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ABSTRACT 

Arabic is mostly written now without its diacritics (short vowels). Adding these diacritics decreases reading 

ambiguity among other benefits. This work aims to develop a fast and accurate machine learning solution to 

diacritize Arabic text automatically. This paper uses long short-term memory (LSTM) recurrent neural networks 

to diacritize Arabic text. Intensive experiments are performed to evaluate proposed alternative design and data 

encoding options towards a fast and accurate solution. Our experiments involve investigating and handling 

problems in sequence lengths, proposing and evaluating alternative encodings of the diacritized output sequences 

and tuning and evaluating neural network options including architecture, network size and hyper-parameters. 

This paper recommends a solution that can be fast trained on a large dataset and uses four bidirectional LSTM 

layers to predict the diacritics of the input sequence of Arabic letters. This solution achieves a diacritization error 

rate of 2.46% on the LDC ATB3 dataset benchmark and 1.97% on the larger new Tashkeela dataset. This latter 

rate is 47% improvement over the best-published previous result. 
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1. INTRODUCTION 

Automatic diacritization of Arabic text is one of the challenging and important tasks in Arabic Natural 

Language Processing (NLP). Arabic scripts consist of sequences of words written from right to left using 

two types of symbols: letters and diacritics. Letters should always be written, whereas diacritics can be 

omitted, resulting in partially diacritized or undiacritized texts [1]. Except for educated native speakers, 

lack of diacritization often causes incorrect pronunciation and consequently ambiguity in understanding 

the text. This is especially true for children and non-native speakers who lack sufficient mastery of the 

language grammar and lexicon. 

Arabic text has two categories: Classical Arabic (CA) and Modern Standard Arabic (MSA) [1]. CA is 

the language of the Qur’an and old books and poems. MSA is the primary language used today in the 

media, education, news and formal speeches in Arabic-speaking countries. MSA is the modern form of 

CA and is based on it syntactically, morphologically and phonologically. As opposed to CA, most MSA 

texts are written with partial or no diacritization. In addition to these two categories, there are many 

informal spoken Arabic dialects. These dialects vary significantly geographically and socially and are 

neither standardized nor taught in schools. However, they are becoming more popular in writing Arabic 

texts on smart phones and over the internet [2]-[3].  

The Arabic language has 28 letters and eight basic diacritics. Table 1 shows parts of the Unicode Block 

0600-06FF that includes the Arabic letters and diacritics [2]. There are 36 variants of the 28 Arabic 

letters, which have Unicode hexadecimal codes 0621–063A and 0641–064A. These variants come from 

adding the six Hamza letters (ئ، إ، ؤ، أ، آ، ء), the Teh Marbuta (ة) and the Alef Maksura (ى) to the basic 

28 letters. Arabic diacritics have Unicode codes 064B–0652. There are three types of Arabic diacritics: 

Vowel diacritics, Nunation diacritics and Shadda. Vowel diacritics include short vowels (Fatha   َ , 

Damma   َ , Kasra   َ ) and the absence of vowel (Sukun   َ ). Nunation diacritics look like double versions 

of their corresponding short vowels (Fathatan   َ , Dammatan   َ , Kasratan   َ ). The Shadda diacritic (  َ )  
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implies doubling the letter it appears on [1]. 

Table 1.  Unicode Arabic code block showing 36 letter variants and the basic eight diacritics. 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 

U+062x  د خ ح ج ث ت ة ب ا ئ إ ؤ أ آ ء 

U+063x غ ع ظ ط ض ص ش س ز ر ذ      

U+064x  ي ى و ه ن م ل ك ق ف   َ    َ    َ    َ    َ  

U+065x   َ    َ    َ               

In Arabic, words that have the same letters but different diacritics have different pronunciations and 

meanings. For example, the undiacritized word كتب has several meanings based on the way it is 

diacritized. If it is diacritized as َََكَتب, it is pronounced “kataba” and means “wrote”. However, if it is 

diacritized as كُتُب, then it is pronounced “kutub” and means “books”. It can also be diacritized as ََكُتِب, 
pronounced “kutiba” and means “was written” indicating the past passive voice. A native reader can 

infer which diacritization form to use for a word based on the context. For example, for the statement 

الطالبَرسالةَكتب , the reader can infer that this is a verb-subject-object sentence “The student wrote a 

message” and hence the correct diacritization of the word كتب is ََكَتَب “kataba” [4]. 

The diacritization problem is even more complex when considering the inflectional diacritics. This type 

of diacritics is based on rules that inflect the word according to the context. Arabic words are inflected 

according to the word’s tense, person, voice, gender, number, case and definiteness. The inflectional 

diacritics mostly occur on the last letter. For instance, the past verb َََكَتب “kataba”, which was not 

inflected in the last example, is inflected for first person as َُْكَتبَت “katabtu” and for feminine second 

person as َِْكَتبَت “katabti”. In some cases, the inflectional diacritics do not appear on the last letter. For 

example, the composite word of noun and pronoun كتابه “his book” is diacritized َُُكِتابه “kitabuhu” when 

it is a subject and ََُكِتابه “kitabahu” when it is an object [5]. 

In order to correctly diacritize a sentence, the entire sentence context should be analyzed. Table 2 shows 

an example sentence where the diacritization of the first four words depends on the fifth word. In (a), 

the fifth word “ ةَ ثيََكََ ” “numerous” is adjective and implies that كتب is a noun and should be diacritized 

رْسََ“ kutubu”. In (b), the fifth word“ كُتُبَُ  is a verb and should كتب lesson” is noun and implies that“ ”الدَّ

be diacritized َََكَتب “kataba”. This example also shows how the last letter diacritic of each word in the 

sentence differs based on the last word of the sentence. In fact, obtaining the correct diacritics of words’ 

last letters, also known as end cases, is considered the most challenging part of automatic text 

diacritization. Therefore, automatic text diacritization requires an approach that takes into account both 

past and future contexts. Moreover, long-term context should be checked, since diacritics may depend 

on three or more distant words [4]. 

Table 2.  Example of two different diacritizations of four words based on the fifth word. 

Sentence Possible Diacritizations Meaning in English 

 كتبَأ حمدَوعليَوعمرَ___
رََكَثيَة َ َوَعُمَ  Books of Ahmed, Ali and (a) كُتُبَُأَحْمَدََوَعلَِيٍ

Omar are numerous. 

رْسََ رَُالدَّ َوَعُمَ  Ahmed, Ali and Omar (b) كَتبَََأَحْمَدَُوَعلَِي 

wrote the lesson. 

The objective of this work is to develop a fast and accurate model that uses recurrent neural networks 

(RNNs) to transcribe raw undiacritized sequences into fully diacritized sequences. We concentrate on 

networks that exploit long-term past and future contexts to make diacritics predictions and that can be 
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trained using datasets in reasonable times. We train and test RNN models using two datasets: Linguistic 

Data Consortium’s Arabic Treebank part 3 (LDC-ATB3) [6], which serves as an example of MSA and 

the cleaned subset of Tashkeela [7], which serves as an example of CA. As mentioned earlier, automatic 

diacritization of Arabic text provides help to children and non-native speakers in learning the language. 

In addition, it is an important step in text-to-speech (TTS) software and automatic speech recognition 

(ASR) engines. 

Throughout our experiments, we explore and analyze the effect of tuning several network parameters, 

such as the number of network layers and using dropout, on the accuracy and execution time of the 

tested models. We experiment alternative approaches to handle problems in sequence lengths and 

propose wrapping of sequences to solve the problem. We also use multiple encoding methods for the 

diacritized output sequences and propose two new encoding methods. In addition, we experiment with 

three network architectures: unidirectional long short-term memory (LSTM), bidirectional LSTM and 

encoder/decoder LSTM networks. 

The rest of this paper is organized as follows. In the next section, we provide a review of automatic 

Arabic diacritization systems proposed in the literature. Section 3 provides background information of 

the RNN models we use in this work. Section 4 describes our experimental setup. Section 5 presents 

and discusses the results of our experiments. Section 6 compares our best results with the results of 

previous best-performing models and analyzes the errors. Finally, Section 7 gives the conclusions. 

2. LITERATURE REVIEW 

Systems developed for automatic diacritization of Arabic text can be classified into three categories: 

rule-based systems, statistical systems and hybrid systems.  

2.1 Rule-based Systems 

Rule-based approaches require defining a set of well-formed rules that exploit human knowledge in the 

form of morphological analyzers, dictionaries and grammar modules. Although rule-based approaches 
solve the problem with acceptable results, they rely on linguistic knowledge or parsing tools and require 

rules to be continuously maintained and updated [8]-[9].  

2.2 Statistical Systems 

Statistical approaches, on the other hand, predict the probable diacritics for a sequence of characters 

without the need for language-specific knowledge or parsing tools. Instead, they require a large corpus 

of diacritized text. Machine learning statistical methods that have been applied to Arabic text 

diacritization include hidden Markov models (HMMs), n-grams, finite state transducers (FSTs) and 

more recently RNNs [8]. 

Gal [10] used an HMM to restore Arabic diacritics with the Holy Quran as a corpus. His system restores 

only short vowels and correctly diacritizes 89% of the words in the test set. Elshafei et al. [11] proposed 

a similar approach that uses an HMM for modeling and Viterbi search algorithm to find the most optimal 

diacritics of a sentence. Their training data was taken from multiple knowledge domains and the tests 

used randomly picked verses from the Quran. They achieved a 4.1% diacritization error rate. Refer to 

Subsection 4.5 for the definition of diacritization error rates. 

Hifny [12] proposed an automatic diacritization system that combines dynamic programming (DP) with 

n-gram language model and smoothing. He used n-gram language modelling to assign scores to possible 

diacritized word sequences. Dynamic programming is then used to search for the most likely sequence. 

Different smoothing algorithms are tested to solve the problem of unseen n-grams. The author used the 

Tashkeela dataset [13] for training and testing his model with a corpus of 5.25 million words for training 

and a testing set of 1.9 million words. His approach achieved a word error rate of 3.4% when end cases’ 

are excluded and 8.9% when these cases are included. This is due to the difficulty of retrieving end cases 

diacritics as outlined in the previous section. Definition of word error rate is also provided in subsection 

4.5. 

Azim et al. [14] proposed a statistical approach that uses weighted combination of two diacritizers: one 

is text-based and the other is speech-based. The system uses a correctly vocalized speech of the text to 
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complement and correct errors generated by the text-based model. The text-based diacritizer is modelled 

by conditional random fields (CRFs) and the speech-based diacritizer is modelled by HMM. Using LDC 

ATB3, their approach achieves very accurate diacritization and word error rates of 1.5% and 4.9%, 

respectively. However, their system requires the availability of an acoustic signal that corresponds to 

the raw text data. 

2.3 Hybrid Systems 

Most current systems use hybrid approaches that make use of language-specific rules to guide statistical 

techniques. Vergyri and Kirchhof [15] explored multiple combinations of acoustic information with 

morphological and contextual sources. In their experiments, they used two corpora: the Foreign 

Broadcast Information Service (FBIS) corpus of MSA speech and the LDC Call Home Egyptian 

Colloquial Arabic (ECA) corpus. Without modelling the Shadda diacritic, they achieved diacritization 

and word error rates of 11.5% and 27.3%, respectively. Nelken et al. [16] proposed a hybrid model that 

uses a cascade of finite state transducers with integrated word-based model, letter-based model and 

morphological model. The diacritization and word error rates of their model using LDC Arabic Treebank 

of diacritized news stories (Part 2) are 12.8% and 23.6%, respectively. 

Zitouni et al. [17] proposed an approach based on maximum entropy framework that learns the 

correlation between several input features and the output diacritics. These features include lexical 

features, segment-based features and part-of-speech (POS) features. They trained and tested their model 

using LDC ATB3. They provided an in-detail description of their usage of the LDC ATB3 and produced 

a clearly defined split of the dataset into training and testing subsets. This split established LDC ATB3 

as a benchmark in this area and allowed for reproduction of results and accurate comparison with 

subsequent techniques. Their approach achieves diacritization and word error rates of 5.5% and 18.0%, 

respectively. 

In [5], Habash and Rambow extended their morphological analysis and disambiguation of Arabic system 

(MADA) such that it consults the Buckwalter Arabic Morphological Analyzer (BAMA) to get a list of 

all potential analysis of a word. Fourteen Support Vector Machine (SVM) predictors are then used to 

narrow this list to a smaller one. Finally, n-gram language models are used to select one solution from 

the narrowed list. They trained and tested their approach using LDC ATB3 as proposed by Zitouni et al. 

[17]. Their approach achieves diacritization and word error rates of 4.8% and 14.9%, respectively. 

Rashwan et al. [18] introduced a system that uses two stochastic layers in order to perform automatic 

diacritization. The first layer is an un-factorized layer that diacritizes letters by searching a dictionary 

that was built offline. It retrieves all diacritized forms of the word if it is found. The most likely sequence 

is then selected using the n-gram probability estimation and A* lattice search. The second layer 

factorizes words that were not diacritized in the first layer into their morphological components (prefix, 

root, pattern and suffix). N-gram probability estimation and A* lattice search are also used in this layer 

to select the most likely diacritization from the generated factorizations. The reported diacritization and 

word error rates of their approach using LDC ATB3 are 3.8% and 12.5%, respectively. 

The hybrid system developed by Said et al. [19] includes an automatic corrector, rule-based and 

statistical morphological analyzers, a POS tagger and an out-of-vocabulary diacritizer. Their rule-based 

analyzer was formed based on comprehensive lexicon and handcrafted rules. The statistical analyzer 

was trained using LDC ATB3. Given an input word, these analyzers produce a lattice of diacritized 

forms. The POS tagger disambiguates this lattice and selects the most likely diacritized form for the 

word using HMM and Viterbi algorithm. Their approach achieved diacritization and word error rates of 

3.6% and 11.4%, respectively. 

Our previous work in [4] was the first to use RNN to solve the diacritization problem as a sequence 

transcription problem. More specifically, we proposed, trained and tested a bidirectional LSTM network 

that takes as an input raw undiacritized sequences and transcribes them into diacritized sequences. Our 

approach did not apply lexical, morphological or syntactical analysis prior to or in line with the data 

training. We used error-correction techniques to post-process the output of the network. We used LDC 

ATB3, the simple version of the holy Quran and ten books drawn from the Tashkeela dataset [13]. We 

achieved state-of-the-art performance with diacritization and word error rates of 2.09% and 5.82%, 

respectively, for Tashkeela and 2.72% and 9.07%, respectively, for ATB3. A follow up work shows that 
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the RNN accuracy can even be slightly improved when a morphological and syntactical analyzer 

preprocesses the RNN input [20]. 

Rashwan et al. [21] proposed a system that consists of two frameworks: a deep learning framework that 

uses the confused sub-set resolution (CSR) method to improve the classification accuracy and an Arabic 

part-of-speech (PoS) tagging using deep neural networks. Their system achieves an accuracy of 97% 

using LDC ATB3. In [7], Fadel et al. compared the performance of some publicly available rule-based 

systems with the neural-based approach Shakkala [22] using their cleaned subset of Tashkeela. Shakkala 

outperformed the best performing rule-based approaches, mainly Mishkal [23] and Harakat, with 

diacritization and word error rates of 3.73% and 11.19%, respectively. 

More recently, Mubarak et al. [24] implemented a sequence-to-sequence model using an encoder-

decoder LSTM RNN with attention mechanism. They used sliding window to divide sequences into 

fixed lengths. The most likely diacritic form of a word is selected using n-gram probability estimation. 

They trained their model using 4.5 million tokens and tested it using the freely available WikiNews 

corpus of 18,300 words [25]. They do not identify their training data or refer to its source. Their best 

reported results are 1.21% and 4.49% diacritization and word error rates, respectively. Although these 

are the best results reported so far, we do not include them in our comparison, because they are not 

generated using the same datasets commonly used in this domain. 

In this paper, we build on our previous work in [4] by implementing our model using state-of-the-art 

tools. Moreover, we perform intensive experiments that explore alternative implementation options 

(e.g., network architecture, optimization techniques and number of layers) and data preparation options 

(e.g., encoding methods and handling sequence lengths) towards a faster and more accurate model. 

3. SEQUENCE TRANSCRIPTION 

Sequence Transcription is the process of translating an input sequence into the corresponding output 

sequence of a different type. This includes language translation, voice recognition and diacritizing 

Arabic texts. Recurrent neural networks have proved to perform best on sequence transcription [26]. 

This is due to their ability to preserve correlations between data points in the sequence, as their hidden 

states are functions of all previous states with respect to time [27]. 

3.1 Recurrent Neural Networks 

Given a sequence of inputs (𝑥1, 𝑥2, … , 𝑥𝑇), a standard RNN computes a sequence of outputs 

(𝑦1, 𝑦2, … , 𝑦𝑇) based on the computation of a sequence of hidden vectors by iterating the following 

equations from 𝑡 = 1 to 𝑇: 

ℎ𝑡 = 𝜎(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ)    (1) 

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦      (2) 

where 𝑊 terms denote weight matrices and 𝑏 terms denote bias matrices. For computing each hidden 

state, there are two sets of weights: one for the inputs 𝑥𝑡 and one for the previous hidden state ℎ𝑡−1 [28]. 

A sigmoid function 𝜎 is normally used as the activation function for basic RNNs [26]. RNNs can be 

used to solve four types of sequence transcription problems according to the lengths of the input and the 

output [28]. These types are shown in Figure 1. 

The first RNN type, shown in Figure 2a, takes an input sequence and produces an output sequence of 

the same length. These networks are referred to as one-to-one networks. The second type is the 

sequence-to-vector network, where input sequences are transcribed into one final output by ignoring all 

previous outputs. The third type is the vector-to-sequence network, where one input vector is used to 

produce an output sequence. The fourth type is the general sequence-to-sequence network, where the 

output sequence is generally not of the same length as the input sequence. This type is often implemented 

using the encoder-decoder architecture. 

Given that automatic diacritization of Arabic text is a sequence-to-sequence problem, both the one-to-

one and the encoder-decoder networks can be used to solve the problem. In this work, we implement 

both types using multiple encoding methods for the output sequences. In this problem, the encoder-

decoder approach is implemented with output sequences (that include letters and diacritics) that are 
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longer than the input undiacritized sequences and hence is considered a one-to-many sequence-to-

sequence transcription. 

 
Figure 1.  RNN types based on lengths of the input and the output: (a) one-to-one sequence-to-

sequence, (b) sequence-to-vector, (c) vector-to-sequence and (d) general sequence-to-sequence. 

3.2 Long Short-Term Memory Cells 

The basic recurrent networks described above consist of memory cells that can store representation of 

recent inputs only. Hence, they have a short-term memory that results in slowly changing weights [29]. 

LSTM networks, on the other hand, which use purpose-built memory cells, are capable of learning from 

long-term contexts [27]. Each memory cell has an input gate, a forget gate, an output gate and a cell 

activation unit. These units are represented by the vectors 𝑖, 𝑓, 𝑜 𝑎𝑛𝑑 𝑐, respectively, which are of the 

same size as the hidden vector ℎ𝑡. The following equations show how the hidden vector’s activation 

function for LSTM is a composite function that results from computing the aforementioned vectors. 

𝑖𝑡 =  𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖)   (3) 

𝑓𝑡 =  𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓)   (4) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡  tanh(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)   (5) 

𝑜𝑡 =  𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜)   (6) 

ℎ𝑡 = 𝑜𝑡tanh(𝑐𝑡)      (7) 

Notice that these vectors depend on the layer input 𝑥𝑡 and the previous states: short-term state ℎ𝑡−1 and 

long-term state 𝑐𝑡−1. 

3.3 Encoder/Decoder Networks 

Encoder-decoder RNNs are designed such that the network consists of two RNNs. The first RNN 

represents the encoder which maps an input sequence into a fixed-length vector acting as a sequence-

to-vector network. More specifically, this vector is a summary of the input sequence. The second RNN 

is the decoder which maps the encoder vector into an output sequence forming a vector-to-sequence 

network. The two networks are jointly trained to maximize the probability of an output sequence given 

an input sequence. As introduced above, this architecture allows mapping input sequences to output 

sequences of different lengths [30]. 

3.4 Bidirectional RNNs 

Conventional unidirectional RNNs can make use only of previous context. However, many sequence 

transcription problems, including diacritization, require exploiting future context as well. Bidirectional 

RNN layers achieve this by comprising two adjacent unidirectional networks in each layer. One network 

is trained by presenting the sequence in the forward direction and the other is trained by presenting it in 
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the backward direction. The output is a function of both networks and, consequently, exploits past and 

future contexts. Specifically, the forward hidden vector is computed by iterating in the positive time 

direction (i.e., from 𝑡 = 1 to 𝑇), while the backward hidden vector is computed by iterating in the 

negative time direction (i.e., from 𝑡 = 𝑇 to 1) [31]. Both vectors are used to update the output vector 𝑦𝑡 , 
as specified in the following equations: 

ℎ⃗ 𝑡 = 𝜎(𝑊𝑥ℎ⃗⃗ 𝑥𝑡 + 𝑊ℎ⃗⃗ ℎ⃗⃗ ℎ⃗
 
𝑡−1 + 𝑏ℎ⃗⃗ )    (8) 

ℎ⃗⃖𝑡 = 𝜎(𝑊𝑥ℎ⃗⃗⃖𝑥𝑡 + 𝑊ℎ⃗⃗⃖ℎ⃗⃗⃖ ℎ⃗⃖𝑡−1 + 𝑏ℎ⃗⃗⃖)    (9) 

𝑦𝑡 = 𝑊ℎ⃗⃗ 𝑦ℎ⃗
 
𝑡 + 𝑊ℎ⃗⃗⃖𝑦 ℎ⃗⃖𝑡 + 𝑏𝑜     (10) 

3.5 Deep RNNs 

RNNs are made even more powerful by stacking multiple layers on top of each other, forming a deep 

RNN. Deep networks are necessary to solve complex transcription functions. In such architectures, the 

output sequence of one layer acts as the input sequence for the next layer. Assuming that the same hidden 

function 𝜎 is used for all 𝑁 layers in the stack, the hidden vectors ℎ𝑛 are computed by iterating from 

𝑛 = 1 to 𝑁 and from 𝑡 = 1 to 𝑇, as shown in Equation 11, where ℎ0 = 𝑥. The network final output 𝑦𝑡 

is computed according to Equation 12. 

ℎ𝑡
𝑛 = 𝜎(𝑊ℎ𝑛−1ℎ𝑛ℎ𝑡

𝑛−1 + 𝑊ℎ𝑛ℎ𝑛ℎ𝑡−1
𝑛 + 𝑏ℎ

𝑛)   (11) 

𝑦𝑡 = 𝑊ℎ𝑁𝑦ℎ𝑡
𝑁 + 𝑏𝑦      (12) 

4. EXPERIMENTAL SETUP 

We use an experimental setup similar to that used in our previous work in [4]. During the training 

process, both input undiacritized sequences and target diacritized sequences are presented to the model 

after encoding. The model is tested by applying undiacritized sequences to its input and comparing the 

transcribed output sequences with the correctly diacritized sequences. Our final reported results are 

obtained after post-processing is performed on the predicted output sequences to correct some 

transcription errors. Post-processing techniques include Sukun correction, Fatha correction and 

dictionary correction, which were proposed and discussed in our previous work in [4]. The processing 

and memory specifications of the platform on which our experiments were performed are shown in 

Table 3. The following subsections describe other aspects of our experimental setup. 

Table 3.  Processing and memory specifications of the experimental platform. 

CPU Intel Core i7-6700 @ 3.4 GHz, 4 cores (8 threads), 8 MB cache 

GPU Nvidia GeForce RTX 2080 @ 2.1 GHz, 2944  CUDA cores, 8 GB memory 

Memory 32 GB DDR4-SDRAM @ 1066MHz 

4.1 Data  

Our experimental data consists mainly of text from the Linguistic Data Consortium’s (LDC) Arabic 

Treebank (LDC2010T08) [6] and the cleaned subset of Tashkeela corpus extracted in [7]. More 

specifically, we use the LDC’s Arabic Treebank Part 3 (ATB3) v3.2, which consists of 599 distinct 

newswire stories from the Lebanese publication An Nahar. Text in this dataset is an example of the 

modern standard Arabic (MSA). We split this dataset, as proposed by Zitouni et al. [17], such that the 

first 509 newswire stories, in chronological order, are used for training the model and the last 90 stories 

are used for validation and testing. This accounts for 22,170 sequences for training and 3,857 sequences 

for validation. 

The used Tashkeela dataset includes 55K lines randomly chosen by Fadel et al. [7] from the classical 

Arabic (CA) and Holy Quran datasets. The provided dataset is a processed subset of the original datasets 

with some file formatting errors removed and many diacritization issues fixed. The dataset is split into 

50K lines for training, 2,500 lines for validation and 2,500 lines for testing. Table 4 shows size statistics 

of these two datasets: word count, sequence count, average letters per word and average words per 

sequence. 
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Table 4.  Datasets’ size statistics. 

Dataset Word Count Sequence Count Letters per Word Words per Sequence 

LDC ATB3 305 K 26,027 4.6 11.3 

Tashkeela 2,312 K 55 K 4.0 42.1 

Table 5 provides statistics of diacritics usage in these datasets in terms of the percentage of letters 

without diacritics, with one diacritic and with two diacritics. 

Table 5.  Datasets’ diacritics usage statistics. 

Dataset No Diacritics One Diacritic Two Diacritics 

LDC ATB3 39.8% 54.8% 5.4% 

Tashkeela 17.8% 77.2% 5.0% 

Tashkeela is larger than ATB3 in number of sequences and sequence lengths. However, both datasets 

have close average number of letters per word, which is a property of the Arabic language [4]. Tashkeela 

has smaller percentage of characters with no diacritics compared to ATB3. This is due to the extraction 

process conducted in [7] of the used Tashkeela subset which ensured diacritics to characters rate greater 

than 80%. 

One of the aspects that we address in this study is the effect of variation in sequence lengths and having 

very long sequences on both the execution time and the accuracy. The maximum sequence length for 

ATB3 is 695 letters, whereas Tashkeela has a maximum sequence length of 7,542 letters. Nevertheless, 

both datasets have small percentages of very long sequences. Figure 2 shows the cumulative distribution 

function (CDF) of the sequence length for ATB3 and Tashkeela datasets. Only 1% of ATB3’s sequences 

are longer than 233 characters, whereas only 1% of Tashkeela’s sequences are longer than 1,194 

characters. 

 

Figure 2.  Cumulative distribution function (CDF) of sequence length of ATB3 and Tashkeela 

datasets. 

4.2 Data Preparation 

The Tashkeela dataset was cleaned by Fadel et al. [7]. Their cleaning process included solving some 

diacritization issues, such as fixing misplaced diacritics and removing the first diacritic in cases of letters 

with multiple diacritics. They also prepared the dataset by removing English letters, separating numbers 

from words by adding whitespaces and removing multiple whitespaces. In addition, they performed 

some file formatting, such as removing tags from HTML files and removing URLs. 

In order to perform machine learning using datasets larger than the computer memory, we converted 

both datasets into TensorFlow records (TFRecords) [32]. The TFRecord format is a format for storing 

data on the disk and allows reading huge data efficiently during training and testing. Our TFRecords 

consist of sequences, each sequence consists of tokens and each token is one-hot encoded in a vector. 

Storing these datasets, in their original dense format, results in consuming very large disc spaces. For 
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ATB3, the training TFRecord file is 3.5 GB and is 102 GB for Tashkeela. To reduce this space, we 

considered skipping sequences longer than 300 characters. This reduces ATB3 training TFrecord file to 

1.5 GB and to 4 GB for Tashkeela. However, skipping long sequences reduces the number of sequences 

used in training. 

Therefore, we experimented with using a sparse format that exploits the fact that the one-hot encoding 

gives vectors that mostly consist of 0’s. The size when using the sparse format depends on the number 

of tokens, but unlike the dense format, does not depend on the maximum sequence length. Moreover, 

for the dense case when sequences longer than 300 characters are not skipped, we wrap long sequences 

to a maximum of 400 characters (see Section 5.1 for more detail). 

Figure 3 shows ATB3 and Tashkeela TFrecord training file sizes, in logarithmic scale, for the dense and 

sparse formats both with and without skipping of sequences longer than 300 characters. Sparse format 

is much smaller than the dense format for both datasets even when sequences longer than 300 characters 

are not skipped. Hence, we use sparse files to store the entire datasets while maintaining reasonable 

usage of the disc space. Moreover, the execution time when using the sparse format is comparable to 

that of the dense format. The overhead of converting sparse format back into dense matrices is hidden 

by the time saved when avoiding the long disc access time of the large dense files. 

 

Figure 3.  Training dataset sizes when using dense and sparse TFRecords with and without skipping of 

sequences longer than 300 characters. 

4.3 Data Encoding 

This subsection describes how input and output sequences are encoded. Input undiacritized sequences 

are obtained by removing diacritics from target diacritized sequences. Since they consist of letters only, 

input sequences are encoded using the Unicode representations of their letters. For example, the 

undiacritized word “ثم” is encoded as “062B 0645”: the Unicodes of the letters ث and م, respectively. 

For diacritized target sequences, we experiment with four encoding methods as described below. Table 

6 shows the eight main Arabic diacritics and their shapes, sounds, hexadecimal Unicode numbers and 

the binary bit codes used to encode them in this work. Each letter in Arabic may have no diacritics, one 

diacritic or two diacritics. When a letter has two diacritics, one of these letters must be Shadda. The 

diacritized sequence encoding methods used in this work are a one-to-many encoding method and three 

one-to-one encoding methods. 

1) One-to-many encoding 

In one-to-many encoding, we use separate symbols for the letter and its diacritics as in Unicode. The 

Unicode representations of the letter’s diacritic(s) follow the letter Unicode representation. For example, 

the diacritized word “  is encoded as “062B 064F 0645 0651 064E”. Therefore, diacritized target ”ثُمََّ

sequences are usually longer than undiacritized input sequences. In this work, we use one-to-many 

encoding with the encoder-decoder network. 
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Table 6.  The main eight Arabic diacritics with their shapes, sounds, hexadecimal Unicode numbers 

and used binary bit codes. 

Name Shape Sound Unicode Bit code 

Fathatan   َ  /an/ 064B 0001 

Dammatan   َ  /un/ 064C 0010 

Kasratan   َ  /in/ 064D 0011 

Fatha   َ  /a/ 064E 0100 

Damma   َ  /u/ 064F 0101 

Kasra   َ  /i/ 0650 0110 

Sukun   َ  None 0652 0111 

Shadda   َ  Doubling  0651 1000 

2) Many classes, one-to-one encoding 

In one-to-one encoding, one symbol is used to encode each letter with its diacritic and hence input and 

target sequences have the same length. The first method is the encoding method used in our previous 

work [4]. Using this method, each diacritized letter is encoded in a symbol that results from combining 

the letter code with its diacritic(s) bit code(s), as shown in Equation 13. Each letter is encoded into a 

unique code 𝐿 that is formed by clearing the most significant byte of the letter’s Unicode number 𝑙, 
which is 0x06 for all Arabic letters. Then, the masked code is shifted four-bit positions to the left and 

ORed with the bit code of the letter diacritic 𝑑1 if it has one diacritic or the bit codes of its two diacritics 

𝑑1 and 𝑑2 if it has two diacritics. Notice that this encoding method gives many output classes in the 

order of the number of letters times the number of diacritics. 

𝐿 = {

(𝑙 ∧ 0x00ff ≪ 4), no diacritic
(𝑙 ∧ 0x00ff ≪ 4) ∨ 𝑑1, one diacritic

(𝑙 ∧ 0x00ff ≪ 4) ∨ 𝑑1 ∨ 𝑑2, two diacritics
  (13) 

For example, in order to encode the letter َّم َّ  of the word َّ ُث, the Unicode of the letter م which is 0645 is 

masked into 0045. Then, the code is shifted 4 bits into 0450 and the combined bit code of Fatha and 

Shadda )0100 ∨ 1000 = 1100 = C) is inserted in the least significant four bits of the letter code (0450) 

to form the code 045C. 

3) Diacritics only, one-to-one encoding 

In this work, we propose and test two other one-to-one encoding methods. In the first method, each 

diacritized letter is encoded using its diacritics only. This encoding scheme relies on the fact that letters 

in the undiacritized input sequence do not change in the target diacritized sequence except for adding 

diacritics to them. This has the advantage of limiting the number of possible output classes to the number 

of possible diacritics and hence simplifies the output layer. Equation 14 shows the way in which a unique 

code L is formed using this encoding scheme using the diacritics bit code(s) without involving the letter 

unicode representation. For example, the letter َّم َّ  of the word َّ ُث is encoded using its diacritics bit codes 

only which is C )0100 ∨ 1000 = 1100 = C). 

𝐿 = {
0, no diacritic

𝑑1, one diacritic
𝑑1 ∨ 𝑑2, two diacritics

     (14) 

4) Multiple label, one-to-one encoding 

The second one-to-one encoding method that we propose in this work assumes that each bit in the code 

represents a label that contributes to the diacritization of the letter. Table 7 illustrates the labels assigned 

to each bit position in this encoding method. A value of 1 in a bit position indicates that the 



113 

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 06, No. 02, June 2020. 

 

corresponding diacritic is present. For example, the letter َّم َّ  of the word َّ ُث is encoded using this method 

by placing 1s in the Shadda label (bit position 5) and the Fatha label (bit position 1) to form the binary 

code 100010 (hexadecimal 22). 

Table 7.  Labels assigned to bits in multiple label encoding. 

Bit Position 5 4 3 2 1 0 

Label Shadda Nunation Kasra Damma Fatha Sukun 

To summarize, Table 8 shows the example word ََّثُم encoded using these four encoding methods. 

Table 8.  Encoding the diacritized word ََّثُم using one-to-many, many classes, diacritics only and 

multiple label encoding. 

Encoding Method 
Encoding of letters  

Word Encoding 

 ـمُ  ثـ ـُ
One-to-many 062B 064F 0645 0651 064E 062B 064F 0645 0651 064E 

Many Classes 02B5 045C 02B5 045C 

Diacritics Only 5 C 5 C 

Multiple Labels 04 22 04 22 

4.4 Base Model 

We use Keras (Python deep learning library) with TensorFlow at the backend to develop our machine 

learning models [32]. This combination implements the state-of-the-art algorithms in deep machine 

learning. Our baseline model is an LSTM RNN with two bidirectional layers and 256 cells per layer 

preceded by a masking layer and followed by a fully-connected output layer. This model uses softmax 

as the activation of the output layer, the RMSprop optimizer in training, categorical cross entropy as the 

loss function and a batch size of 64 sequences [28]. Figure 4 shows the core code of this model. 

Figure 4.  Python Keras core code of the base model. 

4.5 Evaluation Metrics 

We evaluate models in terms of execution time required to train the model and the accuracy of the model 

in diacritizing the input sequences. Throughout our experiments, we evaluate the accuracy of multiple 

designs and data handling/encoding options using the diacritization error rate. DER is the percentage 

of characters with incorrectly predicted diacritics. For all experiments, we use the original DER 

definition where punctuation marks and numbers are counted [17]. We also report the word error rate 

of our best performing model. WER is the percentage of incorrectly diacritized words. A word is 

considered incorrectly diacritized if it has at least one incorrectly diacritized letter. 

For the experiment that evaluates alternative network architectures, we use the accuracy as the 

evaluation metric, because DER and WER cannot be obtained for the encoder/decoder network, as 

explained in Section 5.3. 

model = Sequential() 

model.add(Masking(mask_value= 0, input_shape=(seq_len, num_inp_tokens))) 

model.add(Bidirectional(LSTM(256, return_sequences=True), merge_mode='concat')) 

model.add(Bidirectional(LSTM(256, return_sequences=True), merge_mode='concat')) 

model.add(TimeDistributed(Dense(num_tar_tokens, activation='softmax'))) 

model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) 
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5. EXPERIMENTS AND RESULTS 

The following subsections present the experiments and their results. 

5.1 Handling Sequence Lengths 

As discussed earlier, both datasets have high variation in their sequence lengths. We conducted three 

experiments to find the best approach to handle this variation. Figure 5 shows the training time required 

and the diacritization error rate obtained for the three experiments for both datasets. We first included 

all sequences for the ATB3 dataset (i.e., maximum sequence length is 695) and sequences not exceeding 

1,260 characters for Tashkeela (i.e., this accounts for 99.94% of Tashkeela sequences). Then, we 

included only sequences with a maximum of 300 characters for both datasets. Finally, we experimented 

including all sequences, but wrapping long sequences to have a maximum of 400 characters per input. 

The network input is arranged in tensors (dense matrices) with a width that equals the longest sequence, 

e.g., 695, 300 and 400, respectively for the three ATB3 experiments. 

 

Figure 5.  Training time and DER for ATB3 and Tashkeela datasets when including: (a) Maximum 

sequence length (695 for ATB3 and 1260 for Tashkeela), (b) Sequences not longer than 300 and (c) 

All sequences and wrapping long sequences to a maximum of 400 characters. 

As expected, the execution time of the long sequences experiment is the highest: 26.2 hours for ATB3 

and 24.8 hours for Tashkeela. However, including only sequences shorter that 300 adversely affects 

Tashkeela accuracy (a DER of 3.99%). In fact, the best DER for Tashkeela is obtained when all 

sequences are included (3.03% DER). Wrapping sequences to 400 characters is a good compromise; it 

gives reasonable training times of 12.7 hours for ATB3 and 7.1 hours for Tashkeela. At the same time, 

obtained DER values using wrapping is very close to the best DER. These are 4.56% for ATB3 and 

3.10% for Tashkeela. We use this third method in the following experiments. Notice that Tashkeela 

achieves lower DER than ATB3. Tashkeela always achieves better accuracy than ATB3, because its 

training set is larger and its diacritized letters ratio is higher. 

5.2 Data Encoding Methods 

Figure 6 shows the results of experiments using the three one-to-one target sequences encoding methods: 

many classes encoding, diacritics only encoding and multiple label encoding. For both datasets, 

encoding using diacritics only achieves the best results with DER of 4.83% for ATB3 and 3.10% for 

Tashkeela. The new diacritics only encoding is consistently better than the many classes encoding. It 

simplifies the network function from predicting letters and diacritics to predicting the diacritics only. 

We first had high expectations for multiple label encoding, because it exposes the contextual 

significance of the diacritics. However, this manual split of diacritics to multiple labels turned out to be 

less efficient than machine learning with one-hot encoding. 
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Figure 6.  DER for ATB3 and Tashkeela using one-to-one encoding methods: many classes, multiple 

labels and diacritics only. 

5.3 Network Architecture 

This subsection presents the results of experimenting with three network architectures. The tested 

architectures are the encoder/decoder model, unidirectional LSTM and bidirectional LSTM. The tested 

encoder/decoder network consists of two encoder layers and two decoder layers. We limit the sequences 

lengths to 100 characters for this model, because longer sequences do not converge to useful output. 

Notice that for this set of experiments, we use the validation accuracy to evaluate the three network 

architectures, because the DER cannot be calculated for the encoder/decoder network. This network 

often outputs sequences that are not only wrong in diacritics, but also are wrong in the letter sequence 

output, making the DER calculation impossible. Figure 7 shows the validation accuracy of the three 

tested architectures. The encoder/decoder architecture has the worst validation accuracy among the three 

architectures. Moreover, as expected, unidirectional LSTM has inferior performance compared to 

bidirectional LSTM, since diacritization of a word depends on future context as well as on past context. 

Bidirectional LSTM is better than unidirectional LSTM by at least 11%. 

 

Figure 7.  Accuracy of the validation set for ATB3 and Tashkeela using three network architectures. 

Although there is a recent work that used encoder/decoder architecture to add the diacritics [24], we do 

not recommend it. Bidirectional LSTM gives better results without the trouble of employing 

sophisticated techniques, such as sliding windows, voting and attention. 

5.4 Network Size 

Figure 8 shows the results of changing the network size by varying the number of bidirectional LSTM 

layers. As expected, increasing the number of layers increases the time required to train the network. 

However, a deeper network with four layers achieves better accuracy than fewer layers; a DER of 4.19% 

for ATB3 and 2.83% for Tashkeela. 
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Figure 8.  Training time and DER when varying network size from one layer to four layers. 

5.5 Influence of Dropout 

We used dropout regularization to overcome training overfitting [28]. We used grid search to find the 

best dropout option. Best results are obtained when a dropout rate of 0.1 is used for the layer input and 

a dropout rate of 0.3 is used for the recurrent state. Figure 9 shows the result of applying this dropout to 

the network with varying number of layers. The results show that applying dropout improves the 

accuracy, achieving a DER of 3.19% for ATB3 and 2.03% for Tashkeela with a network of four layers. 

We experimented going for a deeper network of five layers when dropout is used. Results did not show 

improvement in the obtained DER for both ATB3 and Tashkeela, as shown in Figure 9. 

 
Figure 9.  DER of five network sizes with dropout. 

6. DISCUSSION 

Our best results are reported here using four bidirectional LSTM layers with dropout, diacritics only 

encoding of the target sequences and wrapping long input sequences to 400 characters. The following 

three subsections compare the results of this work with previous work, analyze the output diacritization 

errors and summarize other studied model hyper-parameters in this work. 

6.1 Comparison with Existing Systems 

Table 9 summarizes the comparison of this work and previous work. With the post processing techniques 

proposed in our previous work [4], the best DER and WER are 2.46% and 8.12%, respectively, for 

ATB3. This improves over our previous work that previously reported a DER of 2.7% for ATB3. For 

Tashkeela, the best DER and WER are 1.97% and 5.13%, respectively. This provides 47% DER and 

54% WER improvement over the best-reported DER of the Shakkala framework tested by Fadel et al. 

[7]. In addition, Table 9 shows DER and WER when errors in diacritizing the last letter of each word 

are ignored. Especially for ATB3, error rates significantly improve when these errors are ignored. Last 

letter diacritization depends on the context and hence is considered more difficult than diacritizing other 

letters. The last column in Table 9 shows DER resulting from last-letter diacritization errors only. For 
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both ATB3 and Tashkeela, our model provides better last-letter diacritization error rates compared to 

other systems.  

Table 9.  Comparison with previous work on LDC ATB3 and Tashkeela (TKL) datasets 

System 

All Diacritics Ignore Last DER Last 

ATB3 TKL ATB3 TKL ATB3 TKL 

DER WER DER WER DER WER DER WER DER DER 

Zitouni et al. (2006) [17]  5.5 18 - - 2.5 7.9 - - 3.0 - 

Habash & Rambow (2007) 

[5] 

4.8 14.9 - - 2.2 5.5 - - 2.6 - 

Rashwan et al. (2011) [18] 3.8 12.5 - - 1.2 3.1 - - 2.6 - 

Said et al. (2013) [19] 3.6 11.4 - - 1.6 4.4 - - 2.0 - 

Abandah et al. (2015) [4] 2.7 9.1 - - 1.38 4.34 - - 1.34 - 

Fadel et al. (2019) [7] - - 3.73 11.19 - - 2.88 6.53 - 0.85 

This work 2.46 8.12 1.97 5.13 1.24 3.81 1.22 3.13 1.22 0.75 

6.2 Diacritization Error Analysis 

We analyze errors of our system by tallying the errors according to the number of errors per word and 

the presence of last-letter diacritization error. The results of this analysis for ATB3 and Tashkeela are 

shown in Table 10. The table shows that most of the miss-diacritized words have one diacritic error at 

79.4% and 74.3% for ATB3 and Tashkeela, respectively. Words with three or more diacritic errors are 

not frequent at 4.8% and 4.4% for ATB3 and Tashkeela, respectively. The table also shows that in 

ATB3, 62.8% of word errors include an error in last letter diacritic. Tashkeela has a smaller ratio of 

these errors (49.6%), because Tashkeela is a larger dataset and has a lower ratio of missing diacritics 

(see Table 5). Also, notice that when there is an error in the last letter diacritics, the error distribution 

tail is longer reaching, e.g., 0.5% for four errors or more versus 0.2% or 0.1% when the last letter is OK. 

Table 10.  Distribution of word errors in percent (%). 

Dataset Errors per word One Two Three Four + Total 

ATB3 Last letter OK 26.3 9.1 1.6 0.2 37.2 

Error in last letter 53.1 6.6 2.5 0.5 62.8 

Total 79.4 15.7 4.1 0.7 100.0 

Tashkeela Last letter OK 35.2 13.5 1.6 0.1 50.4 

Error in last letter 39.1 7.8 2.2 0.5 49.6 

Total 74.3 21.3 3.8 0.6 100.0 

We have inspected 200 diacritization error samples of the ATB3 test set. For these samples, we analyzed 

the sources of the errors in the last-letter and other letters (internal) diacritics. Additionally, we report 

ratios of some specific error types, such as errors in words that have Shadda, errors that are not harmful 

and errors in composite words. Table 11 shows the results of this analysis. 

Almost three quarters of the errors in end word diacritics are due to incorrect prediction by the proposed 

model. For the example output sentence shown in the table, there is no reason for the underlined miss-

diacritized word   ة ط ور  َ   to have Kasratan خ   instead of Fathatan   َ . Another source of errors is having 

undiacritized letters in the training and testing sequences. Having undiacritized letters in the training set 

leads to a model that does not diacritize some letters (13% of the selected samples). Target sequences 

with undiacritized letters are responsible of 8% of the sample errors. The underlined word المجد of the 
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third example target sentence is not diacritized, whereas the output word   د  .is correctly diacritized المـ ج 

The rest end-word diacritic errors (6%) are due to not having enough context for the model to predict 

the last-letter diacritics. For example, our model fails to diacritize the last letter of the word السبت, since 

it comes alone, not included in a proper sentence.  

Table 11.  Analysis of sample errors. 

Criteria Ratio 
Examples 

Target Output 

End word diacritics     
Incorrect prediction 73% ًَّخُطُورَة َّإِن ناَّنوُاجِهَُّهَجْمَةًَّأَكْثَ رََّ أَكْثَ رََّخُطُورَةًَّإِن ناَّنوُاجِهَُّهَجْمَة 
Not diacritized 13% َّأمَْسال ذِيَّرأََىَّأوَ لََّمِنَّ ال ذِيَّرأََىَّأوَ لََّمِنَّأمَْس 
Target error 8% َََّنَماَّسَج لََّإِصابة نَماَّسَج لََّإِصابةَََّالم المجدبَ ي ْ  جْدَِّ ََّبَ ي ْ
Not enough context 6% َّالس بْت الس بْت 
Internal diacritics    
Incorrect prediction 35% َّ ة َّمُرْتَد  ة ََّّكُراّت َّإِلَََّعَشْرََِّّ إِلَََّعَشْرَِّكُرات   مُرْتَد 
Valid word 31% َِّبِِذاَّالَأمْرََِّّنُسَل مََّوَلَوَّْكُنّاَّ وَلَوَّْكُنّاَّنُسَلِّمَُّبِِذاَّالَأمْر 
Name word 18% ََّإِلَََّميلان ََّّبينارُولوَانِْ تَ قَلََّبَ عْدََّذلِكََّمِنَّ بَ عْدََّذلِكََّمِنَّبينارولَّإِلَََّميلانَّوَانِْ تَ قَل 
Possible alternative 7% َّتُدَعِّمَُّحُجَجََّبوُش َّ مَعْلُومات   حُجَجََّبوُشَّتَدْعَمَُّمَعْلُومات 
Target error 6% َََّتَكَتُّلَِّليِكُودعادََّمَُُدِّداَّإِلَََّ ليِكُودَّتكتلعادََّمَُُدِّداَّإِل 
Not diacritized 3% الدِّيناميتوَمِنَّنَ فْسَِّماد ةَِّ وَمِنَّنَ فْسَِّماد ةَِّالدِّينامِيت 
Error types    
Has Shadda 23% ًَّضَرْبةًََّعَسْكَريِ ةًََّّيَُْنِّبُهَُّ يَُُنِّبُهَُّضَرْبةًََّعَسْكَريِ ة 
Not harmful 21% بوُرعدأوَْضَحََّ أوَْضَحََّبورعد 
In composite word 12% َِِّمُناقَشاتهَُِّحَصَرََّمَُْلِسَُّالوُزَراءَِّ حَصَرََّمَُْلِسَُّالوُزَراءَِّمُناقَشاته 

For the diacritization errors in the internal letters, incorrect prediction that gives invalid words is at 35% 

of the samples. In 31% of the cases, the proposed model produces a diacritization output that gives a 

valid Arabic word, but the output word is not suitable for the context. For example, the word   نسلل was 

diacritized as  َّ  ن س (passive voice meaning “we will be given”) instead of        ن س (active voice meaning “we 

accept”). In 7% of the cases, the model produces a diacritization output that is a correct diacritization 

alternative, but is different from the target diacritics. For example, the model diacritizes the word   تدع 

as     ت د ع instead of      ت د ع and both words provide the same meaning of “it supports”. Other internal letter 

errors are in words that represent names (18%). Diacritizing foreign names such as بينارول (Club Atlético 

Peñarol) is hard, because they are often out-of-the-vocabulary and not diacritized in the dataset. The rest 

internal diacritics errors are due to lack of diacritization in the target or output sequences at 6% and 3%, 

respectively.  

Of the selected samples, 23% of the errors are in words that have Shadda. Restoring diacritics of these 

words is more difficult, as the word diacritics tend to be more complex when Shadda is present.  We 

observed also that 21% of the sample errors are not harmful, such that the miss-diacritized words can 

still be correctly read and understood. For example, the model diacritizes the name word بورعد as ب ورعد. 

Adding the Damma in this case does not affect the word pronunciation. Finally, errors in composite 

words contribute 12% of the error samples. Predicting the diacritics of composite words that have 

prefixes and/or suffixes is harder than that of simple words. For example, in a composite word with a 

suffix, the inflection diacritic of the stem word is on the letter before the suffix, not on the last letter. In 

the last example of the table above, the model fails to retrieve the correct diacritic for the pronoun suffix 

هـ  in the word مناقشاته by diacritizing it as   ناق شات ه ناق شات ه   instead of م   .م 
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6.3 Other Experiments 

In addition to the experiments reported in the previous sections, we performed other experiments for 

which results are not reported here, because they do not improve the accuracy of our model. These 

experiments included testing Adam optimizer instead of the RMSprop optimizer [28]. For all 

experiments, RMSprop performed better than Adam optimizer did. Moreover, we experimented with 

adding L1 and L2 regularization in lieu of dropout to overcome overfitting instead of dropout [28]. 

Results show that regularization does not improve training and even produces worse accuracy in some 

cases. 

7. CONCLUSIONS  

We performed intensive experiments to find a fast and accurate solution. Our experiments used the LDC 

ATB3 dataset as an example of MSA and a clean subset of Tashkeela dataset as an example of CA. Our 

experiments included studying the variation in sequence lengths of the used datasets. We experimented 

with handling this variation using different approaches and tested both the accuracy and training time. 

We recommend wrapping very long sequences to segments not longer than 400 letters. We also proposed 

two new encoding methods for target diacritized sequences. Our experiments show that the proposed 

encoding using diacritics only improves the accuracy, since it simplified the network output layer. 

We tested different network architectures and the results show the superiority of the bidirectional LSTM 

network over the encoder/decoder network and the unidirectional LSTM. We also tuned our model by 

going for a deeper network and applying dropout. Our best results are reported for a bidirectional RNN 

LSTM with four layers that uses dropout. Best achieved DER is 2.46% and 1.97% for ATB3 and 

Tashkeela, respectively. Our best DER for Tashkeela provides an improvement of 47% over the best-

published result. 

The results of this work open doors for future work. The proposed dataset file sparse encoding, wrapping 

long sequences, efficient bidirectional deep LSTM and tuned hyper-parameters allow efficient training 

using large datasets. We intend to improve the accuracy of the proposed model based on the insights 

gained from the diacritization error analysis above. The diacritization accuracy should improve when 

we use larger MSA dataset. Note that Tashkeela has better accuracy and is larger than ATB3. 

Additionally, we need to solve the problem of having missing diacritics in some of training sequences. 

Such sequences confuse the network and result in some undiacritized output. Finally, as some 

diacritization differences between the output and the target sequences are not more harmful than other 

differences, we need to develop a better loss function that considers this issue when training the network. 
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 ملخص البحث:

ت كتلللللص النالللللوص بالم بيللللل  اليلللللوم دون و،لللللً الن  لللللات ع للللل  ا  للللل ف، ع ملللللا  بللللل ن  و،لللللً 

هللللللره الن  للللللات مللللللا غلللللل نه أن ال لللللل  مللللللا ال مللللللوض  لللللل  قلللللل اءة الللللللن ، اللللللل   انللللللص  وا للللللد 

أخلللل ىد اهللللدف هللللرا المملللل  البن لللل  اللللل  تطللللوا   لللل   دقيلللل  و لللل اً با للللت دام تم  لللل  ا للللل  مللللا 

للللللبكات أ لللللل  و،للللللً الن  للللللات ع لللللل  أ لللللل ف الللللللن    أوتومات يكيللللللا د اسللللللت دم هللللللرا البنلللللل  الش 

رة اعتمللللللادا  ع لللللل  الللللللرا  ة الطوا للللل  قاللللللي ة ا مللللللد لو،للللللً الن  للللللات ع لللللل   المالللللبي   المتكلللللل  

 أ  ف الن اوص المكتوب  بالم بي د

تلللللل  إ لللللل اء تجللللللارب مك   لللللل  لتليللللللي  الت اللللللمي  الملتلللللل ح وخيللللللارات ت ميلللللل  البيانللللللات ل ناللللللول 

البنللللل   للللل  المشلللللكلت المتم لللللل  بطلللللول  ع للللل   للللل   دقيللللل  و للللل اًد وتت لللللما ت للللل  التجلللللارب

، واقتلللللل اح وتليللللللي  خيللللللارات الت  ميلللللل  ل م    للللللات التلللللل  تلللللل  و،للللللً الن  للللللات ع لللللل   الت تللللللابً 

أ لللللل ف الللللللن     يهللللللا، و،للللللبب ال يللللللارات المتم للللللل  بالشللللللبكات الماللللللبي  وتلييمهللللللا مللللللا  يلللللل  

 الب ني  و ج  الشبك  والمت ي ات الم  ياد

ع للللللل  مجموعللللللل  بيانلللللللات  ،للللللل م   بسللللللل ع    ه  وتوصللللللل  هلللللللره الدرا للللللل  بنللللللل  امكلللللللا تدراب للللللل

( طبلللللللات  مللللللا 4با للللللت دام طبلللللللات ذا لللللل ة طوا لللللل  قاللللللي ة ا مللللللد  نا يلللللل  ا ت جللللللاه عللللللددها  

أ للللل  توق لللللً الن  لللللات ع للللل  أ للللل ف تتلللللابً الملللللدخ  لنالللللوص ال   للللل  الم بيللللل د وتميَّللللل  النللللل   

% 97د1% و 46د2الملتللللللل ح بنسلللللللب  خطللللللل   للللللل  و،لللللللً الن  لللللللات ع للللللل  ا  للللللل ف مللللللللدارها 

( ومجموعللللللل  البيانلللللللات الجدالللللللدة LDC ATB3تطبيلللللللله ع للللللل  مجم عللللللل  البيانلللللللات   عنلللللللد

ا ،لللللل   المم و لللللل  با لللللل   تشللللللكي  (، ع لللللل  الت تيللللللصد وهللللللره النسللللللب  ا خيلللللل ة تم  لللللل  تنسللللللينا  

 % ملارن  ب     النتا ج المنشورة  ابلا د47بنسب  
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