[1] A. Quiroz, H. Kim, M. Parashar, N. Gnanasambandam and N. Sharma, "Towards Autonomic Workload Provisioning for Enterprise Grids and Clouds," Proc. of the 10th IEEE/ACM International Conference on Grid Computing, pp. 50-57, Banff, AB, Canada, Oct. 2009.
[2] T. Lorido-Botran, J. Miguel-Alonso and J. A. Lozano, "A Review of Auto-scaling Techniques for Elastic Applications in Cloud Environments," Journal of Grid Computing, vol. 12, no. 4, pp. 559-592, Oct. 2014.
[3] Md. Toukir Imam, S. F. Miskhat, R. M. Rahman and M. A. Amin, "Neural Network and Regression- based Processor Load Prediction for Efficient Scaling of Grid and Cloud Resources," Proc. of the 14th IEEE International Conference on Computer and Information Technology (ICCIT 2011), pp. 333-338, Dhaka, Bangladesh, Dec. 2011.
[4] Z. Zhou, J. Abawajy, M. Chowdhury, Z. Hu, K. Li, H. Cheng, A. A. Alelaiwi and F.-M. Li, "Minimizing SLA Violation and Power Consumption in Cloud Data Centers Using Adaptive Energy-aware Algorithms," Future Generation Computer Systems, vol. 86, pp. 836-850, 2018.
[5] J. Zhu, P. He, Z. Zheng and M. R. Lyu, "Online QoS Prediction for Runtime Service Adaptation via Adaptive Matrix Factorization," IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 10, pp. 2911-2924, Oct. 2017.
[6] Shalu and D. Singh, "Swarm Intelligence Based Virtual Machine Migration Techniques in Cloud Computing," Proc. of the International Conference on Computation, Automation and Knowledge Management (ICCAKM), pp. 120-124, Dubai, United Arab Emirates, 2020.
[7] A. M. R. AlSobeh, S. AlShattnawi, A. Jarrah and M. M. Hammad, "WEAVESIM: A Scalable and Reusable Cloud Simulation Framework Leveraging Aspect-oriented Programming," Jordanian Journal of Computers and Information Technology (JJCIT), vol. 06, no. 02, pp. 182-201, June 2020.
[8] R. Yadav, W. Zhang, K. Li et al., "Managing Overloaded Hosts for Energy-efficiency in Cloud Data Centers," Cluster Computing, vol. 2021, DOI: 10.1007/s10586-020-03182-3, Feb. 2021.
[9] D. A. Shafiq, N. Z. Jhanjhi, A. Abdullah and M. A. Alzain, "A Load Balancing Algorithm for the Data Centres to Optimize Cloud Computing Applications," IEEE Access, vol. 9, pp. 41731-41744, 2021.
[10] S. K. Pande, S. K. Panda, S. Das, K. S. Sahoo, A. K. Luhach et al., "A Resource Management Algorithm for Virtual Machine Migration in Vehicular Cloud Computing," Computers, Materials & Continua, vol. 67, no.2, pp. 2647–2663, 2021.
[11] M. A. Shahid, N. Islam, M. M. Alam, M. M. Su’ud and S. Musa, "A Comprehensive Study of Load Balancing Approaches in the Cloud Computing Environment and a Novel Fault Tolerance Approach," IEEE Access, vol. 8, pp. 130500-130526, 2020.
[12] Z. Chen, K. Lin, B. Lin, X. Chen, X. Zheng and C. Rong, "Adaptive Resource Allocation and Consolidation for Scientific Workflow Scheduling in Multi-cloud Environments," IEEE Access, vol. 8, pp. 190173-190183, 2020.
[13] B. Gul et al., "CPU and RAM Energy-based SLA-aware Workload Consolidation Techniques for Clouds," IEEE Access, vol. 8, pp. 62990-63003, 2020.
[14] R. Yadav, W. Zhang, K. Li et al., "An Adaptive Heuristic for Managing Energy Consumption and Overloaded Hosts in a Cloud Data Center," Wireless Networks, vol. 26, pp. 1905–1919, April 2020.
[15] W. Dargie, "Estimation of the Cost of VM Migration," Proc. of the 23rd IEEE International Conference on Computer Communication and Networks (ICCCN), pp. 1-8, Shanghai, China, 2014.
[16] S. Singh, I. Chana, M. Singh et al., "SOCCER: Self-optimization of Energy-efficient Cloud Resources," Cluster Computing, vol. 19, no. 4, pp. 1787–1800, Sep. 2016.
[17] M. Sohani and S. C. Jain, "A Predictive Priority-based Dynamic Resource Provisioning Scheme with Load Balancing in Heterogeneous Cloud Computing," IEEE Access, vol. 9, pp. 62653-62664, April 2021.
[18] F. Yao, C. Pu and Z. Zhang, "Task Duplication-based Scheduling Algorithm for Budget-constrained Workflows in Cloud Computing," IEEE Access, vol. 9, pp. 37262-37272, 2021.
[19] H. M. Khan, G. Chan and F. Chua, "An Adaptive Monitoring Framework for Ensuring Accountability and Quality of Services in Cloud Computing," Proc. of the International Conference on Information Networking (ICOIN), pp. 249-253, Kota Kinabalu, Malaysia, 2016.
[20] R. Latif, S. H. Afzaal and S. Latif, "A Novel Cloud Management Framework for Trust Establishment and Evaluation in a Federated Cloud Environment," The Journal of Supercomputing, vol. 2021, DOI: 10.1007/s11227-021-03775-8, April 2021.
[21] A. Mosallanejad, R. Atan, M. Azmi Murad and R. Abdullah, "A Hierarchical Self-healing SLA for Cloud Computing," International Journal of Digital Information and Wireless Communications (IJDIWC), vol. 4, no. 1, pp. 43-52, 2014.
[22] S. S. Gill, I. Chana, M. Singh and R. Buyya, "RADAR: Self-configuring and Self-healing in Resource Management for Enhancing Quality of Cloud Services," Concurrency and Computation: Practice and Experience, vol. 31, no. 1, DOI: 10.1002/cpe.4834, Aug. 2018.
[23] S. Banerjee, S. Roy and S. Khatua, "Efficient Resource Utilization Using Multi-step-ahead Workload Prediction Technique in Cloud," The Journal of Supercomputing, vol. 2021, DOI: 10.1007/s11227-021- 03701-y, March 2021.
[24] R. Yadav, W. Zhang, O. Kaiwartya, P. R. Singh, I. A. Elgendy and Y. Tian, "Adaptive Energy-aware Algorithms for Minimizing Energy Consumption and SLA Violation in Cloud Computing," IEEE Access, vol. 6, pp. 55923-55936, 2018.
[25] S. Sotiriadis, N. Bessis and R. Buyya, "Self-managed Virtual Machine Scheduling in Cloud Systems," Information Sciences, vol. 433-434, pp. 381–400, 2018.
[26] A. Paya and D. C. Marinescu, "Energy-aware Load Balancing and Application Scaling for the Cloud Ecosystem," IEEE Transactions on Cloud Computing, vol. 5, no. 1, pp. 15-27, 2017.
[27] I. Odun-Ayo, B. Udemezue and A. Kilanko, "Cloud Service Level Agreements and Resource Management", Advances in Science, Technology and Engineering Systems Journal, vol. 4, no. 2, pp. 228- 236, 2019.
[28] R. Yadav, W. Zhang, H. Chen and T. Guo, "MuMs: Energy-aware VM Selection Scheme for Cloud Data Center," Proc. of the 28th IEEE International Workshop on Database and Expert Systems Applications (DEXA), pp. 132-136, Lyon, France, 2017.
[29] M. Dabbagh, B. Hamdaoui, M. Guizani and A. Rayes, "Toward Energy-efficient Cloud Computing: Prediction, Consolidation and Over-commitment," IEEE Network, vol. 29, no. 2, pp. 56-61, 2015.
[30] E. Torre, J. J. Durillo, V. de Maio, P. Agrawal, S. Benedict, N. Saurabh and R. Prodan, "A Dynamic Evolutionary Multi-objective Virtual Machine Placement Heuristic for Cloud Data Centers," Information and Software Technology, vol. 128, DOI: 10.1016/j.infsof.2020.106390, 2020.
[31] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, N. T. Hieu and H. Tenhunen, "Energy-aware VM Consolidation in Cloud Data Centers Using Utilization Prediction Model," IEEE Transactions on Cloud Computing, vol. 7, no. 2, pp. 524-536, 2019.
[32] D. Abdulkareem Shafiq, N. Z. Jhanjhi and A. Abdullah, "Load Balancing Techniques in Cloud Computing Environment: A Review," Journal of King Saud University - Computer and Information Sciences, DOI: 10.1016/j.jksuci.2021.02.007, 2021.
[33] M. Balaji, Ch. Aswani Kumar and G. Subrahmanya V. R. K. Rao, "Predictive Cloud Resource Management Framework for Enterprise Workloads," Journal of King Saud University - Computer and Information Sciences, vol. 30, no. 3, pp. 404-415, 2018.
[34] F. Ebadifard and S. M. Babamir, "Autonomic Task Scheduling Algorithm for Dynamic Workloads through a Load Balancing Technique for the Cloud-computing Environment," Cluster Computing, vol. 24, pp. 1075-1101, June 2021.
[35] N. Chaurasia, M. Kumar, R. Chaudhry et al., "Comprehensive Survey on Energy-aware Server Consolidation Techniques in Cloud Computing," The Journal of Supercomputing, vol. 2021, DOI: 10.1007/s11227-021-03760-1, March 2021.
[36] B. K. Dewangan, A., M., V. Agarwal and A. Pasricha, "Energy-aware Autonomic Resource Scheduling Framework for Cloud," International Journal of Mathematical, Engineering and Management Sciences, vol. 4, no. 1, pp. 41-55, 2019.
[37] A. A. Hassan, B. M. Bai and T. J. Gandomani, "An Integrated Model for Secure-on-Demand Resource Provisioning Based on Service Level Agreement (SLA) in Cloud Computing," Journal of Theoretical and Applied Information Technology, vol. 65, no. 2, July 2014.
[38] M. Sohani and S. C. Jain, "State-of-the-art Survey on Cloud Computing Resource Scheduling Approaches," Proc. of Ambient Communications and Computer Systems, Part of the Advances in Intelligent Systems and Computing Book Series, vol. 696, pp. 629-639, March 2018.
[39] W. Lin, J. Z. Wang, C. Liang and D. Qi, "A Threshold-based Dynamic Resource Allocation Scheme for Cloud Computing," Procedia Engineering, vol. 23, pp. 695-703, 2011.
[40] S. S. Gill, I. Chana, M. Singh et al., "CHOPPER: An Intelligent QoS-aware Autonomic Resource Management Approach for Cloud Computing," Cluster Computing, vol. 21, pp. 1203–1241, 2018.
[41] H. Alhussian et al., "Investigating the Schedulability of Periodic Real-time Tasks in Virtualized Cloud Environment," IEEE Access, vol. 7, pp. 29533-29542, 2019.
[42] M. Azaiez and W. Chainbi, "A Multi-agent System Architecture for Self-healing Cloud Infrastructure," Proceedings of the International Conference on Internet of Things and Cloud Computing (ICC’16), pp. 1-6, DOI: 10.1145/2896387.2896392, March 2016.
[43] S. Talwani and I. Chana, "Fault Tolerance Techniques for Scientific Applications in Cloud," Proc. of the 2nd International Conference on Telecommunication and Networks (TEL-NET), pp. 1-5, Noida, India, 2017.
[44] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose and R. Buyya, "CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms," Software – Practice and Experience, vol. 41, no. 1, pp. 23–50, August 2010.