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ABSTRACT 

Healthy lifestyle trends are getting more prominent around the world. There are numerous numbers of marathon 

running race events that have been held and inspired interest among peoples of different ages, genders and 

countries. Such diversified truths increase more difficulties to comprehending large numbers of marathon 

images, since such process is often done manually. Therefore, a new approach for racing bib number (RBN) 

localization and recognition for marathon running races using deep learning is proposed in this paper. 

Previously, all RBN application systems have been developed by using image processing techniques only, which  

limits the performance achieved. There are two phases in the proposed system that are phase 1: RBN detection 

and phase 2: RBN recognition. In  phase 1, You Only Look Once version 3 (YOLOv3) which consists of a single 

convolutional network is used to predict the runner and RBN by multiple bounding boxes and class probabilities 

of those boxes.YOLOv3 is a new classifier network that outperforms other state-of-art networks. In phase 2, 

Convolutional Recurrent Neural Network (CRNN) is used to generate a label sequence for each input image and 

then select the label sequence that has the highest probability. CRNN can be straight trained from sequence 

labels such as words without any annotation of characters. Therefore, CRNN recognizes the contents of RBN 

detected. The experimental results based on mean average precision (mAP) and edit distance have been 

analyzed. The developed system is suitable for marathon or distance running race events and automates the 

localization and recognition of racers, thereby increasing efficiency in event control and monitoring as well as 

post-processing the event data. 
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1. INTRODUCTION 

 Over the past decades, great popularization of intelligence devices and rapid development of 

technology have brought forth enormous new outcomes and services that have prompted the huge 

demand of practical computer vision technologies. As opposed to the scanning of documents, natural 

scene text localization [1] and recognition contribute a method to directly access and utilize the textual 

data in the wild, which is apparently the most pressing technology. Nowadays, healthy lifestyle trends 

are more prominent around the world. Such new trends help organize running activities in order to 

inspire the awareness of the public of the importance of health. Large numbers of marathon running 

races in different formats for different situations have been held and inspired interest among people of 

different ages, genders and countries. Such diversified truths increase more difficulties to 

comprehending marathon video or images, since such process is often done manually, which yields a 

process made difficult by the sheer number of available photos. There are multiple methods for text 

localization and recognition in natural scene images and videos; for instance: parking, border control 

and analysis of traffic flow. However, these approaches are not good enough to obtain accurate and 

precise results for RBN localization in marathon images, because they usually rely on characteristics 

of rich texts, but not numerals [2]. The runners or participants have a single racing bib number (RBN) 

to indicate themselves and this RBN is usually presented on heterogeneous backgrounds and different 

materials. Such tag number is generally printed on a cardboard tag and pinned onto T-shirts of 

different colours and at different parts of each competitor’s body during the marathon race. There are 

some problems faced in the application of RBN detection and recognition. Firstly, competitors run 
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together with different speeds and background complexity varies continuously with moving objects, 

sky, buildings, trees, among others. Secondly, input images captured in natural scene are usually 

influenced by occlusion and the loss of information or quality. Thirdly, inconsistent light intensities 

can influence the images captured, which results in unbalanced illumination throughout the images. 

Hence, achieving accurate performance for localizing and recognizing RBN in marathon races is a 

challenging and difficult task. 

Along with that, the security of running events is the priority concern for organizers of distance 

running events. A tragedy incident, Boston Marathon bombing, happened on 15 April 2013. Apart 

from the extensive video footage and photos from local surveillance systems and witnesses’ 

smartphones and cameras, local, state and federal law enforcement organizations failed to indicate the 

suspects of this incident by using only face detection technology. As a result, the proposed system in 

this project can assists in studying and comprehending such images to extract the desired information 

regardless of age, gender and country. Furthermore, the proposed system of RBN detection and 

recognition has the capability to assist gait analysis. Gait analysis is the study of motion figures of 

lower limbs, such as weight of individual, footwear, length of limbs and postures integrated with 

motion. It can also be employed as a biometric calculation to recognize known individuals and 

discover unknown subjects. Gait analysis is widely implemented to recognize the performances of 

athletes in sport training or events such as running and swimming, in order to ensure that the athletes 

have worn the correct footwear and are performing foot movement that won’t result in injury to them. 

Runner detection included in this proposed system will certainly provide the desired information 

needed for gait analysis despite of RBN recognition only. 

There are many online resources available selling photos of individuals, since runners may want to 

purchase their photos captured during marathon events as personal memories. Generally, runners shall 

find and purchase their respective photos by using their RBN. However, there are thousands of images 

captured by organizers and photographers attending marathon running races, which results in high 

time consumption and patience needed in sorting such images according to the RBN of each runner. 

As a result, the proposed system is able to overcome this problem by localizing and recognizing RBN 

automatically, hence increasing the efficiency in sorting marathon images.  

There are a few previous research studied on RBN recognition using image processing methods. 

Figure 1 is the method proposed by P. Shivakumara using SVM and multiple image processing 

methods based on 200 plus images [3]. It illustrates the inability of scene text detection methods for 

RBN detection. Figure 1(i) shows an input image captured from a running race. Figures 1(ii) and (iii) 

show RBN localization with and without detecting torso. A lot of false positives are detected by text 

detection method without torso detection, while the desired output is achieved by including torso 

detection before text detection. Figure 2 shows the result of binarization and the result of RBN 

recognition with and without torso detection. It can be observed that incorrect binarization and 

recognition results are obtained without torso detection. Therefore, the accuracy and precision of RBN 

rely significantly on the text detection methods. P. Shivakumara method [3] combines torso and text 

detection methods. It is not related to runner movement directions and does not require face 

information as the method proposed by Ami et al. [4] who used the stroke width transform (SWT) 

method [5]-[6] to extract characters in input images, where the characters with similar stroke width are 

grouped together for producing text region. Then, face detection method is applied in order to detect 

the face of the runner. At the end, the detected torso is used to indicate and recognize the true RBN by 

using Tesseract OCR engine [7]. The limitation of such method is tremendously large numbers of 

runners running with different speeds during running races such as marathon races and hence it is very 

difficult to localize and detect each runner’s face. N. Boonsim [8] applied edge-based technique [9]-

[10] to extract edges of an input image captured during a marathon race and morphological operations 

in mathematical form were used to combine the edges in order to generate RBN area and fade other 

areas. Runner detection method is used to detect the face of the runner first and is then extended to the 

torso of runner. The detected runner is used to indicate the position of RBN. The verification process 

applies image intersection between the candidate region image and the runner’s body image. After 

that, image contrast enhancement is employed to enhance the contrast of the image. Local contrast 

improvement method [9] is employed to refine local contrast instead of global contrast due to that it 

has the capability to solved images with complicated backgrounds. Text localization and recognition 
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methods alone have failed to obtain high performance for RBN detection and recognition because of 

background variations and uncontrolled issues. Inspired by these observations, a system which uses 

the method of runner detection to reduce background complexity and perform RBN detection and 

recognition based on deep learning is proposed in this work. 

 

(i)                        (ii)                (iii) 

Figure 1. Scene text detection method for RBN detection [3] (i) images of running races (ii) inability 

of scene text detection method for RBN detection without detecting torso and (iii) RBN localization 

after torso detection.  

     
(i)                                                                   (ii) 

Figure 2. Binarization and recognition results for input images (i) without torso detection (ii) with 

torso detection [3]. 

In this work, an artificial intelligence cascade network, which can automatically detect and recognize 

RBN during marathon races, will be implemented on a graphic processing unit (GPU) by using deep 

learning. This is the first RBN recognition system implemented by using deep learning. Cascaded 

network topology, which consists of an object detection algorithm: You Only Look Once v3 

(YOLOv3) [12]-[13] and an object-based sequence recognition algorithm: Convolutional Recurrent 

Neural Network (CRNN), will be developed. YOLOv3 is a pre-processing step that transforms an 

input image quickly into a sequence of image features for sequence-like object detection through 

CRNN. YOLOv3 operates dramatically faster than other recent detection methods. As shown in 

Figure 3, at 320 x 320, YOLOv3 runs in 22ms at 28.2mAP as accurate as Single Shot Detection 

(SSD), but three times faster.  

 

Figure 3. YOLOv3 runs significantly faster than other detection methods with comparable 

performance [13].   
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The critical characteristic of bib recognition is that bib sizes may change randomly. As a result, the 

most famous deep models, such as Deep Convolutional Neural Network (DCNN) [16], are not suitable 

to apply directly to object-based sequence recognition after the target text has been detected by using a 

text detector [17]. This is due to that DCNN models generally operate on inputs and outputs with 

certain dimensions and hence such methods are unable to generate an alterable-length label sequence. 

Recurrent Neural Network (RNN) is particularly used for recognizing sequences. The main benefit of 

RNN is that it does not require the location of each component in a sequence object image in both 

phases of training and testing. CRNN is a combination network of DCNN and RNN. For sequence-like 

objects, CRNN can be directly trained from sequence labels such as words without any annotation of 

characters and learning informative data straightly from input images which do not need any hand-

craft features or pre-processing steps such as binarization, segmentation and character localization as 

needed in conventional image processing methods proposed by previous research work.  

YOLOv3 will be used for detecting the runner and bib number by multiple bounding boxes. CRNN 

will be used for recognizing the bib number through generating a label sequence for each input image 

and then selecting the label sequence that has the highest probability. The work follows with analyzing 

and enhancing the performance of the system in order to achieve high accuracy and precision. The text 

language is limited to the representative tag number of the runner only, where the font size and type of 

the text dataset typically depend on the resources of such dataset. Name of logo and name of runner 

are not considered in this work. 

2. METHODOLOGY 

2.1 Phase 1- YOLO v3 

YOLO [12] uses single regression to detect the target object directly from image pixels by predicting 

multiple bounding boxes and class probabilities for those boxes. YOLO trains on full images and 

straight away optimizes detection performance. YOLOv3 [13] is the third object localization algorithm 

in the family. There are no fully-connected layers or pooling layers in the network architecture of 

YOLOv3. Therefore, YOLOv3 has the capability to handle images with variable size.  

In this work, the first dataset used to train YOLOv3 has the total amount of 4096 images consisting of 

1070 pixels as width and 1600 pixels as height in PNG format and is created by collecting images one 

by one from an online database [11]. Such images are captured at places near to the finish line during 

Delaware marathon running race in 2018. Then, a graphical image annotation tool is used in a process 

named as labelimg. Labelimg tool is a graphical image annotation tool. It is written in Python 

language and utilizes qt library for its graphical interface. After installing its dependencies, the tool is 

run to perform the image annotation for the 4096 images. Every image is provided with ground truth 

values which indicate the detail annotation and temporal localization of each of the target objects that 

are: runner, bib and number. Therefore, a text file will be generated after saving each of the images in 

YOLO format. Each row in the text file represents a single bounding box in an input image. The 

format of the bounding box is shown in Table 1. 

Table 1. Format of the bounding box in YOLO format. 

<object-class-id><center-x><center-y> 

<width> <height> 

Object-class-id is a parameter which represents the class 

index of an object. It ranges from zero to (number of classes – 

1). 

x: x-coordinate (in pixels) of the center of the 

bounding box 

<center-x> and <center y> are the respective coordinates of 

the center of the bounding box. Each of the values have been 

normalized by the width and height of the input image. 
y: y-coordinate (in pixels) of the center of the 

bounding box 

w: width (in pixels) of the bounding box <width> and <height> represent the normalized width and 

height of bounding boxes as follows: 

<center-x> = , <center-y> =  ,<width> =  , <height> =  
h: height (in pixels) of the bounding box 

W: width (in pixels) of the whole image 

During training, YOLOv3 is applied with input images to predict 3D tensors that act as the last feature 

map corresponding to three scales that are regions 82, 94 and 106, as shown in Figure 4. Such three 
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scales are constructed to localize target objects with different sizes. For instance, a scale of 25 x 25 

means that an input image will be split into 25 x 25 grid cells. Every single grid cell relates to a 1 x 1 x 

255 voxel inside a 3D tensor. 255 is calculated from formula of 3 x (4+1+80). By referring to Figure 

4(iii), the values in a 3D tensor are shown, which are composed of confidence score, class confidence 

and bounding box coordinates. 

 
(i)                                                          (ii)                                                (iii)  

Figure 4. Process flow of YOLOv3 [12]. 

In phase 1, runner, racing bib and number are detected by using YOLOv3. The overall process of 

fetching the labeled images to YOLOv3 model is associated with using OpenCV library [14]. By 

applying the OpenCV library, all the input images are scaled to the same size. After resizing the input 

images, such images will be fed to YOLOv3. The network architecture of YOLOv3 is separated into 

several modules, as shown in Figure 5.  First layer is the total of 32 convolutional layers, where the 

input images have been supplied. These convolutional layers are implemented to extract features from 

input images. Second layer consists of the residual layers. Such layers are proposed to vary the 

training process of the deep neural network from layer-by-layer training into phase-by-stage training. 

Therefore, the deep neural network is separated into few segments in order to realize the problem of 

gradient explosion or gradient dispersion of the network. Third layer is Darknet-53, which ranges from 

the 0th layer until the 74th layer. There are 53 convolutional layers and the remaining are the residual 

layers. Darknet-53 acts as a key component of the network architecture to extract features and 

implements a series of 3 x 3 and 1 x 1 convolutional layers. Last layer is the feature interaction layer 

of the YOLO network. It is separated into three scales that are regions 82, 94 and 106 in the feature 

pyramid network. Local feature interaction is implemented by convolutional kernel layers known as  

fully-connected layers in each region. It is used to obtain local feature interaction among feature maps 

and hence accomplish regression and classification. 

 
Figure 5. Network structure of YOLO v3 [13]. 

2.2 Phase 2- CRNN 

RBN text is recognized by using CRNN model. CRNN [15] is the combination network of DCNN 

[16] and RNN [18]. For sequence-like objects, CRNN is composed of several unique advantages, such 
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as straight learning from sequence labels, image data for binarization, segmentation or component 

localization without the need of hand-craft features or pre-processing steps. It also possesses the same 

characteristic of RNN that makes it able to generate a sequence of labels. In spite of that, CRNN is 

unlimited to the sizes of sequence-like objects, but is only limited to the demand of height 

normalization in both phases of training and testing. Besides, it obtains excellent results on scene text 

recognition compared to other prior arts [17]. Lastly, it has low memory assumption by consisting of 

lesser parameters compared with a standard DCNN model. 

Second dataset used to train for CRNN is composed of 100,000 images that contain digit numbers 

only in grey scale, as shown in Figure 6. These images are generated by a text generator python script. 

Types of font that are similar to the images of the first dataset are searched and downloaded from an 

online database and the path of font types is specified in the script. Types of font used to generate the 

second dataset include Identikal Sans Bold, Contax Bold, Roadway and Sofia Pro Semibold, and so 

on. Only one type of font is utilized to generate texts at one time while keeping switching to another 

font type to generate the dataset until it accumulates to a total of 100,000 images. In the text generator 

script, only digit numbers are specified and thus images composed of only digit numbers will be 

generated in random arrangement. Gaussian blur and rotate functions are applied in the script and 

hence some of the images are in the condition of blurriness or rotate slightly to assimilate practical 

real-life conditions, such as insufficient light source and indirectly facing  the camera. 

 

Figure 6. Second dataset generated. 

According to Figure 7, the network architecture of CRNN is composed of three components which are 

from bottom to top convolutional layers, recurrent layers and a transcription layer. At the most bottom 

of CRNN, the convolutional layers automatically extract a sequential feature from each input image, 

while on top of the convolutional network, a recurrent network is constructed for making prediction 

for each frame of the feature sequence which is outputted from the convolutional layers. The 

transcription layer at the top of CRNN is utilized to translate the per-frame predictions by the recurrent 

layers into a label sequence.  

 

Figure 7. Network structure of CRNN [14]. 
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Before starting training for the CRNN model, it is essential to convert the second dataset composed of 

100,000 images into Lightning Memory-Mapped Database (LMDB) format. LMDB is a software 

library that supplies an embedded transactional database in key-value store format. Key-value store is 

considered as data storage built for saving, extracting and manipulating associative arrays. LMDB 

employs memory-mapped files and hence enhances the performance of input and output. A memory-

mapped file is a division of virtual memory that has been appointed an undeviating byte-for-byte 

correlation with few sections of file or resource. As a result, LMDB is operating well when dealing 

with very large datasets. After separating the second dataset into training subset and testing subset, 

both subsets are converted into LMDB format. This will generate two files for respective training and 

testing subsets that are data.mdb and lock.mdb with different sizes. 

There are few parameters needed to be adjusted before starting to train. The paths of training and 

testing images in LMDB format are specified and alphabet trained is set to ‘0123456789’ consisting of 

10 classes. CUDA acts as a parallel computing platform and programming model that utilizes GPU for 

general purpose computing is enabled during training of CRNN model. Besides, several parameters 

utilized in the training algorithm are unchanged. These are batch size, number of GPU, learning rate, 

number of data loading workers, width and height of input images. Such parameters are unvaried 

during the training process while the number of epoch is changeable until the recognition output 

achieves correct results. 

2.3 Cascading Both Models  

After finishing collecting, annotating and generating the two datasets, all the images will then be 

synchronized and inserted into the proposed networks separately to be used as training and testing 

subsets. Training subset is utilized for learning so as to satisfy the parameters of the classifier. Input 

images have their respective ground truth files for supervised learning. Testing subset is utilized to 

evaluate the performance of a fully-trained classifier. No same image should be used as part for both 

of training and testing subsets. Both datasets have been split in the ratio of 7:3 as training subset to 

testing subset as shown in Table 2. 

Table 2. Training and testing subsets. 

Dataset Training 

Subset 

Testing 

Subset 

Total 

1 (RBN) 2868 1228 4,096 

2 (Numbers) 700,000 300,000 100,000 

The two pre-trained models trained from the two phases that are YOLOv3 for runners and RBN 

detection and CRNN for RBN recognition are combined together form a cascade network aimed for 

RBN detection and recognition based on deep learning. Model files, such as classes, model 

configuration and weight files for YOLOv3 and weight file of CRNN, are specified in a python script 

and will be parsed by using command line arguments. At the beginning in the script, the demanded 

packages that include OpenCV, NumPy, Pytorch and utils are imported. Parameters of confidence 

threshold, non-maximum suppression threshold, width and height of input image are adjusted. 

Confidence threshold and non-maximum suppression threshold are set to 0.5 and 0.4, respectively. 

Predicted bounding boxes consist of values lower than that will be discarded. When an input image is 

parsed to the cascade network, YOLOv3 model will be loading and obtaining the name of classes 

during training and drawing the predicted bounding box in rectangular form. Hence, confidence scores 

of each of the predicted bounding boxes are obtained and displayed at the tops of the boxes. Moreover, 

the predicted bounding boxes with classes of ‘number’ will be cropped by using OpenCV and parsed 

to the CRNN model. CRNN will be using CUDA to perform the RBN recognition process.  

According to Figure 8, the architecture pipeline or network is consists of two phases: runner, racing 

bib and number detection in phase 1 and number recognition in phase 2. Therefore, two different 

networks are utilized which are YOLOv3 and CRNN to localize and recognize RBN. During phase 1, 

YOLOv3 consists of a single convolutional network used to predict RBN by multiple bounding boxes 

and class probabilities of boxes since there may be more than one RBN in one image. Since the target 
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object detected is only the RBN, runner and racing bib detection is proceeded to avoid that YOLOv3 

detects the regions out of the runner, such as background variation when the runners are running. 

Therefore, the detected RBN can be parsed into CRNN to undergo the process of recognition. For the 

second phase, CRNN is used to output a label sequence for each input image and then select the label 

sequence that has the highest probabilities. As a result, CRNN will output the contents of RBN 

detected. 

 

Figure 8. Method selection. 

2.4 Prediction 

After the pre-trained models for the two phases are combined together. The validation and testing 

subsets will be utilized to predict the RBN localization and recognition. The predicted process is 

evaluated with combined pre-trained models to enhance the performance of the RBN detection and 

recognition system. By applying the testing subset, the cascade system has the capability of comparing 

the predicted bounding box with the actual bounding box for each input image. 

2.5 Post-processing 

Post-processing is essential for YOLOv3 model only in order to localize RBN from testing images. 

The predicted bounding boxes from previous step are post-processed by using the method of non-

maximum suppression which had been built in the deep neural network implementation of OpenCV. 

Non-maximum suppression is an important step of post-processing in many computer vision 

applications, especially for object detection. It is utilized to convert a smooth response map that 

activates many inaccurate object window hypotheses, which means only a single predicted bounding 

box for each target object. 

3. RESULTS AND DISCUSSION 

There are two image datasets and each of them will be employed as inputs to train YOLOv3 and 

CRNN separately. Hence, the actions of localization and recognition of RBN will be acquired from 

images captured from marathon running events. All the precision results obtained from the models are 

enumerated to determine the exact location of RBN. Training loss, accuracy and precision of each 

network will be presented and analyzed in the following sub-sections. 

3.1 Training YOLOv3 and CRNN with Own Datasets 

In this project, there are two different datasets that are used for RBN detection and recognition during 

marathon events. In the training process, the parameters utilized in the training algorithm for both 

neural networks are very important in order to regulate the precision of localization and recognition 

output. Both neural networks are trained separately with their respective datasets. For YOLOv3, there 

are several parameters generated during training, as shown in Figure 9. The training process will keep 

updating the weights of YOLOv3 model from each iteration. Regions 82, 94 and 106 represent distinct 

sizes of parameters predicted at three distinct scales respectively in the feature pyramid network of 

YOLOv3. Convolutional layer of region 82 is the greatest prediction scale that utilizes a huge mask 

that makes it able to detect smaller object. Convolutional layer of region 94 is the medium prediction 

scale that utilizes a medium mask while convolutional layer of region 106 is the smallest prediction 
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scale for localizing larger objects. Since the batch and subdivision are set as 64 and 16 respectively in 

the model configuration file, the training iteration consists of 4 groups of regions 82, 94 and 106, 

where each group consists of 16 images during training output. As a result, the model will simply 

choose 64 batches of images from all training sets to be fed into the model during each iteration. All of 

the image batches chosen will be separated into subdivision of 4 times in order to minimize memory 

consumption. 

 

Figure 9. Output parameters produced during training of YOLOv3. 

Parameter of ‘Avg IOU’ for the respective region represents the average IOU of the image in the 

present subdivision. It indicates the overlap of the predicted bounding box to the ground truth of target 

object and the union. The closer the value to 1, the better the bounding box prediction. For instance, 

‘Avg IOU: 0.838158’ produced during training output has achieved quite high accuracy. ‘Class’ 

indicates the correctness of object classification to respective classes, where the values are expected to 

approach 1. ‘Obj’ is the average of the objectness or confidence score, which also calculates the 

probability of that there is an object in the bounding box, while ‘No Obj’ represents the opposite case. 

To produce a better result of localization, the value of ‘Obj’ shall be closer to 1 and ‘No Obj’ shall be 

approaching but not zero. ‘.5R’ and ‘.75R’ are referred to as the ratio of true positive objects predicted 

by the present model to the ground truth of object in each subdivision of images. If all objects are 

precisely predicted, then ‘.5R’ shall be equal to 1 and ‘.75R’ shall be equal to 0. ‘.5R’ is defined as the 

ratio with IOU greater than 0.5, while ‘.75R’ is the ratio with IOU greater than 0.75. ‘Count’ indicates 

the number of training images composed of true positive objects in all present subdivision images 

which is 4 in our case. By referring to Figure 9, since there are 4 or 6 true positive objects, this means 

that such division is composed of the images that do not belong in the localized object classes. Last 

row indicates the batch output, as shown in Figure 7. During the training process, every 1000 epochs 

will generate one weight file. As the number of epochs is increasing, the frequency of updating the 

values of weights will also increase until a minimum training loss is obtained. 

CRNN model requires Connectionist Temporal Classification (CTC) [19] to do the training. CTC is 

specifically functional for neural networks composed of convolutional layers (CNN) to withdraw a 

chain of features and recurrent layers (RNN) to distribute information from such chains [20]-[21]. It 

generates character-scores for each chain component considered as a matrix in an easier way.  By 

referring to Figure 10, there are two operations that need such matrix to proceed with calculating the 

loss value to train the neural network during training and decode the matrix to obtain the text contents 

from input images during inference. CTC benefits users by applying CTC loss function to learn the 

text contents existing in an input image and discard both location and width of characters in the input 

image. Furthermore, no further post-processing of the recognized text is required.  

 

Figure 10. Process flow of neural network for handwriting recognition [15]. 



190 

"Deep Learning-based Racing Bib Number Detection and Recognition", Y. C. Wong, L. J. Choi, S. S. S. Ranjit, H. Zhang and A. R. 

Syafeeza. 
 

3.2 Result of Cascade Network 

Since the targeted object is only limited to the RBN, the function of image cropping by using OpenCV 

is added in the script. Scripts utilized to run the models of YOLOv3 and CRNN are combined to 

become a cascade network. As a result, YOLOv3 will be used to detect runner, racing bib and number 

first, then the bounding box of the detected number will be cropped by using the crop function in 

OpenCV. The cropped image will be parsed to CRNN to undergo the recognition process as illustrated 

in Figure 11. 

                         
                         (a)                                    (b)                                                   (c) 

Figure 11. Demonstration of RBN detection and recognition cascade network: (a) Objects detected 

using YOLOv3 model, (b) Bounding box of RBN cropped image (c) Recognition process using 

CRNN model. 

3.3 Analyzing Predicted Result from Cascade Network 

In this work, the prediction accuracy scores are acquired and evaluated for each of the classes 

localized by YOLOv3 model in the first phase. The metric utilized to implement the results of the 

temporal localization is named as mean Average Precision (mAP) for object classes, as shown in 

Table 3. Mean Average Precision (mAP) is usually employed to measure the accuracy of object 

detectors in terms of how well the predicted bounding box trained by the object detection model 

overlaps with the ground truth bounding box. The mAP metric is the product of recall and precision of 

the detected bounding boxes and its value ranges from 0 to 1. Precision determines how accurate the 

prediction is, while recall determines how well we find all the positives, as shown in Equations (2) and 

(3). 

                                                             (2) 

                                                               (3) 

where TP is True Positive,  TN is True Negative, FP is False Positive and FN is False Negative. 

Table 3. Mean average precision before and after fine-tuning with extra training images. 

Dataset Training Subset Testing Subset Total Average Precision  

Training from 

scratch 

2868 1228 4096 Runner 0.8958 

Bib 0.7164 

Number 0.6224 

mAP 0.7449 

Fine-tuning 700 300 1000 Runner 0.9786 

Bib 0.8727 

Number 0.7032 

mAP 0.8515 
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The higher the value of mAP, the better the result. The mAP can be evaluated by calculating average 

precision (AP) separately for each class then divided by the average over the classes. Detection is 

reckoned as true positive if the mAP is above 0.5. As a result, the activity localization for each of the 

classes on 400 testing images is calculated by evaluating the overlap between a ground truth segment 

and a predicted temporal segment determined by Intersection over Union (IoU) score as shown in the 

section of training from scratch in Table 2 which summarizes all the prediction results from activity 

localization of RBN on 400 testing images by using YOLOv3 model trained from the collected 

dataset. We observe that the average precision of object classes of the runner is the highest, while that 

of object classes of the number is the lowest. This is due to several reasons, as shown in Figure 12. 

First reason is the light condition, as some of the testing images are captured under insufficient light 

condition, because the particular marathon event is held from afternoon until evening and hence 

results in that the quality of images captured is not so good due to some blurriness. Secondly is that 

there are wrinkles in the racing bib that runners wear from images captured during approaching the 

finish line, since runners already ran for hours, which affects the result of RBN detection. Thirdly is 

that some regions of racing bibs are covered by the hands of the runner during running.  

Other than mAP, there is another metric that is implemented for cascade network of YOLOv3 and 

CRNN models, which is the edit distance. Edit distance is a method of quantifying how dissimilar two 

strings are by calculating the minimum number of processes needed to convert one string into the 

other. There are three processes that can be employed to convert the string, which are: insert a 

character, remove a character and substitute a character. For instance, the edit distance of “2222” and 

“2221” is 1. Edit distance is generally employed in the field of natural language processing. For 

instance, automatic spelling correction can evaluate the candidate corrections for a misspelled word. 

This is done by choosing a word from a dictionary that has a minimum distance to the word by 

inquiry. 

By referring to Figure 12, the graph illustrates the result of RBN detection and recognition of cascaded 

network before and after the improvement by fine-tuning with 1000 images. Edit distance is calculated 

for 400 testing images randomly selected from the testing subset of the first dataset. There are 64.25% 

of correct localization and recognition of RBN which is identical as ground truth numbers; 26.25% 

achieves one-number difference; 6% achieves two number-difference, 0.0075% achieves three 

number-difference and 2.75% achieves four number-difference or is completely different from ground 

truth numbers before improvement by transfer learning. Apart from that, results of edit distance that 

did not achieve zero edit distance or were not exactly the same as ground truth numbers have been 

studied and analyzed. There is a total amount of 143 images that did not attain zero edit distance. By 

referring to Figure 12, the reason of inaccurate text detector has achieved the highest percentage of 

71.33%. In this work, YOLOv3 is utilized to localize the RBN from input images. However, since the 

mean average precision of ‘number’ obtains only 0.6224, it eventually affects the result of RBN 

recognition. Furthermore, there are other reasons that affect the result of RBN recognition as well, 

such as wrinkles of racing bib, mix-up between 1 and 7 and between 3 and 9, blurriness of input 

images captured among others, as illustrated in Figure 9. Although the ground truth number is ‘4203’, 

the result predicted from CRNN is ‘14203’. This is because of that the position of RBN is slightly 

rotated in the input image; hence patterns including logos or sketching will be detected by YOLOv3 

model. Therefore, this results in that cropped image not only consists of RBN and subsequently affects 

the result of recognition of CRNN model.  

There are some of the images which are still inaccurately recognized due to that the average precision 

of class of ‘number’ has achieved the lowest value which is only 0.6224. Therefore, the pre-trained 

model from YOLOv3 is fine-tuned with 1000 images by using transfer learning method, as shown in 

the section of fine-tuning in Table 3. Such 1000 images are collected from the same source with 

images from the first dataset used to train YOLOv3 from scratch. Transfer learning is known as a 

method of machine learning, where a model is implemented for a certain function again as the starting 

point for such model on another function or new problem. The priorities of transfer learning include  

saving time needed to develop and reutilizing an already developed model to do training for 

development on a different task or improvement. By referring to Table 2, it presents the mean average 

precision (mAP) before and after fine-tuning with 1000 training images captured from marathon 

running races. Results of localization of target classes about previous and current mAP values are 

tested on the same 400 training images. It can be observed that the localization accuracy of YOLOv3 
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is improved after transfer learning. Figure 13 illustrates the result of RBN detection and recognition of 

the cascaded network composed of YOLOv3 and CRNN before and after improvement by fine-tuning 

with 1000 images. Although YOLOv3 still achieved the highest result, there is a difference of 26 

testing images that obtained accurate RBN recognition with 0 edit distance after transfer learning. 

Frequencies of other factors for inaccurate RBN recognition still remain unvaried, since the condition 

of wrinkles of racing bib and blurriness of testing images cannot be avoided. 

 

Figure 12. Factors of inaccurate RBN recognition before and after fine-tuning. 

 

Figure 13. Edit distance before and after fine-tuning. 

4. CONCLUSIONS 

In running races, numerous images of runners are captured by running race organizers. This results in 

that the task of differentiating individual marathon images of a certain runner from all images becomes 

very troublesome. As a result, a deep learning-based RBN localization and recognition model for 

marathon running races is proposed. This is the first RBN recognition system implemented by using 

deep learning. Network topology implemented in this application is cascaded network composed of 

YOLOv3 and CRNN. YOLOv3 has been used for detecting the runner and bib number by multiple 

bounding boxes. CRNN is used to recognize the bib number through generating a label sequence for 

each input image and then selecting the label sequence that has the highest probability. Mean Average 

Precision (mAP) achieves 85.15% accuracy and the edit distance with exact output is 283 out of 400 

after fine-tuning. The recognition could not reach 100% of accuracy because of that some RBNs in 

input images are in the condition of wrinkles or patterns such that sketching or logo surroundings 

around RBN are accidentally predicted together with RBN hence affecting the accuracy of cascaded 

network. Accuracy of detection has been further improved through transfer learning by fine-tuning 

with a validation dataset which consists of 1000 images. 9% to 21% of improvement to the accuracy 

has been achieved. With the demonstrated capability of automating the localization and recognition of 

racers, the developed system not only could better control large-scale marathon events, but also tighten 

the security of racing events.  
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 ملخص البحث:

يتزايدددلاهامات دددماه ال دددماهاحيةدددمجهاح دددية هلدددمه  ةدددره ليدددمأهاحددددمحة هن دددلاه ددد  ه   دددةةه  دددلاا ه  ةددد جه ددد ه

سددد م ملهاح دددمااتي هاحتدددمهاسدددتال ثهاات دددماهاح مةددد ي ه ددد هاح دددمكه ددد ه  ت ددد ها   دددماه ددد هاحددد  ياه

 دددلاا هنالإلدددمنه ددد ه  دددلاا ه  ت نددد  هن دددمه ددد هعدددوهلدددمه  هاددد اهاحت دددي هاحياسدددرهي دددد هاسدددتةدم ها 

ي  حددد اقه اتددد  هاددد  ههاحضددد   ه ددد هاح دددياهلدددمهسددد م ملهاح دددمااتي مهل ددد ايه  هاددد  هاحد  ةددد ه دددتةهيدددلانيم

يه لايلاايح  دددد ه ا ددددماهاح ت ددددم اة هلددددمهسدددد م ملهاح ددددمااتي هن  ةةزاددددمه مسددددت لاااهاحددددتد ةه احيا دددد هل جددددم

يدددلانه ددد هاحد ةدددو هنلدددمهاح دددم وقه دددم هخحدددوهيدددتةه مسدددت لاااه ا ةدددمله دمحجددد هاح دددياهلاددد مها  ددد هاحددد  هي

ه ي جها  اأ 

يتدددداح هاح  ددددماهاح اتدددد  ه دددد ه دددد   تة ها ددددموه  دددد ه ا ددددماهاح ت ددددم اة قهن  ةةددددزه  ددددوها ا ددددما هلددددمه

نا دددةهاح ت دددم وه ددد ه(ه نددد  جهحتي ادددرهاح ت دددم وهYOLOv3اح    ددد ها نحدددخقه  دددت لااهعددد   هاحتنملةددد ه 

خدددصنهدددد م يوه يلايدددلاه تددددلا جهاحدددخه ملددد هام ت دددمملهاح تد اددد ه  ددد ي ه  دددوهاح ددد م يو هناحجدددلاي ه

 محددد   ه  ه  دددوهاح ددد   هادددمهعددد   ه  ددد ة ه ندددينهلدددمه  ال دددمه مةص  دددمه ددد هاح ددد  ملهاح  دددت لا   ه  دددمه

 ددد هاحدص دددملهه(هحتيحةدددلاه تدددم رCRNNلدددمهاح    ددد هاحمملةددد قهلةجددد  هاسدددت لاااهعددد   هاحتنملةددد ه خددد  ه 

لاخ دد ه ن دد هتددةهاختةددماه تددم رهاحدص ددملهاحدد  هيي ددخه مم ت ددمنها   ددخ هني  دد ه ددلااي هح ددصهدددياجه ة

ه ن دددة ي  ه   دددوهاح ددد   ه  معددد جه ددد هاحدص دددملهاح تتم دددد ه مدددصهاح   دددملهفةددد هاح يتييددد ه  دددخه ددديا  

م ةدددد ه(ه ت ةةددددزه يتييددددمله ا ددددماهاح ت ددددم اة هاحتددددمه ددددةه  ددددن م ه دددد هلCRNNن دددد حوه اددددياهعدددد   ه 

نا ضدددنه  هاح  دددماهاح لندددياه  مسددد هه خددد  قه ددد  ه ي ةدددصه دددصه ددد ه تيسددد هاحلا ددد هن  دددمل هاحتي يددد  

ه مدددصهسددد م ملهاح  دددململهاحليي ددد هن   دددمهسددد م ملهاح دددمااتي مهل ددديهيد دددصه  دددخه   تددد ه   ةددد ه   دددلاان 

ه يلايددلاه ي دددرهاح ت دددم وهن  ةةدددز قهن ددد هتدددةهل ددديهيزيددلاه ددد هلم  ةددد هاح دددةل جه  دددخهاح ددد م ملهن  ا  ت دددمق

 احخه مل ه ي ة هاح دمحج هاح دَلاي هح  ةململهاح مد ه ت وها  لاان 
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