV-to-0.9 V 20.2 Tb/s Source-synchronous Hybrid Packet/Circuit-

switched 16×16 Network-On-Chip in 22 nm Tri-Gate CMOS," IEEE J. Solid-St. Circ., vol. 50, no. 1, pp.

59-67, 2015.

[8] A. Mazloumi and M. Modarressi, "A Hybrid Packet/circuit-switched Router to Accelerate Memory Ac-

cess in NoC-based Chip Multiprocessor," Proc. of Design, Automation and Test in Europe Conference

and Exhibition (DATE), pp. 908-911, 2015.

[9] M. H. Foroozannejad, M. Hashemi et al., "Time-scalable Mapping for Circuit-switched GALS Chip Mul-

tiprocessor Platforms," IEEE Trans. Comput.-aided Design of Integr. Circ. and Syst., vol. 33, no. 5, pp.

752-762, 2014.

[10] M. Karol, M. Hluchyj and S. Morgan, "Input Versus Output Queueing on a Space-Division Packet

Switch," IEEE Trans. Commun., vol. 35, no. 12, pp. 1347-1356, 1987.

[11] L. Deng, W. S. Wong et al., "Delay-constrained Input-queued Switch," IEEE J. Selected Areas Commun.,

vol. 36, no. 11, pp. 2464-2474, 2018.

[12] K. Kang, K.-J. Park, L. Sha and Q. Wang, "Design of a Crossbar VOQ Real-time Switch with Clock-

150

"A Parallel Pipelined Packet Switch Architecture for Mesh-connected Multiprocessors with Independently Routed Flits", J. Al-Azzeh, M.

Agmal and I. Zotov.

 driven Scheduling for a Guaranteed Delay Bound," Real-time Systems, vol. 49, no. 1, pp. 117-135, 2013.

[13] M. J. Neely, E. Modiano and Y. -S. Cheng, "Logarithmic Delay for NxN Packet Switches under the

Crossbar Constraint," IEEE/ACM Trans. Networking, vol. 15, no. 3, pp. 657-668, 2007.

[14] S. Durkovic and Z. Cica, "Birkhoff-von Neumann Switch Based on Greedy Scheduling," IEEE Comput.

Archit. Letters, vol. 17, no. 1, pp. 13-16, 2018.

[15] C. -S. Chang, D. -S. Lee and C. -Y. Yue, "Providing Guaranteed Rate Services in the Load Balanced

Birkhoff-von Neumann Switches," IEEE/ACM Trans. Networking, vol. 14, no. 3, pp. 644-656, 2006.

[16] H. -I. Lee and S. -W. Seo, "Matching Output Queueing with a Multiple Input/Output-queued Switch,"

IEEE/ACM Trans. Networking, vol. 14, no. 1, pp. 121-132, 2006.

[17] Y. Tamir and G. Frazier, "High Performance Multi-queue Buffers for VLSI Communication Switches,"

Proc. of the 15th Annu. Symp. Comput. Archit., pp. 343-354, June 1988.

[18] T. Anderson, S. S. Owicki, J. B. Saxe and C. P. Thacker, "High-speed Switch Scheduling for Local-area

Networks," ACM Trans. Comput. Syst., vol. 11, no. 4, pp. 319-352, 1993.

[19] N. McKeown, "The iSLIP Scheduling Algorithm for Input-queued Switches," IEEE/ACM Trans. Net-

working, vol. 7, no. 2, pp. 188-201, April 1999.

[20] Y. Shen, S. S. Panwar and H. J. Chao, "SQUID: A Practical 100% Throughput Scheduler for Crosspoint

Buffered Switches," IEEE/ACM Trans. Networking, vol. 18, no. 4, pp. 1119-1131, August 2010.

[21] N. McKeown, V. Anantharam and J. Walrand, "Achieving 100% Throughput in an Input-queued Switch,"

Proc. of the 15th IEEE INFOCOM, pp. 296-302, San Francisco, CA, USA, Mar. 1996.

[22] J. Chao, "Saturn: A Terabit Packet Switch Using Dual Round Robin," IEEE Commun. Mag., vol. 38, no.

12, pp. 78-84, Dec. 2000.

[23] S. Mneimneh, "Matching from the First Iteration: An Iterative Switching Algorithm for an Input-queued

Switch," IEEE/ACM Trans. Networking, vol. 16, no. 1, pp. 206-217, Feb. 2008.

[24] B. Hu, K. L. Yeung, Q. Zhou and C. He, "On Iterative Scheduling for Input-queued Switches with a

Speedup of 2-1/N," IEEE/ACM Trans. Networking, vol. 24, no. 6, pp. 3565-3577, 2016.

[25] B. Hu and K. L. Yeung, "Feedback-based Scheduling for Load Balanced Two-Stage Switches,"

 IEEE/ACM Trans. Networking, vol. 18, no. 4, pp. 1077-1090, Aug. 2010.

[26] C. -S. Chang, D. -S. Lee and Y. -S. Jou, "Load Balanced Birkhoff-von Neumann Switches, Part I: One-

stage Buffering," Comput. Commun., vol. 25, no. 6, pp. 611-622, 2002.

[27] Y. Chen, "Cell Switched Network-on-Chip Candidate for Billion-transistor System-on-Chips," Proc. of

IEEE Int’l. Soc. Conf., pp. 57-60, 2006.

[28] A. Olofsson, "Mesh Network," US Patent, no. 8531943 B2, Sep. 10, 2013.

[29] M. Lin and N. McKeown, "The Throughput of a Buffered Crossbar Switch," IEEE Commun. Let., vol.

9, no. 5, pp. 465-467, 2005.

[30] M. Nabeshima, "Performance Evaluation of a Combined Input- and Crosspoint-queued Switch," IEICE

 Trans. Commun., vol. E83-B, pp. 737-741, 2000.

[31] I. V. Zotov, "Distributed Virtual Bit-slice Synchronizer: A Scalable Hardware Barrier Mechanism for N-

dimensional Meshes," IEEE Trans. Comput., vol. 59, no. 9, pp. 1187-1199, Sep. 2010.

[32] I. V. Zotov et al., "The VisualQChart Simulation Environment," Computer Program Certificate RU

2007611310, appl. 13.02.2007, publ. 27.03.2007.

[33] D. Zydek, H. Selvaraj and L. Gewali, "Synthesis of Processor Allocator for Torus-based Chip Multipro-

cessors," Proc. of the 7th Int’l. Conf. on Information Technology: New Generations, pp. 13-18, 2010.

[34] A. Samad, M. Q. Rafiq and O. Farooq, "Performance Evaluation of Task Assignment Algorithms in

Cube-based Multiprocessor Systems," Proc. of the 1st Int’l. Conf. on Emerging Trends and Applications

in Computer Science, pp. 48-51, 2013.

151

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 05, No. 02, August 2019.

[35] J. M. Camara, M. Moreto et al., "Twisted Torus Topologies for Enhanced Interconnection Networks,"

IEEE Trans. Parallel Distrib. Syst., vol. 21, no. 12, pp. 1765-1778, 2010.

[36] K. Li, Y. Mu, K. Li and G. Min, "Exchanged Crossed Cube: A Novel Interconnection Network for Parallel

Computation," IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 11, pp. 2211-2219, 2013.

[37] J. Al Azzeh, "Distributed Mutual Inter-unit Test Method for D-Dimensional Mesh-connected Multipro-

cessors with Round-Robin Collision Resolution," Jordanian Journal of Computers and Information Tech-

nology (JJCIT), vol. 05, no. 01, pp. 1-16, April 2019.

[38] J. Al Azzeh, "Improved Testability Method for Mesh-connected VLSI Multiprocessors," Jordanian Jour-

nal of Computers and Information Technology (JJCIT), vol. 04, no. 02, pp. 116-128, August 2018.

[39] J. Al Azzeh, "Fault-tolerant Routing in Mesh-connected Multicomputers Based on Majority-operator-

produced Transfer Direction Identifiers," Jordan Journal of Electrical Engineering, vol. 03, no. 02, pp.

102-111, April 2017.

 ملخص البحث:

فييييييالوييييييتملاقتراييييييريل يييييي رلاا ييييييجاتلمتعدر ييييييرلقعه ييييييدتلر لقعتدق ييييييد لم تيييييي لم يييييي رل ت يييييي دل

للإ يييييي لا يييييي ا لم عتلإييييييرلميييييي لم يييييي ا لا ييييييد ل يييييي بتضلفييييييالكييييييك لكييييييبكريلخدقييييييعل مييييييدت

خم ييييييهتفرلفييييييي لفييييييالاقع ييييييجلل ل يييييينل ييييييج لاقيييييي لكرلفيييييياللإعيييييي لاقعه ييييييدتللإيييييي ل ج يييييي ل

م طييييييةلي خقييييييرل ييييييي م لاقيييييي لاق ت يييييي لاقيممييييييا ل يييييي رلا يييييي ا ل يييييي ل د يييييي لخ ييييييي ةلميييييي ل ييييييي ل

يييي لفيييياللإ بييييترلاقعه ييييدتيل ل يييينل ييييج لفىييييي رلميييي لر مييييرلاقيييي لم عتلإييييرلميييي لاأ يييييياتلاق ييييالف تي

لميييييي ى ر %لق تبيييييترلاقعيييييت ل78اق يييييد لاقعى يييييجتل لىييييي ل ييييييبرللإبيييييترل لفىييييي للإييييي ل مييييييدرا ق

% لخقيييييييي لمىدر يييييييرلاق ييييييييد ل100 د ظيييييييد يلخ عكييييييي ل هلفىييييييييدر لفيييييييال يييييييي ودلاألإ ييييييي ل ييييييييبرل

يلخيييييييي دل هلاقعه يييييييدتلفييييييي لمييييييي لمهيييييييدف لاقيييييييج لاق ى يييييييراقعى يييييييجتلفيييييييالويييييييتملاق را يييييييرل ع ا

اقييييي ل ييييييبرلاقتبيييييترلاقى يييييت لقييييي ل خهلاقلدييييييرلاقييييي ل يييييد لاقييييييجلإرلاق ا يييييريللاقعى يييييجتل ييييي

 دو يييييعللإييييي ل ييييي ل اييييي لفتى ييييي ا لمييييي ل ييييينلاقعتييييي ا لاقعيييييي مر لخ دقعىدر يييييرلمييييي لمهيييييدف لفى يييييرل

لإ بيييييترل عط يييييريلفبييييي ل هلاقعه يييييدتلاقعى يييييجتل ع يييييعل ييييييبرللإبيييييترل لإ ييييي لا ييييي م لف يييييدل ق يييييد ل

لاق يييييييل جلف ييييييي لويييييييتل اييييييي ل ييييييي ك لييييييييتوج لفيييييييال تيييييييضلاقليييييييد لدا لاأوع يييييييرل ى ييييييي يلخ ه

%يلفيييييال ييييي لميييييدهل8 3%لخل2 1اقت ع ييييير لفىييييي لفجاخ ييييي ل ييييييبرلفهيييييت لاقمعيييييتدللاقعى يييييجتل ييييي ل

 .مجا لفال تضلاقلد ل5 جل لتاقالاق ل جل ا

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

