[1] Y. Ahn and Y. Kim, "Auto-scaling of Virtual Resources for Scientific Workflows on Hybrid Clouds," Proc. of the 5th ACM Workshop on Scientific Cloud Computing (ScienceCloud '14), pp. 47-52, DOI: 10.1145/2608029.2608036, June 2014.
[2] L. F. Bittencourt and E. R. M. Madeira, "HCOC: A Cost Optimization Algorithm for Workflow Scheduling in Hybrid Clouds," Journal of Internet Services and Applications, vol. 2, pp. 207-227, 2011.
[3] S. Sagiroglu and D. Sinanc, "Big Data: A Review," Proc. of the IEEE International Conference on Collaboration Technologies and Systems (CTS), pp. 42-47, San Diego, CA, USA, July 2013.
[4] K. Wang, K. Qiao, I. Sadooghi, X. Zhou, T. Li, M. Lang et al., "Load-balanced and Locality-aware Scheduling for Data-intensive Workloads at Extreme Scales," Concurrency and Computation: Practice and Experience, vol. 28, pp. 70-94, 2016.
[5] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker and I. Stoica, "Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling," Proc. of the 5th European Conf. on Computer Systems (EuroSys '10), pp. 265-278, DOI: 10.1145/1755913.1755940, April 2010.
[6] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz and I. Stoica, "Improving MapReduce Performance in Heterogeneous Environments," Proc. of the 8th USENIX Conference on Operating Systems Design and Implementation (OSDI'08), vol. 8, no. 4, pp. 29-42, December 2008.
[7] B. Lin, W. Guo and X. Lin, "Online Optimization Scheduling for Scientific Workflows with Deadline Constraint on Hybrid Clouds," Concurrency and Computation: Practice and Experience, vol. 28, pp. 3079-3095, August 2016.
[8] N. Xiong, X. Jia, L. T. Yang, A. V. Vasilakos, Y. Li and Y. Pan, "A Distributed Efficient Flow Control Scheme for Multirate Multicast Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 9, pp. 1254-1266, September 2010.
[9] J. Yin, X. Lu, X. Zhao, H. Chen and X. Liu, "BURSE: A Bursty and Self-similar Workload Generator for Cloud Computing," IEEE Trans. on Parallel and Distributed Sys., vol. 26, no. 3, pp. 668-680, 2015.
[10] Y. E. M. Hamouda, "Modified Random Bit Climbing (λ -mRBC) for Task Mapping and Scheduling in Wireless Sensor Networks," Jordanian Journal of Computers and Information Technology (JJCIT), vol. 5, no. 1, pp. 17-32, April 2019.
[11] B. Lin, W. Guo, N. Xiong, G. Chen, A. V. Vasilakos and H. Zhang, "A Pretreatment Workflow Scheduling Approach for Big Data Applications in Multicloud Environments," IEEE Transactions on Network and Service Management, vol. 13, no. 3, pp. 581-594, September 2016.
[12] A. N. Toosi, R. O. Sinnott and R. Buyya, "Resource Provisioning for Data-intensive Applications with Deadline Constraints on Hybrid Clouds Using Aneka," Future Generation Computer Systems, vol. 79, no.2, pp. 765-775, February 2018.
[13] M. Sohani and S. C. Jain, "Fault Tolerance Using Self-healing SLA and Load Balanced Dynamic Resource Provisioning in Cloud Computing," Jordanian Journal of Computers and Information Technology (JJCIT), vol. 07, no. 02, pp. 206-222, June 2021.
[14] G. L. Stavrinides, F. R. Duro, H. D. Karatza, J. G. Blas and J. Carretero, "Different Aspects of Workflow Scheduling in Large-scale Distributed Systems," Simulation Modeling Practice and Theory, vol. 70, pp. 120-134, January 2017.
[15] M. Adhikari and T. Amgoth, "Multi-objective Accelerated Particle Swarm Optimization Technique for Scientific Workflows in IaaS Cloud," Proc. of the International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1448-1454, Bangalore, India, September 2018.
[16] H. G. E. D. H. Ali, I. A. Saroit and A. M. Kotb, "Grouped Tasks Scheduling Algorithm Based on QoS in Cloud Computing Network," Egyptian Informatics Journal, vol. 18, no. 1, pp. 11-19, March 2017.
[17] S. Suresh, H. Huang and H. J. Kim, "Scheduling in Compute Cloud with Multiple Data Banks Using Divisible Load Paradigm," IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 2, pp. 1288-1297, 2015.
[18] M. Kowsigan and P. Balasubramanie, "Scheduling of Jobs in Cloud Environment Using Soft Computing Techniques," Int. Journal of Applied Engineering Research, vol. 10, no. 38, pp. 28640-28645, 2015.
[19] W. Yan, W. Jinkuan and H. Yinghua, "Cloud Computing Workflow Framework with Resource Scheduling Mechanism," Proc. of the IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), pp. 342-345, Nanjing, China, August 2016.
[20] P. Kaur and S. Mehta, "Resource Provisioning and Workflow Scheduling in Clouds Using Augmented Shuffled Frog Leaping Algorithm," Journal of Parallel and Distributed Computing, vol. 101, pp. 41-50, 2017.
[21] J. Shamsi, M. A. Khojaye and M. A. Qasmi, "Data-intensive Cloud Computing: Requirements, Expectations, Challenges and Solutions," Journal of Grid Computing, vol. 11, pp. 281-310, April 2013.
[22] S. G. Ahmad, C. S. Liew, M. M. Rafique and E. U. Munir, "Optimization of Data-intensive Workflows in Stream-based Data Processing Models," The Jour. of Supercomputing, vol. 73, pp. 3901-3923, 2017.
[23] M. S. Kumar, I. Gupta, S. K. Panda and P. K. Jana, "Granularity-based Workflow Scheduling Algorithm for Cloud Computing," The Journal of Supercomputing, vol. 73, pp. 5440-5464, June 2017.
[24] F. Xiong, C. Yeliang, Z. Lipeng, H. Bin, D. Song and W. Dong, "Deadline Based Scheduling for Data- Intensive Applications in Clouds," The Journal of China Universities of Posts and Telecommunications, vol. 23, no. 6, pp. 8-15, December 2016.
[25] T. Ghafarian and B. Javadi, "Cloud-aware Data Intensive Workflow Scheduling on Volunteer Computing Systems," Future Generation Computer Systems, vol. 51, no. C, pp. 87-97, October 2015.
[26] K. Kanagaraj and S. Swamynathan, "Structure Aware Resource Estimation for Effective Scheduling and Execution of Data Intensive Workflows in Cloud," Future Generation Computer Systems, vol. 79, no. P3, pp. 878-891, February 2018.
[27] S. Esteves and L. Veiga, "WaaS: Workflow-as-a-Service for the Cloud with Scheduling of Continuous and Data-intensive Workflows," The Computer Journal, vol. 59, no. 3, pp. 371-383, March 2016.
[28] I. Pietri and R. Sakellariou, "Scheduling Data-intensive Scientific Workflows with Reduced Communication," Proc. of the 30th International Conference on Scientific and Statistical Database Management (SSDBM '18), pp. 1-4, DOI: 10.1145/3221269.3221298, July 2018.
[29] P. Wang, Y. Lei, P. R. Agbedanu and Z. Zhang, "Makespan-driven Workflow Scheduling in Clouds Using Immune-based PSO Algorithm," IEEE Access, vol. 8, pp. 29281-29290, February 2020.
[30] G. Ismayilov and H.R. Topcuoglu, "Neural Network Based Multi-objective Evolutionary Algorithm for Dynamic Workflow Scheduling in Cloud Computing," Future Generation Computer Systems, vol. 102, pp. 307-322, January 2020.
[31] O. Sukhoroslov, "Toward Efficient Execution of Data-intensive Workflows," The Journal of Supercomputing, vol. 12, pp. 7989-8012, 2021.
[32] F. Li, "A Novel Scheduling Algorithm for Data-intensive Workflow in Virtualized Clouds," International Journal of Networking and Virtual Organizations, vol. 20, no. 3, pp. 284-300, June 2019. [33] H. Saadatfar and H. Deldari, "A Study on Combinational Effects of Job and Resource Characteristics on Energy Consumption," Multiagent and Grid Systems, vol. 9, no. 4, pp. 301-314, January 2014.
[34] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta and K. Vahi, "Characterizing and Profiling Scientific Workflows," Future Generation Computer Systems, vol. 29, no. 3, pp. 682-692, March 2013.
[35] Confluence, "Workflow Generator," [Online], Available: https://confluence.pegasus.isi.edu/display/ pegasus/WorkflowGenerator.
[36] T. Goyal, A. Singh and A. Agrawal, "Cloudsim: Simulator for Cloud Computing Infrastructure and Modelling," Procedia Engineering, vol. 38, pp. 3566-3572, DOI: 10.1016/j.proeng.2012.06.412, 2012.