
37

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

CHARACTERIZATION OF SHARED-MEMORY

MULTI-CORE APPLICATIONS

Mohammed Sultan Mohammed1 and Gheith A. Abandah2

Computer Engineering Department, the University of Jordan, Amman, Jordan
m.s.mohammed@ieee.org1, abandah@ju.edu.jo2

(Received: 29-Nov.-2015, Revised: 21-Jan.-2016, Accepted: 01-Feb.-2016)

ABSTRACT

The multicore processor architectures have been gaining increasing popularity in the recent years.

However, many available applications cannot take full advantage of these architectures. Therefore, many

researchers have developed several characterization techniques to help programmers understand the

behavior of these applications on multicore platforms and to tune them for better efficiency. This paper

proposes an on-the-fly, configuration-independent characterization approach for characterizing the

inherent characteristics of multicore applications. This approach is fast, because it does not depend on

the details of any specific machine configuration and does not require repeating the characterization for

every target configuration. It just keeps track of memory accesses and the cores that perform these

accesses through piping memory traces, on-the-fly, to the analysis tool. We applied this approach to

characterize eight applications drawn from SPLASH-2 and PARSEC benchmark suites. This paper

presents the inherent characteristics of these applications, including memory access instructions,

communication characteristics patterns, sharing degree, invalidation degree, communication slack and

communication locality. The results show that two of the studied applications have high parallelization

overhead, which are Cholesky and Fluidanimate. The results also indicate that the studied applications of

SPLASH-2 have higher communication rates than the studied applications of PARSEC and these rates

generally increase as the number of used threads increases. Most of the sharing and invalidation occurs

in small degrees. However, two of SPLASH-2 applications have significant fraction of communication

with high sharing degrees involving four or more threads. Most of the applications have some uniform

communication component and the initial thread is generally involved in more communication compared

to the other threads.

KEYWORDS

Multi-core processor, On-the-fly analysis, Shared memory applications, Communication patterns,

Performance evaluation.

1. INTRODUCTION

The multicore architecture is the current and the foreseeable future approach that processor

manufacturers use to build high-performance and low-power processors [1]-[2]. Most of the

current processors are multicore processors; i.e., there are multiple processors on the processor

chip. This approach is also the preferred approach in mobile devices [3]. Moreover, the number

of cores on one chip increases with time [4]. To take advantage of the increasing number of

cores, many parallel programming approaches were developed. One of these approaches is

multithreading. Using parallel-multithreaded approach, various numbers of threads of one

application can be concurrently executed on multiple cores and shared memory, thus facilitating

implementing the algorithms that solve data-intensive problems such as searching and sorting

[5]-[6]. Also, there are many applications that are developed to run on multicore systems,

including some popular benchmarks. Nevertheless, there are many aspects that need to be

tackled to improve multicore performance. Characterizing the benchmarks that represent

mailto:abandah@ju.edu.jo

38

"Characterization of Shared-memory Multi-core Applications", Mohammed Sultan Mohammed and Gheith A. Abandah.

multicore applications on multicore systems is important to tune such applications for better

performance and to design better multicore systems.

This paper proposes an on-the-fly configuration independent characterization approach for

characterizing the inherent characteristics of multicore applications. This approach is carried out

to characterize eight representative applications drawn from the popular SPLASH-2 and

PARSEC application benchmarks. The proposed approach characterizes the inherent

characteristics that are independent from any particular multicore configuration. The inherent

characteristics are divided into two parts. The first part is the characteristics of the memory

access instructions, which include the numbers of memory accesses and the percentages of

memory accesses by type of access and access data size. This characterization is useful to find

the amount of parallelization overhead. The second part is the communication characteristics,

which include communication patterns, sharing degree, invalidation degree, communication

slack and communication locality. It is important to characterize the communication

characteristics of the multicore applications, as high communication overhead is often

responsible of bad parallelization efficiency [7].

The rest of this paper is organized as follows: Section 2 presents a short survey of some related

work. Section 3 summarizes our methodology in characterizing multicore applications and the

experimental setup used. Section 4 presents the characterization results. Finally, Section 5

presents some conclusions and future work.

2. RELATED WORK

Several studies have proposed different techniques to characterize parallel applications. These

techniques are summarized in the following four categories.

2.1 Hardware-Assisted Characterization

Many characterization studies have used hardware performance counters, which are special

registers on the processor that count hardware events to characterize various aspects of running

applications.

Dongarra et al. used these counters to characterize data cache and translation lookaside buffer

(TLB) behaviors of their microbenchmarks [8]. Bhadauria et al. characterized PARSEC on

multiple aspects, including cache performance, sensitivity to DRAM speed and bandwidth,

multithread scalability and micro-architecture design choices on a variety of real multicore

systems [9]. Ferdman et al. used these counters to study the micro-architectural behavior of

their CloudSuite benchmarks [10]. They concluded that existing processor micro-architectures

are inefficient for running their benchmarks. Jia et al. also used these counters to characterize

eleven data analysis workloads of a data center to determine their micro-architectural

characteristics on systems equipped with modern superscalar, out-of-order processors [11].

They also developed a benchmark suite called DCBench to mimic typical data center

workloads.

2.2 Message-Passing Characterization

Instrumented message-passing libraries are often used to characterize parallel applications

running on multi-computer systems.

Cohen and Mahafzah proposed a utility to characterize NAS benchmarks, which are a group of

programs developed by NASA Ames to help evaluate the performance of parallel

supercomputers. Their results provide a deep look at how NAS benchmarks work on parallel

computers [12]. Alam et al. characterized the scaling behavior of a set of micro-benchmarks,

kernels and scientific workloads on HPC systems [13]. They used AMD Opteron multicore

39

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

processors and concluded that the Opteron cache coherence protocol is insufficient to exploit

the full bandwidth capability of the memory interface. Chai et al. characterized micro-

benchmarks and application-level benchmarks on an Intel dual-core cluster [14]. They

suggested that the communication middleware and applications should be multicore to optimize

intra-node and inter-node communication.

2.3 Configuration Dependent Analysis

Configuration dependent characterization techniques characterize applications depending on

simulating the application execution on a specific system configuration. This approach is widely

used in characterizing applications.

Abandah developed a configuration dependent analysis tool (CDAT) to characterize shared

memory behavior, including cache misses and sharing that depend on system configuration

parameters such as cache block size [15]. CDAT is a multiprocessor system simulator that has

memory, cache, bus and interconnection models. By using a configuration file, users can specify

the system configuration, including the coherence protocol, size and speed of the system

components, as well as processors and memory banks interconnections. Jaleel et al. used a

dynamic binary instrumentation tool as an alternative to the trace-driven and execute-driven

approaches [16]. They proposed a memory system simulator to characterize memory

performance of x86 workloads on multicore systems. Contreras and Martonosi characterized a

subset of PARSEC benchmark applications that were compiled with Intel TBB on AMD dual-

core processors in order to determine the sources of overhead within the TBB [17]. Bienia et al.

characterized PARSEC applications and found that they have various types of multithreaded

behaviors. Bhattacharjee and Martonosi characterized TLB behavior of the PARSEC [18]. Dey

et al. also characterized PARSEC and measured the effect of shared resource contention on

performance [19]. They classified resource contention into intra-application contention, which is

the contention among threads from the same application, and inter-application contention,

which is the contention among threads from different applications. Natarajan and Chaudhuri

characterized a set of multithreaded applications selected from PARSEC, SPEC OMP and

SPLASH-2 to understand last-level cache (LLC) behavior of multithreaded applications [20].

They proposed a generic design that introduces sharing-awareness in LLC replacement policies.

They showed that their design could significantly improve the performance of LLC replacement

policies.

2.4 Configuration Independent Analysis

The configuration independent characterization technique is a unique technique for

characterizing the inherent application characteristics that do not change when changing the

system configuration.

Abandah and Davidson developed a configuration independent analysis tool (CIAT) to

characterize the configuration independent characteristics, such as memory access instructions,

concurrency, communication patterns and sharing behavior of shared-memory applications that

run on multiprocessor systems [21]. CIAT analyzes the memory traces of shared-memory

applications to find these characteristics. It is faster than detailed simulators, as it only keeps

track of accesses to each memory location and does not include detailed models of a specific

system's components and protocols [15]. Moreover, its characterization is general; it gives the

inherent characteristics of the application that do not depend on a machine configuration. Thus,

CIAT gives us a more general understanding of the application behavior.

This work ported CIAT, which was originally developed for RISC multiprocessor systems, to

commodity multicore systems. The ported tool was used to characterize the inherent

characteristics of representative multicore applications.

40

"Characterization of Shared-memory Multi-core Applications", Mohammed Sultan Mohammed and Gheith A. Abandah.

3. CHARACTERIZATION METHODOLOGY

This section summarizes the methodology used in this study for monitoring and characterizing

multicore applications and describes the tools developed to characterize these applications.

This methodology involves generating detailed memory traces and sending these traces on-the-

fly, as the application is being executed, to the analysis tool, as shown in Figure 1. The Pin

shared-memory application instrumentation tool (PSMAIT) is used to instrument the multicore

application and pipe traces to the ported CIAT that analyzes these traces.

The following sub-sections present more details about the developed tools and the applications

being characterized.

3.1 Instrumentation Tool (PSMAIT)

PSMAIT is a tool based on Pin [22], a dynamic binary instrumentation tool for Linux and

Windows. Pin is a just in time (JIT)-based dynamic instrumentation tool. It uses dynamic

compilation techniques to instrument applications while they are running. Pin instruments single

and multithreaded applications and supports Intel IA-32 and x86-64 instruction-set architectures

[23]. It has a rich set of API's that can be used to instrument applications without the need to

master the underlying instruction set.

PSMAIT is a tool written in C++. It consists of a set of instrumentation and analysis routines as

shown in Figure 2. The instrumentation routines determine where instrumentation is inserted

and the analysis routines determine what to do when instrumentation is activated. PSMAIT is

designed to collect traces of multithreaded parallel applications and to send these traces directly,

on-the-fly, to CIAT. PSMAIT is a run-time binary instrumentation tool, which means that it

does not need the source code of the parallel application. It instruments both the parallel

application's user code and all the user-level libraries that are called during the application

execution.

Figure 2 shows the implementation overview of PSMAIT. PSMAIT uses Pin instrumentation

routine to capture memory accesses that are performed by user code and user-level libraries

only; it does not measure operating system events. Subsequently, it uses MemRead or

MemWrite analysis routine, depending on memory access type, to send a simple trace record

to CIAT for every memory access. This trace record contains the type of the access (load or

store, integer or floating point), its size and the starting virtual address of the memory location

accessed. PSMAIT sends these memory access records to CIAT on-the-fly by using pipes and

waits for receiving confirmation feedback from CIAT. On-the-fly analysis enables analyzing

large problems fast without needing huge storage medium.

Instrumented
Code

Multi-Core

Applications Feedback

Execution on

Multi-Core

System

On-the-fly
Traces

CIAT PSMAIT

Characterization

Figure 1. Methodology used to characterize multi-core applications.

41

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

Additionally, PSMAIT uses Pin instrumentation routine to capture the synchronization calls

such as thread spawn and join, mutex lock and unlock, barrier and conditional wait and uses

SynCall analysis routine to pipe their trace records to CIAT. Through these records and the

response feedback from CIAT, the two tools control the parallel application execution and avoid

any non-deterministic behavior of the instrumented application due to the instrumentation

overhead.

3.2 Analysis Tool (CIAT)

Our analysis tool is ported from CIAT that was developed for the RISC multiprocessor systems

by Abandah [15]. CIAT characterizes the inherent application characteristics, such as memory

access instructions, communication patterns and sharing behavior of parallel applications that

are independent from one multicore configuration to another. A multicore configuration

includes the hierarchy of cores, the interconnection topology, the coherence protocol, the cache

configuration, as well as the sizes and speeds of the multicore system components. CIAT does

not characterize the application characteristics that depend on configuration parameters, such as

cache misses and false sharing. However, CIAT's characterization of the communication

characteristics gives a basic understanding of applications execution and helps explain the

dependent characteristics such as cache misses; e.g. high number of RAW accesses means that

load misses are higher than store misses.

CIAT uses many variables to count the various events by tracking the memory load and store

operations. It accepts traces from PSMAIT, which generates n trace pipes for the n executing

threads. CIAT supports various execution phases; it assumes that the traces come from a parallel

application either in a serial or in a parallel phase. In a serial phase, there is only one thread

active, while the other threads are idle. In a parallel phase, more than one thread can be active.

CIAT uses the special records of the thread spawn and thread join calls to identify switches

between serial and parallel phases. At the end of each phase, CIAT generates statistics and saves

them in a report file. At the end of the last phase, CIAT reports the aggregate statistics in the

report file.

CIAT assumes that n cores in multicore processor can execute n instructions at the same time

and each instruction takes a fixed time. Therefore, a pseudo clock in instruction units is used to

keep track of the execution time. However, CIAT currently only sees the memory accesses and

advances the clock by one for each thread whenever it receives a memory access record. This is

an approximation of the instruction stream. CIAT interleaves the analysis of multiple thread

traces on the processors according to the thread spawn and join calls and follows the constraints

Figure 2. PSMAIT implementation overview.

Pin

Instrumentation

Routine

Memory Access Analysis Routines

(MemRead, MemWrite)

Synchronization Calls Analysis

Routine (SynCall)

PSMAIT

42

"Characterization of Shared-memory Multi-core Applications", Mohammed Sultan Mohammed and Gheith A. Abandah.

of the lock, conditional wait and barrier synchronization calls. More details about CIAT are

found in Ref. [24].

3.3 Case Study Applications

We have chosen a set of parallel applications that are representative of multicore applications

and are widely used in recent multicore research. This set consists of eight applications from

two benchmark suits. The first four of these applications are from SPLASH-2 suite [25], which

are Radix, FFT, LU and Cholesky. The second four are from PARSEC suite [26], which are

Canneal, Blackscholes, Fluidanimate and Swaptions. These eight particular applications are

selected, because they represent a wide range of applications and are often used in multicore

research. More details about these selected applications are found in Ref. [24].

To study the impact of the application problem size on the communication behavior, we use two

problem sizes of each application: Size I and Size II, where the problem solved in Size I is

smaller than that of Size II. Table 1 shows these problem sizes and the abbreviations that are

used for naming these applications.

We have conducted many analysis experiments of these studied applications with various

numbers of threads for the two problem sizes. To validate our results, we repeated these

experiments on two machines that have different types of multicore processors. The first

machine has dual-core Core i5 2520M processor (3-MB Cache, 3.20 GHz) and the second has

quad-core Core i5 2400 processor (6-MB Cache, 3.40 GHz). The characterization results on the

two machines are identical. Therefore, this is one validation check that our characterization

tools do not depend on the hardware configuration. Moreover, the number of instructions that

have been obtained from running the applications with Pin is similar to that obtained by the

developed tools.

Table 1. The applications' problem sizes.

Suite Application Abbreviation Size I Size II

SPLASH-2

Radix Radix 256K integers 2M integers

FFT FFT 64K points 1M points

LU LU 256×256 512×512

Cholesky Chole tk15.O file tk29.O file

PARSEC

Canneal Cann simsmall simmedium

Blackscholes Black simsmall simmedium

Fluidanimate Fluid simsmall simmedium

Swaptions Swap simsmall simmedium

4. CHARACTERIZATION RESULTS AND EVALUATION

This section presents the results of the inherent characteristics of the multicore applications that

are measured and reported by CIAT. Due to paper length limitations, we present here the results

of Size II; interested readers can find the results of Size I in Ref. [24].

4.1 Memory Access Instructions

As mentioned in the previous section, the developed tools capture the user code and user-level

libraries operations on the memory and report the number of load and store operations as shown

in Table 2.

43

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

Table 2 shows the number of memory accesses in billions for the eight studied applications

when using one thread. These numbers represent the number of operations on memory and not

the memory access instructions, where some memory access instructions may do more than one

operation on the memory.

Table 2. The counts and percentages of load and store operations for one thread.

In all applications, loads are more frequent. The load operations ratio is about twice the store

operations in most of the studied applications. Some applications, such as Cholesky,

Fluidanimate and Sawptions have even larger percentages of load operations. Cholesky has

about four times more of load operations than store operations, because it operates on sparse

matrices and needs to find the indices of non-zero elements in these matrices. Fluidanimate has

about five times more load operations than store operations. Sawptions has about three times

more load operations than store operations. The load and store operations in Canneal are

relatively equi-frequent.

Figure 3 shows the percentage of memory accesses for running the eight applications with

various numbers of threads. The percentages are normalized to the number of memory accesses

when running the respective applications with single thread. Thus, we can notice the

parallelization overhead. As obvious, the parallelization overhead is negligible in most of the

studied applications. However, there are two of the eight studied applications that have a high

percentage of parallelization overhead, which are Cholesky from SPLASH-2 and Fluidanimate

from PARSEC. Cholesky has about 50% of memory accesses as overhead when running 16

threads. This overhead is due to Cholesky’s work on sparse matrices, which have a larger

communication to computation ratio. Fluidanimate has about 33% of memory accesses as

overhead when running 16 threads. This overhead is due to Fluidanimate’s partitioning of the

work among the threads and each thread handles its portion and interacts with other threads to

handle the shared data.

Figure 4 shows the percentage of the byte, half-word (2 bytes), word (4 bytes), double-word (8

bytes), float (single-precision floating-point) and double-float (double-precision floating-point)

load and store operations when running 16 threads. All the studied applications do not have any

quad-word (16 bytes) or extended-float (extended-precision floating-point) memory accesses.

All the studied applications are scientific benchmarks, which have a large percentage of

floating-point operations except Radix and Canneal, which are integer kernel applications. The

percentages of byte and half-word accessed data is insignificant in almost all the studied

applications except Radix and FFT that have 25% and 6% half-word load and store operations,

respectively. These relatively large percentages are because they have a large portion of integer

computation.

 Radix FFT LU Chole Cann Black Fluid Swap

No. of Loads

(in 109)

0.285

(66.7%)

0.190

(57.1%)

0.109

(68.2%)

0.381

(77.6%)

3.577

(57.7%)

0.213

(61.1%)

1.146

(81.9%)

2.246

(75.2%)

No. of Stores

(in 109)

0.143

(33.3%)

0.144

(42.9%)

0.051

(31.8%)

0.110

(22.4%)

2.625

(42.3%)

0.136

(38.9%)

0.253

(18.1%)

0.742

(24.8%)

44

"Characterization of Shared-memory Multi-core Applications", Mohammed Sultan Mohammed and Gheith A. Abandah.

Figure 3. Percentage of memory accesses for 1-16 threads normalized to the memory accesses

of one thread.

4.2 Communication Characteristics

This sub-section presents the inherent communication characteristics that are reported by CIAT.

 4.2.1 Communication Patterns

The communication among the cores of a multicore processor occurs when those cores

access same-shared memory locations. Characterizing the communication patterns is

important to know which of the communication patterns are common, thus, facilitating

the design of system that supports these patterns efficiently in the current applications

and facilitating tuning applications to have less expensive patterns. For each memory

location, CIAT keeps track of the type of accesses and the cores that perform these

accesses. Consequently, CIAT can report the numbers of the following four types of

communication patterns:

 Read after write (RAW) occurs when one core writes to a memory location and other

core(s) read from this location. This is the main producer/consumer(s) communication

pattern and usually involves copying the written data from the producer's cache.

 Write after read (WAR) occurs when a core writes to a memory location that was read

by other core(s). This pattern usually involves invalidating the data copies in the other

cores' private caches.

 Write after write (WAW) occurs when a core writes to a memory location that was

written by another core. This pattern also involves invalidation and occurs when cores

take turns on updating some shared locations.

 Read after read (RAR) occurs when a core reads from a memory location that was read

by another core and the first visible access to this location is a read. Here, the data is

usually replicated in the cores' caches.

45

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

Figure 4. Percentages of the load and store operations according to the type and size of accessed

data.

Figure 5 shows the percentages of these four communication patterns of the total number of

memory accesses as function of the number of threads used. In the studied applications,

PARSEC applications have less communication rates compared to SPLASH-2 (0.5% or lower).

The communication rates generally increase as the number of threads increases, except for

Blacksholes and Swaptions that have negligible rates.

46

"Characterization of Shared-memory Multi-core Applications", Mohammed Sultan Mohammed and Gheith A. Abandah.

Radix has the largest rate of WAW due to its permutation operations of the used sort algorithm.

Swaptions only has some WAW accesses when using 16 threads due to the reuse of some

limited shared locations by these many threads.

Most of the remaining communication accesses are RAW and WAR. FFT has the largest

percentage of WAR accesses, which results in large coherence traffic. In addition, almost all the

communication accesses of Blacksholes are RAW; the shared memory locations of this

application are generally not updated by WAR accesses after the first initialization. The figure

shows that only Canneal has a small RAR rate due to reading shared data that is not initialized

by the application's user code.

4.2.2 Sharing Degree

The sharing degree is the number of threads that read a memory location in the RAW pattern.

Figure 6 shows the distributions of sharing degrees for the RAW accesses. It presents the

percentages of sharing degrees when using 16 threads. These percentages are calculated by

using the following formula:

1,...,16;100%
][

][
16

1

pfor
iS

pS

i

where S[p] is the number of times that p threads read from a memory location after being

previously written. Radix, FFT and Blackscholes have small sharing degrees, where almost all

the shared locations are shared with only one thread each. Fluidanimate and Swaptions have two

sharing degrees. In Fluidanimate, 76% of shared locations are shared with one thread and 23%

with two threads. In Swaptions, 78% of shared locations are shared with one thread and 22%

with two threads. LU, Cholesky and Canneal have also some sharing degrees higher than two.

In LU, 97% of shared locations are shared with four threads and the remaining shared locations

are shared with one, two or three threads. In Cholesky, about 58% of shared locations are shared

with one thread and 42% are shared with two or more threads. In Canneal, 76% of shared

locations are shared with one thread and 24% with two or more threads.

Figure 5. Percentages of the four communication patterns as a function of the number of

threads.

47

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

4.2.3 Invalidation Degree

The invalidation degree is the number of threads that have read a shared memory location in the

WAR pattern.

Figure 7 shows the distributions of invalidation degrees for the WAR accesses. It presents the

percentages of invalidation degrees when using 16 threads. These percentages are calculated by

using the following formula:

1,...,16;100%
][

][
16

1

pfor
iI

pI

i

where I[p] is the number of times that a memory location was updated after being previously

read by p threads. The invalidation degrees in Radix, FFT, LU, Fluid and Swaptions are almost

similar to their sharing degree, because the memory locations are iteratively shared and updated

by RAW and WAR accesses. Choleskey and Canneal's invalidation degrees drop to one,

because the locations that are shared with high degree are not updated by WAR accesses.

Blackscholes has some invalidations of degree two, however, its WAR accesses are negligible

compared to its RAW accesses.

4.2.4 Communication Slack

The communication slack is a measure to know how much time is present between writing a

value to a memory location and referencing it by either read or write operation. CIAT measures

this time by counting the number of instructions from writing the value until referencing it. The

communication slack is distributed into eight ranges from less than ten instructions to more than

ten million instructions.

Figure 8 shows the percentages of the communication slack distributions using 16 threads.

These percentages are the number of instructions in each range over the total number of

memory accesses. In all the studied applications, the communication has most of the slack in the

range of tens of thousands of instructions and more. These ranges are enough to make use of

prefetching.

4.2.5 Communication Locality

The communication locality is a measure of how the cores communicate with each other.

Characterizing the communication locality helps both software developers in assigning threads

to the cores and hardware designers in selecting a suitable system topology.

CIAT characterizes the communication locality by counting the number of communication

events for each thread pair. CIAT maintains a 2D matrix for the communication events, where

the rows represent the data producer threads and the columns represent the data consumer

threads. For example, the value in Row i and Column j is the number of communication events

from Thread Ti to Tj. This value is incremented by one whenever Tj reads from a location after

Ti write (RAW), Tj writes to a location after Ti write (WAW) or Ti updates a location after Tj

read (WAR).

48

"Characterization of Shared-memory Multi-core Applications", Mohammed Sultan Mohammed and Gheith A. Abandah.

Figure 6. RAW sharing degree for 16 threads.

49

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

Figure 7. WAR invalidation degree for 16 threads.

50

"Characterization of Shared-memory Multi-core Applications", Mohammed Sultan Mohammed and Gheith A. Abandah.

Figure 8. Communication slack distributions for 16 threads.

Figure 9 presents the communication locality when using 16 threads. In Radix, each thread

communicates with all other threads. Also, there are some additional communications with the

neighbors, where some odd threads communicate with only the next thread and some even

threads communicate with more than one thread.

FFT has some uniform communication component and has also a large amount of

communication from the initial thread to every other thread. In LU, the communication is

clustered within groups of 4/ng threads where n is the number of threads that are used to

run the application. For example, when running LU using 16 threads, 44/16 g threads.

Additionally, each thread communicates to and from the thread that is located after multiple of g

threads from it. For example, if 4g , Thread 1 communicates with Threads 5, 9 and 13.

Moreover, the initial thread communicates to all other threads and from the last g threads.

In Cholesky, the communication is non-uniform and each thread communicates with itself; i.e.,

each thread reads from or writes to memory locations that it previously wrote to and shared with

other threads. The initial thread communicates with all other threads. Canneal has some uniform

communication component and each thread communicates with itself and the initial thread

communicates with all other threads. In Blackscholes, the communication is only with the initial

thread; there is no data sharing among the other threads.

In Fluidanimate, the communication is non-uniform and each thread communicates with itself

and the initial thread communicates with all other threads. Swaptions has low communication

rates and each thread communicates with itself and there is some additional communication due

to WAW accesses.

51

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

Figure 9. Number of communication events per thread pair for 16 threads.

52

"Characterization of Shared-memory Multi-core Applications", Mohammed Sultan Mohammed and Gheith A. Abandah.

5. CONCLUSIONS AND FUTURE WORK

Characterizing the inherent characteristics of multicore applications is important to help the

programmers in tuning the current applications and developing future parallel applications, as

well as to help designers in developing multi-core architectures that efficiently run parallel

applications.

 In this work, we have used on-the-fly configuration-independent analysis approach to

characterize the inherent characteristics of eight multicore applications. Four applications are

from SPLASH-2, which are: Radix, FFT, LU and Cholesky, and four from PARSEC, which are:

Canneal, Blackscholes, Fluidanimate and Swaptions. The used on-the-fly approach is fast and

enables analyzing large problems without needing a huge storage medium.

The obtained results show that the number of memory accesses, in the studied applications, does

not change significantly as the number of threads increases. However, some applications such as

Cholesky and Fluidanimate show high parallelization overhead, which is about 50% in

Cholesky and about 33% in Fluidanimate. This overhead is due to the synchronization

operation. Therefore, the speedup of these applications is limited by the increasing

parallelization overhead. As expected, the largest percentages of memory accesses in the

scientific applications are of floating point accesses.

The most common communication patterns are RAW and WAR except in Radix that has 36%

of its communication in the WAW pattern and Swaptions that has 100% of its communication

in the WAW pattern when using 16 threads. Therefore, designers must design systems that

support these common patterns efficiently. Also, programmers must tune the applications to

reduce these patterns. In general, the communication rates increase with more threads and

PARSEC applications have rates smaller than SPLASH-2 applications.

Almost all the sharing in Radix, FFT and Blackscholes is with only one thread. In Fluidanimate

and Swaptions, thare are about 23% of sharing with two threads. In LU, Cholesky and Canneal,

there are 97, 42 and 24% of sharing with two or more threads, respectively. The invalidation

degrees in most of the applications are similar to their sharing degrees. There is considerable

diversity in the communication locality of the studied applications. Some applications show

uniform communication components such as FFT, Canneal and Blackscholes. Others show non-

uniform communication and almost in all applications, the initial thread communicates with the

other threads. Therefore, it is advisable to assign the initial thread to a central core to reduce the

communication cost.

As future work, we plan to extend CIAT to capture the instruction stream in addition to

capturing the data stream. Moreover, we need to develop CIAT to handle additional

parallelization schemes such as the pipeline parallelization scheme that is used in three

PARSEC applications: Dedup, Ferret and X264.

REFERENCES

[1] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson and K. Chang, "The Case for a Single-chip

Multiprocessor," ACM Sigplan Notices, vol. 31, no. 9, pp. 2–11, 1996.

[2] D. Geer, "Chip Makers Turn to Multicore Processors," Computer, vol. 38, no. 5, pp. 11–13,

2005.

[3] C. van Berkel, "Multi-core for Mobile Phones," in Design, Automation Test in Europe

Conference Exhibition, pp. 1260–1265, 2009.

[4] G. Blake, R. G. Dreslinski and T. Mudge, "A Survey of Multicore Processors," Signal

Processing Magazine, IEEE, vol. 26, no. 6, pp. 26–37, 2009.

53

Jordanian Journal of Computers and Information Technology (JJCIT), Vol. 2, No. 1, April 2016.

[5] B. A. Mahafzah, "Performance Assessment of Multithreaded Quicksort Algorithm on

Simultaneous Multithreaded Architecture," The Journal of Supercomputing, vol. 66, no. 1, pp.

339–363, 2013.

[6] B. A. Mahafzah, "Parallel Multithreaded IDA* Heuristic Search: Algorithm Design and

Performance Evaluation," International Journal of Parallel, Emergent and Distributed Systems,

vol. 26, no. 1, pp. 61–82, 2011.

[7] G. A. Abandah and E. S. Davidson, "Origin 2000 Design Enhancements for Communication

Intensive Applications," in Proc. of the International Conference Parallel Architectures and

Compilation Techniques (PACT’98), pp. 30–39, 1998.

[8] J. Dongarra, S. Moore, P. Mucci, K. Seymour and H. You, "Accurate Cache and TLB

Characterization Using Hardware Counters," in Computational Science-ICCS 2004, Springer,

pp. 432–439, 2004.

[9] M. Bhadauria, V. M. Weaver and S. A. McKee, "Understanding PARSEC Performance on

Contemporary CMPs," in IEEE Int’l Symp.Workload Characterization, pp. 98–107, 2009.

[10] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A. D.

Popescu, A. Ailamaki and B. Falsafi, "Clearing the Clouds: A Study of Emerging Scale-out

Workloads on Modern Hardware," ACM SIGARCH Computer Architecture News, vol. 40, no.

1, pp. 37–48, 2012.

[11] Z. Jia, L. Wang, J. Zhan, L. Zhang and C. Luo, "Characterizing Data Analysis Workloads in

Data Centers," in IEEE Int’l Symp. Workload Characterization (IISWC), pp. 66–76, 2013.

[12] W. E. Cohen and B. A. Mahafzah, "Statistical Analysis of Message Passing Programs to Guide

Computer Design," in Proceedings of the IEEE Thirty-First Hawaii International Conference

on System Sciences , vol. 7, pp. 544–553, 1998.

[13] S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth and J. S. Vetter, "Characterization of Scientific

Workloads on Systems with Multi-core Processors,” in IEEE International Symposium on

Workload Characterization, pp. 225–236, 2006.

[14] L. Chai, Q. Gao and D. K. Panda, "Understanding the Impact of Multicore Architecture in

Cluster Computing: A Case Study with Intel Dual-core System," in 7th IEEE Int’l Symp. Cluster

Computing and the Grid, 2007, pp. 471–478.

[15] G. A. Abandah, Reducing Communication Cost in Scalable Shared Memory Systems, Ph.D.

dissertation, The University of Michigan, 1998.

[16] A. Jaleel, R. S. Cohn, C.-K. Luk and B. Jacob, "CMP$im: A Pin-based on-the-fly Multi-core

Cache Simulator,” in Proc. 4th Annual Workshop on Modeling, Benchmarking and Simulation,

pp. 28–36, 2008.

[17] G. Contreras and M. Martonosi, "Characterizing and Improving the Performance of Intel

Threading Building Blocks," Proc. of the IEEE International Symposium on Workload

Characterization (IISWC 2008), pp. 57–66, 2008.

[18] A. Bhattacharjee and M. Martonosi, "Characterizing the TLB Behavior of Emerging Parallel

Workloads on Chip Multiprocessors," in 18th Int’l Conf. Parallel Architectures and Compilation

Techniques, pp. 29–40, 2009.

[19] T. Dey, W. Wang, J. W. Davidson and M. L. Soffa, "Characterizing Multi-threaded Applications

Based on Shared-resource Contention," in IEEE Int’l Symp. Performance Analysis of Systems

and Software, pp. 76–86, 2011.

[20] R. Natarajan and M. Chaudhuri, "Characterizing Multi-threaded Applications for Designing

Sharing-aware Last-level Cache Replacement Policies," in IEEE International Symposium on

Workload Characterization, pp. 1–10, 2013.

[21] G. A. Abandah and E. S. Davidson, "Configuration Independent Analysis for Characterizing

Shared-memory Applications," in Proc. of the 12th International Parallel Processing Symp.

(IPPS), pp. 485–491, 1998.

54

"Characterization of Shared-memory Multi-core Applications", Mohammed Sultan Mohammed and Gheith A. Abandah.

[22] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi and K.

Hazelwood, "Pin: Building Customized Program Analysis Tools with Dynamic

Instrumentation," SIGPLAN Not., vol. 40, no. 6, pp. 190–200, 2005.

[23] Intel, "Pin-A Dynamic Binary Instrumentation Tool," https://software.intel.com/en-

us/articles/pin-a-dynamic-binaryinstrumentation-tool/, 2015, [Online; accessed 22-March-2015].

[24] M. S. Mohammed, Hardware Configuration-independent Characterization of Multi-core

Applications, Master’s Thesis, The University of Jordan, Amman, 2015.

[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh and A. Gupta, "The SPLASH-2 Programs:

Characterization and Methodological Considerations," in ACM SIGARCH Computer

Architecture News, vol. 23, no. 2, pp. 24–36, 1995.

[26] C. Bienia, S. Kumar, J. P. Singh and K. Li, "The PARSEC Benchmark Suite: Characterization

and Architectural Implications," in Proc. of the 17th Int’l Conf. Parallel Architectures and

Compilation Techniques, pp. 72–81, 2008.

 ملخص البحث:

لأخيبببببب اتزامبببببب ا نبببببب ا سببببببن اع ا انتشببببببالا ا نبببببب اكتسببببببار ات المبببببباع ا تببببببا اتتبببببب

المببببباع ه ا ت إلا أنّ ا ت مببببب ابببببت ا تتايةببببباع ا تامبببببف لا سبببببت ي بببببا الا بببببت ا ابببببت ببببب

 ببببب ا نةببببب نبببببّ ل نبببببامد ن كصد ببببب ةنيببببباع د مببببب ببببب ا بببببا ابببببت أ ببببب اسببببباد

نببببببب ا ببببببب ه ا تتايةببببببباع دسببببببب ا نّ ببببببباع اتتببببببب ا اببببببب ا يت دسببببببب ن ببببببب بببببببس

وضبببببببات ا سى ببببببب ف دسببببببب نادسيبببببببف أنوببببببب ةتببببببب ببببببب ه ا ل بببببببف انىببببببب ببببببب

؛ بببببببب ا ببببببببا اببببببببت ون الادت ببببببببا دسبببببببب ا ت بببببببب مت اااشبببببببب ا ببببببببا

متت بببببب و بببببب ا ا نىبببببب م تببببببا نا سبببببب دف؛ لأنبببببب لانبببببب ا ا اانببببببف ستتايةبببببباع اتتبببببب

إدببببببا و بببببب ا ببببببا بببببب ولا متتسبببببب تينبببببب آ ببببببف ن بببببب متدسبببببب ا ببببببي أ

 ا تبببببب نبببببب وا اسببببببت ن بببببب متتابّبببببص نةببببببذ إا انيبببببباع ا بببببب ف إ بببببب ا بببببب اك بببببب مت

إ بببب ا بببب اك دسبببب نىبببب نبببب ل نيانبببباع تاببببص ببببت سببببي ا ا انيبببباع اببببت خبببب ف إم بببباف

 أ ا ا تىسي

ابببببت ةببببب ببببب تايبببببى ببببب ا ا نىببببب دسببببب أ انيبببببف تايةببببباع ببببب خ ا ببببب ا اببببب خ

 (نال ببببببببببببببببيي PARSEC و 2(ببببببببببببببببا SPLASH-2ا بببببببببببببببب دت ا ةالنببببببببببببببببف

 بببببب ه ا تتايةبببببباع ن ببببببا نبببببب ببببببي تسي بببببباع بببببب ه ا ل ببببببف ا ببببببا ا اانببببببف تبببببب

ا ببببببب ف إ ببببببب ا ببببببب اك وأن بببببببان خ بببببببا الا ببببببباف و ل بببببببف ا تشبببببببالص و ل بببببببف

ابببببببت نبببببببيتأ إا نتبببببببا أن و صظ ببببببب ا نتببببببباف و اخببببببب الا ببببببباف واىسيبببببببف الا ببببببباف

(ش سببببببب و Choleskyدببببببباف و بببببببا ا تتايةببببببباع ا لو بببببببف بببببببا بببببببة ببببببب ا

 Fluidanimate نس مبببببببب اني ير ك ببببببببا شببببببببي ا نتببببببببا إ بببببببب أنّ ا تتايةبببببببباع ا لو ببببببببف)

ي اتببببببب لّاع ا بببببببباف أدسببببببب اةالنبببببببف نا تتايةبببببببباع تسببببببب2ابببببببت ا دبببببببف ببببببببا

ا لو ببببببف اببببببت ا دببببببف نال ببببببيي وأنّ بببببب ه ا تبببببب لّاع ببببببز ا نشبببببب دببببببا كس ببببببا

ا سببببببببت اف ومىبببببببب ل ا تشببببببببال وا نتبببببببباف نبببببببب (Threadsا سببببببببالاع ا ا دبببببببب

 2نبببببيت ابببببت تايةببببباع ا دبببببف بببببا أ نببببب ل اع سيسبببببف وابببببص بببببي كبببببان اتظ ببببب

أو أكدببببب اسبببببالاع ببببباف نببببب ل اع شبببببالص دا يبببببف نا بببببت ا ألنتبببببف بببببز ا ببببب ابببببت الا

الانتبببببب ا نشبببببب سببببببالا تظبببببب ا تتايةبببببباع ا كّاببببببف ا بببببباف ا مّبببببب وكببببببان وكانببببببر

 خ الأ سالاعنا كا ات الا اف اةالنف أدا ان نا ن ل

This article is an open access article distributed under the terms and conditions of the Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/

